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Abstract. We present a framework that unifies unit testing and run-
time verification (as well as static verification and static debugging).
A key contribution of our overall approach is that we preserve the use
of a unified assertion language for all of these tasks. We first describe a
method for compiling run-time checks for (parts of) assertions which can-
not be verified at compile-time via program transformation. This trans-
formation allows checking preconditions and postconditions, including
conditional postconditions, properties at arbitrary program points, and
certain computational properties. Most importantly, we propose a mini-
mal addition to the assertion language which allows defining unit tests to
be run in order to detect possible violations of the (partial) specifications
expressed by the assertions. We have implemented the framework within
the Ciao/CiaoPP system and effectively applied it to the verification of
ISO Prolog compliance and to the detection of different types of bugs
in the Ciao system source code. Experimental results are presented that
illustrate different trade-offs among program size, running time, or levels
of verbosity of the messages shown to the user.

Key words: run-time verification, unit testing, static/dynamic debug-
ging, assertions, program verification.

1 Introduction

We present an approach that unifies unit testing with run-time verification
within an overall framework that also comprises static verification and static de-
bugging [3, 7, 11, 12, 8]. This novel framework for program development is aimed
at finding bugs in programs or validating them with respect to (partial) specifi-
cations given in terms of assertions (using the concept of abstractions as over-
/under-approximations of program semantics). A novel and expressive language
of assertions allows describing quite general program properties [10, 13, 4, 2].

The previous work in this context cited above has concentrated mostly on
the static (i.e., compile-time) checking of such assertions as well as on techniques
for reducing at compile-time the number of checks that have to be performed



dynamically (i.e., at run time): any assertions present in the program are verified
(or falsified) to the extent possible during the compilation phase, since compile-
time checking is always preferable to run-time checking –always incomplete as
a means of verification. However the existence in all practical programs of data
only known at run-time and the rich nature of the properties considered make
a certain degree of run-time checking inevitable –a reasonable price to pay in
return for property expressiveness.

In this paper we concentrate instead on the run-time portion of the model.
Our aim is to a) develop effective implementation techniques for run-time check-
ing that integrate seamlessly into our combined compile-time/run-time frame-
work and b), based on this, to also develop well-integrated facilities for unit
testing. To this end, we have first developed an implementation of run-time
checks, as an evolution of the approach sketched in [12], based on transforming
the program into a new one which preserves the semantics of the original program
and at the same time checks during its execution the assertions. Such transfor-
mation allows checking preconditions and postconditions, including conditional
postconditions, i.e., postconditions that must hold only when certain precondi-
tions hold. It also allows checking properties at arbitrary program points (i.e.,
in literal positions in clause bodies) as well as certain computational properties
(properties that are not specific to a program point but rather to whole com-
putations, such as, for example, determinism, non-failure, or use of resources
–steps, time, memory, etc.).

Our transformation also addresses to some extent one of the main drawbacks
of run-time checking (in addition to incompleteness): the overhead introduced
during execution of the program. The proposed transformation reduces run-time
overhead by avoiding meta-interpretation whenever possible and by using special
features of the low-level language when appropriate. Also, run-time checks can
be compiled inline as opposed to calling a library, saving (meta-)call overhead.
Another relevant issue addressed by our transformation is being able to provide
messages to the user which are as informative as possible when a violation of the
safety policy is found, i.e., when a run-time check fails. To this end, the trans-
formation saves appropriate information at source code level in the transformed
file. Depending on the level of code instrumentation selected, increasingly more
accurate information about the assertions is saved, and, thus, presented, offering
different trade-offs between information level and program size.

With respect to testing, we propose a minimal extension to the assertion
language in order to be able to define unit tests [5]. The resulting language can
express for example the input data for performing such unit tests, the expected
output, the number of times that the unit tests should be repeated, etc. In con-
trast to previous work in this area (e.g., [1], [17], or the unit test framework
recently included in SWI-Prolog [16]), a key contribution of our approach is that
these unit tests blend in with the assertion language and reuse the overall frame-
work. In particular, only test drivers need to be added because the assertions
and their run-time tests act as the checkers for the cases defined by the unit
tests. An advantage of our approach is that the unit test specifications can be



encapsulated in the same module that contains the predicates being tested, or
placed in a separate file containing the tests for the module or modules of the
application. This contrasts with, e.g., the plunit unit testing of SWI-Prolog,
where unit test specifications are written in the source code of the module or in
a dedicated file with the same name as the module being tested.

Both the run-time check generation and the unit testing approaches proposed
have been implemented within the CiaoPP/Ciao system. We provide some ex-
perimental results which illustrate the implementation trade-offs involved. As
mentioned before, thanks to the CiaoPP/Ciao machinery only the (parts of)
assertions which cannot be verified at compile-time are converted into run-time
checks. Since in our approach unit tests are also assertions, static analysis can
also eliminate parts of or whole unit tests. At the same time, the tight integration
also allows using the unit test drivers to exercise run-time checks corresponding
to those parts of assertions that could not be checked at compile-time, even if
they were not conceived as tests.

2 The Ciao Assertion Language

Assertions are linguistic constructions which allow expressing properties of pro-
grams. They allow talking about preconditions, (conditional) postconditions,
whole executions, program points, etc. For space considerations, we will focus
on a subset of the Ciao assertion language: assertions referring to execution states
and computations (see [13, 2] for a detailed description of the full language). Also,
although the assertion language incorporates significant syntactic sugar, we will
use only the (unfortunately more verbose) raw forms. An execution state 〈G θ〉
consists of the current goal G and the current constraint store θ which contains
information on the values of variables. By computation we mean the (sorted)
execution tree containing all possible sequences of reductions between execution
states of a goal from a calling state.
Predicate Assertions: They refer to properties of a particular predicate. In
the schemas below a concrete assertion will include concrete values in place of
Pred, Precond and Postcond. In all schemas Pred is a predicate descriptor, i.e.,
a predicate symbol applied to distinct free variables, and Precond and Postcond
are logic formulas about execution states, that we call state-formulae. An atomic
state-formula is constructed with a state property predicate (e.g., list(X) or X >
3) which expresses properties about (the values) of variables. A state-formula can
also be a conjunction or disjunction of state-formulae. Standard (C)LP syntax
is used, with comma representing conjunction (e.g., “( list(X), list(Y) )”)
and semicolon disjunction (e.g., “( list(X) ; int(X) )” ).
– Describing success states: :- success Pred [: Precond ] => Postcond.

Interpretation: in any call to Pred, if Precond succeeds in the calling state
and the computation of the call succeeds, then Postcond should also succeed
in the success state.
Example 1. The following assertion expresses that for any call to predicate
qsort/2 with the first argument bound to a list of numbers, if the call suc-
ceeds, then the second argument should also be bound to a list of numbers:



:- success qsort(A,B) : list(A,num) => list(B,num).

If Precond is omitted, the assertion is equivalent to:
:- success Pred : true => Postcond.
and it is interpreted as “for any call to Pred which succeeds, Postcond should
succeed in the success state.”

– Describing admissible calls: :- calls Pred : Precond.
Interpretation: in all calls to Pred, the formula Precond should succeed in
the calling state.

Example 2. The following assertion expresses that in all calls to predicate
qsort/2, the first argument should be bound to a list of numbers:
:- calls qsort(L,R) : list(L,num).

The set of all call assertions is considered closed in the sense that they must
cover all valid calls.

– Describing properties of the computation:
:- comp Pred [: Precond ] + comp-formula.

Interpretation: for any call to Pred, if Precond succeeds in the calling state,
then comp-formula should also succeed for the computation of Pred.

Example 3. :- comp qsort(L,R) : ( list(L,num), var(R) ) + not_fails.
where the atom not fails is implicitly interpreted as not fails(qsort(L,R)),
i.e., it is as if it executed 〈qsort(L,R) θ〉 and checked that it does not fail.

In addition, other assertion schemas such as entry and exit assertions can be
used to refer to external calls to the module.5

Program-point assertions: The program points considered are the places in a
program in which a new literal may be added, i.e., before the first literal (if any)
of a clause, between two literals, and after the last literal (if any) of a clause.
Program-point assertions are literals appearing at the corresponding program
point and which are of the form: check(state-formula ). The resulting assertion
should be interpreted as “whenever computation reaches a state originated at
the program point in which the assertion is, state-formula should succeed.”

Status: Independently of the schema used, each assertion has a flag (check,
trust, true, etc.), the assertion “status,” which determines whether the asser-
tion is to be checked, to be trusted, has already been proved correct by analysis,
etc. Again for simplicity we use only the check status herein (which is assumed
by default when no flag is present).

3 Run-Time Checking of Assertions

In this section we first focus on run-time checking of predicate assertions, and
then we comment on the approach for program-point assertions. Our run-time
checking system is composed of a set of transformations, to be performed by the
5 Note that in CiaoPP the pred assertions of exported predicates can be used option-

ally instead of entry and exit assertions to define the module interface.



step one step two

p :- entry-checks,
exit-preconditions-checks,
ext-comp-checks (p1),
exit-postconditions-checks.

% p renamed to p1 within module

p1 :- calls-checks,
success-preconditions-checks,
comp-checks (call stack(p2, locator) ),
success-postconditions-checks.

p2 :- body0. . . .
p2 :- bodyn.

Fig. 1. The transforming procedure definitions scheme for run-time checking.

preprocessor, and a library containing a number of primitives that the trans-
formed programs will call.

Applying the transformation that we call transforming procedure definitions,6

the original predicate is rewritten so that it performs the run-time checks itself,
each time it is called, and calls to it are left unchanged. Figure 1 illustrates this
approach for a predicate p. In this transformation the original predicate p is
renamed to p2 and a new definition of p, which performs the run-time checks, is
added by following two steps. “Step one” (first column of the figure) is used to
add any run-time checks corresponding to, e.g., entry and exit assertions before
and after a call to a new predicate p1. The objective of this first transformation
is to separate external calls from internal ones. Then p1 is defined so that it
calls predicate p2 and performs all run-time checks corresponding to each type
of (kernel) predicate-level assertions, i.e., calls, success, or comp in the right
place. In this kind of transformation, calls to p are left unchanged.

Transforming Single Predicate Assertions: We first consider the case
where there is only one predicate assertion for a given predicate. We show
schemes for transforming assertions into run-time checks for each type of (kernel)
predicate assertion, i.e., calls, success, or comp. Other, higher-level assertions
(such as pred assertions) and all additional syntactic sugar (such as modes or
“star notation”) are translated by the compiler into the kernel assertions before
applying the transformation. These schemes express what run-time library pred-
icates are called and where such calls are placed. Figure 2 shows the schemes,
whereas the run-time library predicates are described below 7.

checkc(C,F): checks condition C and sets F to true or false depending on
whether it succeeds or not. Defined as: \+ C -> F = false ; F = true).

rtcheck(C): checks if condition C succeeds or not. If C fails, an exception is
raised. This can be understood simply as \+\+ C (so that bindings/constraints
produced by the condition succeeding are removed –an entailment check).

checkif(F,P): postcondition P is checked if F is true. If P fails, an exception
is raised. This can be defined as: (F == true -> rtcheck(P) ; true).

6 We refer the reader to [9] for a discussion of the trade-offs between the transformation
described and an alternative one where the run-time checks are placed before and
after any call to predicates affected by assertions.

7 The schemas for entry/exit assertions are the same as the corresponding to
calls/success assertions, and thus are not shown in the Figure.



Assertion: The definition of Pred is transformed into:

:- calls Pred : Cond. Pred :- rtcheck(Cond), Pred’.
Pred’ :- ... .

:- success Pred : Precond => Postcond. Pred :- checkc(Precond,F), Pred’,
checkif(F,Postcond).

Pred’ :- ... .

:- comp Pred + Comp. Pred :- check comp(Comp(G),G,Pred’).
Pred’ :- ... .

:- comp Pred : Precond + Comp. Pred :- checkc(Precond,F),
checkif comp(F,Comp(G),G,Pred’).

Pred’ :- ... .

Fig. 2. Translation schemes for different kinds of predicate assertions.

checkif comp(F,Comp(G),G,Pred′): checks a computational property if F
is true, for a given computational property Comp(G), and a predicate Pred’
to be checked. For example, if the property is not fails/1 and the predicate
qsort(A,B), then we call checkif comp(F,not fails(G),G,qsort2(A,B)).
In turn, Pred′ is used to pass the direct call to the predicate (i.e., qsort2(A,B)
in the example). If F is false then Pred′ is called, executing the procedure
directly. If F is true then G is unified with Pred′ and Comp(Pred′) is called.
This relies on the fact that comp properties are written assuming that the
goal to be called is passed as an argument and that they take care of both
running the procedure and checking whether the computational property
holds. Again, if the (in this case, computational) property does not hold, an
exception is raised. The predicate checkif comp/4 can be defined as:
checkif comp(fail, , , Pred): − call(Pred).
checkif comp(true, CompCall, Pred, Pred): − call(CompCall).

check comp(Comp(G),G,Pred′): a specialized version of checkif comp(true,
Comp(G), G, Pred′), where the first parameter is assumed to be true.

call stack(C, L): adds the current source code locator L to the locator stack
S allowing to show the call stack on run-time errors. This can be understood
as: intercept(C, rtc error(S, T), throw(rtc error([L|S], T))).

The previous library predicates are implemented in such a way that they
perform the checks without modifying the program state, introducing side effects,
errors, etc. In other words, if all run-time errors are intercepted, the semantics
of the program must be preserved.

Combining Several Predicate Assertions: We now consider the case where
there are several assertions for a given predicate. Translating several calls or
success assertions is relatively straightforward: the corresponding rtcheck/1
and checkc/2 are placed before the call to Pred’, and any calls to checkif/2
are gathered after it. In the case of calls assertions run-time check exceptions
for the unsatisfied assertions are thrown only if all such checks fail.

Combining computational properties is somewhat more involved. First we
consider the case of a single comp assertion with several properties, such as, e.g.:



:- comp qsort(A,B) : (list(A, int), var(B)) + ( is_det, not_fails ).

In this case the properties will simply be nested in the Comp field as follows:
prop1(prop2( ... propN (Pred’) ... )) (the Pred’ field stays obviously the same).
For example, for the assertion above the Comp field will be
not fails(is det(qsort 1(A,B))). If the comp property has a precondition, it
will be checked only once and then either the Comp field or Pred′ will be called.

The situation is more complex when several comp assertions have to be com-
bined. Consider for example the following two comp assertions:
:- comp qsort(A,B) : (ground(A), var(B)) + is_det.
:- comp qsort(A,B) : (list(A,int), var(B)) + not_fails.

Assuming that F1 and F2 are the flags resulting from checking the conditions
ground(A), var(B) and list(A,int), var(B) respectively, the composition
of the two assertions above would be:
checkif_comp(F2, not_fails(G2), G2,

checkif_comp(F1,is_det(G1), G1, qsort2(A,B))).

After all the transformations explained above have been made, an invocation
of call stack/2 is instrumented in order to save the locator in the stack.

Program-Point Assertions: This is a comparatively simpler task than trans-
forming predicate-level assertions: only one program point needs to be trans-
formed for each assertion; only the rtcheck/1 and check comp/1 primitives are
required; and in the case of computational properties; their definitions are called
directly. Clauses are transformed as follows:

Program-point assertion: The clause is transformed into:

Pred :- ..., check(Cond), ... Pred :- ..., rtcheck(Cond), ...

Pred :- ..., check(CompProp(Goal)), ... Pred :- ..., check comp(CompProp(Goal)), ...

4 Defining Unit Tests

In order to define a unit test we have to express on one hand what to execute
and on the other hand what to check (at run-time). A key characteristic of
our approach is that we use the assertion language described in Section-2 for
expressing what to check. This way, the same properties that can be expressed for
static or run-time checking can also be checked in unit testing. However, we have
added a minimal number of elements to the assertion language for expressing
what to execute. In particular, we have added a new assertion schema:

:- texec Pred [: Precond ] [+Exec-Formula].

which states that we want to execute (as a test) a call to Pred with its variables
instantiated to values that satisfy Precond. Exec-Formula is a conjunction of
properties describing how to drive this execution. In our approach many of the
properties usable in Precond (e.g., types) can be run as value generators for
these variables, so that input data can be automatically generated for the unit
tests (see the technique described in [6]). However, we have defined some specific
properties, such as random value generators.



Example 4. The assertion:
:- texec append(A, B, C) : (A=[1,2],B=[3],var(C)).
expresses that a call to append/3 with the first and second arguments bound to
[1,2] and [3] respectively and the third one unbound should be executed.

Example 5. We can define a unit test using the assertion in Example 4 together
with the following two assertions expressing what to check at run-time:
:- check success append(A,B,C):(A=[1,2],B=[3],var(C)) => C=[1,2,3].
:- check comp append(A,B,C):(A=[1,2],B=[3],var(C)) + not_fails.

The success assertion states that if a call to append/3 with the first and sec-
ond arguments bound to [1,2] and [3] respectively and the third one unbound
terminates with success, then the third argument should be bound to [1,2,3].
The comp assertion says that such a call will not fail. 2

The advantage of the integrated framework that we propose is that the execu-
tion expressed by a texec assertion for unit testing can also be used for checking
parts of other assertions that could not have been checked at compile-time and
thus remain as run-time checks. This way, a single set of run-time checking ma-
chinery is used for both run-time checks and unit testing. In addition, static
checking of assertions can safely avoid (possibly parts of) unit test execution.

We now introduce another predicate assertion schema, the test schema,
which can be seen as syntactic sugar for a set of predicate assertions:

:- test Pred [: Precond ] [=> Postcond ] [+ Comp-Exec-Props].
This assertion is interpreted as the combination of three assertions:8

:- texec Pred [: Precond ] [+ Exec-Props].
:- check success Pred [: Precond ] [=> Postcond ].
:- check comp Pred [: Precond ] [+Comp-Props].

For example, the assertion:
:- test append(A,B,C) : (A=[1,2],B=[3],var(C)) => C=[1,2,3]

+ (not_fails,times(5)).

is conceptually equivalent to that in Example 4, plus the two in Example 5.
These are examples of predefined properties that can be used in Exec-Formula:

try sols(N): Expresses an upper bound N on the number of solutions to be
checked. For example, the assertion:
:- texec append(A, B, C): (A=X, B=Y, C=Z) + try_sols(7).

expresses that the call to append(X, Y, Z) should be executed to get at
most the first 7 solutions through backtracking.

times(N): Expresses that the execution should be repeated N times. For exam-
ple, while checking ISO prolog compliance, a test for the retract/1 predicate
failed rarely, so that the test was modified adding the primitive times/1:

:- test retract_test7(A) + times(50).
retract_test7(A) :- retract((foo(A) :- A,call(A))).

in order to repeat the test fifty times to increase the chances of test failure.
8 In fact, a completeness assertion –using “<=”, see [13]– could also be generated.



exception(Excep): Expresses that a test execution should throw the exception
Excep. For example, consider the predicate p/1 defined as follows:

p(a).
p(b) :- fail.
p(c) :- throw(error(c, "error c")).

The following tests succeed:

:- test p(A) : (A = a) + not_fails.
:- test p(A) : (A = b) + fails.
:- test p(A) : (A = c) + exception(error(c,_)).

The first one states that the call p(a) should not fail, the second one that
p(b) should fail, and the third one that p(c) should raise an exception.

user output(String): Expresses that a predicate should write the string String
into the current output stream. For example, the following test involving the
library predicate display/ 1 succeeds:
:- test display(A) : (A = hello) + user_output("hello").

However, the following tests report an error:
:- test display(A) : (A = hello) + user_output("bye").
:- test display(A) : (A = hello) + user_output("hello!").

Other properties are provided for example to express that a predicate should
write the string Str into the current error stream (user error(Str)), to express
a time-out T for a test execution (resource(ub, time, T)), or to generate
random input data with a given probability distribution (e.g., for floating point
numbers, including special cases like infinite, not-a-number or zero with sign).

5 Generating User-friendly Messages

Whenever a run-time check fails, an exception is raised. An exception handler
will then catch the exception and report the error. However, with the transfor-
mations presented so far little information can be provided to the user beyond
the precondition or postcondition that is producing the violation, since this is
the only parameter passed to most of the checking predicates. In contrast, dur-
ing compile-time checking, when an assertion is proved not to hold, both the
assertion and the program point where the assertion was violated are reported,
in a format designed so that the graphical program development environment
can locate these points in the source code and highlight them automatically.

In order to also provide precise information when reporting violated asser-
tions when performing run-time checks, we have added an extra argument to
the checking predicates through which certain information is passed, such as
the location of the corresponding assertion(s) and the calling program point in
the source code. This information can then be passed to the exception handler
when the exception occurs, which prints it in a format that is compatible with
that used when reporting compile-time checking errors. Thus, run-time errors
can also be easily traced back to the sources automatically by the development



environment. The transformation instruments the transformed code to include
the necessary information.

There is a clear trade-off between the size of and the overhead introduced
in the instrumented program and the quality of the messages issued. Different
levels of information may be appropriate for different contexts. The current
implementation of the run-time check transformations offers several optional
levels of instrumentation. For brevity we report on two levels in our experiments,
explained below:
Low: information is saved to report the actual assertion being violated and the

property or properties that caused such violation.
High: in addition, predicates with assertions are further instrumented so that

when a run-time check fails a call stack dump is also shown up to the exact
program point where the violation occurs, showing for each predicate the
literal in its body that caused such violation.9

To illustrate these levels, consider the following assertion and property defini-
tions, in addition to a definition of qsort/2 such as that of Figure 3:
:- success qsort(A,B) => (ground(B),sorted_num_list(B)).
:- prop sorted_num_list/1.
sorted_num_list([]).
sorted_num_list([X]):- num(X).
sorted_num_list([X,Y|Z]):- num(X),num(Y),X=<Y,sorted_num_list([Y|Z]).

which ensures that qsort/2 always returns a ground, sorted list. Assume also
that the program has been written in a buggy way (to be discovered later). With
low instrumentation level the output during execution would be similar to:
?- qsort([1,2],X).

{In /tmp/qsort.pl

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([1,2],[2,1]).

In *success*, unsatisfied property:

sorted_num_list([2,1]).

ERROR: (lns 16-21) Check failed in qsort:qsort/2.}

Two errors are reported for a single run-time check failure: the first error
shows the actual assertion being violated and the second marks the first clause
of the predicate which violates the assertion. However, not enough information
is provided to determine which literal made the erroneous call. For the high
instrumentation level transformation the output is:
?- call_rtc(qsort([3,1,2],B)).

{In /tmp/qsort.pl

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([1,2],[2,1]).

In *success*, unsatisfied property:

sorted_num_list([2,1]).

ERROR: (lns 16-21) Check failed in qosrt:qsort/2.

9 This can also be done at a lower level, via engine primitives, but we are interested
herein in measuring only the cost of source level transformations.



:- calls qsort(A,B) : list(A,num).

:- success qsort(A,B) : list(A,num) => list(B,num).

:- comp qsort(A,B) : (list(A,num), var(B)) + not_fails.

qsort([X|L],R) :- partition(L,X,L1,L2), qsort(L2,R2), qsort(L1,R1),

append(R2,[X|R1],R).

qsort([],[]).

:- calls partition(A,B,C,D) : (list(A), num(B)).

:- success partition(A,B,C,D) : (list(A), num(B)) => (list(C), list(D)).

:- comp partition(A,B,C,D) : (list(A), num(B)) + (not_fails,is_det).

partition([],B,[],[]).

partition([E|R],C,[E|Left1],Right):- E < C, !, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):- partition(R,C,Left,Right1).

Fig. 3. A quick-sort program with assertions.

ERROR: (lns 16-21) Check failed when invocation of

qsort:qsort([3,1,2],_1)

called qsort:qsort([1,2],_2) in its body.}

{In /tmp/qsort.pl

ERROR: (lns 8-9) Run-time check failure in assertion for:

qsort:qsort([3,1,2],[3,2,1]).

In *success*, unsatisfied property:

sorted_num_list([3,2,1]).

ERROR: (lns 16-21) Check failed in qsort:qsort/2.}
This example uses the call rtc/1 meta-predicate to intercept the run-time

error, show the related message, and continue execution as if the program where
not being checked. The output makes it easier to locate the error since the call
stack dump provides the list of calling predicates being checked.

Note that the first part of the assertion is not violated, since B is ground.
However, on success the output of qsort/2 is a sorted list but in reverse order,
which gives us a hint: the arguments in the call to append/3 are mistakenly
swapped.

6 Experimental Results

We now report on some experimental results from our implementation within the
Ciao/CiaoPP system of the testing and run-time checking approach proposed.
Both have been integrated fully into the development environment allowing easy
execution of tests and run-time checking of assertions present in modules. The
system is available in the latest Ciao betas (1.13.x) at http://www.ciaohome.org.
The experiments measure both program size and time overhead due to run-time
checks. We first used the qsort program in Figure 3, with an input list of size
600 to run several experiments for different settings:
– Library or inlined run-time checks: we have implemented the transfor-

mation first as described in the previous sections, where the check predicates



Qsort Low High

Obj Size: Inline Library Inline Library
7467 (bytes) M T M+T M T M+T M T M+T M T M+T

Entry 1.41 1.69 1.77 1.34 1.38 1.44 1.66 1.94 2.02 1.57 1.61 1.68
Exit 1.55 1.82 1.97 1.28 1.33 1.44 1.78 2.06 2.21 1.50 1.55 1.65
Comp* 1.67 1.89 1.93 5.46 5.49 5.54 2.05 2.28 2.31 5.64 5.68 5.73
E/E/C 2.32 2.67 2.88 5.88 5.95 6.11 2.88 3.23 3.44 6.25 6.31 6.48

Calls 1.42 1.64 1.75 1.32 1.33 1.43 1.62 1.84 1.95 1.50 1.51 1.61
Success 1.55 1.77 1.92 1.26 1.29 1.39 1.74 1.97 2.12 1.42 1.44 1.55
Comp 1.63 1.85 1.88 5.38 5.41 5.46 2.01 2.24 2.28 5.57 5.60 5.65
C/S/C 2.10 2.46 2.65 5.66 5.73 5.88 2.63 3.00 3.20 5.98 6.11 6.26

Table 1. Qsort size increment with several configurations of run-time checks.

Qsort Low High

exec time: Inline Library Inline Library
675 (us) M T M+T M T M+T M T M+T M T M+T

Entry 1.00 1.86 1.87 1.05 1.89 1.90 1.01 1.89 1.87 1.03 1.91 1.91
Exit 1.02 2.73 2.73 1.03 2.76 2.78 1.02 2.74 2.75 1.03 2.79 2.80
Comp* 1.01 1.87 1.87 1.02 1.93 1.92 1.02 1.88 1.90 1.05 1.91 1.92
E/E/C 1.01 3.60 3.60 1.04 3.67 3.68 1.02 3.62 3.65 1.05 3.69 3.69

Calls 3.52 165 162 76 243 321 42 207 205 135 301 382
Success 5.62 329 333 164 515 667 42 380 383 229 595 746
Comp 6.39 166 167 106 272 343 82 254 254 264 447 512
C/S/C 9.77 352 353 194 578 761 91 450 453 379 776 948

Table 2. Slowdown of qsort/2 with several configurations of run-time checks.

are assumed to be in a library (columns labeled Library). Ratios shown are
w.r.t. the execution time of the program with no run-time checks. In addi-
tion, an alternative approach has been implemented in which the definitions
of the run-time check library predicates are actually inlined in the calling
program. This often achieves better performance but sometimes at the cost
of increased code size. Note, however, that code size does not increase in all
cases because such inlining is, in fact, a restricted kind of partial evaluation
that tries to solve as many unifications as possible at compilation time, and
sometimes terms become smaller after such optimization.

– Use of types or modes properties: since checking complex types, such
as in the list(int) check, which needs to traverse lists of integers over and
over again,10 is more expensive than checking modes (which in our case is
handled through a call to the var/1 ISO Prolog builtin) we have separated
these cases in the experiments. In columns labeled T and M only types or

10 This overhead can be significantly reduced via multiple specialization [15, 14]. How-
ever, that optimization has not been applied in this case in order to measure the
overhead of fully checking the assertion.



App Source Metrics Compiled Run-Time Checked (ratio)
Name Size Assertions Binary Low High

Lines Modules Object Inline Library Inline Library

Ciao S 4018 A 3062 B 2881 1.34 1.39 1.47 1.48
L 121305 M 610 O 6660 2.78 2.73 2.93 2.85

CiaoPP S 4819 A 1131 B 13073 1.15 1.17 1.20 1.21
L 152536 M 517 O 12868 1.28 1.28 1.33 1.32

LPdoc S 316 A 105 B 5052 1.22 1.23 1.33 1.29
L 8810 M 8 O 736 1.18 1.07 1.23 1.12

Table 3. Size (in kilobytes) of binary and object files using several instrumentation
levels of run-time checks, for large benchmarks.

modes are checked respectively, whereas in columns labeled M+T both types
and modes are checked.

– Low or high instrumentation: as defined in Section 5.
– Using several kinds of assertions: several combinations of different kinds

of assertions have been tested (first column).

Tables 1 and 2 present the overhead, in size and time respectively, for the
experiments expressed as a ratio w.r.t. the execution of the program with run-
time checks disabled. Execution was on a MacBook Pro, Intel Core 2 Duo at
2.4Ghz, 2GB of RAM, Ubuntu Linux 8.10 and Ciao version 1.13. The columns
in the tables present combinations of the configurations explained above. The
rows show results for different kinds of assertions. For comp assertions we have
that in Comp* the check is performed only at the entry point of the module,
but not for the internal calls that occur inside.

The results show that the high level of instrumentation is quite expensive
while the overhead implied by the low level is better, specially in the case of
inlining. This confirms our expectations. The high overhead implied by the high
level of instrumentation is due in part to the simplistic way in which this type of
instrumentation is implemented for these experiments. Note also that the values
of the Library column are quite large when compared with the ones of the
Inline column because the inline transformation avoids metacalls.

Table 3 shows experimental results for larger programs, namely, the Ciao,
CiaoPP, and LPdoc systems (including the libraries they use), all of which con-
tain numerous assertions in their code. It shows the size (in kilobytes) of binary
and object files using several instrumentation levels of run-time checks. The bi-
nary refers to the statically-linked executable of the main module of such systems
which corresponds to the command-line executable. The object files include all
the libraries used by such systems. Note that in all cases the sizes of the files
depend on the number of assertions instrumented for run-time checking. Inter-
estingly, the impact of run-time tests on execution time in these much larger
benchmarks is much smaller than for qsort. For example, the overhead intro-
duced in the execution of LPdoc, which includes a good number of assertions in
its source, is in practice below the measurement noise level.



Regarding unit tests, we have added at the time of writing 220 unit tests
to the Ciao/CiaoPP system (in addition to the other traditional system tests
which did not use the unit test framework). These tests have been effective in
detecting some errors introduced in those modules during later code changes.
The execution time of such tests is approximately 90 seconds in the computer
described before. We also have applied the implemented framework to the veri-
fication of ISO Prolog compliance of Ciao. We have coded 976 unit tests for this
purpose. These allowed the detection of a large number of previously unknown
limitations and errors: 262 issues related to non-compliance with the standard,
90 related to missing predicates or functionality, and 39 related to bugs in the
functionality. While a large number of these were repetitions of a few individual
errors they have been nevertheless very useful. These tests currently run in under
15 seconds. This time is much less than the other tests for Ciao because they
are concentrated in only one file and the driver does not need to scan all the
source code. Note that in these experiments we are not doing any compile-time
checking, which would in fact eliminate many of the unit tests.

7 Conclusions

We have described our design and implementation of a framework that unifies
unit testing and run-time verification (as well as static verification and static
debugging). A key contribution of our approach is that a unified assertion lan-
guage is used for all of these tasks. We have proposed methods for compiling
run-time checks for (parts of) assertions which cannot be verified at compile-time
via program transformation. We have also proposed a minimal addition to the
assertion language which allows defining unit tests to be run in order to detect
possible violations of the (partial) specifications expressed by the assertions. We
have implemented the framework within the Ciao/CiaoPP system and presented
some experimental results to illustrate different trade-offs among program size,
running time, or levels of verbosity of the messages shown to the user. The ex-
perimental results confirm our expectations regarding these trade-offs: run-time
checks do not pose an excessive amount of overhead when low levels of instru-
mentation are introduced and the calls to library predicates are inlined. The
tests and run-time checks are proving quite useful in practice for detecting bugs.
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