
Converting one Type-Based Abstract Domain to

Another

John P. Gallagher1, Germán Puebla2, and Elvira Albert3

1 Department of Computer Science, Univ. of Roskilde, jpg@ruc.dk
2 School of Computer Science, Technical Univ. of Madrid, german@fi.upm.es

3 School of Computer Science, Complutense Univ. of Madrid, elvira@sip.ucm.es

Abstract. The specific problem that motivates this paper is how to ob-
tain abstract descriptions of the meanings of imported predicates (such
as built-ins) that can be used when analysing a module of a logic program
with respect to some abstract domain. We assume that abstract descrip-
tions of the imported predicates are available in terms of some “standard”
assertions. The first task is to define an abstract domain corresponding to
the assertions for a given module and express the descriptions as objects
in that domain. Following that they are automatically transformed into
the analysis domain of interest. We develop a method which has been
applied in order to generate call and success patterns from the CiaoPP

assertions for built-ins, for any given regular type-based domain. In the
paper we present the method as an instance of the more general problem
of mapping elements of one abstract domain to another, with as little
loss in precision as possible.

1 Motivation

When performing static analysis of a logic program, the source code for some
parts of it may be inaccessible for some reason (the code might be in exter-
nal modules, built-in system predicates, foreign-language libraries, and so on).
In order to analyse such a program accurately, abstract descriptions of the be-
haviour of the missing code have to be supplied, otherwise some coarse over-
approximation (or sometimes under-approximation) has to be used.

It can take considerable effort to specify the properties of built-ins and li-
brary predicates over a given abstract domain, and those properties need to be
specified for each domain for which the calling code is to be analysed. Our in-
tention is to specify once and for all the properties of library predicates, using a
general and expressive abstract domain of descriptions; these specifications are
then converted to another abstract domain when a particular analysis is to be
performed.

The following general principles of abstract domain construction [1] are ap-
plied. Given two abstract interpretations of a concrete semantics, say A1 and
A2, with abstraction and concretisation functions α1, γ1, α2 and γ2 respectively,
the aim is to translate descriptions in A1 to descriptions in A2. The best rep-
resentative of an element a1 ∈ A1 in A2 is α2(γ1(a1)). If we can implement a

function equivalent to this we can just apply it to descriptions expressed using
elements of A1 to obtain descriptions in A2. For the abstract domains that we
consider, namely those based on regular types, we show that the function can
be implemented by constructing the reduced product domain A1 ?A2, with con-
cretisation function γ?. Our method can be presented as the computation, for a
given element a1 ∈ A1, of the corresponding element a? ∈ A1 ? A2, such that
γ?(a?) = γ1(a1), and then computing the most precise element a2 in the domain
of A2 such that γ?(a?) v γ2(a2). a1 has an exact representative in A1 ? A2 but
we cannot in general find an exact representative of a? in A2. In our method,
A1 is the general-purpose domain, while A2 is a particular analysis domain.

Assertions in CiaoPP. In the CiaoPP system [2] an assertion language is provided
that allows properties of predicates to be stated in a flexible, general language.
The properties of built-ins and many library predicates have been expressed in
this assertion language. The question addressed in this work is how to use such
information in an analysis over a (new) particular abstract domain. The method
described in this paper allows us to take any given assertions about a module’s
imported predicates and translate them safely (and accurately) into the domain
under consideration. We use domains based on regular types, realised as pre-
interpretations [3], using a subset of the CiaoPP assertion language to explain
the approach.

In the CiaoPP assertion language, approximations of the success set of a
predicate can be specified, among many other aspects of computation. We do
not enter into the notation for the assertions here; detailed examples can be seen
in [2]. We can extract this information in the form of a set of abstract atoms of
the form p(d1, . . . , dn), for a predicate p/n, where d1, . . . , dn are the names of
abstract term descriptions defined within the CiaoPP system.

Example 1. The success of length/2 is described by {length(list, int)}. Here int
is a primitive type and list is defined by a set of regular type rules. If the analysis
of interest concerns modes g (ground) and nong (non-ground), then this descrip-
tion would be transformed automatically into {length(g , g), length(nong , g)}. In
order to achieve this transformation we need to derive the information that a
list can be either ground or non-ground, while an int is ground.

An alternative approach (currently pursued in the CiaoPP system) is to define
relationships between analysis domains in advance (a type lattice) [2]. For ex-
ample, the fact that arithmetic expressions are ground can be pre-defined. Once
that is done, an assertion, say, that the predicate < /2 succeeds with both argu-
ments bound to arithmetic expressions can safely be translated into the modes
domain as an assertion that both arguments are ground.

In contrast, the approach defined here allows arbitrary relationships to be
derived automatically, for user-defined types as well as pre-defined ones. We
focus here on transforming assertions about success of predicates, but the same
approach can be followed for assertions on calls.

Related Work. The most closely related work is concerned with systematically
constructing abstract domains from other domains [1, 4]. These principles have
been applied in combining different abstractions from primitive operations in
the ASTRÉE analyser (see e.g [5]). We make use of the reduced product in this
paper, but domain construction is not our main aim, but rather to transfer infor-
mation from one given domain to another given domain. Although the principles
are well understood (see Section 2), we do not know of other work that applies
them systematically to this problem.

Section 2 explains the general principles behind our solution. In Section 3 we
review the kind of abstract domain that we deal with, namely, domains based
on regular types and define a general solution for such domains. In Section 4
we describe how we construct a single set of regular types from the various
different kinds of assertion in the CiaoPP assertion language, and thus define
the standard domain. Section 5 presents the procedure for mapping descriptions
in the standard domain into any given user-supplied domain based on regular
types. The soundness and precision of the procedure are established by relating
it to the general solution. Section 6 contains the results of some experiments
in transforming CiaoPP assertions into various simple mode and type domains.
Finally in Section 7 we present conclusions and future work.

2 General Characterisation of the Problem

We restrict our attention to abstract interpretations based on a Galois connec-
tion, which is given by a 4-tuple 〈(D,vD), (A,vA), α, γ〉 where (D,vD) and
(A,vA) are partially ordered sets, the concrete and abstract domain of inter-
pretation respectively, and α : D → A and γ : A → D are adjoined functions
satisfying

∀x ∈ D, y ∈ A : (α(x) vA y) ⇐⇒ (x vD γ(y)).

α(x) represents the best possible description of some concrete object x in the
abstract domain A, while γ(y) represents the most imprecise element of the
concrete domain D that is described by some abstract object y.

If (D,vD) and (A,vA) are complete lattices, then the functions α and γ
determine each other; in particular we have α(x) = u {y | x vD γ(y)}, where u
is the meet operator in (A,vA).

Suppose 〈(D,vD), (A1,vA1
), α1, γ1〉 and 〈(D,vD), (A2,vA2

), α2, γ2〉 are two
abstract interpretations with same concrete domain. Then given an element a1 ∈
A1, we can compute the best representation in A2 of a1 as α2(γ1(a1)).

In the applications considered in this paper, the domains are complete lat-
tices. We are not provided explicitly with the abstraction function α. Therefore,
the expression α2(γ1(a1)) mentioned above is rewritten as

α2(γ1(a1)) = u {y ∈ A2 | γ1(a1) vD γ2(y)}

This expression suggests that all elements y of the set A2 have to be enumer-
ated, which is not practical in general. A practical algorithm for computing the

required element of A2 is obtained in the remainder of the paper, for domains
that are based on pre-interpretations.

3 Analysis Domains Based on Regular Types

As shown in [3], any set of regular types (a non-deterministic finite tree automa-
ton) over a logic program’s signature can be used to build a pre-interpretation,
and hence an abstract interpretation of the program. In this section we sum-
marise this family of abstract interpretations and some key properties.

A set of regular types is defined by a set of type symbols Q, a signature Σ, and
a set of rules of the form f(d1, . . . , dn) → d, where f/n ∈ Σ and d, d1, . . . , dn ∈ Q.
A set of regular type definitions can be seen as a finite tree automaton (FTA).
For our purposes we regard the two notions as interchangeable, and speak of
the states of an FTA as “types”. (We assume that every state of an FTA is an
accepting (or final) state.) Let TermΣ be the set of terms constructible from the
function symbols in Σ. Given a state (type) d, let L(d) ⊆ TermΣ be the set of
terms accepted by d; that is, for all t ∈ L(d) there is a bottom-up derivation
starting at t and ending at d. We can also think of L(d) as standing for the terms
of “type” d. Full details of these concepts can be found in the literature [6].

It is known [6] that an arbitrary FTA can be transformed to an equivalent
bottom-up deterministic FTA (or DFTA). The defining condition of a DFTA is
that there are no two rules with the same left hand side. An arbitrary FTA
can also be completed, meaning that it is extended so that there exists a rule
f(d1, . . . , dn) → d for each choice of f, d1, . . . , dn. (An extra state may need to
be added to the FTA.) Let Q be the set of states of a complete DFTA. Thus
{L(d) | d ∈ Q} is a disjoint partition of TermΣ . That is, each t ∈ TermΣ is
accepted by exactly one state in a bottom-up derivation in a complete DFTA.

Example 2. Let Σ = {[]/0, [.|.]/2, a/0, s/1}. The following rules define a com-
plete DFTA over Σ:

{[] → list, [list|list] → list, [nonlist|list] → list,
[list|nonlist] → nonlist, [nonlist|nonlist] → nonlist, a → nonlist,
s(list) → nonlist, s(nonlist) → nonlist}

The rules define two types list and nonlist. Each term in TermΣ is accepted
by one of these two. This induces a partition of TermΣ into two disjoint sets,
lists and non-lists. The above DFTA could be obtained by determinizing and
completing the following FTA:

{[] → list, [dynamic|list] → list, [] → dynamic,
[dynamic|dynamic] → dynamic, s(dynamic) → dynamic, a → dynamic}

Note that the two types list and dynamic are not disjoint, in fact L(list) ⊂
L(dynamic) in this case.

Representation of States in a Determinized FTA. Let Q be the set of states of an
FTA. The textbook algorithm for determinization [6] constructs a DFTA whose
set of states is some subset of 2Q, say Q. Let {d1, . . . , dk} be a state in Q. The
set of terms accepted by {d1, . . . , dk} in the determinized DFTA is exactly those
terms that are accepted by all of d1, . . . , dk in the original FTA and by no other
state. This is summarised formally as follows.

Property 1. {d1, . . . , dk} ∈ Q iff (L(d1) ∩ . . . ∩ L(dk)) \
⋃
{L(d′) | d′ ∈ Q \

{d1, . . . , dk}} is nonempty.

Define dettypes(d,Q) = {d′ | d′ ∈ Q, d ∈ d′}. Let d ∈ Q, and let LQ(d)
represent the terms accepted by d in the original FTA. Let {d1, . . . , dk} ∈ Q
and let LQ({d1, . . . , dk}) be the set of terms accepted by {d1, . . . , dk} in the
corresponding DFTA. Then we have LQ(d) = ∪{LQ(d′) | d′ ∈ dettypes(d,Q)}.

Intuitively, dettypes(d,Q) tells us the set of states in Q into which d is split
during determinization. Thus, the use of sets of states from the original FTA to
denote states in the DFTA gives us a convenient way of relating each state in
the original FTA with the “equivalent” set of states in the corresponding DFTA.

Example 3. Let Q = {list, dynamic} with transitions as defined in Example 2.
The determinization algorithm yields states Q = {{list, dynamic}, {dynamic}}
corresponding to list and nonlist respectively. Then dettypes(dynamic,Q) =
{{list, dynamic}, {dynamic}} and dettypes(list,Q) = {{list, dynamic}}. This
shows that the type list in the original FTA corresponds to {list, dynamic} in
the DFTA, while the type dynamic is split into two disjoint types {list, dynamic}
(lists) and {dynamic} (non-lists) in the DFTA.

Determinization of the Union of Two FTAs. Let 〈Q1, Σ,∆1〉 and 〈Q2, Σ,∆2〉
be FTAs based on the same signature and let 〈Q1∪Q2, Σ,∆1∪∆2〉 be the union
of the two automata. (Note, we can assume without loss of generality that Q1

and Q2 are disjoint.) Determinize all three automata; we will refer to the sets of
states of the respective DFTAs as Q1, Q2 and Q?.

3.1 Correspondence between Pre-interpretations and DFTAs

A pre-interpretation J of a signature Σ is defined by a domain QJ and a mapping
IJ which maps each n-ary function symbol f/n ∈ Σ to a function Qn

J → QJ ,
denoted fJ .

It was shown in [3] that a complete DFTA is equivalent to a pre-interpretation
of Σ. Thus when we speak of a pre-interpretation we could equally well refer to
a completed DFTA and vice versa. Each rule f(d1, . . . , dn) → d in the DFTA
corresponds to an equation fJ (d1, . . . , dn) = d in the pre-interpretation J . The
set of rules with the same function f/n on the left defines the function fJ onto
which f/n is mapped by IJ . The DFTA is complete, hence the function fJ is
total.

Example 4. The DFTA in Example 2 can be written as the pre-interpretation J
with domain {list, nonlist} and functions []J , [.|.]J , aJ , sJ defined by:

{[]J = list, [list|list]J = list, [nonlist|list]J = list, [list|nonlist]J = nonlist,
[nonlist|nonlist]J = nonlist, aJ = nonlist,
sJ(list) = nonlist, sJ (nonlist) = nonlist}

3.2 Concrete and Abstract Domains of Interpretation.

We take the concrete semantic domain of a logic program to be the set of its
Herbrand interpretations [7] over an extended signature containing constants
corresponding to variables, thus allowing information about term instantiation
to be captured [11]. Note that models based on this semantics cannot capture
certain properties directly, such as definite freeness. However the semantics pro-
vides a useful approximation of the computed answers. Let Σ be the signature of
the language of the program, consisting of a set of ranked function and predicate
symbols. Let AtomΣ be the set of atoms of form p(t1, . . . , tn) where p ∈ Σ is
an n-ary predicate symbol and t1, . . . , tn ∈ TermΣ . AtomΣ is often called the
Herbrand base of P . A Herbrand interpretation of P is a subset of AtomΣ , rep-
resenting the atoms interpreted as true. The lattice of Herbrand interpretations
D = 〈2AtomΣ ,⊆,∪,∩, ∅,AtomΣ〉 is called the concrete domain.

From a Pre-Interpretation to an Abstract Domain. Let J be a pre-interpretation
of Σ with domain QJ . The set AtomJ is the set of expressions p(d1, . . . , dn)
where p ∈ Σ is an n-ary predicate symbol and d1, . . . , dn ∈ QJ . The lattice
of interpretations over J , AJ = 〈2AtomJ ,⊆,∪,∩, ∅,AtomJ〉 is called the abstract
domain based on pre-interpretation J . A Galois connection between AJ and D
is given by the concretisation function γJ : 2AtomJ → 2AtomΣ .

γJ(S) =
⋃

{{p(t1, . . . , tn) | ti ∈ L(di), 1 ≤ i ≤ n} | p(d1, . . . , dn) ∈ S}.

The expression L(di) above refers to the subset of TermΣ accepted by di (con-
sidered as the state of a DFTA), as mentioned above.

Although we are not concerned with the semantic function in the present
work, we note that the least model MJ [P] of a program P for a pre-interpretation
J can be obtained by a fixpoint computation. MJ [P] is an abstraction of the least
Herbrand model M [P], in the sense that γ(MJ [P]) ⊇ M [P]. So any FTA forms
the basis for an abstraction of a program in which the meaning of a predicate p
is abstracted by a set of domain atoms over the corresponding disjoint types.

Property 2. Let AJ be the abstract domain constructed from pre-interpretation
J . Then each element of the abstract domain represents a unique element of the
concrete domain; that is, for all S1, S2 ∈ 2AtomJ , S1 = S2 iff γJ (S1) = γJ(S2).
This holds because for all d1, d2 ∈ QJ , d1 = d2 iff L(d1) ∩ L(d2) 6= ∅.

Constructing a Product Domain. Suppose J1 and J2 are DFTAs obtained from
FTAs 〈Q1, Σ,∆1〉 and 〈Q2, Σ,∆2〉 respectively.

Let A1 = 〈2AtomJ1 ,⊆,∪,∩, ∅,AtomJ1
〉 and A2 = 〈2AtomJ2 ,⊆,∪,∩, ∅,AtomJ2

〉
be the resulting abstract domains. We form a product domain A? = 〈2AtomJ? ,⊆
,∪,∩, ∅,AtomJ?

〉 where J? is the DFTA of the union 〈Q1 ∪ Q2, Σ,∆1 ∪ ∆2〉.

Claim. We claim that A? is the reduced cartesian product A1 ? A2 [1].

This claim is informally justified as follows. The reduced product of A1 and A2

is defined as the result of applying a reduction operator ρ [1] to the cartesian
product of domains of A1 and A2 (with elements ordered componentwise). The
effect of ρ, informally speaking, is to “bring to the abstract the conjunction
of properties we would have in the concrete”. Let S1 and S2 be elements of
2AtomJ1 and 2AtomJ2 respectively. Then A? contains a unique element S? such
that γ1(S1) ∩ γ2(S2) = γ?(S?). Such an element S? exists since the intersection
of any two regular types in the original DFTAs is represented in the DFTA of the
union. Thus A? is at least as precise as the cartesian product of A1 and A2. S?

is unique (for each S1 and S2) due to Property 2. This implies that the reduction
operator [1] is the identity function when applied to the product domain.

Lemma 1. Let J1, J2 and J? be pre-interpretations constructed as above. Q1 is
the set of states in the FTA used to derive J1. Let S? ∈ 2AtomJ? . Then the element
S1 ∈ 2AtomJ1 defined as S1 = {p(d̄1∩Q1, . . . , d̄n∩Q1) | p(d̄1, . . . , d̄n) ∈ S?} is the
best approximation of S? in the domain 2AtomJ1 . That is, S1 = ∩{S′

1
| γ?(S?) ⊆

γ1(S
′
1
)}. (Similarly for 2AtomJ2 by symmetry.)

Proof. The notation d̄ means that d̄ is a state in a DFTA, i.e. it is a set of states
from the original FTA. First show that {p(d̄1∩Q1, . . . , d̄n∩Q1) | p(d̄1, . . . , d̄n) ∈
S?} ⊆ ∩{S′

1
| γ?(S?) ⊆ γ1(S

′
1
)}. Let p(ē1, . . . , ēn) ∈ {p(d̄1 ∩ Q1, . . . , d̄n ∩ Q1) |

p(d̄1, . . . , d̄n) ∈ S?}. Then there exists p(d̄1, . . . , d̄n) ∈ S?} such that for 1 ≤ i ≤
n, d̄i = ēi ∪ f̄ where f̄ ∩ Q1 = ∅. Then γ?(S?) contains an element p(t1, . . . , tn)
such that for 1 ≤ i ≤ n, ti ∈ L(ēi ∪ f̄), where f̄ ∩ Q1 = ∅. For any element
S′

1
∈ 2AtomJ1 , if p(t1, . . . , tn) ∈ γ1(S

′
1
) then p(ē1, . . . , ēn) ∈ S′

1
since each ti ∈ L(ē)

for exactly one ē ⊆ Q1, and that ē must be ēi. Hence p(ē1, . . . , ēn) ∈ ∩{S′
1
|

γ?(S?) ⊆ γ1(S
′
1
)}.

Now show that ∩{S′
1

| γ?(S?) ⊆ γ1(S
′
1
)} ⊆ {p(d̄1 ∩ Q1, . . . , d̄n ∩ Q1) |

p(d̄1, . . . , d̄n) ∈ S?}. Let p(ē1, . . . , ēn) ∈ ∩{S′
1
| γ?(S?) ⊆ γ1(S

′
1
)}. If for all

S′
1
∈ 2AtomJ1 such that γ?(S?) ⊆ γ1(S

′
1
), p(ē1, . . . , ēn) ∈ S′

1
, then S? contains at

least one element p(d̄1, . . . , d̄n) such that for 1 ≤ i ≤ n, d̄i = ēi∪f̄ and f̄∩Q1 = ∅.
This is because γ1(ēi)∩γ?(d̄) = ∅ for all d̄ not of the form d̄ = ē∪f̄ and f̄∩Q1 = ∅.
Hence p(ē1, . . . , ēn) ∈ {p(d̄1 ∩ Q1, . . . , d̄n ∩ Q1) | p(d̄1, . . . , d̄n) ∈ S?}.

Property 3. A product domain A1 ? A2 can precisely represent elements of its
factors A1 and A2. That is, if S1 is an element of the domain of A1 then there
exists an element S? in the domain of A? such that γ1(S1) = γ?(S?). The
element is unique by Property 2. Furthermore, S1 = {p(d̄1 ∩ Q1, . . . , d̄n ∩ Q1) |
p(d̄1, . . . , d̄n) ∈ S?} by Lemma 1.

Example 5. Let 〈Q1, Σ,∆1〉 and 〈Q2, Σ,∆2〉 be FTAs, where Q1 = {g ,nong}
and Q2 = {list, dynamic, int}, where these elements have their expected mean-
ings. The DFTA states Q1 obtained from Q1 are {{g}, {nong}} and the DFTA
states Q2 obtained from Q2 are {{dynamic, list}, {dynamic, int}, {dynamic}}.
The states Q? of the DFTA obtained from the union 〈Q1 ∪Q2, Σ,∆1 ∪∆2〉 are

{{dynamic, list, g}, {dynamic, list,nong},
{dynamic, int, g}, {dynamic, g}, {dynamic,nong}}.

(Note that there are fewer states in Q? than in the cartesian product of Q1 and
Q2.) Consider S1 = {p({g}, {g}} ∈ 2AtomJ1 . Then the element S? ∈ 2AtomJ? such
that γ1(S1) = γ?(S?) is

{p({dynamic, list, g}, {dynamic, g}), p({dynamic, list, g}, {dynamic, int, g}),
p({dynamic, list, g}, {dynamic, list, g}), p({dynamic, int, g}, {dynamic, g}),
p({dynamic, int, g}, {dynamic, list, g}), p({dynamic, g}, {dynamic, list, g}),
p({dynamic, int, g}, {dynamic, int, g}), p({dynamic, g}, {dynamic, int, g}),
p({dynamic, g}, {dynamic, g})}.

It contains every possible combination of arguments from the product DFTA
states that intersect with {g}.

In this case, any non-empty subset S ′
? of S? also satisfies S1 = {p(d̄1 ∩

Q1, . . . , d̄n ∩ Q1) | p(d̄1, . . . , d̄n) ∈ S′
?}.

3.3 Transformation from one type domain to another.

Now we can summarise the general method for representing an element of a
domain based on regular types in another domain based on different types.

Proposition 1. Suppose J1 and J2 are two DFTAs (i.e. pre-interpretations) ob-
tained from FTAs 〈Q1, Σ,∆1〉 and 〈Q2, Σ,∆2〉 respectively. Let J? be the DFTA
of the union 〈Q1 ∪ Q2, Σ,∆1 ∪ ∆2〉.

Given S1 ∈ 2AtomJ1 , let S? ∈ 2AtomJ? satisfy γ1(S1) = γ?(S?). Property 3
shows that this exists (though we did not yet show an explicit procedure for
computing it). Then let S2 = {p(d̄1 ∩ Q2, . . . , d̄n ∩ Q2) | p(d̄1, . . . , d̄n) ∈ S?}.
Then S2 = α2(γ1(S1)), that is, S2 is the best representative of S1 in 2AtomJ2 .

Proof. S2 = ∩{S′
1
| γ?(S?) ⊆ γ2(S

′
1
)} by Lemma 1. But since we know that

γ1(S1) = γ?(S?) we can write S2 = ∩{S′
1
| γ1(S1) ⊆ γ2(S

′
1
)}. This is equivalent

to S2 = α2(γ1(S1)) (see Section 2).

4 Construction of a Standard Abstract Domain from the

CiaoPP Assertion Language

As already mentioned, a set of assertions in the CiaoPP assertion language about
success of a predicate p/n can be interpreted as a set of abstract atoms of form

p(d1, . . . , dn) where d1, . . . , dn are the names of regular types defined within the
CiaoPP system. Such a description is called an abstract success set. Note that
the CiaoPP system itself does not present all such values di as regular types.
There are modes and primitive types as well; however, as shown below, in the
context of a particular program and signature we are able to interpret all of
these concepts as regular types defined by a finite set of rules. A discussion of
the use of regular types to represent modes is contained in previous work [3, 8].

Having expressed all the abstract values di as regular types, we will apply the
determinization algorithm on the regular types to obtain an abstract domain, as
summarised in Section 3. This will be called the standard domain for a program.

Example 6. The abstract success sets for some built-in predicates, as contained
in the standard assertion database of CiaoPP, is shown in the following table.

atom concat/2 {atom concat(atm, atm, atm)}
write/2 {write(stream, term)}
length/2 {length(list, int)}
is/2 {is(num, arithexpression)}

Here, atm, int and num are primitive types; stream, list and arithexpr are
defined by means of regular type rules, and term denotes the set of all terms.
The rules defining stream, for example, are as follows:

user input → stream user output → stream
user error → stream user → stream
′$stream ′(int, int) → stream

We will now show how all such descriptions, including primitive types and those
such as term can be defined as regular types, in the context of a given program.

4.1 Construction of the Standard FTA

Given a program P , we construct the standard abstract domain. It is based
on a finite tree automaton 〈Qstd, Σstd,∆std〉. We now show how each of these
components is made up.

The standard types Qstd. The states Qstd consist of the following components:
(1) a set of defined system types Qs, defined by rule ∆s; (2) a set of primitive
types Qprim; (3) a set of contextual types Qcntxt.

The defined system types Qs comprise types that are defined by regular
type rules in the CiaoPP assertion language. Example include arithexpr and list
as shown in Example 6, which are used in many predicates, and also keylist,
lock mode, io mode, stream and stream alias which concern only one or two
library predicates. The primitive types Qprim include num, int, flt, nnegint and
atm which implicitly are defined as infinite (or very large) sets of constants, but
are in practice defined by means of a characteristic predicate that is true or false
for each constant. The descriptors gnd, nonvar, var, term and struct are called

contextual types since their definition depends on the particular signature. In
CiaoPP these are also handled by means of a characteristic predicate, but unlike
primitive types they may be true for non-constants. We define the set of standard
types Qstd = Qs ∪ Qprim ∪ Qcntxt.

The global signature of a program Σstd. We now construct Σstd, the global
signature, which consists of the following components: (1) the program signature
ΣP ; (2) the system signature Σs; (3) the primitive signature Σprim. Note that,
unlike Qstd, the global signature is dependent on the program to be analysed as
well as the standard system functions and constants.

Given a program P to be analysed let ΣP be the set of function symbols
occurring in P and let Σs be the set of function symbols occurring in ∆s, the
rules defining Qs. The primitive signature Σprim is a set of constant symbols that
contains sufficient constants to distinguish each of the primitive types Qprim.
More precisely, for each non-empty subset D = {d1, . . . , dk} of Qprim, let ΣD be
the set of constants that are of type di for all di ∈ D, and are not of any other
type. Then Σprim contains at least one constant from each non-empty set ΣD.
We also insist that Σprim is disjoint from ΣP ∪ Σs. A typical set of constants
in Σprim is {0, 1, 1.0,−1, ′$CONST ′}. Thus for instance, we know that the set
nnegint ⊂ int; therefore Σprim should contain at least one constant that is
in both int and nnegint (e.g. 1) and one which is in int but not in nnegint
(e.g. −1). However, note that if P happens to contain the constants 1 or −1 we
must pick another member of int ∩ nnegint instead of 1 or another member of
int \ nnegint to replace −1.

We define the global signature Σstd = ΣP ∪ Σs ∪ Σprim ∪ {′$VAR′} where
′$VAR′ is a constant that does not appear in any other component of Σstd. We
will discuss the role of ′$VAR′ when constructing the contextual type rules.

The global type rules ∆std. The set of type rules defining the types Qstd over the
signature Σstd consists of the following components: (1) the system type rules
∆s; (2) the primitive rules ∆prim; (3) the contextual type rules ∆cntxt.

The system type rules ∆s are simply extracted from the CiaoPP system.
For the primitive rules we assume that the Prolog system provides some built-in
predicate for testing whether a given constant is of a given primitive type. Hence
given the signature Σstd we can enumerate the set of rules ∆prim of the form
c → d where c ∈ Σstd \ {′$VAR′} is a constant, d ∈ Qprim and c is of type d.

The types in Qcntxt are those whose definitions depend on the signature, such
as gnd. Given the global signature Σstd, then ∆cntxt is a set of rules defining
each type in Qcntxt in terms of Σstd. The details of the rules for gnd, nonvar,
var, term and struct are as follows.

– f(gnd, . . . , gnd) → gnd, for each n-ary function f ∈ Σstd \ {′$VAR′};
– f(term, . . . , term) → nonvar, for each n-ary function f ∈ Σstd \ {′$VAR′};
– f(term, . . . , term) → term, for each n-ary function f ∈ Σstd;
– f(term, . . . , term) → struct, for each n-ary function (n > 0) f ∈ Σstd \

{′$VAR′};

– the single rule ′$VAR′ → var.

Note the role of ′$VAR′; it is a constant that appears in the type term and var
but no other type. The idea is to distinguish the general type term from other
types (such as gnd), by including a constant ′$VAR′ that no other type contains,
apart from var, which only contains ′$VAR′. Thus a predicate argument that is
specified as term can contain any term (since L(term) ⊃ L(d) for all d) including
terms that are of no other type. This technique has been used to model the
presence of variables in previous work applying pre-interpretations for program
analysis [9–11].

Determinization of the Standard FTA. Having constructed the finite tree au-
tomaton 〈Qstd, Σstd,∆std〉 we can build a pre-interpretation and hence an ab-
stract domain, called the standard domain, as described in Section 3. In the
DFTA obtained by determinizing 〈Qstd, Σstd,∆std〉 the states are elements of
2Qstd . In the worst case, the set of states would be 2|Qstd|−1, but it turns out to
be much less. The number of DFTA states is in fact 37, almost the same as the
size of Qstd. We can produce a compact representation for ∆std. The number of
transitions in the DFTA, if represented explicitly, would be very large (24,239)
but we use a compact representation as discussed in [12]. The determinization
procedure takes approximately 0.6 seconds. In fact the conversion procedure
does not use the DFTA rules, but relies only on the set of states of the DFTA,
thanks to the use of the representation of states as elements of 2Qstd .

Representation of Abstract Success Sets in the Standard Domain. An abstract
success set obtained from the CiaoPP assertion database, such as those shown in
Example 6, can be represented as an element of the standard domain. Let M p

be the abstract success set of some predicate p. Let Qstd be the set of states in
the standard DFTA. Then the representation of M p in the standard domain is

Mp
std = {p(d′

1
, . . . , d′

n) | p(d1, . . . , dn) ∈ Mp

∧ ∀i : 1 ≤ i ≤ n : d′
i ∈ dettypes(di,Qstd)}.

Mp
std is an exact representation of Mp as formalised by the following property.

Property 4. Let γ be the concretisation function in the standard domain. Then
γ(Mp

std) = {p(t1, . . . , tn) | p(d1, . . . , dn) ∈ Mp, ti ∈ L(di), 0 ≤ i ≤ n}. Here L(di)
refers to the set of terms accepted by di in the standard FTA. The property
follows from the definition of dettypes.

5 The User Domain and the Construction of the Product

Domain

Now we turn to the question of converting the descriptions of predicates given
with respect to the states of the standard FTA into descriptions in terms of some
other, user-supplied FTA. Let 〈Qu, Σu,∆u〉 be an FTA given by the user. We

assume that Σu ⊆ Σstd. (This is no loss of generality since the program P can al-
ways to modified to contain more function symbols without affecting its intended
behaviour, e.g. by adding a dummy clause containing the required function sym-
bols.) Therefore we consider the FTA with the full signature 〈Qu, Σstd,∆

′
u〉. Qu

also contains the contextually defined type dynamic and possibly other contex-
tual types; ∆′

u is obtained from ∆u by extending the definitions of those con-
textual types for the full signature Σstd. We also assume that if a type appears
both in Qu and Qstd then it has the same meaning in both.

The intention is to analyse the given program P with respect to the pre-
interpretation obtained by determinizing the user-supplied FTA. The user do-
main for analysis is based on the DFTA obtained from 〈Qu, Σstd,∆

′
u〉 as de-

scribed in Section 3.

We construct an FTA combining the standard FTA with the user-supplied
FTA 〈Qu, Σstd,∆

′
u〉. The union FTA 〈Qstd∪Qu, Σstd,∆

′
u∪∆std〉 is determinized,

and the product abstract domain is the abstract domain obtained from the re-
sulting DFTA.

5.1 Converting Abstract Success Sets to the User Domain

As already discussed, we are supplied with an abstract success set of each of
the external predicates p/n in P , as a set of atoms of form p(d1, . . . , dn) where
d1, . . . , dn ∈ Qstd. (We can safely assume a default abstraction where all argu-
ments are of type term, if no abstraction is defined).

Representing an abstract success set in the product domain. Let p/n be a pred-
icate and let its abstraction over Qstd be Mp. Let Q be the set of states in
the product DFTA that is obtained from the standard FTA and some user FTA.
Then the corresponding abstract success set, defined over the set of determinized
types Q?, is defined as

Mp
? = {p(d′

1
, . . . , d′

n) | p(d1, . . . , dn) ∈ Mp

∧ ∀i : 1 ≤ i ≤ n : d′
i ∈ dettypes(di,Q?)}.

Property 5. Let γ be the concretisation function in the product domain. Then
γ(Mp

?) = {p(t1, . . . , tn) | p(d1, . . . , dn) ∈ Mp, ti ∈ L(di), 0 ≤ i ≤ n}. Here L(di)
refers to the set of terms accepted by di in the standard FTA. As for Property
4 this shows that an abstract model has an exact representation in the product
domain.

Example 7. Let the given abstract success set of length/2 be {length(list, int)}.
Let the user FTA be the following definitions of the types matrix and row along
with the rules f(dynamic, . . . , dynamic) → dynamic for each f/n ∈ Σstd.

[] → row [] → matrix
[dynamic|row] → row [row|matrix] → matrix

Then the abstract success set in the product domain includes 32 abstract atoms.
An example of an atom in the set is

length({callable, list, struct, term, dynamic, row, sourcename, struct, term},
{arithexpression, callable, character code, constant, gnd, int, nnegint,
num, struct, term, dynamic, sourcename, atom or number})

The first argument represents one of the disjoint types that make up the type
list in the product DFTA, and similarly the second argument is a part of the
int type.

Projecting a model onto user types. The final stage is to project the model
from the product domain onto the user domain. Let p ∈ EP be an external
predicate and let Mp

? be the model of p over the determinized types T ′. Then the
projection of Mp

? onto the user types Qu is defined as Mp
u = {p(d′

1
∩Qu, . . . , d′

n∩
Qu) | p(d′

1
, . . . , d′

n) ∈ Mp
? }, Note that we can ensure that each argument d′

1
∩Qu

is non-empty by including dynamic in Qu.

Example 8. Let M length
? be the model of length in the product domain as in

the previous example. Let Qu = {matrix, row, dynamic}. Then the projection

of M length
? onto Qu is

{length({row, dynamic}, {dynamic}),
length({matrix, row, dynamic}, {dynamic})}

The projected model is not expressed directly in the set of user types Qu

but rather in the disjoint types resulting from determinizing Qu. The model
expressed in this form is exactly what is required for computing a model of the
program P over the user types, using the approach in [3].

The projected models are safe approximations of the models over the stan-
dard types, and are the best available approximations in the user domain.

Proposition 2. Let P be a program and let p be an externally defined pred-
icate occurring in P . Let Mp be an abstraction of the success set of p over
the standard types Qstd and let Mp

std be the exact representation of M p in
the standard domain. Let Mp

u be the projection onto the user types Qu. Then
Mp

u = αu(γstd(M
p
std)), which is the best available safe approximation of M p

std in
the user domain.

Proof. This is a direct consequence of Proposition 1 and Property 5.

6 Implementation and Experiments

We have implemented the procedure in Ciao-Prolog and used it to compute
built-in tables for a range of built-ins over simple domains, such as the Pos

domain and the default domain used with the binding time analysis tool for the
Logen system [8].

Predicate Standard model

is/2 is(num,arithexpression)

number/1 number(num)

member/2 member(term,struct)

length/2 length(list,int),

=../2 =..(term,list)

write/1 write(stream,term)

atom concat/3 atom concat(atm,atm,atm)
Table 1. Standard Abstract Models

Note that the results obtained are not always the best possible for a given do-
main. This is due to two main causes. Firstly, the assertion database of CiaoPP is
not yet complete. Secondly, even where values have been entered they do not al-
ways capture dependencies between arguments. For example, for the list append
predicate app/3 the given abstraction might be {app(list, list, list)}. Since a list
can be either ground or non-ground, we cannot derive an accurate description of
app over the Pos domain from the given information. The optimal result would
be {app(g , g , g), app(g ,nong ,nong), app(nong , g ,nong), app(nong ,nong ,nong)},
but our procedure will return the most general model having all eight possible
combinations of g , nong arguments.

We show in Table 1 the abstract models of certain predicates extracted from
the CiaoPP database. Table 2 shows the derived models over the FTA defin-
ing the types dynamic and static (which denote the same as gnd and term
in the standard models, but are the names used in the binding time analysis
of Logen). The DFTA has two states {{dynamic, static}, {dynamic}} denot-
ing ground and non-ground terms respectively. An underscore stands for either
state. This domain is equivalent to Pos [13] but the models derived in Table
2 are not the best possible within the domain, though they are optimal with
respect to the given standard models. Table 3 shows the derived models over the
FTA defining the types dynamic and var. The corresponding DFTA contains
states {{dynamic, var}, {dynamic}} denoting variable and non-variable terms
respectively.

Regarding performance and scalability, we remark that so far we handle the
full set of types from the CiaoPP database without problems, using a Prolog
implementation. The conversion is performed off-line, not during analysis, so
absolute time is not critical. However, so far the target user domains have been
small. The efficient determinization algorithm described in [12] performs well
and we do not anticipate problems moving to larger domains. Scalability issues
do arise in representing the models themselves, in domains based on DFTAs with
a large number of states. Compact representations of relations using techniques
such as BDDs [14, 15] seem to be promising approaches to this problem, and we
have already made use of BDDs in handling DFTAs [12].

Predicate Abstract model for types {dynamic, static}

is/2 is({dynamic,static},{dynamic,static})

number/1 number({dynamic,static})

member/2 member(,)

length/2 length({dynamic},{dynamic,static})
length({dynamic,static},{dynamic,static})

=../2 =..(,)

write/1 write({dynamic,static},{dynamic})
write({dynamic,static},{dynamic,static})

atom concat/3 atom concat({dynamic,static},{dynamic,static},{dynamic,static})

Table 2. Models over {dynamic,static} (ground) and {dynamic} (non-ground)

Predicate Abstract model for types {dynamic, var}

is/2 is({dynamic},{dynamic})

number/1 number({dynamic})

member/2 member(,{dynamic}),

length/2 length({dynamic},{dynamic})

=../2 =..(,{dynamic})

write/1 write({dynamic},{dynamic,var})
write({dynamic},{dynamic})

atom concat/3 atom concat({dynamic},{dynamic},{dynamic})

Table 3. Models over {dynamic,var} (var) and {dynamic} (non-var)

7 Conclusions and Future Work

We have described a method for translating abstract descriptions of success sets
of predicates from a general purpose assertion language, the CiaoPP assertion
language, into any regular type-based abstract domain. Current work is directed
towards automatic translation of the assertions for all standard library predicates
into commonly used domains. Effort also needs to be put into completing and
making more precise the existing assertions on predicates. We have described
the method applied to success set descriptions, but the method applies to call
patterns, or backwards analyses, provided that the abstract domain is based on
regular types.

We believe that this work also underlines the generality and versatility of
regular types for constructing analysis domains. The fact that special purpose,
program specific domains can be constructed easily makes it all the more relevant
to be able to render information about imported code in such domains, as this
work does. Future work will continue to explore the potential of regular type
domains and combine them with other domains such as numeric domains.

Acknowledgements. We thank Patrick Cousot for some enlightening remarks,
and the LOPSTR referees for useful comments on the extended abstract. This
work was funded in part by the Information Society Technologies programme of

the European Commission, Future and Emerging Technologies under the FP5
IST-2001-38059 ASAP and FP6 IST-15905 MOBIUS projects and by the Spanish
Ministry of Science and Education under the TIC 2002-0055 CUBICO project.
J. Gallagher’s research is supported in part by the IT-University of Copenhagen.

References

1. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Antonio,Texas, ACM Press, New York, U.S.A. (1979) 269–282

2. Hermenegildo, M.V., Puebla, G., Bueno, F., López-Garćıa, P.: Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming 58(1–2) (2005)

3. Gallagher, J.P., Henriksen, K.S.: Abstract domains based on regular types. In
Lifschitz, V., Demoen, B., eds.: Proceedings of the International Conference on
Logic Programming (ICLP’2004). LNCS 3132. (2004) 27–42

4. Filè, G., Giacobazzi, R., Ranzato, F.: A unifying view on abstract domain design.
ACM Computing Surveys 28(2) (1996) 333–336

5. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,
X.: The ASTREÉ analyzer. In Sagiv, S., ed.: ESOP. LNCS 3444. (2005) 21–30

6. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tom-
masi, M.: Tree Automata Techniques and Applications. http://www.grappa.univ-
lille3.fr/tata (1999)

7. Lloyd, J.: Foundations of Logic Programming: 2nd Edition. Springer-Verlag (1987)
8. Craig, S., Gallagher, J.P., Leuschel, M., Henriksen, K.S.: Fully automatic binding

time analysis for Prolog. In Etalle, S., ed.: Pre-Proceedings, 14th International
Workshop on Logic-Based Program Synthesis and Transformation, LOPSTR 2004,
Verona, August 2004. (2004) 61–70

9. Boulanger, D., Bruynooghe, M., Denecker, M.: Abstracting s-semantics using a
model-theoretic approach. In Hermenegildo, M., Penjam, J., eds.: Proc. 6th Inter-
national Symposium on Programming Language Implementation and Logic Pro-
gramming, PLILP’94. LNCS 844 (1994) 432–446

10. Boulanger, D., Bruynooghe, M.: A systematic construction of abstract domains. In
Le Charlier, B., ed.: Proc. First International Static Analysis Symposium, SAS’94.
LNCS 864 (1994) 61–77

11. Gallagher, J.P., Boulanger, D., Sağlam, H.: Practical model-based static analy-
sis for definite logic programs. In Lloyd, J.W., ed.: Proc. of International Logic
Programming Symposium, MIT Press (1995) 351–365

12. Gallagher, J.P., Henriksen, K.S., Banda, G.: Techniques for scaling up analyses
based on pre-interpretations. In Gabbrielli, M., Gupta, G., eds.: Proceedings of
the 21st International Conference on Logic Programming, ICLP’2005. LNCS 3668
(2005). 280–296

13. Marriott, K., Søndergaard, H.: Precise and efficient groundness analysis for logic
programs. LOPLAS 2(1-4) (1993) 181–196

14. Iwaihara, M., Inoue, Y.: Bottom-up evaluation of logic programs using binary
decision diagrams. In Yu, P.S., Chen, A.L.P., eds.: ICDE, IEEE Computer Society
(1995) 467–474

15. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In Pugh, W., Chambers, C., eds.: PLDI, ACM (2004)
131–144

