
dhllk;lyLwln

=-I Science of
c Computer

B Programming
. n F_ .n 1n ,,,,A”% Cl ‘,m ELSEVIEk >c1ence or cornpurer rrogrammlng 3” (I%%, 31p*)L

Partial order and contextual net semantics for atomic
and locally atomic CC programs

F . Buena"," , M. Hermenegildo”, U. Montanarib, F. Rossib
a Univrrsidud Polithica de Madrid (UPM), Facultad de Informdticu, 28660 Boadilla del Monte.

Mudrid. Spain
b Unioersitd di Piss. Dipartimento di I~2fbrmutica. Corso Italiu 40. 56125 Piss, Itul>,

Abstract

We present two concurrent semantics (i.e. semantics where concurrency is explicitly repre-
sented) for CC programs with atomic tells. One is based on simple partial orders of computation
steps, while the other one is based on contextual nets and it is an extension of a previous one
for eventual CC programs. Both such semantics allow us to derive concurrency, dependency, and
nondeterminism information for the considered languages. We prove some properties about the
relation between the two semantics, and also about the relation between them and the operational
semantics. Moreover, we discuss how to use the contextual net semantics in the context of CLP
programs. More precisely. by interpreting concurrency as possible parallelism, our semantics can
be useful for a safe parallelization of some CLP computation steps. Dually, the dependency
information may also be interpreted as necessary sequentialization, thus possibly exploiting it for
the task of scheduling CC programs. Moreover, our semantics is also suitable for CC programs
with a new kind of atomic tell (called locullli atomic tell), which checks for consistency only
the constraints it depends on. Such a tell achieves a reasonable trade-off between efficiency and
atomicity. since the checked constraints can be stored in a local memory and are thus easily

accessible even in a distributed implementation. 0 1998 Published by Elsevier Science B.V.

Keylvords: Concurrency; Constraints; Semantics

1. Introduction

The concurrent constraint programming paradigm [151 has its roots both in the con-

straint logic programming scheme [7] and in concurrent logic programming languages

[171. A concurrent constraint (CC) program [15, 18, 191 consists of a set of agents

interacting through a shared store, which is a set of constraints on some variables. The

framework is parametric w.r.t. the kind of constraints handled. The concurrent agents

* Corresponding author. E-mail: bueno@i.upm.es

0167-6423/98/$19.00 @ 1998 Published by Elsevier Science B.V. All rights reserved
PZI SO167-6423(97)00007-5

52 F. Buerto et nl. IScirrtce of‘ Computer Prograrnmirty 30 (1998) 51-E

do not communicate with each other, but only with the shared store, by either checking

if it entails a given constraint (ask operation) or adding a new constraint to it (teii

operation). Therefore computations proceed by monotonically accumulating information

(that is, constraints) into the store.

The semantics of CC programs is usually given following the SOS-style operational

semantics [18, 19,3], and thus it suffers from the typical pathologies of an interleaving

semantics. On the other hand, the concurrent semantics approach introduced in [Ill,

which is equipped with a non-monolithic model of the shared store and of its commu-

nication with the agents, allows to express uniformly the behavior of the store and that

of the agents, and, as a consequence, to derive a semantic structure where it is possible

and easy to see the maximal level of both concurrency and nondeterminism in a given

program. Thus it can be much more useful than an interleaving semantics when ex-

ploiting semantic information for compile-time optimizations which require knowledge

about any one of these two concepts. In fact, an interleaving semantics is not able

to express such knowledge correctly, mainly due to the fact that concurrency is not

directly expressible but is instead reduced to nondeterminism.

The concurrent semantics in [l l] is based on an operational semantics described via

context-dependent rewrite rules, i.e. rules which have a left hand side, a right hand

side, and a context. Each rule is applicable if both its left hand side and its context

are present in the current state of the computation. A rule application removes the

left hand side (but not the context) and adds the right hand side. In particular, the

context is crucial in faithfully representing asked constraints, which are checked for

presence but not affected by the computation. The evolution of each of the agents in a

CC program, as well as the declarations of the program and its underlying constraint

system, can all be expressed by sets of such rules. In this way each computation step

(i.e. the application of one of such rules), represents either the evolution of an agent,

or the expansion of a declaration, or the entailment of some new constraint.

The concurrent semantic structure is then built from the rules by starting from the

initial agent and unfolding it applying the rules in all possible ways. The result is

a contextual net [lo], which is just an acyclic Petri net [131 where the presence of

context conditions, besides pre- and post-conditions, is allowed. Furthermore, such net

is labelled, so that for each element we know the agent or constraint it corresponds to.

This contextual net is able to represent all the computations of a given CC program (as

defined by its operational semantics), and for each of such computations it provides

a partial order expressing the dependency pattern among the computation steps. As a

result, all such computations are represented in a unique structure, where it is possible

to see the maximal degree of both concurrency (via the concurrency relation) and

indeterminism (via the mutual exclusion relation) available both at the program level

and at the underlying constraint system.

There are two ways in which the basic tell operation of CC languages is usually

interpreted: either eventually, which means that the constraint is added to the current

store without any consistency check, or atomically, which instead means that the con-

straint is added only if it is consistent with the current store. The concurrent semantics

F. Buena KI al. IScience of Computer Proyramminy 30 (1998) 51-82 53

for CC programs which we have just described (and which is defined in detail in [121)

follows the eventual interpretation.

While the eventual interpretation of the tell operation allows for a completely uniform

treatment of agents and constraints and thus a distributed representation of the constraint

system, it suffers from the fact that possibly many computation steps of a failing

computation are performed while not being needed. In fact, if a constraint is added

to the store in any case (that is, without performing any consistency check), then it

may be used by other (ask) agents, and maybe only much later it is recognized that

some previous tell added a constraint inconsistent with the current store. Therefore,

the semantic structure presented in [12] contained all such useless (and, most crucial,

possibly infinite) parts of computations.

Here we modify such semantics to allow for the atomic interpretation of the tell

operation: constraints are added only if they are consistent with the current store. This

implies that now we must have the possibility of knowing immediately if a set of

constraints is consistent or not. Thus it may seem that we have to go back to the usual

notion of a constraint system as a black box which can answer yes/no questions in

one step (which is what is used in all the semantics other than [11, 121). However, this

is not true: the semantic structure that we obtain still shows all the atomic entailment

steps, thus allowing us to derive the correct dependencies among agents.

The new semantics can be obtained from the old one by defining an inconsistency

relation on agents and constraints. and then cutting all those parts of the semantic

structure which depend on inconsistently “told” constraints. The basic idea is to derive

the inconsistency relation from the constraint system, where we assume that an incon-

sistent set of constraints always entails the token fcllse. Then, the inconsistency relation

is propagated through the contextual net via the dependency relation. If, as a result of

that, some items are inconsistent with themselves, then it means that they could not

appear in any computation without creating an inconsistent state of affairs. Therefore

we prune such items and everything that depends on them. We also show how to de-

rive the new semantics from scratch (instead of first deriving the semantic structure for

eventual tells and then pruning it), by adopting a slightly more complicated inference

rule.

In this paper we also present a different semantics, which associates a partial order

(of computation steps) to each computation, and we relate it to the semantics based

on contextual nets. In particular, we show that, taken a program, the partial orders

associated to its computations by this semantics, and the net associated to the program

by the net semantics discussed above, every partial order can be derived from the

net, and all the computations represented by the same partial order are represented,

in the net, by the same deterministic subnet. This additional semantics is basically a

trade-off between the scarce expressive power (in terms of concurrency) of the oper-

ational semantics, which just shows a sequence of steps, and that of the net, which

shows the whole history of all the computations (and thus all possible concurrency and

nondeterminism). Moreover, it is worth noting that the partial order semantics and the

net semantics are generated in completely different ways: the former one by extracting

54 F Bueno et al. IScience of Computer Proyramminy 30 (1998) 51-82

information from already generated computations, and the latter one by generating from

scratch a sort of decorated computations (where the decoration is the history).

Since our net semantics introduces an explicit representation for failure (i.e. the at-

tempt to add a constraint which is inconsistent with the current store), we can say that

we achieve a faithful model for capturing backtracking. In fact, since failing branches

are also captured, we are allowed to make a step towards exchanging nondeterminism

for indeterminism. Thus our semantics, originally thought for indetetministic CC pro-

grams, can also be used for nondeterministic programs, and, most important, for CLP

programs [2]. The only difference is the interpretation of the mutual exclusion relation,

which expresses indeterminism when applied to CC programs, and nondeterminism

when applied to CLP programs. The ability of recognizing independence and/or non-

determinism in CLP programs is crucial when one is interested in parallelizing such

programs while retaining their semantic meaning (in terms of input-output relation and

time complexity). This is true also for the dual task, that of scheduling CC programs

[8,9] (although for such task the treatment of failure is not necessary).

Both such tasks need some knowledge on dependencies (or independence) of goals,

since in the first one we want to parallelize only goals which are not dependent on

each other, and in the second one we want to schedule later goals which may be

dependent on earlier scheduled goals. The attractive point of the proposed semantics is

that the dependency relation is an integral part of the semantics and thus parallelization

and scheduling decisions can be made by rather direct observations on the semantic

structure. Furthermore, the level of granularity offered by the semantics allows for

scheduling or parallelization tasks of a new nature and at a new level of detail. For

example, it is possible to parallelize across the operations of the constraint solver and

thus to create parallel tasks that include part of the solver operations all in the same

semantic framework.

While the atomic interpretation of the tell operation allows to recognize, and thus

stop, a failing computation possibly much earlier, it has the disadvantage that it can

be extremely costly to achieve, especially in a distributed implementation of a CC

language. The store could be scattered over many locations, and thus checking its

consistency with the new constraint to be told could require locking all the locations

and thus all the other operations until the consistency check has been performed. For

this reason, it would be reasonable to achieve a convenient trade-off between efficiency

and atomicity, thus defining a new interpretation of the tell operation, which just checks

some of the constraints in the current store, and not all of them. Our semantics gives

a very natural hint on the definition and also the possible implementation of one such

interpretation of the tell operation. In fact, being based on dependency information, it

is natural to think of checking for consistency only the part of the current store on

which the tell operation is dependent on. The interesting, and convenient, thing is that

these are the constraints which are in some sense responsible for the presence of the

tell agent, and therefore, in a distributed implementation, could be stored in a memory

which is local to that agent. This means that they will be the most easily accessible

and that thus the tell operation can be performed efficiently. For this locality reason we

F Bueno et al. IScience of Computer Proyramming 30 (1998) 51-82 55

call this new operation a locally atomic tell. From a formal point of view, the semantic

structure corresponding to the locally atomic tell interpretation is the minimal one that

still is complete, since it does not contain any step which is inconsistent with itself.

In the following, we will first introduce CC programming (Section 2) and its oper-

ational semantics (Section 3). We provide CC programs with a partial order semantics

(Section 4) and then introduce the required definitions for contextual nets in Section 5.

In Section 6 we present the concurrent semantics for CC with eventual tell and in

Section 7 that for atomic tell, relating them to the partial order semantics in Section 8.

We discuss the locally atomic interpretation of the tell operation in Section 9, pro-

vide hints to possible applications of our semantics in Section 10, and conclude with

Section 11.

This paper is a revised and extended version of [l]. In particular, the extension

concerns mainly the partial order semantics given in Section 4, and the theorems con-

cerning its relation to the net semantics.

2. Concurrent constraint programming

In the CC paradigm, the underlying constraint system can be described [191 as a

partial information system (derived from the information system introduced in [161) of

the form (D, 1) where D is a set of tokens (or primitive constraints) and t C $J(D) x D

is the entailment relation which states which tokens are entailed by which sets of other

tokens. The relation t has to be reflexive and transitive. Note that there is no notion

of consistency in a partial information system. This means that inconsistency has to be

modelled through entailment. More precisely, the convention is that D contains a false

element, so that an inconsistent set of tokens is that one which entails false. Then, a

constraint in a constraint system (D, t) is simply a set of tokens. ’

Consider the class of programs P, the class of sequences of procedure declarations

F, and the class of agents A. Let c range over constraints, and x denote a tuple of

variables. The following grammar describes the CC language we consider:

P ::= F.A

F ::= p(x) :: A 1 F.F

A ::= S/XC 1 fail 1 tell(c) + A / Ci=l,,,,.n ask(ci) + Ai 1 A 11 A I 3x.A I p(x)

Each procedure is defined once, thus nondeterminism is expressed via the + com-

binator only (which is here denoted by C). We also assume that, in p(x) :: A,

oars(A) C x, where uars(A) is the set of all variables occurring free in agent A. In

a program P = F.A, A is called initial agent, to be executed in the context of the set

of declarations F.

’ Note that this approach is different from that in [19]. where constraints are instead sets of tokens closed

under entailment. The reason why we choose not to close sets of tokens under entailment is that we need
to distinguish different tokens, and their possibly different causes. in order to give a faithful description of

the concurrency present in a program execution.

F. Buem ef 01. IScience qf‘ Computer Proyrunvniny 30 (1998) 51-82

Agent “Ci=l...,.n ask(ci > - A;” behaves as a set of guarded agents A,, where the

success of the guard ask(ci) coincides with the entailment of the constraint ci by the

current store. If instead c, is inconsistent with the current store, then the guard fails.

Lastly, if ci is not entailed but it is consistent with the current store, then the guarded

agent suspends. No particular order of selection of the guarded agents is assumed, and

only one of the choices is taken. In an atomic interpretation of the tell operation, agent

“tell(c) - A” adds constraint c to the current store and then, if the resulting store is

consistent, behaves like A, otherwise it fails; in an eventual interpretation of the tell,

this same agent adds c to the store (without any consistency check) and then behaves

like A.

Given a program P, in the following we will refer to Ag(P) as the set containing

all agents (and subagents) occurring in P, i.e. all the elements of type A occurring

in a derivation of P according to the above grammar. Also, consider the set V of all

free variables appearing in P. Then, let us define the set of substituted agents, Ag(P),

as the set obtained by taking every agent in Ag(P) and substituting each free variable

with another variable in V, in all possible ways.

The CC language we consider in this paper does not use the notion of cylindric con-

straint system, as defined for example in [19]. Therefore, we cannot use that machinery

to project constraints over some of their variables. This does not mean that constraints

cannot be renamed. In fact, if a constraint appears within an agent which has an exis-

tentially quantified variable, and refers to that variables, like in 3x.telI(x = l), then the

variable in such a constraint is in fact renamed during execution (see next section for

details). However, we believe that our whole framework, and corresponding results,

can be extended to deal also with cylindrification operators. Another extension could

be the presence of tell agents in the guards of an indeterministic agent: this would

certainly not cause any problem to our approach. We have made a less general choice

here for simplicity reasons, and also because the classical CC framework does not

allow tells in guards.

3. The operational semantics

Each state of a CC computation consists of a set of elements, labelled over (active)

agents and (already generated) tokens. The reason we use a labelled set instead of a set

is that we need to have a precise representation of a multiset where different occurrences

of the same object can be distinguished. In fact, in general the same agent (and also

the same token) may occur in a state with multiplicity higher than one (just think of

the computations of A I/ A), and we need to recognize these situations and distinguish

among the different occurrences. Both agents and tokens will have associated the free

variables they involve.

Each computation step models either the evolution of (an occurrence of) a single

agent, or the entailment of a new token through the F relation. Such a change in

the state of the computation is performed via the application of a rewrite rule. There

F Bueno et al. IScience oj’ Computer Proyramnky 30 (1998) 51-82 57

are as many rewrite rules as the number of agents and declarations in a program

(which is finite), plus the number of pairs of the entailment relation (which can be

infinite).

Definition 1 (Computation state). Given a program P = F.A with a constraint system

(D, k-j, a state is a labelled set described as S = (0, I), where 0 is a finite set of objects

(denoted by Obj(S)), and 1: 0 + (z(P) U 0). Two states are isomorphic if there is

a bijection between their object sets which preserves the labelling.

Note that a state S = (0, I) can contain two (or more) objects, say oi,o2 E 0, such

that I(Q) = 1(02). This means that 01 and 02 are different occurrences of the same

agent or constraint.

In the following, states will be mostly considered up to isomorphism. This basically

means that the identity of the objects in a state will not be significant. For exam-

ple, ({o~,o~}.l) and ({ 03.04},1’), such that I(ot) = Z’(oj) and 1(02) = I’(oa), belong

to the same isomorphism class and thus will be considered as the same state up to

isomorphism. Also, we will refer to I to mean the labelling function of any state,

whenever it is clear from the context to which state it refers to. Moreover, sometimes

we will write I(S) to mean the whole range of the labelling function defined over

the elements of S. Finally, consider the state S with free variables x, and consider

also the vector y of other variables from V (of the same length as x); whenever

we write S[y/x] we will mean the state obtained from S by replacing each occur-

rence of a variable in x with the corresponding variable in y in all agents and con-

straints in I(S). Note that by passing from S to S[y/x] we do not change the set of

objects.

Definition 2 (Rewprite rules). Given a program P = F.A with a constraint system (D,

k), a rewrite rule has the form Y : L(x) %’ R(xJ~) where L is an agent, c is a constraint,

and R is any state. Also, x is the tuple of free variables appearing in both L U c and

in R, while y is the tuple of free variables appearing only in R. The state R is always

intended up to isomorphism.

The intuitive meaning of a rule is that L, which is called the left hand side of the

rule, is rewritten into (or replaced by) R, i.e. the right-hand side, if c is present in

the current state. That is, the items in c have to be interpreted as a context, since

they are necessary for the application of the rule but are not affected by such applica-

tion. In the CC framework, such context is used to represent in a faithful way asked

constraints.

Note that the left hand side L and the context c of a rule are elements of (Ag(P)UD),

while the right hand side R is a state, that is, a set labelled over (z(P) u D).

Definition 3 (From programs to rules). The rules corresponding to agents, declara-

tions, and entailment pairs are given as follows:

58 F Buena et al. IScience of Computer Proyramn~iny 30 (1998) 51-82

1. (&N(C) i A) -+ c,A 4. (C LLSk(C,) +/ii) -“+Ai Vi = l,...,PZ
I=l....,ll

2. A, 11 A2 --x* A,,A2 5. p(x) --+ A for all p(x) :: A in P

3. 3x.A -s--f A 6. -5 t for all S 1 I

where the comma in the right-hand side has to be interpreted as union of labelled sets.

Given a CC program P = F.A and its underlying constraint system (D, k), we will

call RR(P) the set of rewrite rules associated to P, which consists of the rules corre-

sponding to all agents in z(P), plus the rules representing the declarations in F, plus

those rules representing the pairs of the entailment relation.

In an eventual CC language, a rule Y can be applied to a state S1 if both the left hand

side of Y and its context can be found (via a suitable matching) in S,. The application

of r removes its left hand side and adds its right hand side to SI.

Definition 4 (Eventud cornputution steps). Given
- a computation state S,(a),

_ a rule y:L(x) ‘22 R(q), and
- an injective function g : (L U c) --+ Obj(S1) such that there is a binding [a/x] with

Ualxl = KG)) and c[alxl = WC)),
the application of I’ to S1 is an eventual computation step which yields a new compu-

tation state .!& = (Sl \ g(L)) u R’, where
_ R’ is a new labelled set of objects such that Obj(R’) n Obj(S1) = Q) and such that

there is a bijection between Obj(R) and Obj(R’);
- the labelling of objects in & is augmented w.r.t. that of SI by a labelling of the

objects of R’, such that 1: Obj(R’) + R[a/x][b/y];
- the variables in 6 are fresh, i.e. they do not appear in S1.

We will write S1 r’a’xl[4/Y”y S2.

In the above definition, it is worthwhile to point out the different role played by the

variables in vectors a and b, and by those in vectors x and y. In fact, computation

proceeds by substituting variables in the rules (i.e., x and y) by variables in the states

(i.e., a) and new variables (i.e., b). Therefore, the variables in a and b are never

substituted by other variables during any computation. On the contrary, vectors x and

y are made of variables which will be bound to the variables in vectors u and 6 during

a rule application.

Note also that it is the use of the renaming [b/y] for the free variables (JJ) present

in the right-hand side but not in the left-hand side of a rule that allows us to treat

existential variables in the correct way. This occurs in the application of rule 2 in

Definition 3, as illustrated in the example below.

Finally, let us observe that the application of a rule depends not only on the rule and

on the current state, but also on the function g, since a rule may be applicable to the

E Buena et al. [Science oj’ Computer Programminy 30 (19981 51-82 59

same state via different such functions. This accounts, for example, for the treatment

of multiple agents in a state.

Example. Consider the simple agent h.A(x) 11 h.A(x), which is the parallel composi-

tion of two occurrences of the same agent A, where each occurrence refers to a variable

which is existentially quantified. By applying rule 2 to the state containing only that

agent, we get the state {oi.o2}, with I(oi) = 1(02) = 3x.A(x). Now we can apply rule 3

(which in this case is Ll.x.A(x) ---* A(x)) either with g(%A(x)) = 01 or g(Zlx.A(x)) = 02.

By using the first one, we get {0{,02}, with I(ol,) =A(bi). In fact, variable x is free

in the right-hand side of the rule, and thus it is bound to a fresh variable (bl) by

definition of rule application. Then we apply rule 3 again to the other agent and we

get the state (0; , o:}, with I(oi) = A(&), where b2 is another fresh variable. Thus the

final state is {oj,oi}, with Z(o/,)=A(bl) and l(oi)=A(b~).

In an atomic CC language, not only the left hand side and the context of a rule

have to match some elements in the current state, but also, if the rule implements a

tell agent, a check has to be done for the constraints that such tell wants to add to be

consistent with the current store.

Definition 5 (Atomic conzputrrtion step’s). Consider an eventual computation step

Sl r'a'xl[h;yl'y &. This is an atomic computation step if, whenever Y = ((tell(c) _j ‘4) ‘-” ‘f

c, A), then c U cons(S1) y false (where cons(S) is the set of constraints in state S).

Definition 6 (Computations). Given a CC program P=F.A, an eventual (resp. atomic)

computation segment for P is any (finite or infinite) sequence of eventual (resp. atomic)

computation steps S1
r~la/~~l[h/r~l.~/~

S, r”az’x~1’y2 S’s . . such that Si = {A[aa/xa]}

and r;- E RR(P), i = 1,2,. . Two eventual (resp. atomic) computation segments which

are the same except that different fresh variables are employed in the various steps,

are called cc-equivalent. An eventual (resp. atomic) computation is an eventual (resp.

atomic) computation segment CS such that for each eventual (resp. atomic) computa-

tion segment CS’, of which CS is a prefix, CS’ adds to CS only steps applying rules

for the entailment relation.

Definition 7 (Successful, suspended, and fuiling conzputations). Given a CC program

and one of its computations (either eventual or atomic), we will say that such compu-

tation is
_ successful, if it is a finite computation where the last state contains only a set of

constraints, say S, and S y false;
_ suspended, if it is a finite computation where the last state does not contain tell

agents but contains ask agents, and its set of constraints S is such that S y false;

- failing, if it is an infinite computation, or a finite computation which is neither

successful nor suspended.

60 F Buena et al. IScience of Computer Programming 30 (19981 51-82

Notice that a computation has been defined as a sequence of computation steps

which is maximal w.r.t. the evolution of the agents. This means that there could be

some subsequent step due to the entailment relation, but no step due to the agents.

The reason for this is that, after all the agents have evolved, there could be an infinite

number of entailment steps, and still we do not want to consider such a computation

failing just because of that. A consequence of this is that to recognize a successful

computation we have to ask the constraint system for a consistency test even in an

eventual environment. Thus, the difference between atomic and eventual tell is just

u~‘~en such a check is asked for (either at the moment of the tell or sometime later).

In the following we will only consider either finite computations or infinite compu-

tations which are fair. Here fairness means, informally, that if a rule can continuously

be applied to some (sub)state from some point onwards, then it will eventually be

applied to that (sub)state. ’

Definition 8 (Eventual and atomic operational semantics). Given a CC program P =

F.A, its eventual operational semantics, say EO(P), is the set of all its eventual com-

putations, and its atomic operational semantics, say AO(P), is the set of all its atomic

computations.

4. A partial order semantics

We will now provide CC programs with a partial order semantics, that is, a seman-

tics which associates a partial order to each computation. Each partial order, however,

will not be representing only one computation, but an entire class of computations,

which differ just in the order in which independent steps are executed (where by inde-

pendent, or concurrent, steps, we mean those steps that can be executed in any order).

The idea is to take a computation, and build the associated partial order piecewise, by

considering one computation step after the other one. Each computation step will help

us build a part of the partial order (that is, some of its elements and some pairs of the

partial order relation).

Definition 9 (From computations to partial orders). Given a finite 3 computation

where ri=L, -‘:, Ri for i=l,...,n, let us set E={e,,...,e,}. Then, let us define the

relation F by using the following inference rules (where i = 1,. . , n):
- x E Li or x E c, implies gi(x)Fej;
- x E R: implies e,Fx.

The partial order associated to the computation C is then PO(C) = (E, FL).

2 In logic programming terms, this can be phrased as the fact that both goal selection (among several
goals in the current state) and rule selection (among several rules applicable to a goal) are fair.

3 The definition can also be extended to infinite computations without problems.

F. Bwno et al. I Scimce qf Computer Progranmting 30 (199H) 5/--H-7 61

In words, the above definition just says that, for each step of the computation, we add

one element ei to the partial order, and we relate it to the other elements representing

items in the left-hand side, context and right-hand side of the applied rule Y,. If aFb,

we mean that a causes b, or that b depends on a. Thus the partial order construction is

such that the event representing the application of a rule, say Y, depends on the items

in the left-hand side and the context of I’, and has to cause the items in the right-hand

side of Y.

In the end (that is, after examining all the II computation steps), we get a partial order

with II elements (the events), which shows the dependency pattern among the steps of

the considered computation. In fact, events not depending on each other are concurrent.

that is, they represent computation steps which do not need each other to be performed

(and therefore their execution order can be exchanged). Instead, events which depend

on each other represent computation steps where one of the steps need some element

generated by the other one, and thus their execution order cannot be exchanged. Note

that, because of these properties, the same partial order can be obtained from different

computations: all those that differ only in the order in which the concurrent steps are

executed.

Example. Consider the agent

A = te/l(.u = a) // ask(.u = a) + tell(y = b) 11 tell@ = c),

and the eventual computation that executes first the leftmost tell, then the ask, and

then the rightmost tell. Then the resulting partial order can be seen in Fig. l(a), where

for simplicity only the events corresponding to ask or tell agents are visible, and

are decorated with the corresponding constraint generated by the agent. Had we used

an atomic tell, event tell(.u = c) would not have been present if x =a and x =c are

assumed to be inconsistent in the chosen constraint system. Note that the partial order

in Fig. l(a) represents also the eventual computation which executes first the rightmost

tell. then the leftmost one, and then the ask. Consider now the agent

tell(q) 11 tell(c2).

x=a x=

I

7J=b

Fig. 1. Partial orders

62 F. Buena et al. /Science of Computer Proyramming 30 (1998) 51-82

The partial order corresponding to all its eventual computations can be seen in

Fig. l(b). Assuming that the constraint {cr,cz} is consistent, the same partial

order represents also all its atomic computations. If instead it is inconsistent, then

there would be two partial orders representing the (two) atomic computations, one

which contains only the event decorated with cl, and the other one only the event

decorated with ~2.

Definition 10 (Eventual and atomic partial order semantics). Given a CC program

P, its eventual partial order semantics is EPO(P) = {PO(C) 1 C is an eventual com-

putation of P}, and its atomic partial order semantics is APO(P) = {PO(C)] C is an

atomic computation of P}.

5. Contextual nets and consistent contextual nets

In the following, we assume the reader to be familiar with the classical notions of

nets. For the formal definitions missing here we refer to [13, lo].

In classical nets, as defined for example in [13], each element of the set of conditions

can be a pre-condition (if it belongs to the pre-set of an event) or a post-condition

(if it belongs to the post-set of an event). In contextual nets a condition can also be

a context for an event. Informally, a context is something which is necessary for the

event to be enabled, but which is not affected by the firing of that event. Still, the

usual three relations which are defined on classical nets, that is, dependency, mutual

exclusion, and concurrency, can be defined for contextual nets as well, and similar

properties hold.

In consistent contextual nets, instead, we assume given also a mutual inconsistenc_v

relation, which, together with the usual mutual exclusion relation, helps defining those

sets of events and/or conditions which cannot appear in the same computation. As a

result, four relations are needed instead of three. In the special case of contextual nets

used to model CC programs, this additional relation is strongly related to the constraint

system, since it is derived from the notion of inconsistency of sets of constraints, and

is then propagated to other objects (agents and events) besides constraints.

5.1. Contextual nets

The formal technique which we use to introduce contexts consists in adding a new

relation, besides the usual flow relation, which we call the context relation. Such

relations state which conditions are to be considered as a context for which event.

Nets with such contexts will be called contextual nets.

Definition 11 (Contextual net). A contextual net is a quadruple (B,E; Fl, F2) where
- elements of B are called conditions and those of E events;

F. Buena et al. IScience of Computer Programming 30 (1998) 51-82

7-8 P

8-2-L 8

63

Fig. 2. A contextual net.

_ Fl C(B x E) U (E x B) is called the flow relation;
_ F2 &(B x E) is called the context relation;

and it holds that B n E = (il and (Fl U 4-l) n F2 = 8.

Definition 12 (Pre-set, post-se&and context). Given a contextual net N = (B, E; Fl, F2)

and an element x E B U E,
_ the pre-set of x is the set l x = {y 1 yF~x)};
_ the post-set of x is the set X* = {y / xF1 y)};
_ the context of x is defined if x E E and it is the set z= {_v 1 _vF2x)}.

Context-dependent nets will be graphically represented in the same way as nets.

Thus, conditions are circles, events are boxes, and the flow relation is represented by

directed arcs from circles to boxes or vice versa. We choose to represent the context

relation by undirected arcs because the direction of such relation is unambiguous,

i.e. from elements of B to elements of E. An example of a contextual net can be seen

in Fig, 2. In this figure we see four events, of which two of them share a context.

Here we are not interested in how a contextual net works, i.e. how and when events

may be fired. We just need to know that an event can happen whenever its pre-set

and context are present, and as a result the pre-set is consumed and the post-set is

generated. For more formal definitions, we refer to [lo].

In our concurrent semantics the crucial notion is that of a contextual process, which

is a contextual occurrence net together with a suitable mapping of the elements of

the net to the syntactic objects of the program execution. Through the mapping, each

condition of the contextual net represents an agent or a constraint, and each event

represents a rule application. Informally, a contextual occurrence net is just an acyclic

contextual net, where acyclicity refers to the dependency relation induced by FL and F2.

Definition 13 (Dependency). Consider a contextual net N = (B, E; F,, F2). Then we

define a corresponding structure (B U E, <N), where the dependency relation <N is

the minimal relation which is reflexive, transitive, and which satisfies the following

conditions:
_ xF, y implies x <NY;
_ elF,b and bFze2 implies el dNe2;

- bF2el and bF,ez implies ei dve2.

Therefore in the following we will say that x depends on y whenever y d ,vx. Note

that the dependency relation provides nets with a partial order [14]. In particular, and

when restricted to events, the partial order relates two events ei and el, in the sense

that e? depends on el, whenever there is a postcondition for el which is a context or

a precondition for e2.

However, a contextual net gives information not only about dependency of events

and conditions, but also about concurrency and mutual exclusion (or conflict).

Definition 14 (Mutual exclusion ad concurrency). Let a contextual net N = (B, E;

Fl , F2) and the associated dependency relation 6 ,v. Assume that <N is antisymmetric,

and let < 3 cI((B CJ E) x (B U E)) be defined as < 2 ={(_~,y)Ixd,y~ or ~<Nx}.

Then

~ the mutual exclusion relation #N C((B U E) x (B UE)) is defined as follows: first we

define x#‘v iff x, y E E and 3z E B such that ZF~X and zF1 y; then, #N is the minimal

relation which includes #’ and which is symmetric and hereditary (i.e. if x#~y and

.X < ,vz, then z#n:y);

~ the concurrency relation CON is just ((B U E) x (B U I?)) \ (< 3 U #,v).

In other words, the mutual exclusion is originated by the existence of conditions

which cause more than one event, and then it is propagated downwards through the

dependency relation. Instead, two items are concurrent if they are not dependent on

each other nor mutually exclusive.

Definition 15 (Contestuul occurrence net). A contextual occurrence net is a contex-

tual net N = (B, E; FI, Fz) s.t.

~ <N is antisymmetric;

~ b E B implies j'bl < 1;

- #N is iircflcxivc.

A useful special case of a contextual occurrence net occurs when the mutual

exclusion relation is empty. This means that, taken any two items in the net, they

are either concurrent or dependent. Since no conflict is expressed in such nets, they

represent a completely deterministic behaviour. For this reason they are called deter-

ministic occurrence nets.

Definition 16 (Deterministic context& occurrence net). A deterministic contextual

occurrence net is a quadruple N = (B, E; Fl, Fz) such that N is a contextual occurrence

net with #N = 0.

Given a (nondeterministic) contextual occurrence net, it is easy to derive the set of

all its subnets which are deterministic. For this we use restrictions defined as just set

intersection, Fls = F n S.

I? Bueno et (11. IScience of Computer Proyramminy 30 (1998) 51-82 65

Definition 17 (From contextuul to deterministic contextual occ. nets). Let a contex-

tual occurrence net N = (B, E; Fl, F2) and the associated relations <N, #N, and cow,

a deterministic contextual occurrence net of N is a deterministic contextual occurrence

net N’ = (B’, E’; F{, Fi) where B’ C: B and E’ C E and

- .\: E (B’ U E’) and v E (B U E) s.t. JJ <N-Y implies that y E (B’ U E’);

- F,’ =FI~w~E’)u(E’~B’) and Fi =F~I(B,~~,).

We are now ready to define contextual processes, which, as anticipated above, will

be used to give a concurrent semantics to CC programs. We recall that, informally, a

contextual process is just a contextual occurrence net plus a suitable mapping from the

items of the net (i.e. conditions and events) to the agents of the CC program and the

rules representing it.

Definition 18 (Contextual process). Given a CC program P with initial agent A, and

the associated sets of rewrite rules RR(P), agents AS(P), and tokens D, consider the

sets RB = {bH} and RE = {rB}, with b E (Ag(P)UD), r E RR(P) and 6 any substitution.

Then a contextual process is a pair (N, n), where

- N = (B, E; FI , F2) is a (nondeterministic) contextual occurrence net;

- 7c : (B U E) --f (RB U RE) is a mapping where

l tlbEB, n(b)ERB and VeEE, z(e)ERE;

l ‘dx~B such that J_vE(BUE), y<Nx, n(x)=A;

l let z(e) = r0, with r = L -.% R, then {rc(x) 1 x E ‘e} = LO,

{~c(x)IxE~}=cO, {n(x)IxEe*}=RH.

5.2. Consistent context& nets

A consistent contextual net is just a contextual net with an additional relation, called

the mutual inconsistency relation, which defines, together with the mutual exclusion

relation, which items of the net cannot be present in the same computation. In the

same way as mutual exclusion, dependency, and concurrency are defined in contextual

nets starting from the basic relations Fl and F2, the mutual inconsistency relation is

defined starting from them and a new basic relation Fj. The addition of such relation

has however some heavy consequences, among which the fact that the concurrency

relation is not binary any more.

Definition 19 (Consistent context& net). A consistent contextual net is a quintuple

(B,E; F,,F2,fi) where N =(B,E;Fl,Fl) is a contextual net, and fi C ~J(E) s.t. Fx(S)

implies Ver, e2 E S, el CON e2 and VS’ c S, lF3(S’).

Pre-set, post-set, and context are defined as for contextual nets. The same holds also

for the dependency (d from now on) and the mutual exclusion (#) relation. However,

now we have to define the new mutual inconsistency relation (written as @), starting

from F3, and we have to redefine the concurrency relation (co).

66 F. Bumo et al. IScience oJ’ Computer Programming 30 (19981 51-U

Definition 20 (Mutual inconsistency and concurrency). Let (B, E; Fl. F2, Fj) be a con-

sistent contextual net, and its dependency and mutual exclusion relations < and #.
_ The mutual inconsistency relation @ C g(B U E) is defined as follows:

l Fj(S) implies @(S), and

l @(S u {t}) and t <t’ implies @(S u {t’}).
_ The concurrency relation CO E $J(B U E) is defined as follows: co(S) if there is no

subset S’CS s.t. @(S’) and no SI,S~ ES s.t. SI#S~ or sl <sl.

In words, the mutual inconsistency relation includes the F3 relation and it is heredi-

tary. Instead, the concurrency relation is as usually defined by taking what is forbidden

by the other relations. However, while usually such relation is binary, now it becomes

n-ary, due to the fact that the new mutually inconsistency relation may be n-ary in

general.

Since the mutual inconsistency relation is hereditary, there could be items which

turn out to be inconsistent with themselves (which will be called self-inconsistent in

the following). This informally means that they cannot appear in any computation,

since they are inconsistent with their parents. We call a net admissible if it does not

contain any of such items, and from now on we will only consider admissible consistent

contextual nets.

Definition 21 (Admissible consistent net). A consistent contextual

F2, F3) is admissible whenever there is no e E E such that @({e}).

net N=(B,E; F,,

Example. An admissible consistent contextual net can be seen in Fig. 3. Notice that

we choose to represent the mutual exclusion relation by (hyper)arcs which have arrows

on all their endings. In this figure, suppose that the inconsistency link was between

the event on the left and the one generating its context. Because of inheritance, the

leftmost event would then be inconsistent with itself. Therefore, the net would not be

admissible.

As in the previous section, we now define deterministic and occurrence nets for the

class of consistent contextual nets. The only difference is that now we define a net

to be deterministic whenever both the mutual exclusion and the mutual inconsistency

relations are empty.

Fig. 3. A consistent contextual net.

F. Blteno et al. IScience of Computer Programmi~lg 30 (1998) 51-82 67

Definition 22 ((Deterministic) consistent contextual occ. net). A consistent contextual

occurrence net is a consistent contextual net (B,E; FI,F~,F~) such that (B,E; Fl,F2) is

a contextual occurrence net. A consistent contextual occurrence net (B,E; Fl,Fz,F3) is

deterministic when F3 = # = 0.

Notice that a deterministic consistent contextual occurrence net is just a (determin-

istic) contextual occurrence net, since F3 = 0. Therefore the way to obtain the deter-

ministic consistent contextual occurrence nets of a given consistent contextual net is

the same as in Definition 17.

If instead we just require the absence of mutually exclusive elements, just as in

classical and contextual nets, then we still get subnets which have a meaning. In fact,

we will see that they will be used to model the locally atornical interpretation for the

tell operation, in which a computation step just checks the consistency of the constraint

told within a local store.

Definition 23 ((Deterministic) locull~~ consistent contextual occ. net). A deterministic

locally consistent contextual occurrence net (B, E; Fl , F2, F3) is a consistent contextual

occurrence net with # = 8.

Finally, we will relate consistent occurrence nets to CC programs by means of

consistent contextual processes, whose definition is straightforward.

Definition 24 (Consistent contextual process). A consistent contextual process is a

pair (N. X) such that N = (B. E; F,, F2, F-J) is a consistent contextual occurrence net,

and ((B, E; F,, F2), TC) is a contextual process.

6. Concurrent semantics for eventual CC

The key idea in the semantics is to take the set of rewrite rules RR(P) associated

to a given CC program P and to incrementally construct a corresponding contextual

process. Such process is able to represent all possible computations of the CC program

P in a unique structure. A longer description of this semantics is contained in [12].

Definition 25 (From rewrite rules to u corzte.~tuul process). Given a CC program P,

the pair P(P) = ((B, E; Fl. F2), 7~) is constructed by means of the following two infer-

ence rules:
_ if A(a) initial agent of P then (A(a),@ 1) E B;
_ if +ERR(P) such that L(r)Uc(r)={B~(xl),...,B,(x,)}, and

0 3{s,,..., sn}CB such that ‘di,j=l,..., n, Si CON Sj, and

l ‘di = 1,. . ,?I, .~i = (Bi(ui),ei,ki), and for some a, Bi(~i)[u/~] = Bi(ui)

then

l e=(r[a/xl,{s~,...,s,},l)EE,
l ~iF,e for all Si = (B,(ui), ei,k;) such that Bi(Xi) E L(r)

68 F Buena et al. IScience of’ Computer Programming 30 (1998) 51-82

l s&e for all si = (Bi(ai). ei, ki) such that Bi(xi) E C(V)

l let h be the multiplicity of B(x, yI,. . . , ym)~R(r), then Vl=l,..., h, 6/=

(@alxl[(e,~~)l~~l...[(e, ,vm)/.vml, e, 1) E B, and eF1 bl.

Moreover, for any item x = (xi,x~,x3) E (B UE), n(x) =x1.

The elements of the net in the contextual process are built in such a way that el-

ements generated by using different sequences of rules are indeed different. In fact,

each element is a term consisting of a triple, of which the first element is the tl’pe

of the term, and represents the rule or agent or constraint the term corresponds to,

the second element is its history, and this is what makes different terms which are

generated in different ways, and the third element is its multiplicit~~, and takes care

of different copies of the same element in the same computation state. Each time

the inference rule is applied, a rule in RR(P) is chosen whose left-hand side and

context are matched by some elements already present in the partially built process.

Such elements have to be concurrent, otherwise it would mean that they cannot be

together in a state. Then, a new element representing the rule application is added (as

an event), as well as new elements representing the right hand side of the rule (as

conditions).

Theorem 26 (CP(P) is a contextual process). Given a CCprograrn P, its correspond-

ing structure CP(P) built according to Dejinition 25 is a contextual process.

Proof. Given a CC program P, consider the structure CP(P) = ((B, E;fi,Fl), TC) as

defined in Definition 25. To show that it is a contextual process, we need to prove

that N = (B, E; F,, FJ is a contextual occurrence net, and that rt is a mapping with the

required properties. We will prove it by induction on the number of applications of

the inference rule. The base case is easy, since it just contains one condition, thus all

properties in Definition 15 are satisfied. Consider now an intermediate step where the

inference rule has been applied already n times, and assume the properties hold for the

structure already generated.

- Consider the dependency relation <,v. The (n + I)-th application of the inference

rule adds new conditions and one new event, and pairs in Fl and F2 which relate only

such new items. Since in the structure already generated <N is antisymmetric, and

there is no pair relating the new items to an old item, <N remains antisymmetric.

- By the induction hypothesis, each condition already in the structure is generated by

only one event. This is also preserved by the new application of the inference rule,

since it only adds conditions b for all BE R(r), and pairs eF1 b for all such b’s.

Therefore, for all new b’s, ‘b = {e}, and thus j’bl = 1.

~ Consider the mutual exclusion relation # N. It is irreflexive in the structure already

generated. This means that it does not hold that s#,vs for any s precondition or

context of the newly added event e. Since we have proved that I'bl = 1 for every b

postcondition of e, then it cannot be b#‘b. The only other way that b#Nb or e#,ve

(Definition 14) is that there are x and y in the structure s.t. x#,vy, and x<Ne and

F. Bueno et al. IScience of Computer Proyranminy 30 (19981 51-E 69

y<Ne. But this will mean that there is a precondition or context of e, say s, for

which x <MS and y<Nys. And in this case, s#,vs, which cannot be by inductive

hypothesis. Thus #N remains irreflexive.

As a result, N is a contextual occurrence net. Consider now the mapping rr. By

Definition 25, it always maps an element x = (_Y~,x~,x~) of the net N to x1. From the

way such items are built, x1 is always an instance of a rewrite rule if x is an event, and

an instance of an agent or a constraint if x is a condition. In fact, this is true after the

first application of the inference rule (when there is only one condition, mapped onto

the initial agent), and subsequent applications trivially preserve this property. Also,

all the conditions that the inference rule generates (apart from the initial one) always

have a singleton pre-set. Thus, there is only one condition with an empty pre-set (and

therefore, minimuf in the partial order of <N), and it is mapped onto the initial agent.

Finally, the “environment-preserving” condition that requires that the mapping of the

preconditions (resp., context conditions. postconditions) of an event are the left hand

side (resp., context, right hand side) of the rule the event is mapped to, is trivially

satisfied since the inference rule in Definition 25 works exactly in this way. That is, it

chooses a set of concurrent conditions that match the left hand side L and the context c

of a rule Y, maps them to L and c, then generates an event e and maps it to r, and

finally generates a set of postconditions for e and maps them to the right hand side

of Y.

Thus C?(P) is a contextual process. 0

Theorem 27 (Soundness and completeness of P(P) w.r.t. EO(P)). Giwn a CC

program P and its corresponding contextual process CP(P) = (N, TC), +zle haoe the

follo~~~iny.
_ For a given computution in EO(P) there are (1) an u-equivalent computation

‘$,‘lkw&YI & m~4~
S3 . , und (2) one linearkatiorl (restricted to ewnts),

sa?’ ele? . . , of the purtial order ussociated to (I tmrsimd deterministic contestual

occurrence net of N, S. t. Vi = 1,2,. . n(ei) = ri[ai/x,]

~ For an)! lineurization ele2.. of the partial order associuted to a deterministic

contextual occurrence net of N, there is a computution in EO(P), say S1
r,[w/x l>Yl

=$

SZ r”a*‘ql S, . . , SUCK that $ei) = ri[ai/xl] for ~11 i = 1.2,. .

Proof. We will prove it by induction on the length of the computation segment. If

a computation segment has only one step, then of course it is possible to find the

corresponding event in the process, since the existence of such computation segment

means that the left-hand side and the context of the rule applied in the step are present

in the initial state, which is the requirement to add the event to the net in the inference

rule in Definition 25. The converse also holds: the presence of a minimal event in the

net means that the left-hand side and the context of the corresponding rule are present in

the initial state, thus there must exist a computation segment of one step which applies

such rule. Assume now that the statement of the theorem holds for a computation

70 F Buena et al. IScience of Computer Programming 30 (1998) 51-82

segment of length n, and consider a computation segment of length n + 1. By the

inductive hypothesis, one can find a linearization of the net with n events, which

correspond to the n rule applications of the first PI computation steps of the considered

segment. Now, the presence of the (n + 1)-th step means that the left-hand side and

the context of the rule applied in such step is present in the state obtained after the

first n steps. Such a state appears in the net also, as a set of concurrent conditions.

Thus the inference rule of Definition 25 can add an event corresponding to such rule

application, and such event will be either independent from all the first n events, or

dependent on at least one of them, thus it can be included in the partial order, and in

the linearization with n + 1 events. On the other hand, given a linearization with n + 1

events, by inductive hypothesis there is a computation of length n which corresponds

to the first n steps. Again, the presence of the (n + I)-th event in the linearization

implies that the left hand side and the context of the rule corresponding to such event

are present in the net obtained after the first n events. Thus they are also contained in

the state obtained after the computation segment of length n. Therefore the rule can

be applied in such state, yielding a computation segment of length n + 1 matching the

given linearization of n + 1 events. 0

As just shown by the above theorem, the concurrent semantics defined in this section

considers the eventual interpretation of the tell operation: constraints are added to the

store without checking their consistency with the current set of constraints already in

it. Therefore there may be parts of the net which represent computation sequences

which would not happen if taking the atomic interpretation of the tell operation. In

the following section we show how to recognize and then delete such parts, obtaining

a (possibly much) smaller process. We will also give a new inference rule which

allows to not even generate those parts.

7. Concurrent semantics for atomic CC

In order to treat in a correct way atomic tells, we need to know when a set of

constraints is inconsistent. This can be done by just looking at the constraint system,

since we assumed that a set of inconsistent constraints entails the token false.

Definition 28 (Inconsisfent constrainfs). Given a constraint system (D, t-), we say that

u E ~J(D) is inconsistent, and we write kc(u), whenever u E false. Moreover, we write

into(u) whenever inc(u) holds and also &E p(D) such that v c u and v k false.

From the inconsistency of a set of tokens we can then derive the mutual inconsis-

tency of a set of conditions and/or events in the contextual process. Mutual inconsis-

tency means impossibility of appearing in the same computation without creating an

inconsistent store.

I? Bueno et al. I Science of’ Computer Programming 30 (1998) 51-82 71

Definition 29 (Mutual inconsistency). Given a CC program P, a constraint system

(D, E), and the contextual process CP(P) = ((B,E; Fl, F2), K), we define a mutual in-

consistency relation @ c ~J(B UE) (and @‘) as follows:

- (jiom constraints to conditions) if {bl, . . . , bn} E B and Vi = 1,. . . , FZ, n(bi) ED and

inco({n(bl),...,71(b,)}) and there are no i, j E { 1,. . . , n} such that b,#bj, then

@‘({b,,...,b,});
- (from conditions to events) if @‘({bl,. . . ,b,}) and ‘di = 1,. . . ,n, 3ei E E s.t. eiFlbi,

then @‘({et,...,e,});

- @ is the minimal relation which includes @’ and which is hereditary (i.e. if

@(SU {s}) and s<s’, then @(SU {s’})).

In particular, the elements of the process which are self-inconsistent cannot appear in

any computation. Therefore, one step which allows us to change the semantic structure

which represents the eventual operational semantics of a CC program and get closer to

that which represents the atomic operational semantics of the same program consists of

deleting everything that depends on them. In fact, such steps are exactly those tell oper-

ations which could be done only because it was not performed any consistency check.

Definition 30 (Net pruning). Given a CC program P, a constraint system (D,k), the

contextual process CP(P) = ((B, E; Fl, FJ, x), and the relation @ of Definition 29, the

new process is CP’(P) = ((B’, E’; F{, Fi), 7c’), where
_ B’=B\{blge~E s.t. @({e}) and e<b},
_ E’ = E\{e I3e’ E E s.t. @({e’}) and e/be},

- F,‘=QsJxE,UE,xB, and F2/=F2~B,xErr and
_ n’ is the restriction of n to B’ U E’.

Theorem 31 (CP’(P) is a consistent contextual process). Consider the process CP’

(P) = ((B’, E’; F,‘,q), 7~‘) of DejinitioFt 30 and the relution @ of Dejinition 29. Then

the corresponding net ((B’, E’; q’, F2/, @itJ(E,)), II’) is u consistent contextual process.

Proof. It is easy to see that (B’, E’;F,‘, Fi) is a contextual occurrence net. In fact,

(B,E;fi, F2) is so (by Theorem 26), and (B’, E’; F,‘, Fi) is obtained from it by just

removing items and links. Thus all properties required by Definition 15 still hold.

We now have to prove that relation F3 = @if,I(E,) satisfies the following: 4(S) implies

vet, ez E S, et CON e2 and tiS’ C s, 7 Fj(S’).

The first part of the statement (Vel,ez E S, et CON e2) can be proved by looking at

Definition 29. Since @‘(S) holds, then it must be @‘(OS). Take bl, b2 E ‘S, precondi-

tions of et and ez, respectively. From Definition 29, it cannot be that bl#b2, and thus,

by inheritance, neither that et#ez. Consider now bl < b2, and assume that et Gel. Since

bl < 62, there must be an event e such that bl <e< b1. Thus, since bl Gel, e#et. Also,

since b2 <e2, we have e <ez. Furthermore, we assumed et <ez. Thus, by inheritance,

we get el#e2. But this cannot be (Definition 30). By contradiction, et <e2 cannot hold,

and therefore elcoNe2 holds.

72 I? Bums et (11. IScience oj’ Computer Proyranming 30 (1998) 51-82

The second part of the statement (KS’ c S, 1 Fs(S’)) can be proved by contradiction

considering that relation into is minimal and reasoning on the preconditions of S and

S’. From Definition 29, the only way that Fs(S’) could hold is that both inca(‘S) and

incO(*S’), which is impossible from the minimality of into.

Thus we have proved that (B’, E’; F,‘. F,‘, @ilJ(E, ,) is a consistent contextual occur-

rence net. Now we have to prove that 7-r’ satisfies the required properties. But this

follows from Theorem 26, from the fact that rc’ is obtained by n by just restricting it

to a subset of the elements of the net, and considering that the pruning does not create

any other minimal element (since if an element is pruned, then also all the elements

depending on it are pruned as well). Thus ((B’, E’; F{,q’, @;t,,(E,,), d) is a consistent

contextual process. 0

Theorem 32 (Soundness and completeness of CP’(P) w.r.t. AO(P)). Given a CC pro-

gram P und its consistent contextuul process CP’(P) = (N, TC), ,rle hme the following.

~ For uq~ complctation in AO(P), there are (1) an cc-equioalent computation SI
rl[al..rll

===+

sz r2[a2x21 S, . , und (2) one linearixtion (restricted to ecents), elez . . . , oj’ the par-

tiul order ussociuted to a nmuirnal deterministic comistent contestd occwrence

lzet of N, s. t. Vi = 1,2,. , rc(ei) = r~[aJxi]

~ For uqa lirleurizution ele2.. . of the partiul order ussociated to a deterniiiiistic

consistent contextual occwrence net oj' N, there is u computution in AO(P), SUJ’
& j S~r.~k&‘1S3~~~, ~I[~l~~Il

such that $ei) = ri[ai/xi] for dl i = 1,2,. .

Proof. In the atomic operational semantics. a tell step is possible only if the constraint

to be added to the current state is consistent with it. Thus, in order to prove the

theorem, we have to prove that such forbidden steps are exactly those events that are

pruned while going from C’P(P) to CP’(P). Now, the pruned elements are those that are

inconsistent with themselves, plus all those depending on them. By definition, an event

e is inconsistent with itself if one of its postconditions, together with the postcondition

of some other event e’ it depends on, create an inconsistency. In fact, in this case

the mutual inconsistency relation, which holds between e and e’, is inherited via the

dependency relation onto the event e itself. But this is exactly the case in which the

event e represents a tell operation which adds a constraint inconsistent with some other

constraint in the current state. Thus e represents a computation step that is not allowed

in the atomic operational semantics. Therefore, the steps which are forbidden in the

atomic operational semantics are indeed not present in the process CP’(P). Thus. with

a reasoning similar to that of the proof of Theorem 27, we can conclude the statement

of the theorem. 0

It is also possible to characterize failing, successful, and suspended computations

directly in the concurrent semantics, instead of having to map them back to the corre-

sponding computations in the operational semantics.

F. Buena et al. I Sciencr of Computer Programming 30 (1998) 51-E 73

Definition 33 (Successfzd, fuiliny, and suspended nets). Given a CC program P and

a constraint system (D, F), let U”(P) = ((B, E; Fl, F2, F3), z) be the corresponding con-

sistent contextual process. Consider any maximal deterministic consistent contextual net

of (B,E;Fl,Fz,Fj), say DN =(B’,E’;F,‘,Fi,@), and DN”={bI bEB’ and db’EB’, b<

6’). Then DN is:

~ successful if the set of events representing agent rules is finite, and Vb E DN”, n(b) E

(D\{.false>);
_ suspended if the set of events representing agent rules is finite, and Vb E DN” such

that 7-r(b) E Ag(P), z(b) is an ask agent;

- failing otherwise.

Theorem 34 (Characterization of success, failure, and suspension). Let P be a CC

program and CP’(P)= ((B,E;fi,&,fi),~) t i s corresponding consistent contextual

process. Consider any maximal deterministic consistent contextual net of (B, E; fi, fi,

Fj), SLIJ* DN = (B’, E’;q’, Fi, 8). If DN is successjid (resp., suspended, failing) then

all the computations in AO(P) corresponding to DN according to Theorem 32 ure

successfill (resp., suspended, j;Ciling).

Proof. Assume DN is successful. Then, by Definition 33, the set of events of DN

representing agent evolutions is finite, and no maximal element denotes the constraint

j&e (meaning that there is no inconsistency). Consider now any linearization of DN

and the corresponding computation of the atomic operational semantics via Theorem

32. Such computation is finite, since its computation steps representing agent evolutions

are in correspondence with the events of the linearization, which by assumption are in

a finite number. Also, no computation step can produce the constraint false, otherwise

by Theorem 32 there would be an event in the linearization one postcondition of which

would represent the constraint false, which we assumed it is not the case. Thus all

computations corresponding to linearizations of DN are successful. A similar reasoning

can be used also for subnets which are suspended and failing. 0

Now we will obtain the same consistent contextual process by means of a new

inference rule, instead of first producing the contextual process as in Definition 2.5 and

then pruning it. The advantage consists in a possibly much smaller resulting process.

However, the drawback is a much more costly condition to check during the generation,

each time the inference rule is applied.

Definition 35 (From rewrite rules to a comistent contestual process). Let P be a CC

program. Then its consistent contextual process CCP(P) = ((B, E; Fl , F2, Fj), z) is con-

structed by means of the following two inference rules:

~ if A(a) initial agent of P then (A(a).@. 1) E B;

~ if 3rERR(P) such that L(r)Uc(r)={Bl(xl),...,B,(x,)}, and

l 3{st,. ,s,,} C B such that co({st,. . . ,sn}). and

l Vi = 1.. . . ,n, s; = (Bi(U,),ef,ki), and for some a, B,(xi)[a/x] = By

F: Bueno et al. IScience of Computer Proyrammir~y 30 (1998) 51-82

0 -inc(ct({e})), for e = (r[a/x], {si , . . . ,sn}, I), where ct : p(B UE) + p(D) is de-

fined as follows: Y{tt, 22, t3) E (B U E),

c~(~U{(~l~~2,f3)})=

{

ct(S u t2) u (R(r)[a/x] n D) if tl = r[a/x] and r is

a rule for a tell agent

ct(S u t?) otherwise

ct(0) = 0

then

l eEE,

l s;Fje for all s; = (L$(ui),ei,ki) such that By E L(Y)

l s&e for ail si = (Bi(ai), e;, k,) such that Bi(xi) E c(r)

l let h be the multiplicity of B(x,_vi,. . . ,ym) ER(~), then VI = 1,. . . ,h, 6, =

@[~lxl[k 3)/YII.. . [(e,ym)l.vml,e, 1) E& and efih.
l F3(SU {e}) for all S= {er,..., e,}CE such that co(SU{sr,...,s,}), and

ilzc(ct({e} u S)), and ,B’ C E for which (Ye E S’ 3e ES, e’ de) and co(S’ U (~1,

.“, sn}) and ilrc(ct({e} U 5”)).

Moreover, for any item x = (x1 ,x2,x3) E (B U E), n(x) =x1.

The main difference of the above definition w.r.t. Definition 25 is the condition which

has to be checked for applying the second inference rule. It is not enough to check

that there are conditions which are concurrent and which match the left hand side and

the context of a rule. It is also necessary to check that the constraints which would

be added to the process because of the application of the chosen rule are consistent

with those which are in the history of the rule itself. In fact, such constraints would

be in any store where that rule is applied, no matter which linearization one chooses.

Such constraints are retrieved by function ct, which traverses a term and gets all the

constraints in its history.

Another difference concerns the creation of relation F3. Inconsistency of the new

event e with a set S of events, already in the process, is derived if e and the constraints

generated in the history of S are inconsistent. This is done only if e is concurrent with

them (checked by looking at the preconditions of e, sr, . . . ,s,, since e is not formally in

the process yet). This would create an F3 relation which is already hereditary. However,

we prefer to have Fj as the base relation, and then to close it by inheritance as by

Definition 20 to get the mutual inconsistency relation. This is the reason why we also

check that there is no other set S’ of events which has the same relation as S with e

but on which S depends.

Theorem 36 (Equivalence of CP’(P) and CCP(P)). Given u CC program P, its

corresponding pruned contextual process CP’(P) and consistent contextual process

CCP(P), then CP’(P) = CCP(P).

Proof. If an event appears in the process CCP(P), then it also appears in CP(P) since

the inference rule in Definition 35 has a stronger applicability condition than that of

E Bueno et ul. IScience of Computer Proyramminy 30 (1998) 51-82 75

Definition 25. Also, such event cannot be inconsistent with itself, since the only way

this could happen is if some of its postconditions are inconsistent with postconditions

of events on which it depends, but this is not allowed by the inference rule, which

in this case would not be applicable. Thus this event also appears in CP’(P), since

CP’(P) is obtained from CP(P) by pruning only the elements which are inconsistent

with themselves. In reality, the pruning involves also those elements that depend on

the self-inconsistent events, but it is easy to see that such elements cannot appear in

CCP(P), since there would not be the necessary preconditions or context conditions

for their generation. Thus all events in CCP(P) are also in CP’(P). Consider now

any element in CP’(P). Such element is consistent with itself, thus it does not add

any constraint which is inconsistent with some other constraint generated by events

on which it depends. Therefore the applicability condition of the inference rule in

Definition 35 is satisfied, which means that the event is also present in CCP(P). 0

Part of the complexity of this approach to the construction of the consistent con-

textual process for a given CC program comes from our aim of employing a standard

way of selecting the subnets corresponding to (equivalence classes of) computations.

In fact. assuming that mutual inconsistency is just another aspect of mutual exclusion

(that is, just another reason for certain items not to be in the same computation), then

the desired subnets are, as usual, those which are maximal, left-closed, and without

mutual exclusion. Simpler approaches could be taken: however, they would require ad

hoc subnet selection procedures.

8. Contextual net semantics and partial order semantics

We will now show that there is a strong relationship between the semantics based on

contextual nets (or on consistent contextual nets) described in the previous section and

the partial order semantics defined in Section 4. In fact, it is possible to show that one

can derive all the partial orders from the (consistent) contextual net. An even stronger

result, which is the one we will prove here, is that each partial order corresponds to

one deterministic subnet of the given (consistent) contextual net.

Theorem 37 (deterministic subnets and partial orders). Given u CC progrum P, ,$‘e

huve the jbllowing:

(i) Consider its contextuul process CP(P) = (N. z) and its eDentua1 purtiul order

semuntics EPO(P). Consider also uny jinite maximul deterministic contestual

occurrence net of N, say ON = (B-E; Fl,Fl), and let < its dependency relution.

Then there is u partial order in EPO(P), say PO, such that (E, < 1,) und PO

are isomorphic.

(ii) Consider the consistent contestuul process CCP(P) = (N’, 7~‘) und the atomic

partiul order semantics APO(P). Consider also any jinite muximul deterministic

consistent contextual occurrence net of N, say ON’ = (B’, E’; F{,Fl,Fi), nnd let

16 F. Bueno et al. IScience qf’ Computer Programming 30 (1998) 51-82

6’ its dependency relation. Then there is u purtiul order in EPO(P), say PO’,

such thnt {E’, G\,,) and PO’ ure isomorphic.

Proof. (i) Take any finite computation of P, say

Such computation corresponds, by Theorem 27, to a deterministic subnet of N, say

ON= (B,E;fi,F2). C onsider now the dependency relation < of ON, and the partial

order PO = (E, <I,). Take now the partial order associated to the considered com-

putation via Definition 9, say PO’ = (E’, G’). We will prove that PO and PO’ are

isomorphic. 4

It is easy to see that E and E’ have the same cardinality, since they represent the

same computation. Thus we only need to prove that, for any two events ei and e2 in

E such that ei Gel, there are two corresponding events (via a isomorphism) ei and ei

in E’ such that ei d ‘e;.

From Theorem 27, it is the case that rc(ei) = q{ai/xi] and n(ez) = ~[a2/x2]. Let us

now consider the computation steps which involve such rule applications, say SI and

~2, and the corresponding events in PO’ via Definition 9, say ei and ei.

Since we assumed that ei de2, from Definition 13 it must be that 3b E B such

that eiFib and (bFle2 V bF,ez). Also, from Theorem 27, we have that x(b)=s, with

sf?l ER(Q) and se, E (L(r?)Uc(r2)). Thus, by Definition 9, we must also have e{ <‘e$.

Thus the isomorphism which maps ei to e{ and ez to ei makes the statement of the

first part of the theorem hold.

(ii) A similar reasoning as above, but applying Theorem 32 instead of Theorem 27,

allows one to prove also this case. 0

9. Locally atomic tell

Let us consider now a Iocully utomic tell operation, where a constraint is added

to the store if it is consistent with the set of constraints it depends on. Then, it is

easy to see that such operation, and the corresponding resulting computations, are very

easily expressed by the same process. It is just a matter of selecting different subnets

of the process: the (deterministic) locally consistent contextual occurrence nets instead

of the deterministic contextual occurrence nets, Recall that the only difference between

these two classes of nets is that in the former only the mutual exclusion relation is

empty, while in the latter also the mutual inconsistency relation is so. In fact, if in

a computation we allow steps which are mutually inconsistent between them, while

still not allowing any self-inconsistent step, it means that the only way a computation

can finitely fail is that a self-inconsistent step is tried. But we know that such steps

represent tell operations which attempt to add a constraint which is inconsistent with

4 For simplicity, let us consider just the Hasse diagram of such partial orders.

F Burno et al. I Science oj’ Computer Progrmmi~~g 30 (I 998) 51-82 77

p(X) :: tell(X=a), tell(X=b). p(X) :: tell(X=a) -> tell(X=b).

Fig. 4. Simple CC programs: query is p(X)

tell(X=b)

X=b

b)

Fig. 5. Contextual and consistent contextual process

the constraints in their history. Therefore, these subnets only have those computation

steps which are allowed by the locally atomic interpretation of the tell operation.

Consider the very simple CC programs of Fig. 4, where the comma represents the

parallel composition operator 11, and the absence of “-A” after a tell operation means

that A ::= SWL’.

The contextual process corresponding to the program on the left in Fig. 4 can be

seen in Fig. 5(a), while its consistent contextual process is that of Fig. 5(b). Also,

the set of subnets corresponding to classes of computations which differ only for the

scheduling order is, in the case of eventual tell, a singleton set containing the whole

contextual process, and in the case of atomic tell a set of two processes whose nets

can be seen in Fig. 6. In fact, in the eventual tell interpretation, we just have two

computations (depending on the order of execution of the two tell operations), both of

them failing. Instead, in the atomic tell interpretation, we have two computations, each

one performing just one of the tell operations, and both of them failing (which can be

seen from the fact that some tell agent is not “expanded”). Consider now the locally

atomic tell operation. In this case there is only one subnet, which incidentally coincides

with the contextual process. In fact, with this interpretation, both tells are performed,

since there is no constraint they depend on (and thus the inconzpletr consistency check

for such tells succeeds).

Consider now the CC program on the right in Fig. 4. With the eventual tell inter-

pretation. we obtain the process in Fig. 7(a), while with the atomic tell interpretation

we obtain the consistent contextual process in Fig. 7(b). Indeed, the second tell opera-

tion is self-inconsistent and thus it is not present in the atomic semantics. The locally

atomic semantics and the atomic semantics coincide, since no tell attempts to add a

78 F Buena et al. IScience of’ Computer Programnliny 30 (1998) 51-82

tell

tell(X=b)

6 X=b

Fig. 6. Consistent contextual nets

.(X=a)+tell(X=b)

X=a & Q

false

a>

teqx :=b)

X=b

tell(X=a)-ttell(X=b)

tell(X=b)

b)

Fig. 7. A contextual process and a consistent contextual process

constraint which is inconsistent with the current store but not with the current local

store. With the eventual tell, there is only one failing computation, which performs

both tells and generates an inconsistent store. Instead, with the (locally) atomic tell

there is one computation as well, which however performs just one tell operation and

then stops.

Notice that it does not make sense to define a locally atomical operational semantics,

since the operational semantics, as defined in Section 3 and also in other papers, is

not able to express the dependency information needed to define the locally atomical

tell operation. However, we feel that a suitable distributed implementation, which uses

our concurrent semantics as a basis and which distributes newly added constraints to

different locations accordingly to their interdependencies, could easily be developed.

F. Bueno et al. IScience of Computer Programming 30 (1998) 51-82 79

10. Applications

In extending the semantics of Section 6 to that of Section 7 we have basically intro-

duced the ability to handle failure, in the sense of detecting inconsistencies generated

by tell operations. Having introduced an explicit representation for failure in the se-

mantics it is also possible to model CLP computations: since failing branches are also

captured, we are allowed to make a step further towards exchanging nondeterminism

for indeterminism. The atomic contextual processes we have defined for CC programs

can also be used to represent the computations of a CLP program, just by interpreting

the mutual exclusion relation as nondeterminism (i.e. backtracking) instead of indeter-

minism (i.e. commited-choice). A feature of such processes representing CLP programs

is that, since CLP does not have ask operations, the context relation (F?) is empty.

Therefore the net for a CLP program is actually a tree.

Being able to explicitely express concurrency and dependency, our semantics can

be exploited in several tasks which need such kind of information. One such task is

the (compile-time) scheduling of CC programs, or schedule analysis [8]. Another such

task, in view that our semantics can also handle CLP programs, is the (compile-time)

parallelization of these programs.

The goal of schedule analysis is to find maximal linearizations of the program pro-

cesses (agents in our case) where the efficient compilation techniques of sequential

implementations can be applied. The best case would be to obtain a complete total or-

der, but in general we may instead obtain a set of total orders, which specify threads

of sequential execution which, because of the interdependencies in the program, cannot

be sequentialized among them [8]. Moreover, in each single thread, one would like to

schedule the producer(s) before the corresponding consumer(s), so that the consumers

do not need to be suspended and then woken up later. In the specific case of CC pro-

grams, the producers are the tell operations and the consumers are the ask operations,

so this desirable property of each thread here means that some ask operations could

be deleted, if we can be sure that when they will be scheduled the asked constraint

has already been told. In [8] a framework for this analysis is defined, which is safe

w.r.t. the termination properties of the program, and which is based on an input data-

dependency relation among atoms in the clauses of the program. It is easy to show

that in our approach the dependency relation of the contextual process of a program

can provide such an input [4]. In fact, it is intuitive to see that the order between two

goals in the body of a clause can be easily decided by looking at the contextual net

describing the behaviour of the original CC program: if the subnets rooted at these two

goals are linked by dependency links which all go in the same direction (from one

subnet to the other one), then this direction is the order to be taken for the schedul-

ing; if instead the dependency links go in both directions, then the two goals must

belong to two different threads; otherwise (that is, if there are no dependency links

between the two subnets), we can order them in any way. Once the order has been

chosen, each ask operation which is scheduled later than all the items of the net on

which it depends on can safely be deleted. Of course finding the best scheduling is an

NP-complete problem. Therefore the optimal solution would require a global analysis

of the relationship among the subnets corresponding to all the goals in the body of the

considered clause.

Another interesting application is the parallelization of CLP programs. In this task,

the problem consists in parallelizing the executions of some of the goals if we are sure

that doing that will not change the input-output semantics of the program, nor increase

the execution time. What is usually said is that we can parallelize two (or more) goals

if we can recognize that they are in some sense “independent.” meaning that their ex-

ecutions do not interfere with each other. Instead, for all the goals which do not meet

this independence criteria, we resort to the usual left-to-right order. However, the tra-

ditional concepts of independence in logic programming [6] do not carry over trivially

to CLP. In fact, the generalization of the conditions for search space preservation is

no longer sufficient for ensuring the efficiency of several optimizations when arbitrary

CLP languages are taken into account, and the definition of constrairzt independence in

the CLP framework is not trivial [5]. Following constraint independence notions, we

argue that an efficient parallelization scheme for CLP programs can be developed from

the mutual inconsistency relation between events in the consistent contextual processes

of the programs. Current work is being devoted towards making this explicit in the

(consistent) contextual nets by the new notion of local independence [2]. In particular,

by using our concurrent semantics, we are able to apply the notion of goal indepen-

dence at a granularity level which, to our knowledge, allows more goals to be safely

run in parallel than any other approach. Note that local independence is in general dif-

ferent from concurrency: the idea is that only items which are concurrent (as defined

previously in this paper) and which are not dependent because of inconsistency, are

locally independent. Only these items may be worth running in parallel.

11. Conclusions

We have presented a concurrent semantics for CC programs which models the atomic

interpretation of the tell operation. This semantics extends a previous one for CC

programs with eventual tell [12], but the extension is not straightforward. In fact, a

new semantic structure (consistent contextual processes) is needed for this extension,

and new technical machinery to allow for realistically modelling inconsistency. We

have shown how the new semantics can be obtained from the previous one by either

pruning some parts of the original semantic structure, or right from scratch with a new

inference rule.

We have also introduced a more abstract semantics which associates to each compu-

tation a partial order of events, and we have related the semantics based on contextual

nets and this partial order semantics.

Finally, we have proposed a new interpretation for the tell operation which allows

for local consistency checks on the store. The locally atomic interpretation of the tell

operation is easily captured by our (extended) semantics based on contextual nets. Such

F Bueno et al. IScience of‘ Computer Programming 30 (19981 51-82 81

interpretation corresponds to checking consistency only against the part of the current

store on which the tell operation is dependent on, and thus will represent a reasonable

trade-off between efficiency and atomicity in a distributed implementation.

All the semantics presented are “truly” concurrent, in the sense that they explicitly

show the concurrency (in the form of a partial order of dependency links) present

not only at the program level but also at that of the underlying constraint system.

Moreover, the semantics based on nets is also able to represent all the computations

of a given CC program in a unique structure, where it is possible to see the maximal

degree of both concurrency and indeterminism. Not only this, but also inconsistency

(or failure) is captured in the semantics at different levels of atomicity.

Being able to handle failure, our semantic structures can be used to reason about

the behaviour of both CC and CLP programs. In particular, we have discussed how

compile-time scheduling of CC programs and parallelization of CLP programs can be

performed from analyses over the concurrent nets. For the applications to be practical,

we propose to perform a finite approximation of the executions of the program at

compile-time using the technique of abstract interpretation. Current work is devoted to

defining an abstract contextual process, which finitely represents the possibly infinite

set of possibly infinite concrete structures which can be obtained for a given abstract

“query mode.”

Notice that, while the CC schedule analysis can be performed both on eventual

and on atomic CC programs (and the corresponding semantic structures), the analysis

needed for the CLP parallelization task is only possible on the semantics for atomic

CC programs, since this is the only one where nondeterminism can be exchanged

for indeterminism, due to the presence of the inconsistency relation. Therefore the

main result of this paper, that is, a concurrent semantics for atomic CC programs,

is the necessary starting point for exploiting our semantic approach towards the CLP

parallelization goal.

Acknowledgements

We would like to thank the anonymous referees for their useful comments on earlier

versions of this paper, and the BRA Esprit Project n. 7195 (ACCLAIM, TIC93-0975-

CE) and Spanish Prontic Project IPL-D (TIC93-0737-C02-01) for partially supporting

this research.

References

[I] F. Bueno, M. Hermenegildo, U. Montanari, F. Rossi, From eventual to atomic and locally atomic

cc programs: A concurrent semantics, in: Proc. Intemat. Conf. on Algebraic and Logic Programming
(ALP94). Lecture Notes in Computer Science, Vol. 850, Springer. Berlin. 1994.

[2] F. Bueno, M. Garcia de la Banda, M. Hermenegildo, F. Rossi. U. Montanari, Towards true concurrency
semantics based transformation between clp and cc, in: Proc. 2nd Intemat. Workshop on Principles and

Practice of Constraint Programming (PPCP94). Lecture Notes in Computer Science, Vol. 874, Springer,
Berlin, 1994.

82 F Buena er ul. IScience of Computer Proyramwlimy 30 (199Sj 51-82

[3] F.S. De Boer, C. Palamidessi, A fully abstract model for concurrent constraint programming. in: Proc.

CAAP, Springer. Berlin, 1991.

[4] F. Bueno, Automatic optimisation and parallelisation of logic programs through program transformation.

PhD Thesis, Facultad de Informatica, Universidad Politecnica de Madrid, 1994.

[5] M. Garcia de la Banda, M. Hermenegildo, K. Marriott, Independence in constraint logic programs, in:
Proc. ILPS, MIT Press, Cambridge, MA. 1993.

[6] M. Hermenegildo. F. Rossi, Strict and non-strict independent and-parallelism in logic programs:

correctness, efficiency, and compile-time conditions. J. Logic Programming. 22 (1) (1995) I-45.

[7] J. Jaffar. J.L. Lassez, Constraint logic programming, in: Proc. POPL, ACM. New York, 1987.

[8] A. King, P. Soper, Schedule analysis of concurrent logic languages, in: Proc. IJCSLP. MIT Press,

Cambridge, MA, 1992.

[9] M. Koorsloot, E. Tick, Sequentializing parallel programs, in: Proc. Phoenix Seminar and Workshop on

Declarative Programming, Springer, Berlin, 1991.

[lo] U. Montanari, F. Rossi. Contextual nets. Acta Inform. 32 (1995) 545-596.

[ll] U. Montanari, F. Rossi, True concurrency in concurrent constraint programming, in: Proc. ILPS, MIT

Press, Cambridge, MA, 1991.

[12] U. Montanari, F. Rossi, Contextual occurrence nets and concurrent constraint programming. in: Proc.

Dagstuhl Seminar on Graph Transformations in Computer Science, Lecture Notes in Computer Science,

Vol. 776, Springer. Berlin, 1993.

[I31 W. Reisig, Petri nets: an introduction, EATCS Monographs on Theoretical Computer Science, Springer.
Berlin, 1985.

[14] F. Rossi, Constraints and concurrency, PhD Thesis. Dipartimento di Informatica, Universita di Pisa, TD

14-93, 1993.

[15] V.A. Saraswat. Concurrent Constraint Programming, MIT Press, Cambridge, MA, 1993.

[16] D.S. Scott, Domains for denotational semantics, in: Proc. ICALP, Springer, Berlin, 1982.

[17] E. Shapiro. The family of concurrent logic programming languages, ACM Comput. Survey 21 (3)

(1989) 412-510.

[18] V.A. Saraswat. M. Rinard. Concurrent constraint programming, in: Proc. POPL, ACM, New York, 1990.

[191 V.A. Saraswat, M. Rinard. P. Panangaden. Semantic foundations of concurrent constraint programming,
in: Proc. POPL, ACM. New York, 1991.

