
Towards Run-time Checks Simplification via Term
Hiding∗

Nataliia Stulova1,2, José F. Morales1, and Manuel V.
Hermenegildo1,2

1 IMDEA Software Institute, Madrid, Spain
{nataliia.stulova,josef.morales,manuel.hermenegildo}@imdea.org

2 Universidad Politécnica de Madrid (UPM), Madrid, Spain
manuel.hermenegildo@upm.es

Extended abstract

Modular programming has become widely adopted due to the benefits it provides in code
reuse and for structuring data flow between program components. A tightly related concept
is the principle of information hiding that allows concealing the concrete implementation
details behind a well-defined interface and thus allows for cleaner abstractions. In different
programming languages these concepts are implemented in different ways, some examples
being the encapsulation mechanism of classes adopted in object-oriented programming and
opaque data types. In the (constraint) logic programming context, most mature language
implementations incorporate module systems, which are either predicate-based (where pred-
icate symbol visibility is controlled by the module import-export rules but functor symbols
are public) or atom-based (where both predicate and functor symbol visibility is controlled
by the module import-export rules).

We propose a hybrid predicate-based module system [2] that offers an optional hiding
mechanism for selected functor symbols, providing more fine-grained term visibility control.
The proposed module system is still strict in the sense that it disallows breaking predicate or
term visibility rules by bypassing the module interfaces. The hiding mechanism allow pro-
grammers to restrict the visibility of some terms to the module where they are defined, thus
both making the concrete implementation details opaque to other modules and providing
guarantees that all data terms with such shapes may only be constructed by the predicates
of that particular module. Our motivation comes from the reusable library scenario, i.e.,
the case of analyzing, verifying, and compiling a library for general use, without access to
the client code or analysis information on it. This includes for example the important case
of servers accessed via remote procedure calls.

The need for mechanisms for controlling term visibility is in particular prominent in
the context of assuring safety of data access and manipulation in untyped programming
languages. One of the most attractive features of untyped languages for programmers is the
flexibility they offer in term creation and manipulation. However, with such power comes
the responsibility of ensuring correctness in the manipulation of data, and this is specially
relevant when data can come from unknown clients. A popular solution for ensuring safety is
to enhance the language with optional assertions that allow specifying correctness conditions
both at the public module interface and for the private internal module routines [1]. These
assertions can be checked dynamically by adding run-time checks to the program, but this
can also introduce overheads that are in many cases impractical. Such overheads can be
greatly reduced with static analysis, but the gains then depend strongly on the quality of

∗ In [2] we provide full details on this work.

© Nataliia Stulova, José F. Morales and Manuel V. Hermenegildo;
licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha and Tran Cao Son; Article No. ; pp. :1–:3

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de


XX:2 Towards Run-time Checks Simplification via Term Hiding

the analysis information inferred. Unfortunately, in the reusable library setting shape/type
analyses are necessarily imprecise, since in this context the unknown clients can fake data
that is really intended to be internal to the library. Ensuring safety then requires sanitizing
input data with potentially expensive run-time checks.

In order to reduce the checking cost, we present a technique that, using the combination
of term hiding and the strict visibility rules in the module system, enhances the inference of
shape information during static program analysis. By restricting some functors to the scope
of a module it becomes possible to reason statically about whether the data shapes that are
built with these functors are hidden and visible to the other modules with respect to the
module interface. We will further refer to all possible terms that may exist outside a module
m as its escaping terms. In [2] we provide an algorithm to compute an over-approximation
of the set of all escaping terms from a module for a given set of functor hiding declarations.

I Example 1. Let point/1 be a hidden functor in a module m1 that exports a single
predicate p/1 which constructs a term point(1):

:- module(m1, [p/1]). % module interface
:- hide point/1. % hidden functor
p(A) :- A = point(B), B = 1.

There is no success substitution for p/1 where variables can be bound to some point(_)
more general than point(1). The same applies to any possible substitution in any derivation
in programs that are composed with this module. Without term hiding, this is impossible
to ensure (without client knowledge) since any module could define any point(_) terms
(e.g., point([_,_]), point(coord(_,_,_))). In this simplified example point(1) is the
escaping term of module m1.

Note that hidden functor symbols are essential to reason compositionally about the flow
of data in a program composed of reusable libraries. This is analogous to the reasoning
about the semantics of the predicates in a module, which requires the predicate symbols to
be local. The information about escaping terms obtained by the static analysis can then be
used to replace the original run-time checks with their optimized versions while preserving
the safety guarantees the original checks provide. These optimized, or shallow versions
of properties are weakened forms that are semantically equivalent to the original ones in
the context of the possible program executions, and are cheaper to execute (e.g., requiring
asymptotically fewer steps). Shallow run-time checking consists in using shallow versions of
properties in the run-time checks for the calls across module boundaries.

I Example 2. Assume that the set of escaping terms of m contains point(1) and it does not
contain the more general point(_). Consider the property intpoint(point(X)) :- int(X).
Checking intpoint(A) at any program point outside m must check first that A is instanti-
ated to point(X) and that X is instantiated to an integer (int(X)). However, the escaping
terms show that it is not possible for a variable to be bound to point(X) without X=1.
Thus, the latter check is redundant. We can compute the optimized – or shallow – version
of intpoint/1 in the context of all execution points external to m as intpoint(point(_)).

Note that since the argument(s) inside, e.g., the first level of a term can be arbitrarily
large the savings from this technique can also be unbounded. In our work we show ex-
perimentally that for practical programs and settings, thanks to the term creation safety
guarantees provided by the module system, it is possible to reduce the run-time overhead
for the calls across module boundaries by several orders of magnitude. Together, the com-
bination of these techniques with traditional static analysis brings improvements in the



N. Stulova, J. F. Morales and M.V. Hermenegildo XX:3

number and cost of the run-time checks that allow providing equivalent guarantees to those
of statically-typed approaches, at similar run-time cost, but without imposing on programs
the restrictions of being well typed.

For concreteness, we use in this work the relevant parts of the Ciao system [1]: the module
system, the assertion language –which allows providing optional program specifications with
various kinds of information, such as modes, (regular) types, or non-determinism–, and the
verification framework, that combines static and dynamic checking. However, our results
are general and can be applied to other languages.

Acknowlegements

This research has been partially funded by Spanish MINECO project TIN2015-67522-C3-1-R
TRACES, and Madrid Region program M141047003 N-GREENS.

References
1 M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J. F. Morales, and

G. Puebla. An Overview of Ciao and its Design Philosophy. Theory and Practice
of Logic Programming, 12(1–2):219–252, January 2012. CoRR abs/1102.5497 [cs.PL].
doi:10.1017/S1471068411000457.

2 N. Stulova, J. F. Morales, and M. V. Hermenegildo. Term Hiding and its Impact on Run-
time Check Simplification. Technical Report CLIP-1/2017.0, The CLIP Lab, May 2017.
CoRR abs/1705.06662 [cs.PL].

ICLP 2017 TCs

http://dx.doi.org/10.1017/S1471068411000457

