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Abstract 

We present two concurrent semantics (i.e. semantics where concurrency is explicitly repre- 
sented) for CC programs with atomic tells. One is based on simple partial orders of computation 
steps, while the other one is based on contextual nets and it is an extension of a previous one 
for eventual CC programs. Both such semantics allow us to derive concurrency, dependency, and 
nondeterminism information for the considered languages. We prove some properties about the 
relation between the two semantics, and also about the relation between them and the operational 
semantics. Moreover, we discuss how to use the contextual net semantics in the context of CLP 
programs. More precisely. by interpreting concurrency as possible parallelism, our semantics can 
be useful for a safe parallelization of some CLP computation steps. Dually, the dependency 
information may also be interpreted as necessary sequentialization, thus possibly exploiting it for 
the task of scheduling CC programs. Moreover, our semantics is also suitable for CC programs 
with a new kind of atomic tell (called locullli atomic tell), which checks for consistency only 
the constraints it depends on. Such a tell achieves a reasonable trade-off between efficiency and 
atomicity. since the checked constraints can be stored in a local memory and are thus easily 

accessible even in a distributed implementation. 0 1998 Published by Elsevier Science B.V. 
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1. Introduction 

The concurrent constraint programming paradigm [ 151 has its roots both in the con- 

straint logic programming scheme [7] and in concurrent logic programming languages 

[ 171. A concurrent constraint (CC) program [ 15, 18, 191 consists of a set of agents 

interacting through a shared store, which is a set of constraints on some variables. The 

framework is parametric w.r.t. the kind of constraints handled. The concurrent agents 
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do not communicate with each other, but only with the shared store, by either checking 

if it entails a given constraint (ask operation) or adding a new constraint to it (teii 

operation). Therefore computations proceed by monotonically accumulating information 

(that is, constraints) into the store. 

The semantics of CC programs is usually given following the SOS-style operational 

semantics [ 18, 19,3], and thus it suffers from the typical pathologies of an interleaving 

semantics. On the other hand, the concurrent semantics approach introduced in [Ill, 

which is equipped with a non-monolithic model of the shared store and of its commu- 

nication with the agents, allows to express uniformly the behavior of the store and that 

of the agents, and, as a consequence, to derive a semantic structure where it is possible 

and easy to see the maximal level of both concurrency and nondeterminism in a given 

program. Thus it can be much more useful than an interleaving semantics when ex- 

ploiting semantic information for compile-time optimizations which require knowledge 

about any one of these two concepts. In fact, an interleaving semantics is not able 

to express such knowledge correctly, mainly due to the fact that concurrency is not 

directly expressible but is instead reduced to nondeterminism. 

The concurrent semantics in [l l] is based on an operational semantics described via 

context-dependent rewrite rules, i.e. rules which have a left hand side, a right hand 

side, and a context. Each rule is applicable if both its left hand side and its context 

are present in the current state of the computation. A rule application removes the 

left hand side (but not the context) and adds the right hand side. In particular, the 

context is crucial in faithfully representing asked constraints, which are checked for 

presence but not affected by the computation. The evolution of each of the agents in a 

CC program, as well as the declarations of the program and its underlying constraint 

system, can all be expressed by sets of such rules. In this way each computation step 

(i.e. the application of one of such rules), represents either the evolution of an agent, 

or the expansion of a declaration, or the entailment of some new constraint. 

The concurrent semantic structure is then built from the rules by starting from the 

initial agent and unfolding it applying the rules in all possible ways. The result is 

a contextual net [lo], which is just an acyclic Petri net [ 131 where the presence of 

context conditions, besides pre- and post-conditions, is allowed. Furthermore, such net 

is labelled, so that for each element we know the agent or constraint it corresponds to. 

This contextual net is able to represent all the computations of a given CC program (as 

defined by its operational semantics), and for each of such computations it provides 

a partial order expressing the dependency pattern among the computation steps. As a 

result, all such computations are represented in a unique structure, where it is possible 

to see the maximal degree of both concurrency (via the concurrency relation) and 

indeterminism (via the mutual exclusion relation) available both at the program level 

and at the underlying constraint system. 

There are two ways in which the basic tell operation of CC languages is usually 

interpreted: either eventually, which means that the constraint is added to the current 

store without any consistency check, or atomically, which instead means that the con- 

straint is added only if it is consistent with the current store. The concurrent semantics 



F. Buena KI al. IScience of Computer Proyramminy 30 (1998) 51-82 53 

for CC programs which we have just described (and which is defined in detail in [ 121) 

follows the eventual interpretation. 

While the eventual interpretation of the tell operation allows for a completely uniform 

treatment of agents and constraints and thus a distributed representation of the constraint 

system, it suffers from the fact that possibly many computation steps of a failing 

computation are performed while not being needed. In fact, if a constraint is added 

to the store in any case (that is, without performing any consistency check), then it 

may be used by other (ask) agents, and maybe only much later it is recognized that 

some previous tell added a constraint inconsistent with the current store. Therefore, 

the semantic structure presented in [12] contained all such useless (and, most crucial, 

possibly infinite) parts of computations. 

Here we modify such semantics to allow for the atomic interpretation of the tell 

operation: constraints are added only if they are consistent with the current store. This 

implies that now we must have the possibility of knowing immediately if a set of 

constraints is consistent or not. Thus it may seem that we have to go back to the usual 

notion of a constraint system as a black box which can answer yes/no questions in 

one step (which is what is used in all the semantics other than [ 11, 121). However, this 

is not true: the semantic structure that we obtain still shows all the atomic entailment 

steps, thus allowing us to derive the correct dependencies among agents. 

The new semantics can be obtained from the old one by defining an inconsistency 

relation on agents and constraints. and then cutting all those parts of the semantic 

structure which depend on inconsistently “told” constraints. The basic idea is to derive 

the inconsistency relation from the constraint system, where we assume that an incon- 

sistent set of constraints always entails the token fcllse. Then, the inconsistency relation 

is propagated through the contextual net via the dependency relation. If, as a result of 

that, some items are inconsistent with themselves, then it means that they could not 

appear in any computation without creating an inconsistent state of affairs. Therefore 

we prune such items and everything that depends on them. We also show how to de- 

rive the new semantics from scratch (instead of first deriving the semantic structure for 

eventual tells and then pruning it), by adopting a slightly more complicated inference 

rule. 

In this paper we also present a different semantics, which associates a partial order 

(of computation steps) to each computation, and we relate it to the semantics based 

on contextual nets. In particular, we show that, taken a program, the partial orders 

associated to its computations by this semantics, and the net associated to the program 

by the net semantics discussed above, every partial order can be derived from the 

net, and all the computations represented by the same partial order are represented, 

in the net, by the same deterministic subnet. This additional semantics is basically a 

trade-off between the scarce expressive power (in terms of concurrency) of the oper- 

ational semantics, which just shows a sequence of steps, and that of the net, which 

shows the whole history of all the computations (and thus all possible concurrency and 

nondeterminism). Moreover, it is worth noting that the partial order semantics and the 

net semantics are generated in completely different ways: the former one by extracting 
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information from already generated computations, and the latter one by generating from 

scratch a sort of decorated computations (where the decoration is the history). 

Since our net semantics introduces an explicit representation for failure (i.e. the at- 

tempt to add a constraint which is inconsistent with the current store), we can say that 

we achieve a faithful model for capturing backtracking. In fact, since failing branches 

are also captured, we are allowed to make a step towards exchanging nondeterminism 

for indeterminism. Thus our semantics, originally thought for indetetministic CC pro- 

grams, can also be used for nondeterministic programs, and, most important, for CLP 

programs [2]. The only difference is the interpretation of the mutual exclusion relation, 

which expresses indeterminism when applied to CC programs, and nondeterminism 

when applied to CLP programs. The ability of recognizing independence and/or non- 

determinism in CLP programs is crucial when one is interested in parallelizing such 

programs while retaining their semantic meaning (in terms of input-output relation and 

time complexity). This is true also for the dual task, that of scheduling CC programs 

[8,9] (although for such task the treatment of failure is not necessary). 

Both such tasks need some knowledge on dependencies (or independence) of goals, 

since in the first one we want to parallelize only goals which are not dependent on 

each other, and in the second one we want to schedule later goals which may be 

dependent on earlier scheduled goals. The attractive point of the proposed semantics is 

that the dependency relation is an integral part of the semantics and thus parallelization 

and scheduling decisions can be made by rather direct observations on the semantic 

structure. Furthermore, the level of granularity offered by the semantics allows for 

scheduling or parallelization tasks of a new nature and at a new level of detail. For 

example, it is possible to parallelize across the operations of the constraint solver and 

thus to create parallel tasks that include part of the solver operations all in the same 

semantic framework. 

While the atomic interpretation of the tell operation allows to recognize, and thus 

stop, a failing computation possibly much earlier, it has the disadvantage that it can 

be extremely costly to achieve, especially in a distributed implementation of a CC 

language. The store could be scattered over many locations, and thus checking its 

consistency with the new constraint to be told could require locking all the locations 

and thus all the other operations until the consistency check has been performed. For 

this reason, it would be reasonable to achieve a convenient trade-off between efficiency 

and atomicity, thus defining a new interpretation of the tell operation, which just checks 

some of the constraints in the current store, and not all of them. Our semantics gives 

a very natural hint on the definition and also the possible implementation of one such 

interpretation of the tell operation. In fact, being based on dependency information, it 

is natural to think of checking for consistency only the part of the current store on 

which the tell operation is dependent on. The interesting, and convenient, thing is that 

these are the constraints which are in some sense responsible for the presence of the 

tell agent, and therefore, in a distributed implementation, could be stored in a memory 

which is local to that agent. This means that they will be the most easily accessible 

and that thus the tell operation can be performed efficiently. For this locality reason we 



F Bueno et al. IScience of Computer Proyramming 30 (1998) 51-82 55 

call this new operation a locally atomic tell. From a formal point of view, the semantic 

structure corresponding to the locally atomic tell interpretation is the minimal one that 

still is complete, since it does not contain any step which is inconsistent with itself. 

In the following, we will first introduce CC programming (Section 2) and its oper- 

ational semantics (Section 3). We provide CC programs with a partial order semantics 

(Section 4) and then introduce the required definitions for contextual nets in Section 5. 

In Section 6 we present the concurrent semantics for CC with eventual tell and in 

Section 7 that for atomic tell, relating them to the partial order semantics in Section 8. 

We discuss the locally atomic interpretation of the tell operation in Section 9, pro- 

vide hints to possible applications of our semantics in Section 10, and conclude with 

Section 11. 

This paper is a revised and extended version of [l]. In particular, the extension 

concerns mainly the partial order semantics given in Section 4, and the theorems con- 

cerning its relation to the net semantics. 

2. Concurrent constraint programming 

In the CC paradigm, the underlying constraint system can be described [ 191 as a 

partial information system (derived from the information system introduced in [ 161) of 

the form (D, 1) where D is a set of tokens (or primitive constraints) and t C $J(D) x D 

is the entailment relation which states which tokens are entailed by which sets of other 

tokens. The relation t has to be reflexive and transitive. Note that there is no notion 

of consistency in a partial information system. This means that inconsistency has to be 

modelled through entailment. More precisely, the convention is that D contains a false 

element, so that an inconsistent set of tokens is that one which entails false. Then, a 

constraint in a constraint system (D, t) is simply a set of tokens. ’ 

Consider the class of programs P, the class of sequences of procedure declarations 

F, and the class of agents A. Let c range over constraints, and x denote a tuple of 

variables. The following grammar describes the CC language we consider: 

P ::= F.A 

F ::= p(x) :: A 1 F.F 

A ::= S/XC 1 fail 1 tell(c) + A / Ci=l,,,,.n ask(ci) + Ai 1 A 11 A I 3x.A I p(x) 

Each procedure is defined once, thus nondeterminism is expressed via the + com- 

binator only (which is here denoted by C). We also assume that, in p(x) :: A, 

oars(A) C x, where uars(A) is the set of all variables occurring free in agent A. In 

a program P = F.A, A is called initial agent, to be executed in the context of the set 

of declarations F. 

’ Note that this approach is different from that in [19]. where constraints are instead sets of tokens closed 

under entailment. The reason why we choose not to close sets of tokens under entailment is that we need 
to distinguish different tokens, and their possibly different causes. in order to give a faithful description of 

the concurrency present in a program execution. 
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Agent “Ci=l...,.n ask(ci > - A;” behaves as a set of guarded agents A,, where the 

success of the guard ask(ci) coincides with the entailment of the constraint ci by the 

current store. If instead c, is inconsistent with the current store, then the guard fails. 

Lastly, if ci is not entailed but it is consistent with the current store, then the guarded 

agent suspends. No particular order of selection of the guarded agents is assumed, and 

only one of the choices is taken. In an atomic interpretation of the tell operation, agent 

“tell(c) - A” adds constraint c to the current store and then, if the resulting store is 

consistent, behaves like A, otherwise it fails; in an eventual interpretation of the tell, 

this same agent adds c to the store (without any consistency check) and then behaves 

like A. 

Given a program P, in the following we will refer to Ag(P) as the set containing 

all agents (and subagents) occurring in P, i.e. all the elements of type A occurring 

in a derivation of P according to the above grammar. Also, consider the set V of all 

free variables appearing in P. Then, let us define the set of substituted agents, Ag(P), 

as the set obtained by taking every agent in Ag(P) and substituting each free variable 

with another variable in V, in all possible ways. 

The CC language we consider in this paper does not use the notion of cylindric con- 

straint system, as defined for example in [19]. Therefore, we cannot use that machinery 

to project constraints over some of their variables. This does not mean that constraints 

cannot be renamed. In fact, if a constraint appears within an agent which has an exis- 

tentially quantified variable, and refers to that variables, like in 3x.telI(x = l), then the 

variable in such a constraint is in fact renamed during execution (see next section for 

details). However, we believe that our whole framework, and corresponding results, 

can be extended to deal also with cylindrification operators. Another extension could 

be the presence of tell agents in the guards of an indeterministic agent: this would 

certainly not cause any problem to our approach. We have made a less general choice 

here for simplicity reasons, and also because the classical CC framework does not 

allow tells in guards. 

3. The operational semantics 

Each state of a CC computation consists of a set of elements, labelled over (active) 

agents and (already generated) tokens. The reason we use a labelled set instead of a set 

is that we need to have a precise representation of a multiset where different occurrences 

of the same object can be distinguished. In fact, in general the same agent (and also 

the same token) may occur in a state with multiplicity higher than one (just think of 

the computations of A I/ A), and we need to recognize these situations and distinguish 

among the different occurrences. Both agents and tokens will have associated the free 

variables they involve. 

Each computation step models either the evolution of (an occurrence of) a single 

agent, or the entailment of a new token through the F relation. Such a change in 

the state of the computation is performed via the application of a rewrite rule. There 
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are as many rewrite rules as the number of agents and declarations in a program 

(which is finite), plus the number of pairs of the entailment relation (which can be 

infinite). 

Definition 1 (Computation state). Given a program P = F.A with a constraint system 

(D, k-j, a state is a labelled set described as S = (0, I), where 0 is a finite set of objects 

(denoted by Obj(S)), and 1: 0 + (z(P) U 0). Two states are isomorphic if there is 

a bijection between their object sets which preserves the labelling. 

Note that a state S = (0, I) can contain two (or more) objects, say oi,o2 E 0, such 

that I(Q) = 1(02). This means that 01 and 02 are different occurrences of the same 

agent or constraint. 

In the following, states will be mostly considered up to isomorphism. This basically 

means that the identity of the objects in a state will not be significant. For exam- 

ple, ({o~,o~}.l) and ({ 03.04},1’), such that I(ot) = Z’(oj) and 1(02) = I’(oa), belong 

to the same isomorphism class and thus will be considered as the same state up to 

isomorphism. Also, we will refer to I to mean the labelling function of any state, 

whenever it is clear from the context to which state it refers to. Moreover, sometimes 

we will write I(S) to mean the whole range of the labelling function defined over 

the elements of S. Finally, consider the state S with free variables x, and consider 

also the vector y of other variables from V (of the same length as x); whenever 

we write S[y/x] we will mean the state obtained from S by replacing each occur- 

rence of a variable in x with the corresponding variable in y in all agents and con- 

straints in I(S). Note that by passing from S to S[y/x] we do not change the set of 

objects. 

Definition 2 (Rewprite rules). Given a program P = F.A with a constraint system (D, 

k), a rewrite rule has the form Y : L(x) %’ R(xJ~) where L is an agent, c is a constraint, 

and R is any state. Also, x is the tuple of free variables appearing in both L U c and 

in R, while y is the tuple of free variables appearing only in R. The state R is always 

intended up to isomorphism. 

The intuitive meaning of a rule is that L, which is called the left hand side of the 

rule, is rewritten into (or replaced by) R, i.e. the right-hand side, if c is present in 

the current state. That is, the items in c have to be interpreted as a context, since 

they are necessary for the application of the rule but are not affected by such applica- 

tion. In the CC framework, such context is used to represent in a faithful way asked 

constraints. 

Note that the left hand side L and the context c of a rule are elements of (Ag(P)UD), 

while the right hand side R is a state, that is, a set labelled over (z(P) u D). 

Definition 3 (From programs to rules). The rules corresponding to agents, declara- 

tions, and entailment pairs are given as follows: 
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1. (&N(C) i A) -+ c,A 4. ( C LLSk(C,) +/ii) -“+Ai Vi = l,...,PZ 
I=l....,ll 

2. A, 11 A2 --x* A,,A2 5. p(x) --+ A for all p(x) :: A in P 

3. 3x.A -s--f A 6. -5 t for all S 1 I 

where the comma in the right-hand side has to be interpreted as union of labelled sets. 

Given a CC program P = F.A and its underlying constraint system (D, k), we will 

call RR(P) the set of rewrite rules associated to P, which consists of the rules corre- 

sponding to all agents in z(P), plus the rules representing the declarations in F, plus 

those rules representing the pairs of the entailment relation. 

In an eventual CC language, a rule Y can be applied to a state S1 if both the left hand 

side of Y and its context can be found (via a suitable matching) in S,. The application 

of r removes its left hand side and adds its right hand side to SI. 

Definition 4 (Eventud cornputution steps). Given 
- a computation state S,(a), 

_ a rule y:L(x) ‘22 R(q), and 
- an injective function g : (L U c) --+ Obj(S1) such that there is a binding [a/x] with 

Ualxl = KG)) and c[alxl = WC)), 
the application of I’ to S1 is an eventual computation step which yields a new compu- 

tation state .!& = (Sl \ g(L)) u R’, where 
_ R’ is a new labelled set of objects such that Obj(R’) n Obj(S1) = Q) and such that 

there is a bijection between Obj(R) and Obj(R’); 
- the labelling of objects in & is augmented w.r.t. that of SI by a labelling of the 

objects of R’, such that 1: Obj(R’) + R[a/x][b/y]; 
- the variables in 6 are fresh, i.e. they do not appear in S1. 

We will write S1 r’a’xl[4/Y”y S2. 

In the above definition, it is worthwhile to point out the different role played by the 

variables in vectors a and b, and by those in vectors x and y. In fact, computation 

proceeds by substituting variables in the rules (i.e., x and y) by variables in the states 

(i.e., a) and new variables (i.e., b). Therefore, the variables in a and b are never 

substituted by other variables during any computation. On the contrary, vectors x and 

y are made of variables which will be bound to the variables in vectors u and 6 during 

a rule application. 

Note also that it is the use of the renaming [b/y] for the free variables (JJ) present 

in the right-hand side but not in the left-hand side of a rule that allows us to treat 

existential variables in the correct way. This occurs in the application of rule 2 in 

Definition 3, as illustrated in the example below. 

Finally, let us observe that the application of a rule depends not only on the rule and 

on the current state, but also on the function g, since a rule may be applicable to the 
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same state via different such functions. This accounts, for example, for the treatment 

of multiple agents in a state. 

Example. Consider the simple agent h.A(x) 11 h.A(x), which is the parallel composi- 

tion of two occurrences of the same agent A, where each occurrence refers to a variable 

which is existentially quantified. By applying rule 2 to the state containing only that 

agent, we get the state {oi.o2}, with I(oi ) = 1(02) = 3x.A(x). Now we can apply rule 3 

(which in this case is Ll.x.A(x) ---* A(x)) either with g(%A(x)) = 01 or g(Zlx.A(x)) = 02. 

By using the first one, we get {0{,02}, with I(ol, ) =A(bi). In fact, variable x is free 

in the right-hand side of the rule, and thus it is bound to a fresh variable (bl) by 

definition of rule application. Then we apply rule 3 again to the other agent and we 

get the state (0; , o:}, with I(oi ) = A(&), where b2 is another fresh variable. Thus the 

final state is {oj,oi}, with Z(o/,)=A(bl) and l(oi)=A(b~). 

In an atomic CC language, not only the left hand side and the context of a rule 

have to match some elements in the current state, but also, if the rule implements a 

tell agent, a check has to be done for the constraints that such tell wants to add to be 

consistent with the current store. 

Definition 5 (Atomic conzputrrtion step’s). Consider an eventual computation step 

Sl r'a'xl[h;yl'y &. This is an atomic computation step if, whenever Y = ((tell(c) _j ‘4 ) ‘-” ‘f 

c, A), then c U cons(S1) y false (where cons(S) is the set of constraints in state S). 

Definition 6 (Computations). Given a CC program P=F.A, an eventual (resp. atomic) 

computation segment for P is any (finite or infinite) sequence of eventual (resp. atomic) 

computation steps S1 
r~la/~~l[h/r~l.~/~ 

S, r”az’x~1’y2 S’s . . such that Si = {A[aa/xa]} 

and r;- E RR(P), i = 1,2,. . Two eventual (resp. atomic) computation segments which 

are the same except that different fresh variables are employed in the various steps, 

are called cc-equivalent. An eventual (resp. atomic) computation is an eventual (resp. 

atomic) computation segment CS such that for each eventual (resp. atomic) computa- 

tion segment CS’, of which CS is a prefix, CS’ adds to CS only steps applying rules 

for the entailment relation. 

Definition 7 (Successful, suspended, and fuiling conzputations). Given a CC program 

and one of its computations (either eventual or atomic), we will say that such compu- 

tation is 
_ successful, if it is a finite computation where the last state contains only a set of 

constraints, say S, and S y false; 
_ suspended, if it is a finite computation where the last state does not contain tell 

agents but contains ask agents, and its set of constraints S is such that S y false; 

- failing, if it is an infinite computation, or a finite computation which is neither 

successful nor suspended. 
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Notice that a computation has been defined as a sequence of computation steps 

which is maximal w.r.t. the evolution of the agents. This means that there could be 

some subsequent step due to the entailment relation, but no step due to the agents. 

The reason for this is that, after all the agents have evolved, there could be an infinite 

number of entailment steps, and still we do not want to consider such a computation 

failing just because of that. A consequence of this is that to recognize a successful 

computation we have to ask the constraint system for a consistency test even in an 

eventual environment. Thus, the difference between atomic and eventual tell is just 

u~‘~en such a check is asked for (either at the moment of the tell or sometime later). 

In the following we will only consider either finite computations or infinite compu- 

tations which are fair. Here fairness means, informally, that if a rule can continuously 

be applied to some (sub)state from some point onwards, then it will eventually be 

applied to that (sub)state. ’ 

Definition 8 (Eventual and atomic operational semantics). Given a CC program P = 

F.A, its eventual operational semantics, say EO(P), is the set of all its eventual com- 

putations, and its atomic operational semantics, say AO(P), is the set of all its atomic 

computations. 

4. A partial order semantics 

We will now provide CC programs with a partial order semantics, that is, a seman- 

tics which associates a partial order to each computation. Each partial order, however, 

will not be representing only one computation, but an entire class of computations, 

which differ just in the order in which independent steps are executed (where by inde- 

pendent, or concurrent, steps, we mean those steps that can be executed in any order). 

The idea is to take a computation, and build the associated partial order piecewise, by 

considering one computation step after the other one. Each computation step will help 

us build a part of the partial order (that is, some of its elements and some pairs of the 

partial order relation). 

Definition 9 (From computations to partial orders). Given a finite 3 computation 

where ri=L, -‘:, Ri for i=l,...,n, let us set E={e,,...,e,}. Then, let us define the 

relation F by using the following inference rules (where i = 1,. . , n): 
- x E Li or x E c, implies gi(x)Fej; 
- x E R: implies e,Fx. 

The partial order associated to the computation C is then PO(C) = (E, FL ). 

2 In logic programming terms, this can be phrased as the fact that both goal selection (among several 
goals in the current state) and rule selection (among several rules applicable to a goal) are fair. 

3 The definition can also be extended to infinite computations without problems. 
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In words, the above definition just says that, for each step of the computation, we add 

one element ei to the partial order, and we relate it to the other elements representing 

items in the left-hand side, context and right-hand side of the applied rule Y,. If aFb, 

we mean that a causes b, or that b depends on a. Thus the partial order construction is 

such that the event representing the application of a rule, say Y, depends on the items 

in the left-hand side and the context of I’, and has to cause the items in the right-hand 

side of Y. 

In the end (that is, after examining all the II computation steps), we get a partial order 

with II elements (the events), which shows the dependency pattern among the steps of 

the considered computation. In fact, events not depending on each other are concurrent. 

that is, they represent computation steps which do not need each other to be performed 

(and therefore their execution order can be exchanged). Instead, events which depend 

on each other represent computation steps where one of the steps need some element 

generated by the other one, and thus their execution order cannot be exchanged. Note 

that, because of these properties, the same partial order can be obtained from different 

computations: all those that differ only in the order in which the concurrent steps are 

executed. 

Example. Consider the agent 

A = te/l(.u = a) // ask(.u = a) + tell(y = b) 11 tell@ = c), 

and the eventual computation that executes first the leftmost tell, then the ask, and 

then the rightmost tell. Then the resulting partial order can be seen in Fig. l(a), where 

for simplicity only the events corresponding to ask or tell agents are visible, and 

are decorated with the corresponding constraint generated by the agent. Had we used 

an atomic tell, event tell(.u = c) would not have been present if x =a and x =c are 

assumed to be inconsistent in the chosen constraint system. Note that the partial order 

in Fig. l(a) represents also the eventual computation which executes first the rightmost 

tell. then the leftmost one, and then the ask. Consider now the agent 

tell(q) 11 tell(c2). 

x=a x= 

I 

7J=b 

Fig. 1. Partial orders 
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The partial order corresponding to all its eventual computations can be seen in 

Fig. l(b). Assuming that the constraint {cr,cz} is consistent, the same partial 

order represents also all its atomic computations. If instead it is inconsistent, then 

there would be two partial orders representing the (two) atomic computations, one 

which contains only the event decorated with cl, and the other one only the event 

decorated with ~2. 

Definition 10 (Eventual and atomic partial order semantics). Given a CC program 

P, its eventual partial order semantics is EPO(P) = {PO(C) 1 C is an eventual com- 

putation of P}, and its atomic partial order semantics is APO(P) = {PO(C) ] C is an 

atomic computation of P}. 

5. Contextual nets and consistent contextual nets 

In the following, we assume the reader to be familiar with the classical notions of 

nets. For the formal definitions missing here we refer to [13, lo]. 

In classical nets, as defined for example in [13], each element of the set of conditions 

can be a pre-condition (if it belongs to the pre-set of an event) or a post-condition 

(if it belongs to the post-set of an event). In contextual nets a condition can also be 

a context for an event. Informally, a context is something which is necessary for the 

event to be enabled, but which is not affected by the firing of that event. Still, the 

usual three relations which are defined on classical nets, that is, dependency, mutual 

exclusion, and concurrency, can be defined for contextual nets as well, and similar 

properties hold. 

In consistent contextual nets, instead, we assume given also a mutual inconsistenc_v 

relation, which, together with the usual mutual exclusion relation, helps defining those 

sets of events and/or conditions which cannot appear in the same computation. As a 

result, four relations are needed instead of three. In the special case of contextual nets 

used to model CC programs, this additional relation is strongly related to the constraint 

system, since it is derived from the notion of inconsistency of sets of constraints, and 

is then propagated to other objects (agents and events) besides constraints. 

5.1. Contextual nets 

The formal technique which we use to introduce contexts consists in adding a new 

relation, besides the usual flow relation, which we call the context relation. Such 

relations state which conditions are to be considered as a context for which event. 

Nets with such contexts will be called contextual nets. 

Definition 11 (Contextual net). A contextual net is a quadruple (B,E; Fl, F2) where 
- elements of B are called conditions and those of E events; 
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Fig. 2. A contextual net. 

_ Fl C(B x E) U (E x B) is called the flow relation; 
_ F2 &(B x E) is called the context relation; 

and it holds that B n E = (il and (Fl U 4-l) n F2 = 8. 

Definition 12 (Pre-set, post-se&and context). Given a contextual net N = (B, E; Fl, F2) 

and an element x E B U E, 
_ the pre-set of x is the set l x = {y 1 yF~x)}; 
_ the post-set of x is the set X* = {y / xF1 y)}; 
_ the context of x is defined if x E E and it is the set z= {_v 1 _vF2x)}. 

Context-dependent nets will be graphically represented in the same way as nets. 

Thus, conditions are circles, events are boxes, and the flow relation is represented by 

directed arcs from circles to boxes or vice versa. We choose to represent the context 

relation by undirected arcs because the direction of such relation is unambiguous, 

i.e. from elements of B to elements of E. An example of a contextual net can be seen 

in Fig, 2. In this figure we see four events, of which two of them share a context. 

Here we are not interested in how a contextual net works, i.e. how and when events 

may be fired. We just need to know that an event can happen whenever its pre-set 

and context are present, and as a result the pre-set is consumed and the post-set is 

generated. For more formal definitions, we refer to [lo]. 

In our concurrent semantics the crucial notion is that of a contextual process, which 

is a contextual occurrence net together with a suitable mapping of the elements of 

the net to the syntactic objects of the program execution. Through the mapping, each 

condition of the contextual net represents an agent or a constraint, and each event 

represents a rule application. Informally, a contextual occurrence net is just an acyclic 

contextual net, where acyclicity refers to the dependency relation induced by FL and F2. 

Definition 13 (Dependency). Consider a contextual net N = (B, E; F,, F2). Then we 

define a corresponding structure (B U E, <N), where the dependency relation <N is 

the minimal relation which is reflexive, transitive, and which satisfies the following 

conditions: 
_ xF, y implies x <NY; 
_ elF,b and bFze2 implies el dNe2; 

- bF2el and bF,ez implies ei dve2. 



Therefore in the following we will say that x depends on y whenever y d ,vx. Note 

that the dependency relation provides nets with a partial order [14]. In particular, and 

when restricted to events, the partial order relates two events ei and el, in the sense 

that e? depends on el, whenever there is a postcondition for el which is a context or 

a precondition for e2. 

However, a contextual net gives information not only about dependency of events 

and conditions, but also about concurrency and mutual exclusion (or conflict). 

Definition 14 (Mutual exclusion ad concurrency). Let a contextual net N = (B, E; 

Fl , F2) and the associated dependency relation 6 ,v. Assume that <N is antisymmetric, 

and let < 3 cI((B CJ E) x (B U E)) be defined as < 2 ={(_~,y)Ixd,y~ or ~<Nx}. 

Then 

~ the mutual exclusion relation #N C((B U E) x (B UE)) is defined as follows: first we 

define x#‘v iff x, y E E and 3z E B such that ZF~X and zF1 y; then, #N is the minimal 

relation which includes #’ and which is symmetric and hereditary (i.e. if x#~y and 

.X < ,vz, then z#n:y); 

~ the concurrency relation CON is just ((B U E) x (B U I?)) \ (< 3 U #,v). 

In other words, the mutual exclusion is originated by the existence of conditions 

which cause more than one event, and then it is propagated downwards through the 

dependency relation. Instead, two items are concurrent if they are not dependent on 

each other nor mutually exclusive. 

Definition 15 (Contestuul occurrence net). A contextual occurrence net is a contex- 

tual net N = (B, E; FI, Fz ) s.t. 

~ <N is antisymmetric; 

~ b E B implies j'bl < 1; 

- #N is iircflcxivc. 

A useful special case of a contextual occurrence net occurs when the mutual 

exclusion relation is empty. This means that, taken any two items in the net, they 

are either concurrent or dependent. Since no conflict is expressed in such nets, they 

represent a completely deterministic behaviour. For this reason they are called deter- 

ministic occurrence nets. 

Definition 16 (Deterministic context& occurrence net). A deterministic contextual 

occurrence net is a quadruple N = (B, E; Fl, Fz) such that N is a contextual occurrence 

net with #N = 0. 

Given a (nondeterministic) contextual occurrence net, it is easy to derive the set of 

all its subnets which are deterministic. For this we use restrictions defined as just set 

intersection, Fls = F n S. 
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Definition 17 (From contextuul to deterministic contextual occ. nets). Let a contex- 

tual occurrence net N = (B, E; Fl, F2) and the associated relations <N, #N, and cow, 

a deterministic contextual occurrence net of N is a deterministic contextual occurrence 

net N’ = (B’, E’; F{, Fi) where B’ C: B and E’ C E and 

- .\: E (B’ U E’) and v E (B U E) s.t. JJ <N-Y implies that y E (B’ U E’); 

- F,’ =FI~w~E’)u(E’~B’) and Fi =F~I(B,~~,). 

We are now ready to define contextual processes, which, as anticipated above, will 

be used to give a concurrent semantics to CC programs. We recall that, informally, a 

contextual process is just a contextual occurrence net plus a suitable mapping from the 

items of the net (i.e. conditions and events) to the agents of the CC program and the 

rules representing it. 

Definition 18 (Contextual process). Given a CC program P with initial agent A, and 

the associated sets of rewrite rules RR(P), agents AS(P), and tokens D, consider the 

sets RB = {bH} and RE = {rB}, with b E (Ag(P)UD), r E RR(P) and 6 any substitution. 

Then a contextual process is a pair (N, n), where 

- N = (B, E; FI , F2) is a (nondeterministic) contextual occurrence net; 

- 7c : (B U E) --f (RB U RE) is a mapping where 

l tlbEB, n(b)ERB and VeEE, z(e)ERE; 

l ‘dx~B such that J_vE(BUE), y<Nx, n(x)=A; 

l let z(e) = r0, with r = L -.% R, then {rc(x) 1 x E ‘e} = LO, 

{~c(x)IxE~}=cO, {n(x)IxEe*}=RH. 

5.2. Consistent context& nets 

A consistent contextual net is just a contextual net with an additional relation, called 

the mutual inconsistency relation, which defines, together with the mutual exclusion 

relation, which items of the net cannot be present in the same computation. In the 

same way as mutual exclusion, dependency, and concurrency are defined in contextual 

nets starting from the basic relations Fl and F2, the mutual inconsistency relation is 

defined starting from them and a new basic relation Fj. The addition of such relation 

has however some heavy consequences, among which the fact that the concurrency 

relation is not binary any more. 

Definition 19 (Consistent context& net). A consistent contextual net is a quintuple 

(B,E; F,,F2,fi) where N =(B,E;Fl,Fl) is a contextual net, and fi C ~J(E) s.t. Fx(S) 

implies Ver, e2 E S, el CON e2 and VS’ c S, lF3(S’). 

Pre-set, post-set, and context are defined as for contextual nets. The same holds also 

for the dependency ( d from now on) and the mutual exclusion (#) relation. However, 

now we have to define the new mutual inconsistency relation (written as @), starting 

from F3, and we have to redefine the concurrency relation (co). 
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Definition 20 (Mutual inconsistency and concurrency). Let (B, E; Fl. F2, Fj) be a con- 

sistent contextual net, and its dependency and mutual exclusion relations < and #. 
_ The mutual inconsistency relation @ C g(B U E) is defined as follows: 

l Fj(S) implies @(S), and 

l @(S u {t}) and t <t’ implies @(S u {t’}). 
_ The concurrency relation CO E $J(B U E) is defined as follows: co(S) if there is no 

subset S’CS s.t. @(S’) and no SI,S~ ES s.t. SI#S~ or sl <sl. 

In words, the mutual inconsistency relation includes the F3 relation and it is heredi- 

tary. Instead, the concurrency relation is as usually defined by taking what is forbidden 

by the other relations. However, while usually such relation is binary, now it becomes 

n-ary, due to the fact that the new mutually inconsistency relation may be n-ary in 

general. 

Since the mutual inconsistency relation is hereditary, there could be items which 

turn out to be inconsistent with themselves (which will be called self-inconsistent in 

the following). This informally means that they cannot appear in any computation, 

since they are inconsistent with their parents. We call a net admissible if it does not 

contain any of such items, and from now on we will only consider admissible consistent 

contextual nets. 

Definition 21 (Admissible consistent net). A consistent contextual 

F2, F3) is admissible whenever there is no e E E such that @({e}). 

net N=(B,E; F,, 

Example. An admissible consistent contextual net can be seen in Fig. 3. Notice that 

we choose to represent the mutual exclusion relation by (hyper)arcs which have arrows 

on all their endings. In this figure, suppose that the inconsistency link was between 

the event on the left and the one generating its context. Because of inheritance, the 

leftmost event would then be inconsistent with itself. Therefore, the net would not be 

admissible. 

As in the previous section, we now define deterministic and occurrence nets for the 

class of consistent contextual nets. The only difference is that now we define a net 

to be deterministic whenever both the mutual exclusion and the mutual inconsistency 

relations are empty. 

Fig. 3. A consistent contextual net. 
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Definition 22 ((Deterministic) consistent contextual occ. net). A consistent contextual 

occurrence net is a consistent contextual net (B,E; FI,F~,F~) such that (B,E; Fl,F2) is 

a contextual occurrence net. A consistent contextual occurrence net (B,E; Fl,Fz,F3) is 

deterministic when F3 = # = 0. 

Notice that a deterministic consistent contextual occurrence net is just a (determin- 

istic) contextual occurrence net, since F3 = 0. Therefore the way to obtain the deter- 

ministic consistent contextual occurrence nets of a given consistent contextual net is 

the same as in Definition 17. 

If instead we just require the absence of mutually exclusive elements, just as in 

classical and contextual nets, then we still get subnets which have a meaning. In fact, 

we will see that they will be used to model the locally atornical interpretation for the 

tell operation, in which a computation step just checks the consistency of the constraint 

told within a local store. 

Definition 23 ((Deterministic) locull~~ consistent contextual occ. net). A deterministic 

locally consistent contextual occurrence net (B, E; Fl , F2, F3) is a consistent contextual 

occurrence net with # = 8. 

Finally, we will relate consistent occurrence nets to CC programs by means of 

consistent contextual processes, whose definition is straightforward. 

Definition 24 (Consistent contextual process). A consistent contextual process is a 

pair (N. X) such that N = (B. E; F,, F2, F-J) is a consistent contextual occurrence net, 

and ((B, E; F,, F2), TC) is a contextual process. 

6. Concurrent semantics for eventual CC 

The key idea in the semantics is to take the set of rewrite rules RR(P) associated 

to a given CC program P and to incrementally construct a corresponding contextual 

process. Such process is able to represent all possible computations of the CC program 

P in a unique structure. A longer description of this semantics is contained in [12]. 

Definition 25 (From rewrite rules to u corzte.~tuul process). Given a CC program P, 

the pair P(P) = ((B, E; Fl. F2 ), 7~) is constructed by means of the following two infer- 

ence rules: 
_ if A(a) initial agent of P then (A(a),@ 1) E B; 
_ if +ERR(P) such that L(r)Uc(r)={B~(xl),...,B,(x,)}, and 

0 3{s,,..., sn}CB such that ‘di,j=l,..., n, Si CON Sj, and 

l ‘di = 1,. . ,?I, .~i = (Bi(ui),ei,ki), and for some a, Bi(~i)[u/~] = Bi(ui) 

then 

l e=(r[a/xl,{s~,...,s,},l)EE, 
l ~iF,e for all Si = (B,(ui), ei,k;) such that Bi(Xi) E L(r) 
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l s&e for all si = (Bi(ai). ei, ki) such that Bi(xi) E C(V) 

l let h be the multiplicity of B(x, yI,. . . , ym)~R(r), then Vl=l,..., h, 6/= 

(@alxl[(e,~~)l~~l...[( e, ,vm)/.vml, e, 1) E B, and eF1 bl. 

Moreover, for any item x = (xi,x~,x3) E (B UE), n(x) =x1. 

The elements of the net in the contextual process are built in such a way that el- 

ements generated by using different sequences of rules are indeed different. In fact, 

each element is a term consisting of a triple, of which the first element is the tl’pe 

of the term, and represents the rule or agent or constraint the term corresponds to, 

the second element is its history, and this is what makes different terms which are 

generated in different ways, and the third element is its multiplicit~~, and takes care 

of different copies of the same element in the same computation state. Each time 

the inference rule is applied, a rule in RR(P) is chosen whose left-hand side and 

context are matched by some elements already present in the partially built process. 

Such elements have to be concurrent, otherwise it would mean that they cannot be 

together in a state. Then, a new element representing the rule application is added (as 

an event), as well as new elements representing the right hand side of the rule (as 

conditions). 

Theorem 26 (CP(P) is a contextual process). Given a CCprograrn P, its correspond- 

ing structure CP(P) built according to Dejinition 25 is a contextual process. 

Proof. Given a CC program P, consider the structure CP(P) = ((B, E;fi,Fl), TC) as 

defined in Definition 25. To show that it is a contextual process, we need to prove 

that N = (B, E; F,, FJ is a contextual occurrence net, and that rt is a mapping with the 

required properties. We will prove it by induction on the number of applications of 

the inference rule. The base case is easy, since it just contains one condition, thus all 

properties in Definition 15 are satisfied. Consider now an intermediate step where the 

inference rule has been applied already n times, and assume the properties hold for the 

structure already generated. 

- Consider the dependency relation <,v. The (n + I)-th application of the inference 

rule adds new conditions and one new event, and pairs in Fl and F2 which relate only 

such new items. Since in the structure already generated <N is antisymmetric, and 

there is no pair relating the new items to an old item, <N remains antisymmetric. 

- By the induction hypothesis, each condition already in the structure is generated by 

only one event. This is also preserved by the new application of the inference rule, 

since it only adds conditions b for all BE R(r), and pairs eF1 b for all such b’s. 

Therefore, for all new b’s, ‘b = {e}, and thus j’bl = 1. 

~ Consider the mutual exclusion relation # N. It is irreflexive in the structure already 

generated. This means that it does not hold that s#,vs for any s precondition or 

context of the newly added event e. Since we have proved that I'bl = 1 for every b 

postcondition of e, then it cannot be b#‘b. The only other way that b#Nb or e#,ve 

(Definition 14) is that there are x and y in the structure s.t. x#,vy, and x<Ne and 
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y<Ne. But this will mean that there is a precondition or context of e, say s, for 

which x <MS and y<Nys. And in this case, s#,vs, which cannot be by inductive 

hypothesis. Thus #N remains irreflexive. 

As a result, N is a contextual occurrence net. Consider now the mapping rr. By 

Definition 25, it always maps an element x = (_Y~,x~,x~) of the net N to x1. From the 

way such items are built, x1 is always an instance of a rewrite rule if x is an event, and 

an instance of an agent or a constraint if x is a condition. In fact, this is true after the 

first application of the inference rule (when there is only one condition, mapped onto 

the initial agent), and subsequent applications trivially preserve this property. Also, 

all the conditions that the inference rule generates (apart from the initial one) always 

have a singleton pre-set. Thus, there is only one condition with an empty pre-set (and 

therefore, minimuf in the partial order of <N), and it is mapped onto the initial agent. 

Finally, the “environment-preserving” condition that requires that the mapping of the 

preconditions (resp., context conditions. postconditions) of an event are the left hand 

side (resp., context, right hand side) of the rule the event is mapped to, is trivially 

satisfied since the inference rule in Definition 25 works exactly in this way. That is, it 

chooses a set of concurrent conditions that match the left hand side L and the context c 

of a rule Y, maps them to L and c, then generates an event e and maps it to r, and 

finally generates a set of postconditions for e and maps them to the right hand side 

of Y. 

Thus C?(P) is a contextual process. 0 

Theorem 27 (Soundness and completeness of P(P) w.r.t. EO(P)). Giwn a CC 

program P and its corresponding contextual process CP(P) = (N, TC), +zle haoe the 

follo~~~iny. 
_ For a given computution in EO(P) there are (1) an u-equivalent computation 

‘$ ,‘lkw&YI & m~4~ 
S3 . , und (2) one linearkatiorl (restricted to ewnts), 

sa?’ ele? . . , of the purtial order ussociated to (I tmrsimd deterministic contestual 

occurrence net of N, S. t. Vi = 1,2,. . n(ei) = ri[ai/x,] 

~ For an)! lineurization ele2.. of the partial order associuted to a deterministic 

contextual occurrence net of N, there is a computution in EO(P), say S1 
r,[w/x l>Yl 

=$ 

SZ r”a*‘ql S, . . , SUCK that $ei) = ri[ai/xl] for ~11 i = 1.2,. . 

Proof. We will prove it by induction on the length of the computation segment. If 

a computation segment has only one step, then of course it is possible to find the 

corresponding event in the process, since the existence of such computation segment 

means that the left-hand side and the context of the rule applied in the step are present 

in the initial state, which is the requirement to add the event to the net in the inference 

rule in Definition 25. The converse also holds: the presence of a minimal event in the 

net means that the left-hand side and the context of the corresponding rule are present in 

the initial state, thus there must exist a computation segment of one step which applies 

such rule. Assume now that the statement of the theorem holds for a computation 
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segment of length n, and consider a computation segment of length n + 1. By the 

inductive hypothesis, one can find a linearization of the net with n events, which 

correspond to the n rule applications of the first PI computation steps of the considered 

segment. Now, the presence of the (n + 1)-th step means that the left-hand side and 

the context of the rule applied in such step is present in the state obtained after the 

first n steps. Such a state appears in the net also, as a set of concurrent conditions. 

Thus the inference rule of Definition 25 can add an event corresponding to such rule 

application, and such event will be either independent from all the first n events, or 

dependent on at least one of them, thus it can be included in the partial order, and in 

the linearization with n + 1 events. On the other hand, given a linearization with n + 1 

events, by inductive hypothesis there is a computation of length n which corresponds 

to the first n steps. Again, the presence of the (n + I)-th event in the linearization 

implies that the left hand side and the context of the rule corresponding to such event 

are present in the net obtained after the first n events. Thus they are also contained in 

the state obtained after the computation segment of length n. Therefore the rule can 

be applied in such state, yielding a computation segment of length n + 1 matching the 

given linearization of n + 1 events. 0 

As just shown by the above theorem, the concurrent semantics defined in this section 

considers the eventual interpretation of the tell operation: constraints are added to the 

store without checking their consistency with the current set of constraints already in 

it. Therefore there may be parts of the net which represent computation sequences 

which would not happen if taking the atomic interpretation of the tell operation. In 

the following section we show how to recognize and then delete such parts, obtaining 

a (possibly much) smaller process. We will also give a new inference rule which 

allows to not even generate those parts. 

7. Concurrent semantics for atomic CC 

In order to treat in a correct way atomic tells, we need to know when a set of 

constraints is inconsistent. This can be done by just looking at the constraint system, 

since we assumed that a set of inconsistent constraints entails the token false. 

Definition 28 (Inconsisfent constrainfs). Given a constraint system (D, t-), we say that 

u E ~J(D) is inconsistent, and we write kc(u), whenever u E false. Moreover, we write 

into(u) whenever inc(u) holds and also &E p(D) such that v c u and v k false. 

From the inconsistency of a set of tokens we can then derive the mutual inconsis- 

tency of a set of conditions and/or events in the contextual process. Mutual inconsis- 

tency means impossibility of appearing in the same computation without creating an 

inconsistent store. 
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Definition 29 (Mutual inconsistency). Given a CC program P, a constraint system 

(D, E), and the contextual process CP(P) = ((B,E; Fl, F2), K), we define a mutual in- 

consistency relation @ c ~J(B UE) (and @‘) as follows: 

- (jiom constraints to conditions) if {bl, . . . , bn} E B and Vi = 1,. . . , FZ, n(bi) ED and 

inco({n(bl),...,71(b,)}) and there are no i, j E { 1,. . . , n} such that b,#bj, then 

@‘({b,,...,b,}); 
- (from conditions to events) if @‘({bl,. . . ,b,}) and ‘di = 1,. . . ,n, 3ei E E s.t. eiFlbi, 

then @‘({et,...,e,}); 

- @ is the minimal relation which includes @’ and which is hereditary (i.e. if 

@(SU {s}) and s<s’, then @(SU {s’})). 

In particular, the elements of the process which are self-inconsistent cannot appear in 

any computation. Therefore, one step which allows us to change the semantic structure 

which represents the eventual operational semantics of a CC program and get closer to 

that which represents the atomic operational semantics of the same program consists of 

deleting everything that depends on them. In fact, such steps are exactly those tell oper- 

ations which could be done only because it was not performed any consistency check. 

Definition 30 (Net pruning). Given a CC program P, a constraint system (D,k), the 

contextual process CP(P) = ((B, E; Fl, FJ, x), and the relation @ of Definition 29, the 

new process is CP’(P) = ((B’, E’; F{, Fi), 7c’), where 
_ B’=B\{blge~E s.t. @({e}) and e<b}, 
_ E’ = E\{e I3e’ E E s.t. @({e’}) and e/be}, 

- F,‘=QsJxE,UE,xB, and F2/=F2~B,xErr and 
_ n’ is the restriction of n to B’ U E’. 

Theorem 31 (CP’(P) is a consistent contextual process). Consider the process CP’ 

(P) = ((B’, E’; F,‘,q), 7~‘) of DejinitioFt 30 and the relution @ of Dejinition 29. Then 

the corresponding net ((B’, E’; q’, F2/, @itJ(E,)), II’) is u consistent contextual process. 

Proof. It is easy to see that (B’, E’;F,‘, Fi) is a contextual occurrence net. In fact, 

(B,E;fi, F2) is so (by Theorem 26), and (B’, E’; F,‘, Fi) is obtained from it by just 

removing items and links. Thus all properties required by Definition 15 still hold. 

We now have to prove that relation F3 = @if,I(E, ) satisfies the following: 4(S) implies 

vet, ez E S, et CON e2 and tiS’ C s, 7 Fj(S’). 

The first part of the statement (Vel,ez E S, et CON e2) can be proved by looking at 

Definition 29. Since @‘(S) holds, then it must be @‘(OS). Take bl, b2 E ‘S, precondi- 

tions of et and ez, respectively. From Definition 29, it cannot be that bl#b2, and thus, 

by inheritance, neither that et#ez. Consider now bl < b2, and assume that et Gel. Since 

bl < 62, there must be an event e such that bl <e< b1. Thus, since bl Gel, e#et. Also, 

since b2 <e2, we have e <ez. Furthermore, we assumed et <ez. Thus, by inheritance, 

we get el#e2. But this cannot be (Definition 30). By contradiction, et <e2 cannot hold, 

and therefore elcoNe2 holds. 
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The second part of the statement (KS’ c S, 1 Fs(S’)) can be proved by contradiction 

considering that relation into is minimal and reasoning on the preconditions of S and 

S’. From Definition 29, the only way that Fs(S’) could hold is that both inca(‘S) and 

incO(*S’), which is impossible from the minimality of into. 

Thus we have proved that (B’, E’; F,‘. F,‘, @ilJ(E, ,) is a consistent contextual occur- 

rence net. Now we have to prove that 7-r’ satisfies the required properties. But this 

follows from Theorem 26, from the fact that rc’ is obtained by n by just restricting it 

to a subset of the elements of the net, and considering that the pruning does not create 

any other minimal element (since if an element is pruned, then also all the elements 

depending on it are pruned as well). Thus ((B’, E’; F{,q’, @;t,,(E,,), d) is a consistent 

contextual process. 0 

Theorem 32 (Soundness and completeness of CP’(P) w.r.t. AO(P)). Given a CC pro- 

gram P und its consistent contextuul process CP’(P) = (N, TC), ,rle hme the following. 

~ For uq~ complctation in AO(P), there are (1) an cc-equioalent computation SI 
rl[al..rll 

===+ 

sz r2[a2x21 S, . , und (2) one linearixtion (restricted to ecents), elez . . . , oj’ the par- 

tiul order ussociuted to a nmuirnal deterministic comistent contestd occwrence 

lzet of N, s. t. Vi = 1,2,. , rc(ei ) = r~[aJxi] 

~ For uqa lirleurizution ele2.. . of the partiul order ussociated to a deterniiiiistic 

consistent contextual occwrence net oj' N, there is u computution in AO(P), SUJ’ 
& j S~r.~k&‘1S3~~~, ~I[~l~~Il 

such that $ei) = ri[ai/xi] for dl i = 1,2,. . 

Proof. In the atomic operational semantics. a tell step is possible only if the constraint 

to be added to the current state is consistent with it. Thus, in order to prove the 

theorem, we have to prove that such forbidden steps are exactly those events that are 

pruned while going from C’P(P) to CP’(P). Now, the pruned elements are those that are 

inconsistent with themselves, plus all those depending on them. By definition, an event 

e is inconsistent with itself if one of its postconditions, together with the postcondition 

of some other event e’ it depends on, create an inconsistency. In fact, in this case 

the mutual inconsistency relation, which holds between e and e’, is inherited via the 

dependency relation onto the event e itself. But this is exactly the case in which the 

event e represents a tell operation which adds a constraint inconsistent with some other 

constraint in the current state. Thus e represents a computation step that is not allowed 

in the atomic operational semantics. Therefore, the steps which are forbidden in the 

atomic operational semantics are indeed not present in the process CP’(P). Thus. with 

a reasoning similar to that of the proof of Theorem 27, we can conclude the statement 

of the theorem. 0 

It is also possible to characterize failing, successful, and suspended computations 

directly in the concurrent semantics, instead of having to map them back to the corre- 

sponding computations in the operational semantics. 
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Definition 33 (Successfzd, fuiliny, and suspended nets). Given a CC program P and 

a constraint system (D, F), let U”(P) = ((B, E; Fl, F2, F3), z) be the corresponding con- 

sistent contextual process. Consider any maximal deterministic consistent contextual net 

of (B,E;Fl,Fz,Fj), say DN =(B’,E’;F,‘,Fi,@), and DN”={bI bEB’ and db’EB’, b< 

6’). Then DN is: 

~ successful if the set of events representing agent rules is finite, and Vb E DN”, n(b) E 

(D\{.false>); 
_ suspended if the set of events representing agent rules is finite, and Vb E DN” such 

that 7-r(b) E Ag(P), z(b) is an ask agent; 

- failing otherwise. 

Theorem 34 (Characterization of success, failure, and suspension). Let P be a CC 

program and CP’(P)= ((B,E;fi,&,fi),~) t i s corresponding consistent contextual 

process. Consider any maximal deterministic consistent contextual net of (B, E; fi, fi, 

Fj), SLIJ* DN = (B’, E’;q’, Fi, 8). If DN is successjid (resp., suspended, failing) then 

all the computations in AO(P) corresponding to DN according to Theorem 32 ure 

successfill (resp., suspended, j;Ciling). 

Proof. Assume DN is successful. Then, by Definition 33, the set of events of DN 

representing agent evolutions is finite, and no maximal element denotes the constraint 

j&e (meaning that there is no inconsistency). Consider now any linearization of DN 

and the corresponding computation of the atomic operational semantics via Theorem 

32. Such computation is finite, since its computation steps representing agent evolutions 

are in correspondence with the events of the linearization, which by assumption are in 

a finite number. Also, no computation step can produce the constraint false, otherwise 

by Theorem 32 there would be an event in the linearization one postcondition of which 

would represent the constraint false, which we assumed it is not the case. Thus all 

computations corresponding to linearizations of DN are successful. A similar reasoning 

can be used also for subnets which are suspended and failing. 0 

Now we will obtain the same consistent contextual process by means of a new 

inference rule, instead of first producing the contextual process as in Definition 2.5 and 

then pruning it. The advantage consists in a possibly much smaller resulting process. 

However, the drawback is a much more costly condition to check during the generation, 

each time the inference rule is applied. 

Definition 35 (From rewrite rules to a comistent contestual process). Let P be a CC 

program. Then its consistent contextual process CCP(P) = ((B, E; Fl , F2, Fj ), z) is con- 

structed by means of the following two inference rules: 

~ if A(a) initial agent of P then (A(a).@. 1) E B; 

~ if 3rERR(P) such that L(r)Uc(r)={Bl(xl),...,B,(x,)}, and 

l 3{st,. ,s,,} C B such that co({st,. . . ,sn}). and 

l Vi = 1.. . . ,n, s; = (Bi(U,),ef,ki), and for some a, B,(xi)[a/x] = By 
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0 -inc(ct({e})), for e = (r[a/x], {si , . . . ,sn}, I), where ct : p(B UE) + p(D) is de- 

fined as follows: Y{tt, 22, t3) E (B U E), 

c~(~U{(~l~~2,f3)})= 

{ 

ct(S u t2) u (R(r)[a/x] n D) if tl = r[a/x] and r is 

a rule for a tell agent 

ct(S u t?) otherwise 

ct(0) = 0 

then 

l eEE, 

l s;Fje for all s; = (L$(ui),ei,ki) such that By E L(Y) 

l s&e for ail si = (Bi(ai), e;, k,) such that Bi(xi) E c(r) 

l let h be the multiplicity of B(x,_vi,. . . ,ym) ER(~), then VI = 1,. . . ,h, 6, = 

@[~lxl[k 3 )/YII.. . [( e,ym)l.vml,e, 1) E& and efih. 
l F3(SU {e}) for all S= {er,..., e,}CE such that co(SU{sr,...,s,}), and 

ilzc(ct({e} u S)), and ,B’ C E for which (Ye E S’ 3e ES, e’ de) and co(S’ U (~1, 

.“, sn}) and ilrc(ct({e} U 5”)). 

Moreover, for any item x = (x1 ,x2,x3) E (B U E), n(x) =x1. 

The main difference of the above definition w.r.t. Definition 25 is the condition which 

has to be checked for applying the second inference rule. It is not enough to check 

that there are conditions which are concurrent and which match the left hand side and 

the context of a rule. It is also necessary to check that the constraints which would 

be added to the process because of the application of the chosen rule are consistent 

with those which are in the history of the rule itself. In fact, such constraints would 

be in any store where that rule is applied, no matter which linearization one chooses. 

Such constraints are retrieved by function ct, which traverses a term and gets all the 

constraints in its history. 

Another difference concerns the creation of relation F3. Inconsistency of the new 

event e with a set S of events, already in the process, is derived if e and the constraints 

generated in the history of S are inconsistent. This is done only if e is concurrent with 

them (checked by looking at the preconditions of e, sr, . . . ,s,, since e is not formally in 

the process yet). This would create an F3 relation which is already hereditary. However, 

we prefer to have Fj as the base relation, and then to close it by inheritance as by 

Definition 20 to get the mutual inconsistency relation. This is the reason why we also 

check that there is no other set S’ of events which has the same relation as S with e 

but on which S depends. 

Theorem 36 (Equivalence of CP’(P) and CCP(P)). Given u CC program P, its 

corresponding pruned contextual process CP’(P) and consistent contextual process 

CCP(P), then CP’(P) = CCP(P). 

Proof. If an event appears in the process CCP(P), then it also appears in CP(P) since 

the inference rule in Definition 35 has a stronger applicability condition than that of 
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Definition 25. Also, such event cannot be inconsistent with itself, since the only way 

this could happen is if some of its postconditions are inconsistent with postconditions 

of events on which it depends, but this is not allowed by the inference rule, which 

in this case would not be applicable. Thus this event also appears in CP’(P), since 

CP’(P) is obtained from CP(P) by pruning only the elements which are inconsistent 

with themselves. In reality, the pruning involves also those elements that depend on 

the self-inconsistent events, but it is easy to see that such elements cannot appear in 

CCP(P), since there would not be the necessary preconditions or context conditions 

for their generation. Thus all events in CCP(P) are also in CP’(P). Consider now 

any element in CP’(P). Such element is consistent with itself, thus it does not add 

any constraint which is inconsistent with some other constraint generated by events 

on which it depends. Therefore the applicability condition of the inference rule in 

Definition 35 is satisfied, which means that the event is also present in CCP(P). 0 

Part of the complexity of this approach to the construction of the consistent con- 

textual process for a given CC program comes from our aim of employing a standard 

way of selecting the subnets corresponding to (equivalence classes of) computations. 

In fact. assuming that mutual inconsistency is just another aspect of mutual exclusion 

(that is, just another reason for certain items not to be in the same computation), then 

the desired subnets are, as usual, those which are maximal, left-closed, and without 

mutual exclusion. Simpler approaches could be taken: however, they would require ad 

hoc subnet selection procedures. 

8. Contextual net semantics and partial order semantics 

We will now show that there is a strong relationship between the semantics based on 

contextual nets (or on consistent contextual nets) described in the previous section and 

the partial order semantics defined in Section 4. In fact, it is possible to show that one 

can derive all the partial orders from the (consistent) contextual net. An even stronger 

result, which is the one we will prove here, is that each partial order corresponds to 

one deterministic subnet of the given (consistent) contextual net. 

Theorem 37 (deterministic subnets and partial orders). Given u CC progrum P, ,$‘e 

huve the jbllowing: 

(i) Consider its contextuul process CP(P) = (N. z) and its eDentua1 purtiul order 

semuntics EPO(P). Consider also uny jinite maximul deterministic contestual 

occurrence net of N, say ON = (B-E; Fl,Fl), and let < its dependency relution. 

Then there is u partial order in EPO(P), say PO, such that (E, < 1,) und PO 

are isomorphic. 

(ii) Consider the consistent contestuul process CCP(P) = (N’, 7~‘) und the atomic 

partiul order semantics APO(P). Consider also any jinite muximul deterministic 

consistent contextual occurrence net of N, say ON’ = (B’, E’; F{,Fl,Fi), nnd let 
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6’ its dependency relation. Then there is u purtiul order in EPO(P), say PO’, 

such thnt {E’, G\,, ) and PO’ ure isomorphic. 

Proof. (i) Take any finite computation of P, say 

Such computation corresponds, by Theorem 27, to a deterministic subnet of N, say 

ON= (B,E;fi,F2). C onsider now the dependency relation < of ON, and the partial 

order PO = (E, <I,). Take now the partial order associated to the considered com- 

putation via Definition 9, say PO’ = (E’, G’). We will prove that PO and PO’ are 

isomorphic. 4 

It is easy to see that E and E’ have the same cardinality, since they represent the 

same computation. Thus we only need to prove that, for any two events ei and e2 in 

E such that ei Gel, there are two corresponding events (via a isomorphism) ei and ei 

in E’ such that ei d ‘e;. 

From Theorem 27, it is the case that rc(ei) = q{ai/xi] and n(ez) = ~[a2/x2]. Let us 

now consider the computation steps which involve such rule applications, say SI and 

~2, and the corresponding events in PO’ via Definition 9, say ei and ei. 

Since we assumed that ei de2, from Definition 13 it must be that 3b E B such 

that eiFib and (bFle2 V bF,ez). Also, from Theorem 27, we have that x(b)=s, with 

sf?l ER(Q) and se, E (L(r?)Uc(r2)). Thus, by Definition 9, we must also have e{ <‘e$. 

Thus the isomorphism which maps ei to e{ and ez to ei makes the statement of the 

first part of the theorem hold. 

(ii) A similar reasoning as above, but applying Theorem 32 instead of Theorem 27, 

allows one to prove also this case. 0 

9. Locally atomic tell 

Let us consider now a Iocully utomic tell operation, where a constraint is added 

to the store if it is consistent with the set of constraints it depends on. Then, it is 

easy to see that such operation, and the corresponding resulting computations, are very 

easily expressed by the same process. It is just a matter of selecting different subnets 

of the process: the (deterministic) locally consistent contextual occurrence nets instead 

of the deterministic contextual occurrence nets, Recall that the only difference between 

these two classes of nets is that in the former only the mutual exclusion relation is 

empty, while in the latter also the mutual inconsistency relation is so. In fact, if in 

a computation we allow steps which are mutually inconsistent between them, while 

still not allowing any self-inconsistent step, it means that the only way a computation 

can finitely fail is that a self-inconsistent step is tried. But we know that such steps 

represent tell operations which attempt to add a constraint which is inconsistent with 

4 For simplicity, let us consider just the Hasse diagram of such partial orders. 
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p(X) :: tell(X=a), tell(X=b). p(X) :: tell(X=a) -> tell(X=b). 

Fig. 4. Simple CC programs: query is p(X) 

tell(X=b) 

X=b 

b) 

Fig. 5. Contextual and consistent contextual process 

the constraints in their history. Therefore, these subnets only have those computation 

steps which are allowed by the locally atomic interpretation of the tell operation. 

Consider the very simple CC programs of Fig. 4, where the comma represents the 

parallel composition operator 11, and the absence of “-A” after a tell operation means 

that A ::= SWL’. 

The contextual process corresponding to the program on the left in Fig. 4 can be 

seen in Fig. 5(a), while its consistent contextual process is that of Fig. 5(b). Also, 

the set of subnets corresponding to classes of computations which differ only for the 

scheduling order is, in the case of eventual tell, a singleton set containing the whole 

contextual process, and in the case of atomic tell a set of two processes whose nets 

can be seen in Fig. 6. In fact, in the eventual tell interpretation, we just have two 

computations (depending on the order of execution of the two tell operations), both of 

them failing. Instead, in the atomic tell interpretation, we have two computations, each 

one performing just one of the tell operations, and both of them failing (which can be 

seen from the fact that some tell agent is not “expanded”). Consider now the locally 

atomic tell operation. In this case there is only one subnet, which incidentally coincides 

with the contextual process. In fact, with this interpretation, both tells are performed, 

since there is no constraint they depend on (and thus the inconzpletr consistency check 

for such tells succeeds). 

Consider now the CC program on the right in Fig. 4. With the eventual tell inter- 

pretation. we obtain the process in Fig. 7(a), while with the atomic tell interpretation 

we obtain the consistent contextual process in Fig. 7(b). Indeed, the second tell opera- 

tion is self-inconsistent and thus it is not present in the atomic semantics. The locally 

atomic semantics and the atomic semantics coincide, since no tell attempts to add a 
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tell 

tell(X=b) 

6 X=b 

Fig. 6. Consistent contextual nets 

.(X=a)+tell(X=b) 

X=a & Q 

false 

a> 

teqx :=b) 

X=b 

tell(X=a)-ttell(X=b) 

tell(X=b) 

b) 

Fig. 7. A contextual process and a consistent contextual process 

constraint which is inconsistent with the current store but not with the current local 

store. With the eventual tell, there is only one failing computation, which performs 

both tells and generates an inconsistent store. Instead, with the (locally) atomic tell 

there is one computation as well, which however performs just one tell operation and 

then stops. 

Notice that it does not make sense to define a locally atomical operational semantics, 

since the operational semantics, as defined in Section 3 and also in other papers, is 

not able to express the dependency information needed to define the locally atomical 

tell operation. However, we feel that a suitable distributed implementation, which uses 

our concurrent semantics as a basis and which distributes newly added constraints to 

different locations accordingly to their interdependencies, could easily be developed. 
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10. Applications 

In extending the semantics of Section 6 to that of Section 7 we have basically intro- 

duced the ability to handle failure, in the sense of detecting inconsistencies generated 

by tell operations. Having introduced an explicit representation for failure in the se- 

mantics it is also possible to model CLP computations: since failing branches are also 

captured, we are allowed to make a step further towards exchanging nondeterminism 

for indeterminism. The atomic contextual processes we have defined for CC programs 

can also be used to represent the computations of a CLP program, just by interpreting 

the mutual exclusion relation as nondeterminism (i.e. backtracking) instead of indeter- 

minism (i.e. commited-choice). A feature of such processes representing CLP programs 

is that, since CLP does not have ask operations, the context relation (F?) is empty. 

Therefore the net for a CLP program is actually a tree. 

Being able to explicitely express concurrency and dependency, our semantics can 

be exploited in several tasks which need such kind of information. One such task is 

the (compile-time) scheduling of CC programs, or schedule analysis [8]. Another such 

task, in view that our semantics can also handle CLP programs, is the (compile-time) 

parallelization of these programs. 

The goal of schedule analysis is to find maximal linearizations of the program pro- 

cesses (agents in our case) where the efficient compilation techniques of sequential 

implementations can be applied. The best case would be to obtain a complete total or- 

der, but in general we may instead obtain a set of total orders, which specify threads 

of sequential execution which, because of the interdependencies in the program, cannot 

be sequentialized among them [8]. Moreover, in each single thread, one would like to 

schedule the producer(s) before the corresponding consumer(s), so that the consumers 

do not need to be suspended and then woken up later. In the specific case of CC pro- 

grams, the producers are the tell operations and the consumers are the ask operations, 

so this desirable property of each thread here means that some ask operations could 

be deleted, if we can be sure that when they will be scheduled the asked constraint 

has already been told. In [8] a framework for this analysis is defined, which is safe 

w.r.t. the termination properties of the program, and which is based on an input data- 

dependency relation among atoms in the clauses of the program. It is easy to show 

that in our approach the dependency relation of the contextual process of a program 

can provide such an input [4]. In fact, it is intuitive to see that the order between two 

goals in the body of a clause can be easily decided by looking at the contextual net 

describing the behaviour of the original CC program: if the subnets rooted at these two 

goals are linked by dependency links which all go in the same direction (from one 

subnet to the other one), then this direction is the order to be taken for the schedul- 

ing; if instead the dependency links go in both directions, then the two goals must 

belong to two different threads; otherwise (that is, if there are no dependency links 

between the two subnets), we can order them in any way. Once the order has been 

chosen, each ask operation which is scheduled later than all the items of the net on 

which it depends on can safely be deleted. Of course finding the best scheduling is an 



NP-complete problem. Therefore the optimal solution would require a global analysis 

of the relationship among the subnets corresponding to all the goals in the body of the 

considered clause. 

Another interesting application is the parallelization of CLP programs. In this task, 

the problem consists in parallelizing the executions of some of the goals if we are sure 

that doing that will not change the input-output semantics of the program, nor increase 

the execution time. What is usually said is that we can parallelize two (or more) goals 

if we can recognize that they are in some sense “independent.” meaning that their ex- 

ecutions do not interfere with each other. Instead, for all the goals which do not meet 

this independence criteria, we resort to the usual left-to-right order. However, the tra- 

ditional concepts of independence in logic programming [6] do not carry over trivially 

to CLP. In fact, the generalization of the conditions for search space preservation is 

no longer sufficient for ensuring the efficiency of several optimizations when arbitrary 

CLP languages are taken into account, and the definition of constrairzt independence in 

the CLP framework is not trivial [5]. Following constraint independence notions, we 

argue that an efficient parallelization scheme for CLP programs can be developed from 

the mutual inconsistency relation between events in the consistent contextual processes 

of the programs. Current work is being devoted towards making this explicit in the 

(consistent) contextual nets by the new notion of local independence [2]. In particular, 

by using our concurrent semantics, we are able to apply the notion of goal indepen- 

dence at a granularity level which, to our knowledge, allows more goals to be safely 

run in parallel than any other approach. Note that local independence is in general dif- 

ferent from concurrency: the idea is that only items which are concurrent (as defined 

previously in this paper) and which are not dependent because of inconsistency, are 

locally independent. Only these items may be worth running in parallel. 

11. Conclusions 

We have presented a concurrent semantics for CC programs which models the atomic 

interpretation of the tell operation. This semantics extends a previous one for CC 

programs with eventual tell [12], but the extension is not straightforward. In fact, a 

new semantic structure (consistent contextual processes) is needed for this extension, 

and new technical machinery to allow for realistically modelling inconsistency. We 

have shown how the new semantics can be obtained from the previous one by either 

pruning some parts of the original semantic structure, or right from scratch with a new 

inference rule. 

We have also introduced a more abstract semantics which associates to each compu- 

tation a partial order of events, and we have related the semantics based on contextual 

nets and this partial order semantics. 

Finally, we have proposed a new interpretation for the tell operation which allows 

for local consistency checks on the store. The locally atomic interpretation of the tell 

operation is easily captured by our (extended) semantics based on contextual nets. Such 
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interpretation corresponds to checking consistency only against the part of the current 

store on which the tell operation is dependent on, and thus will represent a reasonable 

trade-off between efficiency and atomicity in a distributed implementation. 

All the semantics presented are “truly” concurrent, in the sense that they explicitly 

show the concurrency (in the form of a partial order of dependency links) present 

not only at the program level but also at that of the underlying constraint system. 

Moreover, the semantics based on nets is also able to represent all the computations 

of a given CC program in a unique structure, where it is possible to see the maximal 

degree of both concurrency and indeterminism. Not only this, but also inconsistency 

(or failure) is captured in the semantics at different levels of atomicity. 

Being able to handle failure, our semantic structures can be used to reason about 

the behaviour of both CC and CLP programs. In particular, we have discussed how 

compile-time scheduling of CC programs and parallelization of CLP programs can be 

performed from analyses over the concurrent nets. For the applications to be practical, 

we propose to perform a finite approximation of the executions of the program at 

compile-time using the technique of abstract interpretation. Current work is devoted to 

defining an abstract contextual process, which finitely represents the possibly infinite 

set of possibly infinite concrete structures which can be obtained for a given abstract 

“query mode.” 

Notice that, while the CC schedule analysis can be performed both on eventual 

and on atomic CC programs (and the corresponding semantic structures), the analysis 

needed for the CLP parallelization task is only possible on the semantics for atomic 

CC programs, since this is the only one where nondeterminism can be exchanged 

for indeterminism, due to the presence of the inconsistency relation. Therefore the 

main result of this paper, that is, a concurrent semantics for atomic CC programs, 

is the necessary starting point for exploiting our semantic approach towards the CLP 

parallelization goal. 

Acknowledgements 

We would like to thank the anonymous referees for their useful comments on earlier 

versions of this paper, and the BRA Esprit Project n. 7195 (ACCLAIM, TIC93-0975- 

CE) and Spanish Prontic Project IPL-D (TIC93-0737-C02-01) for partially supporting 

this research. 

References 

[I] F. Bueno, M. Hermenegildo, U. Montanari, F. Rossi, From eventual to atomic and locally atomic 

cc programs: A concurrent semantics, in: Proc. Intemat. Conf. on Algebraic and Logic Programming 
(ALP94). Lecture Notes in Computer Science, Vol. 850, Springer. Berlin. 1994. 

[2] F. Bueno, M. Garcia de la Banda, M. Hermenegildo, F. Rossi. U. Montanari, Towards true concurrency 
semantics based transformation between clp and cc, in: Proc. 2nd Intemat. Workshop on Principles and 

Practice of Constraint Programming (PPCP94). Lecture Notes in Computer Science, Vol. 874, Springer, 
Berlin, 1994. 



82 F Buena er ul. IScience of Computer Proyramwlimy 30 (199Sj 51-82 

[3] F.S. De Boer, C. Palamidessi, A fully abstract model for concurrent constraint programming. in: Proc. 

CAAP, Springer. Berlin, 1991. 

[4] F. Bueno, Automatic optimisation and parallelisation of logic programs through program transformation. 

PhD Thesis, Facultad de Informatica, Universidad Politecnica de Madrid, 1994. 

[5] M. Garcia de la Banda, M. Hermenegildo, K. Marriott, Independence in constraint logic programs, in: 
Proc. ILPS, MIT Press, Cambridge, MA. 1993. 

[6] M. Hermenegildo. F. Rossi, Strict and non-strict independent and-parallelism in logic programs: 

correctness, efficiency, and compile-time conditions. J. Logic Programming. 22 (1) (1995) I-45. 

[7] J. Jaffar. J.L. Lassez, Constraint logic programming, in: Proc. POPL, ACM. New York, 1987. 

[8] A. King, P. Soper, Schedule analysis of concurrent logic languages, in: Proc. IJCSLP. MIT Press, 

Cambridge, MA, 1992. 

[9] M. Koorsloot, E. Tick, Sequentializing parallel programs, in: Proc. Phoenix Seminar and Workshop on 

Declarative Programming, Springer, Berlin, 1991. 

[lo] U. Montanari, F. Rossi. Contextual nets. Acta Inform. 32 (1995) 545-596. 

[ll] U. Montanari, F. Rossi, True concurrency in concurrent constraint programming, in: Proc. ILPS, MIT 

Press, Cambridge, MA, 1991. 

[12] U. Montanari, F. Rossi, Contextual occurrence nets and concurrent constraint programming. in: Proc. 

Dagstuhl Seminar on Graph Transformations in Computer Science, Lecture Notes in Computer Science, 

Vol. 776, Springer. Berlin, 1993. 

[I31 W. Reisig, Petri nets: an introduction, EATCS Monographs on Theoretical Computer Science, Springer. 
Berlin, 1985. 

[14] F. Rossi, Constraints and concurrency, PhD Thesis. Dipartimento di Informatica, Universita di Pisa, TD 

14-93, 1993. 

[15] V.A. Saraswat. Concurrent Constraint Programming, MIT Press, Cambridge, MA, 1993. 

[16] D.S. Scott, Domains for denotational semantics, in: Proc. ICALP, Springer, Berlin, 1982. 

[17] E. Shapiro. The family of concurrent logic programming languages, ACM Comput. Survey 21 (3) 

(1989) 412-510. 

[18] V.A. Saraswat. M. Rinard. Concurrent constraint programming, in: Proc. POPL, ACM, New York, 1990. 

[ 191 V.A. Saraswat, M. Rinard. P. Panangaden. Semantic foundations of concurrent constraint programming, 
in: Proc. POPL, ACM. New York, 1991. 


