
Towards a Concurrent Semantics based

Analysis of CC and CLP

U. Montanari

�

F. Rossi

�

F. Bueno

??

M. Garc��a de la Banda

??

M. Hermenegildo

??

�

fugo,rossig@di.unipi.it

Universit�a di Pisa

??

fbueno,maria,hermeg@�.upm.es

Universidad Polit�ecnica de Madrid (UPM)

1 Introduction

We present in an informal way some preliminary results on the investigation

of e�cient compile-time techniques for Constraint Logic [JL87] and Concur-

rent Constraint [Sar89] Programming. These techniques are viewed as source-

to-source program transformations between the two programming paradigms

and are based on a concurrent semantics of CC programs [MR91].

Previous work [BH92] showed that it is possible to perform program trans-

formations from Prolog to AKL

1

[JH91], allowing the latter to fully exploit

the Independent And-Parallelism (IAP) [HR93] present in Prolog programs.

However, when extending the transformation techniques to the CLP paradigm

[JL87, Col90, VanH89], some issues have to be initially solved. First, the notion

of independence has to be extended [GHM93]. Second, compile-time tools based

on the extended notions have to be developed in order to capture the indepen-

dence of goals, allowing such transformation. For this purpose an analysis of the

programs turns out to be needed.

Our analysis will be based on a semantics [MR91] which, although originally

intended for CC programming, can be also applied to CLP, if suitably extended

[BGHMR94]. Such semantics allows us to capture the dependencies present in

a CLP program at a �ner level of granularity than ever proposed to date in the

literature. This provides the knowledge for performing a transformation of the

program which will force an execution-time scheduling of processes which pre-

serves those dependencies. When the transformed program is run in a concurrent

environment, parallel execution of concurrent processes will be exploited, except

for the cases where an explicit ordering has been annotated at compile-time

based on the dependencies identi�ed.

The same semantics can also be used to identify dependencies in CC pro-

grams. Based on such dependencies, an analysis of parallel and sequential threads

in the concurrent computation can be performed, establishing the basis for a

transformation of CC programs into parallel CLP programs (with explicit dy-

namic scheduling). A similar approach (although not based on program trans-

1

AKL is a CC language based on the Extended Andorra Model, which is able to

exploit the determinate-goals-�rst principle as well as various kinds of parallelism.

formation) has recently been proposed in [KS92], in which a static analysis of

concurrent languages is proposed based on an algebraic construction of execution

trees from which dependencies are identi�ed.

The needed extension of the semantics (for dealing with CLP instead of

CC programs) is non-trivial [BGHMR94]. In fact, it consists in capturing the

atomic (instead of the eventual) interpretation of the tell operation: constraints

are added only if they are consistent with the current store. This implies the

need of having the possibility of knowing immediately if a set of constraints

is consistent or not. Thus it may seem that the semantics construction would

have to go back to the usual notion of a constraint system as a black box which

can answer yes/no questions in one step (which is what is most generally used

in all the semantics other than [MR91]). However, this is not really true. In

fact, the semantic structure still shows all the atomic entailment steps of the

underlying constraint system, thus allowing to derive the correct dependencies

among agents.

The paper is organized as follows. Section 2 hints at the new problems arising

when trying to understand the concept of goal independence in CLP programs.

Then, Section 3 describes the concurrent semantics for CC, both in its eventual

and in its atomic version, while Section 4 hints at its modi�cation in order to

apply it to the CLP parallelization. Section 5 then describes a meta-interpreter

which creates the semantic structure for each CC program, and visualizes it,

Section 6 describes how to transform a CLP program into its parallel version,

and Section 7 describes the opposite transformation (from CC programs to CLP

programs). For reasons of space we assume the reader to be familiar with the

syntax and the semantics of both CLP [JL87] and CC [Sar89] programs.

2 Independence in CLP

The general, intuitive notion of independence between goals is that the goals'

executions do not interfere with each other, and do not change in any \observ-

able" way. Observables include the solutions and/or the time that it takes to

compute them.

Previous work in the context of traditional Logic Programming languages

[Con83, DeG84, HR93] has concentrated on de�ning independence in terms of

preservation of search space, and such preservation has then been achieved by

ensuring that either the goals do not share variables (strict independence) or if

they share variables, that they do not \compete" for their bindings (non-strict

independence).

Recently, the concept of independence has been extended to CLP [GHM93].

It has been shown that search space preservation is no longer su�cient for en-

suring the e�ciency of several optimizations when arbitrary CLP languages are

taken into account. The reason is that while the number of reduction steps will

certainly be constant if the search space is preserved, the cost of each step will

not: modifying the order in which a sequence of primitive constraints is added to

the store may have a critical in
uence on the time spent by the constraint solver

algorithm in obtaining the answer, even if the resulting constraint is consistent

(in fact, this issue is the core of the reordering application described in [MS92]).

This implies that optimizations which vary the intended execution order estab-

lished by the user, such as parallel or concurrent execution, must also consider an

orthogonal issue { independence of constraint solving { which characterizes the

properties of the constraint solver behavior when changing the order in which

primitive constraints are considered.

3 A Concurrent Semantics for CC and CLP

Usually the semantics of CC programs [Sar89] is given operationally, following

the SOS-style operational semantics, and thus su�ering from the typical patholo-

gies of an interleaving semantics. On the other hand, the concurrent semantics

approach introduced in [MR91] presents a non-monolithic model of the shared

store and of its communication with the agents, in which the behavior of the

store and that of the agents can be uniformly expressed by context-dependent

rewrite rules (i.e. rules which have a left hand side, a right hand side and a

context), each of them being applicable if both its left hand side and its context

are present in the current state of the computation. An application removes the

left hand side and adds the right hand side. In particular, the context is crucial

in faithfully representing asked constraints, which are checked for presence but

not a�ected by the computation.

From such rules a semantics structure is then obtained. Such structure is

called a contextual net [MR93] and it is constructed by starting from the initial

agent and applying all rules in all possible ways. A contextual net is just an

acyclic Petri net where the presence of context conditions, besides pre- and

post-conditions, is allowed. In a net obtained from a CC program, transitions

are labelled by the rule applied for them.

Three relations can be de�ned on the items (conditions and events) of the ob-

tained net: two items are concurrent if they represent objects which may appear

together in a computation state, they are mutually exclusive if they represent

objects which can not appear in the same computation, and they are dependent

if they represent objects which may appear in the same computation but in

di�erent computation steps.

For each computation of the CC program, the net provides a partial order

expressing the dependency pattern among the events of the computation. As a

result, all such computations are represented in a unique structure, where it is

possible to see the maximal degree of both concurrency (via the concurrency

relation) and indeterminism (via the mutual exclusion relation) available both

at the program level and at the underlying constraint system.

Nevertheless, such semantics is not able to handle failure, in the sense of de-

tecting inconsistencies generated by tell operations, since constraints are added

without any consistency check (i.e., the \eventual" interpretation of the tell op-

eration is modelled). We extended such semantics to include the case of failure

[BGHMR94]. We showed that the new semantics can be obtained from the old

one either by pruning some parts of the semantic structure, or by not generating

them at all. On one hand, the semantic structure can be built up by �rst generat-

ing the net as before, and then propagating the failure information through the

net by introducing a notion of mutual inconsistency between items. The incon-

sistent items are then pruned out. On the other hand, the net can be generated

from scratch with a new computation rule for the semantics which takes mutual

inconsistency into account.

The mutual inconsistency relation extends the mutual exclusion relation, in

the sense of capturing more objects which are not allowed to be present in the

same computation. In fact, in the original semantics, if two objects were mutu-

ally exclusive, they could not be present in the same deterministic computation,

even at di�erent computation steps, because they belonged to two di�erent non-

deterministic (in the sense of \don't-care" nondeterminism, or indeterministic)

branches of the program execution. Now, two items exclude one another also

when they are mutually inconsistent, that is, when they represent (or generate)

objects which are inconsistent.

When introducing an explicit representation for failure in the original seman-

tics, what is achieved in fact is a faithful model for capturing backtracking. In

other words, failing branches in a computation are also captured, allowing us

to exchange nondeterminism for indeterminism. In the extended semantics, two

di�erent branches will be mutually inconsistent if they (together) lead to failure,

otherwise, if they are mutually exclusive they will represent two di�erent deter-

ministic computations yielding distinct solutions, i.e. a nondeterministic choice:

now mutual exclusion no longer represents commitment, but backtracking.

Thus the new semantics, although originally intended for CC programs, can

be used also for describing the behavior of (pure) CLP programs. The only

di�erence is the interpretation of the mutual exclusion relation, which expresses

indeterminism when applied to CC programs, and nondeterminism when applied

to CLP programs.

4 Local Independence and CLP Parallelization

The semantics obtained above, while being maximally parallel, could be very

ine�cient if implemented directly as an operational model for CLP. One reason

for this is that branches of the search tree may be explored which would have

been previously pruned by another goal in the sequential execution. The general

problem of �nding a rule to avoid the exploration of such branches is directly

related to the concept of independence and has been previously addressed in

Section 2. In order to avoid such e�ciency problems we propose to apply those

independence rules, but at the �nest possible level of granularity (as proposed

in [BGH93]). This is now possible because we have a structure in which all

intermediate atomic steps in the execution of a goal and their dependencies are

clearly identi�able.

Capturing independence is achieved by identifying dependencies which occur

due to subcomputations which a�ect each other, in the sense of the constraint

independence notions above. In our nets, these notions are applied not only at

the level of whole computations of di�erent goals, but also at the �ner level

of subcomputations of those goals, i.e. the actual subcomputations which can

a�ect each other. This new notion of independence (local independence) is, to

our knowledge, the most general proposed so far (in the sense that it allows the

greatest amount of parallelism) which, at the same time, preserves the e�ciency

of the sequential execution.

A drawback of local independence is that it requires an oracle, since mutual

inconsistency of branches is not known a priori, and thus suitable scheduling

strategies for AND-OR parallelism must be devised which make sure that the

added dependency links are respected (i.e. the strategy is consistent), while still

taking advantage of the remaining parallelism (i.e. the strategy is, more or less,

e�cient). Such an oracle can be devised at compile-time by means of abstract

interpretation based analysis, and a scheduling strategy can be obtained for

instance by a suitable program transformation (as that presented in Section 6).

5 A Meta-interpreter of the Concrete Semantics

A meta-interpreter has been implemented which takes as input a CC program

and a concrete query, and builds up the associated contextual net as de�ned by

the true concurrency semantics of [MR91], presented in Section 3. The compu-

tation of the concrete model is performed in several steps:

1. A program is read in and transformed into a suitable set of context-dependent

rules.

2. Starting from the initial (concrete) agent { the query { rules are applied one

at a time, until no rule application is possible.

3. Relations of mutual exclusion, causal dependency and concurrency are con-

structed from the structure given by the previous step.

4. The contextual net giving the program semantics can be visualized in a

windows environment, as well as the resulting relations.

Although the method based on rule application to construct the structure

is completely deterministic, a �xpoint computation based on memoization is

performed in order to ensure termination (whenever the semantics model is

�nite).

Once the computation is �nished, the structure giving the model of the pro-

gram resembles an event structure [Ros93]. An event structure is a set of events

(together with con
ict and dependency relations), where each event represents a

single computation step, i.e. a rule application, and contains all the history of the

subcomputation leading to the particular step represented. The events represent

either program agents, which will be consumed by applying the program rules,

or constraint tokens which will be asked for in such rule applications. The former

are represented by usual conditions in the net, the latter by context conditions.

For simplicity, the current implementation only implements the Herbrand

constraint system, leaving to the underlying Prolog machinery much of the en-

tailment relation.

Fig. 1. Contextual Net of the append3/4 example.

As an example, consider the following de�nition of append/3, which appends

two lists into another one, and then splits it into another two. It can be run

either �rst appending and then splitting or \backward" (�rst splitting and then

appending).

:- tell(X=[1,2]), tell(Y=[3]), tell(Z=[4]), append3(X,Y,Z,W).

append3(A, B, D, E) :- app(A, B, C), app(C, D, E).

app(X, Y, Z) :- ask(X = []), tell(Y = Z).

app(X, Y, Z) :- ask(X = [A|B]), tell(Z = [A|D]), app(B, Y, D).

app(X, Y, Z) :- ask(Z = []), tell(X = []), tell(Y = Z).

app(X, Y, Z) :- ask(Z = [_|_]), tell(X = []), tell(Y = Z).

app(X, Y, Z) :- ask(Z = [A|D]), tell(X = [A|B]), app(B, Y, D).

A query has been included which performs the \forward" computation, where

the second app/3 goal in the body of the append3/4 clause has to wait on the

�rst goal to proceed at each step while the resulting list C is being constructed

to consume it. The semantic structure resulting for the computation with this

query can be seen in Figure 1.

Circles in the �gure correspond to agents (either program agents or tokens)

and squares correspond to steps. Thin lines correspond to dependency links,

and thick lines to context links. Each element (either a circle or a square) is

internally represented as a term with his \history", that is, the set of other

elements it depends on. Such term can be explicitely seen by clicking on the

element itself (like it can be seen for element s

4

in Figure 1 (left picture)).

The partial order derivable from the net corresponds to the causal dependency

relation, plus additional dependencies due to the \use" of contexts. Such order

appears in Figure 1 (left picture).

In this way, the causal dependency relation captures an optimal scheduling

of processes based on producer/consumer relations on the tokens added to the

store. This can be augmented with the local independence relation (as explained

in Section 4) to capture and-parallel scheduling based on mutually inconsistent

computations.

6 Parallelization of CLP via Program Transformation

One possible application of our semantics can be achieved by program transfor-

mation fromCLP to CC. The purpose of the transformation will be to allowCLP

programs to run under CC machinery with an optimal scheduling of processes

which ensures no-slowdown and allows for maximal parallelism. In doing this,

the target language should allow for the features of CC, including synchroniza-

tion and indeterminism (although this latter is not needed for our purposes),

and also for additional nondeterminism (in the sense of backtracking - which

is indeed needed to embed CLP). Examples of such languages are AKL

2

and

concurrent (constraint) Prologs (i.e. Prologs with explicit delay) such as PNU-

Prolog [Nai88] and CIAO-Prolog [Her94].

The transformation will proceed as follows. First, the CLP program is rewrit-

ten into a CC program.This �rst step will embed a CLP program into CC syntax,

by (possibly) normalizing goals and head uni�cations, and make all constraint

operations explicit as tell agents. Second, inconsistency dependencies are identi-

�ed within the (abstract) semantics via program analysis, and then the program

is augmented with sequentialization arguments where required, and suitable ask

and tell operations for this are incorporated to the program clauses.

Consider for example the following CLP program (where tell operations are

explicitely speci�ed), with the query :- p1,p2.

p1 :- tell(c1).

p1 :- tell(c2).

p2 :- tell(c3).

p2 :- tell(c4).

and assume that fc2; c3g is an inconsistent set of constraints. Then the trans-

formed program, containing the required sequentialization, is:

p1 :- tell(c1), tell(c).

p1 :- tell(c2).

p2 :- ask(c) -> tell(c3).

p2 :- tell(c4).

2

However, in AKL computations are encapsulated in the so called deep guards, an

issue that our semantics does not capture yet.

In such a new program, the �rst alternative (assuming a top-down choice of

the clauses) of p2 is allowed to be executed only if p1 chooses its �rst alternative.

In this way any of the alternatives for both p1 and p2 can be executed in parallel

without interaction. In other words, the only interaction needed among such

alternatives is explicitely speci�ed by the added ask-tell operations over dummy

new constraints (c in this case).

The transformed program will allow for or-parallelism (which is captured in

the semantics by the mutual exclusion relation) and locally independent and-

parallelism (which is captured by means of relations derived from the mutual in-

consistency relation). An e�cient strategy for parallel execution is thus achieved.

7 Static Scheduling in CC via Program Transformation

Another complementary application of the independence detection based on our

semantics is schedule analysis. We propose to perform the linearization associ-

ated to schedule analysis by means of program transformation from CC to CLP,

achieving in addition an e�cient parallelization of concurrent goals. In order

to do this the intended target language should allow \delay" features able to

support concurrency.

Such features allow dynamic scheduling of processes a la concurrent logic

programming in (otherwise) sequential languages. One such feature is the when

declaration [Nai88]. This declaration delays execution of a goal until some condi-

tions are met. Usually conditions relate to meta-logical features of the language

and are formed of: nonvar/1 (true if argument is not a variable), var/1 (true if

it is), ground/1 (true if argument is ground), etc.

The basic idea of our tranformation is related to the approach of [BGH93]

and QD-Janus [Deb93]. However, we propose to perform a more \intelligent"

transformation (see also [BGH93]), which is based on the results of the analysis

performed over the CC program.

Let us illustrate our approach with the append3/4 example of Section 5.

Assume the following query:

:- tell(W=[1]), append3(X,Y,Z,W).

The resulting contextual net given by our meta-interpreter is that of Figure

2, where the context dependencies links are shown, and the information corre-

sponding to each rule application (t

1

; t

2

; : : :) appears explicitly at the top. In

the net, it can be seen that only the \backward" version of the predicate app/3

is used: while the second app/3 goal in the body of the append3/4 clause (cor-

responding to agent s

4

) can proceed without suspending, as no context other

than the told constraints in the query is needed, the �rst goal and the goals oc-

curring in its subcomputation always suspend until the third argument becomes

instantiated. An identical behavior will occur in all queries in which the three

�rst arguments of append3/4 are free and the forth is instantiated to a non-

incomplete list. With this knowledge the following transformed CLP program

can be obtained:

Fig. 2. Contextual net for append3/4 running backward.

append3(A, B, D, E) :- when(nonvar(C),app(A, B, C)), app(C, D, E).

app(X, Y, Z) :- X = [], Y = Z.

app(X, Y, Z) :- Z = [A|D], X = [A|B], when(nonvar(D), app(B, Y, D)).

In the schedule analysis of [KS92], a dependency relation among literals of

the program is used to �nd optimal sequences of the program clause bodies

where the e�cient compilation techniques of sequential implementations can

be applied. Each such sequence is a thread. Threads should not compromise

the termination properties of the program. Therefore, where dependencies do

not allow to �gure out a total ordering of the literals, di�erent single threads

must be allocated. Threads will then be dynamically scheduled, while in each

single thread, one would like to statically schedule the producer(s) before the

corresponding consumer(s), so that the consumers do not need to be suspended

and then woken up later. In the speci�c case of CC programs, the producers are

the tell operations and the consumers are the ask operations, so this desirable

property of each thread here means that some ask operations could be deleted,

if we can be sure that when they will be scheduled the asked constraint has

already been told.

By using our semantic structures it is easy to see how this can be done. The

order between two goals in the body of a clause can be easily decided by looking

at the contextual net describing the behaviour of the original CC program: if

the subnets rooted at these two goals are linked by dependencies which all go

in the same direction (from one subnet to the other one), then this direction is

the order to be taken for the scheduling; if instead the dependencies go in both

directions, then the two goals must belong to two di�erent threads; otherwise

(that is, if there are no dependency links between the two subnets), we can order

them in any way. Once the order has been chosen, each ask operation which is

scheduled later than all the items of the net on which it depends on can safely

be deleted. Following our example, we reorder app/3 goals in the append3/4

clause, obtaining:

append3(A, B, D, E) :- app(C, D, E), app(A, B, C).

app(X, Y, Z) :- X = [], Y = Z.

app(X, Y, Z) :- Z = [A|D], X = [A|B], app(B, Y, D).

Our aim is to develop an analysis able to infer such invariants based on the

semantics. Such analyzer will guarantee that the transformations applied to a

CC program in the spirit above are correct.

Acknowledgments

This research has been partially funded by the ACCLAIM Basic Research Esprit

project n.7195 and by the COMPUGRAPH Esprit working group n. 7183.

References

[BGH93] F. Bueno, M. Garc��a Banda, and M. Hermenegildo. Compile-time Opti-

mizations and Analysis Requirements for CC Programs. Technical Report

CLIP6/93.0, T.U. of Madrid (UPM), July 1993.

[BGHMR94] F. Bueno, M. Garc��a Banda, M. Hermenegildo, U. Montanari, and

F. Rossi. From Eventual to Atomic and Locally Atomic CC Programs:

A Concurrent Semantics. In Fourth International Conference on Alge-

braic and Logic Programming, Springer{Verlag LNCS, September, 1994.

To appear.

[BH92] F. Bueno and M. Hermenegildo. An Automatic Translation Scheme from

Prolog to the Andorra Kernel Language. In International Conference on

Fifth Generation Computer Systems, pages 759{769. Institute for New

Generation Computer Technology (ICOT), June 1992.

[Col90] A. Colmerauer. An Introduction to Prolog III. CACM, 28(4):412{418,

1990.

[Con83] J. S. Conery. The And/Or Process Model for Parallel Interpretation of

Logic Programs. PhD thesis, The University of California At Irvine, 1983.

Technical Report 204.

[Deb93] S.K. Debray. QD-Janus: A Sequential Implementation of Janus in Prolog.

Technical Report, University of Arizona, 1993.

[GHM93] M.Garc��a de la Banda, M. Hermenegildo, and K. Marriott. Independence

in Constraint Logic Programs. In International Logic Programming Sym-

posium. MIT Press, Boston, MA, October 1993.

[DeG84] D. DeGroot. Restricted AND-Parallelism. In International Conference

on Fifth Generation Computer Systems, pages 471{478. Tokyo, November

1984.

[Her94] M. Hermenegildo. Towards CIAO-Prolog - A Parallel Concurrent Con-

straint System. In Workshop on the Principles and Practice of Constraint

Programming, LNCS, Springer-Verlag, 1994.

[HR93] M. Hermenegildo and F. Rossi. Strict and Non-Strict Independent And-

Parallelism in Logic Programs: Correctness, E�ciency, and Compile-Time

Conditions. Journal of Logic Programming, 1993. To appear.

[JL87] J. Ja�ar and J.-L. Lassez. Constraint Logic Programming. In ACM Symp.

Principles of Programming Languages, pages 111{119. ACM, 1987.

[JH91] S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel

Language. In International Logic Programming Symposium, pages 167{

183. MIT Press, 1991.

[KS92] Andy King and Paul Soper. Schedule Analysis of Concurrent Logic Pro-

grams. In Joint International Conference and Symposium on Logic Pro-

gramming, pages 478{492, Washington, USA, 1992. The MIT Press.

[MS92] K. Marriott and P. Stuckey. The 3 R's of Optimizing Constraint Logic

Programs: Re�nement, Removal, and Reordering. In 19th. Annual ACM

Conf. on Principles of Programming Languages. ACM, 1992.

[MR91] U. Montanari and F. Rossi. True-concurrency in Concurrent Constraint

Programming. In International Symposium on Logic Programming, pages

694{716, San Diego, USA, 1991. The MIT Press.

[MR93] U. Montanari and F. Rossi. Contextual Occurence Nets and Concurrent

Constraint Programming. Technical report, U. of Pisa, Computer Science

Department, Corso Italia 40, 56100 Pisa, Italy, May 1993.

[Nai88] L. Naish. Parallelizing NU-Prolog. In International Conference and Sym-

posium on Logic Programming, pages 1546{1564, August, 1988. The MIT

Press.

[Ros93] Francesca Rossi. Constraints and Concurrency. PhD thesis, Universit�a di

Pisa, April 1993.

[Sar89] V. Saraswat. Concurrent Constraint Programming Languages. PhD the-

sis, Carnegie Mellon, Pittsburgh, 1989. School of Computer Science.

[Sha87] E.Y. Shapiro, editor. Concurrent Prolog: Collected Papers. MIT Press,

Cambridge MA, 1987.

[VanH89] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT

Press, 1989.

