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Abstract

Automatic parallelization has become a mainstream research topic for different reasons. For
example, multicore architectures, which are now present even in laptops, have awakened an in-
terest in software tools that can exploit the computing power of parallel processors. Distributed
and (multi)agent systems also benefit from techniques and tools for deciding in which locations
should processes be run to make a better use of the available resources. Any decision on whether
to execute some processes in parallel or sequentially must ensure correctness (i.e., the parallel
execution obtains the same results as the sequential), but also has to take into account a number
of practical overheads, such as those associated with taskscreation, possible migration of tasks
to remote processors, the associated communication overheads, etc. Due to these overheads and
if the granularity of parallel tasks, i.e., the “work available” underneath them, is too small, it
may happen that the costs are larger than the benefits in theirparallel execution. Thus, the aim
of granularity control is to change parallel execution to sequential execution or vice-versa based
on some conditions related to grain size and overheads. In this work, we have applied fuzzy
logic to automatic granularity control in parallel/distributed computing and proposed fuzzy con-
ditions for deciding whether to execute some given tasks in parallel or sequentially. We have
compared our proposed fuzzy conditions with existing sufficient (conservative) conditions. Our
experiments showed that the proposed fuzzy conditions result in more efficient executions on
average than the conservative conditions. Finally, we havedeveloped a profiler for estimating
the granularity (i.e. execution time) of tasks, which is also useful for other applications such as
performance verification and debugging.

Keywords: Fuzzy Logic Application, Parallel Computing, Automatic Parallelization, Gran-
ularity Control, Scheduling, Complexity Analysis.

This work will be published at the International Conference on Fuzzy Computation (ICFC)
in 2010 [112].
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Resumen

La paralelización automática se ha convertido en un tema de investigación fundamental por
diferentes razones. Entre ellas, las arquitecturasmulticore, que actualmente se encuentran in-
cluso en ordenadores portátiles, han despertado el interésen herramientassoftwarecapaces de
explotar el poder computacional de los procesadores paralelos. Los sistemas distribuidos y
multiagente también obtienen beneficio de las técnicas y herramientas para la decisión de en
qué ubicación debe ejecutarse cada proceso con el fin de hacerel mejor uso de los recursos
disponibles. Cualquier decisión acerca de si ejecutar algunos procesos en paralelo o secuencial-
mente debe garantizar correción (es decir, la ejecución paralela obtiene los mismos resultados
que la secuencial) pero además debe tener en cuenta un conjunto deoverheads, como los asoci-
ados a la creación de tareas, posible migración de tareas a procesadores remotos, comunicación,
etc. Debido a esos overheads si lagranularidadde las tareas paralelas, es decir, el trabajo que
suponen, es muy pequeña, puede ocurrir que los costes sean mayores que los beneficios de la
ejecución paralela. Por ello el objetivo del control de granularidad es cambiar la ejecución de
secuencial a paralela (o viceversa) basándose en condiciones relacionadas con el tamaño del
grano de las tareas y los overheads del sistema. En este trabajo hemos aplicado lógica borrosa
al control de granularidad automático en computación paralela/distribuida y hemos propuesto
condiciones para decidir si un grupo de tareas debe ser ejecutado secuencialmente o en par-
alelo. Asimismo, hemos comparado nuestro enfoque borroso propuesto en este trabajo con
condiciones suficientes (conservadoras) existentes. Los resultados experimentales demuestran
que las nuevas condiciones basadas en lógica borrosa seleccionan ejecuciones más eficientes
(en media) que las conservadoras. Finalmente, hemos desarrollado una herramienta de perfi-
lado (profiler) para estimar la granularidad (el tiempo de ejecución) de las tareas, que es a su
vez de utilidad en otras aplicaciones como verificación de rendimiento y depuración.

Palabras clave: Aplicación de la lógica borrosa, computación paralela, paralelización au-
tomática, planificación, análisis de complejidad.

Este trabajo será publicado en la conferencia internacional “International Conference on Fuzzy
Computation (ICFC)” de 2010 [112].
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Chapter 1

Introduction

Automatic parallelization is nowadays of great interest since highly parallel processors, which
were previously only considered in high performance computing, have steadily made their way
into mainstream computing. Currently, even standard desktop and laptop machines include
multicore chips with up to twelve cores and the tendency is that these figures will consistently
grow in the foreseeable future. Thus, there is an opportunity to build much faster and even-
tually much better software by producing parallel programsor parallelizing existing ones, and
to exploit these new multicore architectures. Performing this by hand will inevitably lead to a
decrease in productivity. An ideal alternative is automatic parallelization. There are however
some important theoretical and practical issues to be addressed in automatic parallelization.
Two of them are: (i) preserving correctness (i.e., ensuringthat the parallel execution obtains the
same results as the sequential one) and (ii) (theoretical) efficiency (i.e., ensuring that the amount
of work performed by executing some tasks in parallel is not greater than the one obtained by
executing the tasks sequentially, or at least, there is no slowdown). Solutions to these problems
have already been proposed, such as [28, 62]. However, thesesolutions assume an idealized
execution environment in which a number of practical overheads such as those associated with
task creation, possible migration of tasks to remote processors, the associated communication
overheads, etc, are ignored. Due to these overheads and if the granularity of parallel tasks,
i.e., the “work available” underneath them, is too small, itmay happen that the costs of parallel
execution are larger than its benefits.

In order to take these practical issues into account, some methods have been proposed
whereby the granularity of parallel tasks and their number are controlled. The aim ofgran-

ularity control is to change parallel execution to sequential execution or vice-versa based on
some conditions related to grain size and overheads. Granularity control has been studied in the
context of traditional [72, 84], functional [65, 66] and logic programming [69, 33, 123, 79].

Taking all these theoretical and practical issues into account, an interesting goal in auto-
matic parallelization is thus to ensure that the parallel execution will not take more time than
the sequential one. In general, this condition cannot be determined before executing the task
involved, while granularity control should intuitively becarried out ahead of time. Thus, we are
forced to use approximations. One clear alternative is to evaluate a (simple) sufficient condition
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to ensure that the parallel execution will not take more timethan the sequential one. This was
the approach developed in [79]. It has the advantage of ensuring that whenever a given group
of tasks are executed in parallel, there will be no slowdown with respect to their sequential
execution.

However, the sufficient conditions can be very conservativein some situations and lead to
some tasks being executed sequentially even when their parallel execution would take less time.
Although not producing slowdown, this causes a loss in parallelization opportunities, and thus,
no speedup is obtained. An alternative is to give up strictlyensuring the no slowdown condition
in all parallel executions and to use some conditions that have a good average case behavior. It
is in this point where fuzzy logic can be successfully applied to evaluate “fuzzy” conditions that,
although can entail eventual slowdowns in some executions,speedup the whole computation on
average (always preserving correctness).

It is remarkable the originality of this approach that is betting for the expressiveness of fuzzy
logic to improve the decision making in the field of program optimization and, in particular, in
automatic program parallelization, including granularity control.

1.1 Fuzzy Logic Programming

Fuzzy logic has been a very fertile area during the last years. Specially in the theoretical side,
but also from the practical point of view, with the development of many fuzzy approaches. The
ones developed in logic programming are specially interesting by their simplicity. The fuzzy
logic programming systems replace their inference mechanism, SLD-resolution, with a fuzzy
variant that is able to handle partial truth. Most of these systems implement the fuzzy resolution
introduced by Lee in [74]: the Prolog-Elf system [68], the FRIL Prolog system [14] and the
F-Prolog language [76].

One of the most promising fuzzy tools for Prolog was the “Fuzzy Prolog” system [45].
Fuzzy Prolog adds fuzziness to a Prolog compiler using CLP(R ) instead of implementing a new
fuzzy resolution method, as other former fuzzy Prologs do. It represents intervals as constraints
over real numbers andaggregation operatorsas operations with these constraints, so it uses the
Prolog built-in inference mechanism to handle the concept of partial truth.

RFuzzy

Besides the advantages of Fuzzy Prolog [113, 45], its truth value representation based on con-
straints is too general, which makes it complex to be interpreted by regular users. That was the
reason for implementing a simpler variant that was called RFuzzy [96, 90, 97, 109]. In RFuzzy,
the truth value is represented by a simple real number.

RFuzzy is implemented as a Ciao Prolog [63] package because CiaoProlog offers the possi-
bility of dealing with a higher order compilation through the implementation of Ciao packages.

The compilation process of a RFuzzy program has two pre-compilation steps: (1) the
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RFuzzy program is translated into CLP(R ) constraints by means of the RFuzzy package and
(2) the program with constraints is translated into ISO Prolog by using the CLP(R ) package.

As the motivation of RFuzzy was providing a tool for practicalapplication, it was loaded
with many nice features that represent an advantage with respect to previous fuzzy tools to
model real problems. That is why we have chosen RFuzzy for the implementation of our pro-
totype in this work.
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Chapter 2

State of the Art

2.1 Multicores

2.1.1 Parallel Computing and Multicores. Main Concepts

Parallel computers are classified in two main groups: those that use only one machine (e.g., mul-
ticore and multiprocessor computers) and those that use more than one machine (e.g., distributed
computers, clusters, massive parallel processing (MPPs) and grids). A multicore processor is
the one that contains more than one execution unit in only onechip while a multiprocessor
has more than one processor (which, at the same time, can be both single or multicore). In a
distributed memory computer the processing elements are connected by a network. A cluster
is a group of coupled computers that work together closely, aMPP is a single computer with
many networked processors and grid computing makes use of computers communicating over
the Internet.

Executing a task in parallel involves splitting it into subtasks, executing these subtasks in
different cores and obtaining the outcome of the main task bycombining the outcomes of the
subtasks. In a multicore system, one of the cores is in chargeof assembling the final result [40].
Sometimes, the operating system acts as the scheduler whichis in charge of the task assignment.
The main problems in parallel execution are the existence ofnew sources of bugs (like race
conditions) due to the execution of more than one operation at the same time (concurrency)1

and the associated overheads (due to communication and synchronization operations) that limit
performance. Cache memories have an important impact in these overheads. They can be
shared by all the cores or independent (each core its cache).Shared cache memories are faster
but they require a method for controlling concurrent accesses while the independent ones only
need a synchronization protocol.

There are several levels of parallel computing.Bit-level parallelism, which is based on in-
creasing the word size, reduces the number of instructions that the processor must execute to

1In this field concurrent and parallel are not interchangeable. Concurrent refers to the execution of the threads
interleaved onto a single hardware resource while in a parallel execution we find more than one thread running
simultaneously on different hardware resources [7].
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complete an operation. Longer instructions can specify thestatus of more Arithmetic and Logic
Units (ALUs) and thus more operations can be completed in each clock cycle. Very-Large-
Scale-Integration (VLSI) chips can take advantage of this type of parallelism.Instruction level

parallelismconsists on re-ordering the instructions, that are going tobe executed by the pro-
cessor, without changing the result of their execution. Some instructions depend on the result
of previous operations. Without instruction level parallelism no instruction is executed until
these dependencies have been solved. Nevertheless, further instructions that do not depend on
previous results could be executed in the waiting time. The performance is improved by putting
them first (i.e., re-ordering the instructions flow). Pipelined processors (RISC) increase its per-
formance by re-ordering the instruction flow. Superescalarprocessors combine pipelining with
the ability of issuing more than one instruction at the same time. Instruction parallelism inherent
in program loops is calleddata parallelism(loop iterations over different data), i.e., the same
instruction with different data is executed at the same time. On the other handtask-level par-

allelismrefers to executing in parallel different operations with different data. Multiprocessors
(and multicores) are able to exploit this type of parallelism.

Traditionally computers architects have focused their efforts in increasing the performance
by using parallelization techniques. Hardware structuresexploited bit, instruction and data
parallelism. This optimizations were made at hardware level without any software modification.
As software has become more complex, applications have become capable of running multiple
tasks at the same time. In order to take advantage of this parallelism (at thread-level) both,
hardware and software, must be adapted [7].

The evolution of the architectures has been characterized by multiplying by two the num-
ber of transistors that can be placed on an integrated circuit, approximately every two years
(Moore’s Law). Furthermore the clock frequency of these components has been multiplied by
two every two years. So every two years we have the double of components working twice
faster in the same space. The power consumption and the generated heat are the two main prob-
lems that have limited the development of more powerful processors. On one hand, the gate
that switches the electricity on and off gets thinner as a transistor gets smaller and the flow of
electrons through this element could not be blocked. Thus the energy consumption becomes
unboundable. On the other hand, transistors switch faster as the clock frequency is increased
and thus also consume more power and also generate more heat [40].

Multicore systems are a good solution to this problem. Having more than one core working
at low frequencies we can continue improving the productivity while the heat dissipation and
the energy consumption can be controlled.

The evolution steps from single cores to multicores can be found in [7]. They can be summa-
rized as follows: the natural next approach seemed to be multiprocessor systems. Nevertheless
the cost of adding more processors was unaffordable. So the initial solution was to use addi-
tional logical processors:symultaneous multithreadingor SMT (Hyper-Threading Technology
is Intel’s implementation). With this technology, both operating system and applications sched-
ule multiple threads as if there were several physical processors. Then they are executed in
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parallel over logical processors (but in the end sequentially over the only physical one). Multi-
core processors (two or more cores in a single processor, chip multiprocessing or CMP) are the
next logical transition. The main difference between SMT and CMP is that in the later, threads
are executed in a real parallel way, i.e., at the same time over different harware elements. A
multicore is a single processor in which each core is perceived as a logical processor with all
the associated resources [117] (while in SMT, resources areshared). From the programmer
point of view, multicores (and also multiprocessors) are the same than SMT, i.e., programs use
the physical cores as they use the logical processors of the SMT technology.

2.1.2 Automatic Parallelization Tools

CMPs are composed by small processors whose ability of findinginstruction-level parallelism
is also reduced. Thus, these processors depend on thread-level parallelism [53]. Operating
systems are already designed to take advantage of these new architectures [117], nevertheless
traditional applications are not enough to take advantage of them, because they have only one
execution thread. So it is necessary to develop programs with more than one execution thread
or to parallelize the existing ones. Both tasks are complex and prone to errors and increase
the complexity inherent to the software development process. Automatic parallelization (see
Section 2.2) seems to be a good solution.

2.1.3 Performance

In order to obtain the best performance, resources must be used as much as possible. Never-
theless, in any case for N processors a speedup2 of N is never going to be achieved, i.e., the
parallel execution will never be N times faster than the sequential one.
There is an upper bound on the usefulness of adding more parallel execution units that depends
on the portion of the program that can be parallelized. This fact is gathered in Amhdal’s law [7].
This bound is set up as1S whereSis the non-parallelizable fraction of the program (0≤S≤ 100).
In a system withn processing units the speedup will be equal to 1

S+(1−S)/n or more precisely
1

S+(1−S)/n+H(n) whereH(n) is the overhead associated to the parallel execution itself(Operating
System overhead due to threads creation plus the overhead due to communication and synchro-
nization between threads).
Gustafson’s law reinforces Amdahl’s law by taking into account two facts: that the problem
size is not fixed and that the size of the sequential section depends on the number of processors.
In this case the speedup is equal toP−n(P−1) whereP is the parallelizable fraction of the
program andn is the number of processing units.

Previous laws reveal one of the main drawbacks of multicores, which is their lower serial
performance. Single-thread applications are only executed in one core and thus they can not
take advantage of the multicore architecture. As cores in a multicore architecture are slower

2Speedup= Sequential Execution Time
Parallel Execution Time

8



than the ones in single core machines the execution of a single-thread application will take
more in this new architectures.
Up to now we have assumed that every core in a multicore processor provides the same per-
formance but this is true only in symmetric multicore processors. In an asymmetric multicore
processor, each core can provide a different performance. We could solve the main disadvan-
tage of multicores having a faster core for executing single-thread applications, while at the
same time, with slower cores we can keep the energy consumption and the heat dissipation
under control. In practice, without considering asymmetryin the design of the applications its
benefits can not be exploited [12]. That means that, in general, without adapting the design of
the applications, symmetric multicores are expected to behave better. It has been shown [12]
that the more asymmetry the more negative effects. In general the impacts on performance are
that: it becomes less predictable (although unpredictability could be eliminated with the oper-
ating system kernel and applications asymmetry-aware) andunder certain conditions they can
increase the performance of the serial fragments of code.

Performance Factors

Parallel execution performance can be affected by the garbage collector (it can interfere in the
execution of the program), scheduling, locking, synchronization, cache thrashing (allocation
overhead), Operating System (identified as the primary source of instability), work imbalanc-
ing among threads buffer spaces (that are warmed up in the first iterations so they must be
discarded) and the number of processors in the system [12].
Work imbalancing among threads is an issue that must be takeninto account. The scheduler
must keep the cores busy as much as possible and with similar work loads. In order to avoid the
effects of having big tasks they can be divided into smaller tasks [114].
In any case performance scalability is limited. Lower clockfrequencies combined with pipelin-
ing result in higher performance. Overheads due to the execution of sequential portions of code
can be compensated by executing the workloads long enough [98].

The hierarchy of memory of multicores is one of the elements in which they present the
bigger number of particularities. For the best performancethe following properties are im-
portant [98]: fast cache-to-cache communication, large L2or shared capacity, fast L2 to core
latency and fair cache resource sharing.
In multicores, the higher clock frequency the higher memorydemand (on and off-chip) and the
higher on-chip cache size the longer average memory access delay.
A shared L2 cache is able to eliminate data replication (so itprovides a larger cache capaci-
ty) but, as a main drawback, it suffers longer hit latency andcompetitions of its resources are
possible.

Memory latency and bandwidth (among processor, memory, network, file system and disk)
can be examined using benchmarks. The cache-to-cache latency (highly relevant in workload
performance) and the speedup can be determined using the same procedure. In this last case it
is needed to run single thread and multithread benchmarks.
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2.2 Automatic Parallelization Tools and Techniques

2.2.1 From Manual to Automatic Parallelization

As said before, traditional software is not enough for taking advantage of parallel architectures
because it only has one execution thread. Thus it is necessary to develop programs with more
than one execution thread working concurrently (or to parallelize the existing ones). Both tasks
are complex and prone to errors and increase the own complexity of the software development.
One of the main problems of the programmers is that it is not trivial to understand how parallel
programs behave in multicore systems. VisAndOr, a tool for visualizing parallel execution of
logic programs was presented in [24]. This tool is useful forusers in order to realize about the
behavior of the programs in a graphical way. Many automatic parallelization tools also allow
to visualize parallel executions [75, 105, 116, 6, 36, 1]. These tools solve some of the main
problems so automatic parallelization seems to be a good solution.

2.2.2 Automatic Parallelization Basis

A parallel execution must provide the same results than the sequential one and also reduce (or at
least not increase) the amount of work performed, i.e., mustbe correct and efficient [79]. There
are two types of parallelism in logic programming. In And-Parallelism some goals of a given
body clause are executed at the same time. In Or-Parallelism, different clauses, i.e., branches of
the derivation tree, are explored simultaneously. We are focused on And-Parallelism, in concrete
on Independent And-Parallelism (IAP). In this kind of parallelism the goals are executed in
parallel when they are strictly independent, i.e., the execution of a goal does not affect to the
others. This feature can be determined before the execution(at compile-time). Or-Parallelism
is out of the scope of this work.

In automatic parallelization it is necessary to take into account the granularity of the parallel
tasks [33, 79] (the work available under them). Overheads due to the work involved in task
creation, scheduling, communication, synchronization, etc. appear in parallel execution sce-
narios. These overheads can cause that parallel execution takes more time than the sequential
one (which is known as aslowdown). The extra amount of work depends directly on the num-
ber of processing units whereas one program execution can only take advantage of the same
number of processing units that its number of threads (Amdahl’s law). In general terms every
program has two parts: the one that is parallelizable and theone that is not. The code of the
non-parallelizable part contains dependent calculations. The longest chain of these operations
is known as thecritical path. The execution time of the critical path is a lower bound on the
parallel execution time.
Methods for estimating the granularity of a goal at compile time can be found in [33] and in
[79]. The distributed random-access model (DRAM) presentedin [83] considers costs related
to tasks communication and tries to reduce the overhead related to executing in parallel. In this
model there is an interprocessor communication (besides the accesses to the RAM memory)
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with an associated cost. The main goal is to minimize the execution time instead of maximizing
the usage of processing resources.

2.2.3 Automatic Parallelization Techniques

One of the main problems of automatic parallelization is that we need complex program ana-
lysis. Program proofs are helpful in order to validate sequential programs and also in order to
parallelize them. An algorithm that given a proven program transforms its proof obtaining a
proven parallelized and optimized program is presented in [67].
Abstract Interpretation can be also used to validate programs (in general it can be used to com-
pute properties at compile-time). It can be applied in casesof program specialization in which
the input values are unknown as, for example, program parallelization. The &-Prolog [101]
compiler uses abstract multiple specialization to performautomatic parallelization. CiaoPP,
the preprocessor of the Ciao multiparadigm programming system also uses modular, incremen-
tal abstract interpretation to perform high-level programtransformations (including automatic
parallelization) [60]. Ciao is the successor of &-Prolog [57].

It is usual to translate the program into an intermediate representation as, for example, Di-
rected Acyclic Graph (DAG), in order to detect parallelism [118, 78, 121, 105, 6, 119, 108, 60].
First the program is translated into its DAG and then programtransformations are performed
over it. The method presented in [107] selects the scheduling algorithm that best assign the
DAG to the target parallel machine. It is based on five decision levels taking into account the
characteristics of the DAG of a C program. The levels are: communication cost, execution
time, level to task ratio, granularity and number of processors. Each level suggests a subset of
algorithms according to the characteristics of the DAG. Then the intersection of these subsets
is evaluated and the optimal scheduling algorithm is selected.

Other approaches infer parallelism by detecting pieces of programs that access disjoint parts
of the heap, i.e., that are independent [41, 48, 55].

2.2.4 Automatic Parallelization of Logic Programs

The parallelism present in the execution of logic programs can be of two classes: explicit (mes-
sage passing, threads, ...) or implicit (Or and And-parallelism) [31]. In both cases it can be
exploited in a simple way [46]. In fact, work in parallel logic programming (LP) began at the
same time than the work in LP [47]. Its high level nature, the presence of non-determinism,
its referential transparency and other features allow to obtain speedup by executing in parallel.
Automatic parallelization can be performed without any user intervention. Formal methods can
be relatively easily used to prove correctness and efficiency of the performed transformation
(due to the semantics of logic languages). Logic languages have been extended with explicit
constructs for concurrency (or by modifying the semantics of the language) in oder to allow
manual parallelization. This extensions complements the automatic parallelization process.
Due to its properties, automatic parallelization of logic programs can be considered to paral-
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lelize automatically programs written in other languages by translating them into logic pro-
grams. In Parafrase-2 [99] the source program is translatedinto an intermediate (logic) repre-
sentation which is parallelized instead of the source program. CiaoPP [64] techniques [94, 93,
92] can analyze several languages via an Intermediate Representation (IR) based on blocks that
are easier to manipulate. Each block is similar to a Horn clause. In the same way this clausular
representation could be scheduled in a set of parallel and sequential tasks. So translating any
source language into this clausular form we would be able to analyze any source language in a
simple way. The problem is reduced to the translation of the source language into the clausular
form.
The &-Prolog system is described in [59]. It is a practical implementation of a parallel execu-
tion model for Prolog. It exploits strict and non-strict parallelism and supports both, manual
and automatic parallelization. It takes advantage of the generalized version of Independent
And-Parallelism (IAP) presented in [61]. A full description of the framework for the auto-
matic parallelization of logic programs for restricted, goal-level IAP can be found in [91]. &-
ACE [100, 47] is another system based on the logic programmingparadigm (SICStus Prolog)
than exploits all sources of parallelism.

2.2.5 Declarative Aspects of Multicore Programming

Declarative (functional, logic, constraint-based, etc.)languages specify what the program does
without entering in details of how it is done. Due to this mainfeature they allow to write
simpler parallel programs and their parallelism can be exploited in a easier way (with respect
to imperative ones). Since the mid Noughties (2006) most of the results are presented in the
Declarative Aspects of Multicore Programming (DAMP).

Some parallel programming languages have been presented. Parallel Haskell [80, 52] (pH)
is implicitly parallel and combines the declarative execution model with the (Eager) Haskell
syntax and types. Partially computed data are held in the heap. Its main problem is the cost asso-
ciated with non-strictness. More efforts on implementing nested data parallelism have obtained
excellent speedups [25]. Despite of the efforts, no high performance benefits were obtained
in all the cases. In order to improve speedups one option is tochange the way in which users
compose parallel programs by inserting higher-order algorithmic schemas in the program [8].
When Haskell synchronization primitives are used it is necessary to take into account that not
all of them have the same efficiency [110].
NESL [16] was developed in the early Nineties and revisited in DAMP’06. It allows to describe
parallel algorithms that can be analyzed at runtime. One of the main targets of our work is to
do as much analysis tasks as possible at compile time. Despite of the drawback of not being
analyzable at compile time it has the following advantages:it can be programmed, analyzed
and debugged in a simple way. It has a cost semantics that allow to estimate the amount of work
that a program performs without taking into account implementation details as the number of
processors. It is true that a model that takes into account details of the system is not going to
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be portable but it is going to be more precise. CiaoPP [64] solves this problem in the following
way: when a technique depends on a system detail it is obtained during the installation process.
As C is a wide used language in the industry, it is analyzed in the new context in which parallel
computing is emerging as the most natural way of computation[35]. Declarative languages
seems to be more promising (faster on multicores and parallelism expressed easily) but much
important code is written in imperative languages as C. The best solution is to perform the easi-
est software translation to a declarative language. Jekyllis a functional programming language
that can be easily translated to/from C. This solution allowsto maintain some code in C.
The Hume Programming Language [52] is for concurrent asynchronous multithreading safety-
critical systems. It presents a high level of parallelism and minimizes communication and syn-
chronization operations.

Current and future LP programs and systems have been revisited [47, 31, 57]. In general,
parallel LP systems exploit parallelism from symbolic applications by keeping the control in
LP. Advances in LP have been made separately and they would becombined. At the same time
implementation technologies should be simplified in order to simplify further developments.
Taking into account the overheads by performing granularity control (using the results of cost
analysis) [57, 58] seems to be a very promising approach because of its no slowdown guar-
antee. Prolog has become more popular since the late Noughties. That is why some Prolog
systems have been adapted in order to support principles on working in Parallel Logic Pro-
gramming [32]. The parallelism of other types of applications (numerical, etc.) can be also
exploited.

Solutions to the problems introduced by the new execution model itself have also being
presented. They must be solved in a safe way [56]. New primitives have been presented in
order to guarantee mutual exclusion in critical sections avoiding the use of locks [43]. With
this solution the control continue being declarative and deadlocks are avoided. Of course, the
sequential meaning is preserved when new primitives are used. Nested transactions are the ones
with worst cost [43, 81, 25].

Automatic parallelization [58] requires automatic detection of independent tasks which, at
the same time, requests a definition of independence. In general the term independence is the
condition that guarantee correctness and efficiency. Granularity control optimizations (like sim-
plifying comparisons of cost equations and stopping granularity control) have been shown very
promising. Using events we can obtain flexible parallel executions but in a more difficult way
than if we use threads [104]. In order to have the best of each world the two approaches have
been combined by abstracting both elements [122]. The different parts of the programs are
written using the more suitable mechanisms and then both areunified.
Threads and events are not the only mechanisms that can be used. In fact the use of threads is
prone to errors and bugs. An alternative could be an approachbased on using sieves [77]. It
has a simpler semantics, so reasoning about that programs iseasier. Another advantage is its
scalability, suitable for a bigger number of processors.
Transactions are an alternative that makes concurrent programming simpler, improves scalabil-
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ity and increases performance. If there is a situation in which the transaction can not continue
in a correct way then its effects are revoked and the transaction is aborted and, when possible,
it will be re-executed. Nevertheless this can cause a slowdown for long-living transactions.
Memorization allow re-executing when is possible (when a procedure is retried with the same
argument then it is not evaluated again). So memorization guarantees that communication ac-
tions performed in the aborted execution can be satisfied when the transactions is retried [124].
In general the synchronization of parallel computations must be guaranteed. Join patterns were
a way for threads and asynchronous distributed computations. They have been improved [49]
in order to provide synchronization in more complex contexts (message-passing, token-passing,
etc.).

One of the main problems of performing static analysis at compile-time is that input values
are unknown. Although performing as much work as possible atcompile time reduces the run-
time overhead, sometimes it is better to postpone the decision until execution time. This is the
case of some self-adjusting-computation techniques [51].Using these techniques the parallel
execution is updated depending on the program data. A changepropagation algorithm is used.
More semantics [9] have been developed for other programming languages in order to allow
formal verification.

As we have pointed out before, concurrent operations require the definition of some memory
management rules in order to guarantee correct results. Declarative languages usually deal with
simple big structures while functional or object-orientedlanguages tend to work with small
complex elements. New heap managers need to be developed. One that is based on reference
counting with impact quantification has been already presented [42].

Speculative execution is also a technique for detecting parallelism in sequential programs. It
is well understood when the computation is relatively simple (read and write in known locations)
but it becomes more complicated in cases with multithreads that communicate and synchronize
a lot. Using (n-way) barriers [125] expressions are guarded(until barriers are satisfied) and
speculative execution becomes easier to understand.

More approaches started to appear in the late Noughties for object-oriented languages like
Java. A novel approach that uses traces as units of parallelization has been presented [20].
This work shows that the approach is viable and increases theperformance (by comparing with
parallelizations performed by hand).

2.2.6 Unsolved Problems

Despite of the work that has been developed during the last decades in automatic paralleliza-
tion, problems with nested loops (frequent in scientific andengineering applications) are still
unsolved. Some efforts towards an effective automatic parallelization system use a polyhe-
dral model for data dependencies and program transformation have been presented [17]. This
model provides a powerful abstraction on such nested loops and seems to be a solution to the
problem ofgcc and many vendor compilers. Nested data parallelism have been traditionally
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implemented by vectorizing program transformations although this approach modifies the data
representation. Traditional compilers (like NESL [16]) vectorized the whole program includ-
ing parts that rely on non-vectorizable features. Subsequent contributions [26] only vectorizes
suitable program parts and then vectorized and non-vectorized modules are integrated.

In scientific and engineering applications stencil computations are also usual, but automatic
parallelization must deal also with irregular programs. Compilers that are able to transform
sequential code from stencil applications into optimized parallel code have been developed
previously. Nevertheless, loop parallelization without special techniques originates load imbal-
ancing. The approach presented in [71] is for automatic parallelization of stencil codes that
explicitly addresses the issue of load-balanced executionof tiles. Its effectiveness has been
shown. On the other hand irregular programs [73] originate different kinds of computations
that must be executed in parallel with complex dependenciesbetween iterations. The system
Galois [73] (described in more detail below) deals successfully with this problems.

Work in [29] is for automatic parallelization on symmetric shared-memory multiproces-
sors (SMPs). It supports unbalanced processor loads and nesting of parallel sections. Due to
its features the speedup is a real multiplicative over highly optimized uniprocessor execution
times. The presented solution is for FORTRAN 90 and High performance FORTRAN. The
compiler has been obtained by modifying the back end of the serial compiler obtaining, in the
end, a platform-independent solution. The conceptual foundations of other automatic scheme
for Fortran programs are detailed in [10]. The main goal is the detection of DO loops suitable
to execute in parallel because iterations (and execution times) are similar.

2.2.7 Current Research Topics

In the mid Noughties some of the current research topics werepresented in a seminar [11].
The main launched ideas were: (a) to compile one function at the time asgccdoes. This will
allow to exploit task level parallelism available in a single thread with independent tasks due
to the possibility of executing hundreds of executions per cycle in machines with unbounded
resources. (b) Convergent scheduling. A new framework that simplifies and facilitates the appli-
cation of constraints and scheduling heuristics. It also produces better schedules. (c) Including
tasks granularity in tasks graphs. This can be achieved using a Graph Rewrite System (GRS).
It merges tasks into larger ones and ensures that the parallel version of the task graph is not
increasing by reducing cost of the communication. (d) Dynamic scheduling for load balancing.
Instead of traditionally information about processor workloads obtained via profiling. This ap-
proach uses new scheduling strategies that take into account system irregularities that can be
predictable. (e) Scheduling in spiral as it is done in digital signal processing (DSP). Spiral takes
high-performance implementations for the domain of DSP, transforms and translates them into
a search problem for the best implementation of a given transformation on a given computer
system. (f) Load balancing strategies for irregular parallel divide and conquer computations
as quicksort: re-pivoting, serialization of subproblems,... (g) Lookahead scheduling for re-
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configurable data-parallel applications. (h) Generic software pipelining at the assembly level.
Useful in cases of constraints on time and space like in embedded systems. (i) Telescoping
languages build compile-time support for user-defined abstractions and for their optimization.
(j) Scheduling for heterogeneous systems and grid environments. Extends previous work (for
homogeneous systems) so that the same program can be also executed in heterogeneous sys-
tems and grid environment (dynamic changing execution environment). It is also needed to
take into account the communication networks and the dynamism of the platforms. (k) Data
re-distribution selected for multiprocessor tasks (M-tasks) for the scheduling. It plays an im-
portant role that must be taken into account. (l) Schedulinghierarchical malleable task graphs,
i.e. tasks that can be executed on several processors.

In the last 10 years most of the work in parallel job scheduling has been done in sys-
tems with large homogeneous architectures and workloads dominated by both computation and
communication-intensive applications. Some of the novel innovations presented on the Job
Scheduling Strategies for Parallel Processing (JSSPP) [38] are described below. (a) Scheduling
for a mixed workload. The workload has become highly variable and more complex. First of
all it is needed to understand the workload in order to satisfy the new conflicting scheduling re-
quirements (for example processes competing over resources suffer from degraded performance
when co-scheduled or, on the contrary, collaborating processes suffer it when not co-scheduled).
For dealing with mixed workload it is also needed to deal withpriorities. (b) Power consump-
tion is lower in multicores than in single core processors and this also limits the performance.
Tradeoffs between performance and power consumption must be addressed. This fact will be-
come more important when the number of cores becomes bigger and the granularity of the
tasks becomes finer. (c) Asymmetric cores heterogeneity. Insome cases having more than one
core with the same features is not enough in order to solve theproblem. Automatic parallelizers
must be take this fact into account. In general every change in the system architecture introduces
parallelization constraints. (d) Grids are a better optionto execute workloads with little paral-
lelism. This explains in part why they are becoming more popular. Nevertheless job scheduling
in grids is more difficult than in single parallel machines because it is needed to perform both
the machine allocation and the scheduling itself. When the execution is performed over a grid
its properties (heterogeneity, service levels agreements, security, ...) determine the execution.
(e) Virtualization or running multiple operating system environments in one or more nodes at
the same time. The scheduling must depend on the operating system in which it is going to be
executed. Research in this field has started recently.

In summary, the considerations that have bigger influence onparallel scheduling are: work-
load, heterogeneity, scheduling for power, security, economy and metrics.

2.2.8 Automatic Parallelization Tools

Some of the automatic parallelization tools [30] that have appeared since the early Nineties are
described below.
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Hypertool [118] (1990) receives a partitioned C program andreturns the partitions allocated to
the available processors (with the needed synchronizationprimitives) besides their correspond-
ing explanations. Its algorithm is based on performing optimizations and on the critical path
method. If the user is not satisfied with the result the partition strategy can be redefined (using
the information and the explanations provided by the tool) in order to improve the results.
Parafrase-2 [99, 3] also appeared in 1990. It takes a sequential program (written in C or FOR-
TRAN, for example) and returns a set of tasks and code for scheduling them. It also shows
compiler information to the user (through its GUI). The input language is transformed into an
intermediate representation. The compiler performs symbolic dependence and interprocedural
analysis followed by auto-scheduling at coarse-grain level. A code generator is used for each
language desired as output.
OREGAMI [78] (1991) uses a parallel program in OCCAM, C*, Dino, Par, C or FORTRAN
as input. Instead of generating target code this tool generates some mapping directives. Its
purpose is to map parallel computations to message-passingparallel architectures by exploiting
regularity. The tool allows the user to guide and to evaluatethe mapping decisions.
PYRROS [121, 4] was presented in 1992. It takes a task graph andits associated sequential C
code and performs a static scheduling plus a parallel C code for message-passing architectures
(with synchronization primitives).
Parallax [75] (1993) also needs a task graph as input (apart from an estimation of -or real- task
execution times and the target machine as an interconnection topology graph). It returns Gantt
chart schedules, speedup graphs and processor and communication use/efficiency charts. It also
displays an animation of the simulated running program.
Starting the mid Nineties (1994) three tools were presented: PARSA [105], DF [39] and Comp-
Sys HPF & FM [37]. The first one receives a sequential SISAL program and displays the
expected runtime behavior of the scheduled program at compile-time. The input program is
translated into a DAG with execution delays for the target system specification. The second
one makes use of theFilaments packagewhich is a library of C code that runs on several
distributed-memory machines. It takes a sequential C code and gives the resulting applica-
tion code written in C plus Filaments calls for distributed shared memory systems to the user.
The last one works with High Performance FORTRAN and FORTRAN M procedures obtain-
ing synchronous SPMD code, structured as alternating phases of local computation and global
communications. HPF and FM procedures are clearly distinguished and are compiled with the
HPF or FM compiler respectively. The communication is detected and generated using pattern
matching. Processes do not need to synchronize during localcomputations.
Paradigm [15, 2] (1995) also works with FORTRAN. In concrete,it takes a sequential F77/HPF
program and constructs an explicit message-passing version. The input program is transformed
into an intermediate representation and the data partitioning is made automatically. This tool
exploits both data and functional parallelism while overlaps computation and communication.
It contains a generic library interface.
ProcSimity [116] is also from 1995 but it works with independent user job streams and returns
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trace files, the selected algorithm and system (and job) performance metrics. It supports both
stochastic independent user job streams and communicationpatterns for the actual parallel ap-
plications, apart from selected allocation and schedulingalgorithms on a set of architectures.
In 1996 appeared RIPS [106] and MARS [27]. RIPS takes a set of tasks and returns a schedul-
ing of them. It schedules incoming tasks incrementally and combines the advantages of static
and dynamic scheduling. MARS receives a sequential F77 code and returns a machine specific
parallel FORTRAN code. It uses loop generation techniques (including Parameter Integer Pro-
gramming -PIP-). The input program is translated into an annotated syntax tree. The system
operates on the linear algebraic representation of the program.
The next tools date back of 1997. Then the activity on developing automatic parallelization
tools slowed down until the year 2000. PROMIS [21] works withboth C and FORTRAN. The
output consists in code for a simulated shared-memory multiprocessor wherein each proces-
sor is a pipelined VLIW. This multisource and multitarget parallelizing compiler allows loop
level and instruction level parallelization techniques. CASCH [6] takes a sequential program
that manipulates, obtaining parallel code generated by including appropriate library procedures
from a standard package. Users can compile the resulted parallel program to generate native
parallel machine code on the target machine for testing. Theinput program is transformed into
a task graph. The algorithm selects the best scheduling (of the generated ones) in which the
communication primitives are inserted automatically. In order to improve the results users can
repeat the whole process.
The activity on developing automatic parallelization tools reemerges in the year 2000 with tools
like Hypertool/2 and SADS&DBSADS. Hypertool/2 [119] deals with graphs. It takes a CDAG
generated at compile-time, expanded incrementally into a DAG and returns its parallel schedul-
ing (in a way that can be incrementally executed at runtime).The execution model is incremen-
tal and it uses the HPMCP (Horizontal Parallel Modified Critical-Path) algorithm in which each
processor applies the MCP algorithm to its partition. SADS&DBSADS [50] transforms a task
tree into a set of scheduled tasks. The process comprises load balancing and memory locality.
ParAgent [70] (2002) requires a F77 serial program that transforms into a parallel F77 program
with primitives for message passing that are portable to distributed memory platforms. It has an
interactive GUI to help the user. The same interface can be used to see the synchronization/ex-
change points and the communication patterns of the parallel program.
The next year, 2003, is the one of PETSc, SUIF and Cronus/1. PETSc [13] solves a set of
partial differential equations (PDEs) providing its numerical solution. It consists on a variety
of libraries. Each of them manipulates a particular family of objects and the operations that
can be performed on them. SUIF [44] receives a main program (called adriver) and applies a
series of transformations on it. Eventually writes out the information. Cronus/1 [111] takes a
serial program and the number of processors as input. It returns the resulted parallel code (for
the given number of processors) written in C containing run time routines forSDSand MPI
primitives for data communication.
ASKALON [36, 1] (2005) is a tool set for supporting the development of parallel and distributed

18



(grid) applications. It is composed by 4 tools, each one composed by remote grid services that
are shared. It allows visualization of performance and output data diagrams both online and
post-mortem. It supports mostly FORTRAN90 based distributed and parallel programs. In the
future, ASKALON tools will also support Java programs with the novel developed Java-based
programming paradigm (for performance-oriented paralleland distributed computing).
AspectJ [5] is an extension to the Java programming languagethat enables clean modularization
of aspects that are difficult to implement in a modular way such as error checking and handling,
synchronization and performance optimizations. A loop join point model allows AspectJ to
intervene directly in loops (direct parallelization of loops without refactoring the code) and thus
parallelization was presented in 2006 [54]. The model is based on a control-flow analysis at
the bytecode level in order to avoid the ambiguities at the source level. The extension which
provides AspectJ with a loop join point is called LoopsAJ.
PLuTo [19]: A Practical and Fully Automatic Polyhedral Program Optimization system was
presented in 2007. It performs source-to-source transformations in order to optimize programs
by obtaining parallelism and locality at the same time. Thanks to a polyhedral model it deals
properly with nested loops. It is done by performing abstraction on them [17]. The transformed
code is then reordered in order to improve cache locality and/or parallelized loops. This system
improves the result by using realistic cost functions and bycombining parallelism and locality.
It accepts C, Fortran and any high-level language whose polyhedral domains can be obtained.
It also generates OpenMP from C code. More tool information was presented in 2008 [18].
An extensible implementation was presented in MLton in 2008[108]. It works with a DAG of
the sequential program. It deals with one graph for all the possible parallel executions in which
the nodes are the units of work and the edges are sequential dependencies. The scheduling
(which is a traversal) of a program is determined by a system policy. The system includes three
scheduling polices. A cost semantics allows the users to understand the impact of the different
schedule policies without taking into account other implementation details.
Galois [73] (2008) is a system that supports parallel execution of irregular (management of
pointer-based data structures like trees and graphs instead of arrays and matrices) applications.
Its main features are an iterators set for expressing worklist-based data parallelism and a run-
time system that performs optimistic parallelization of these iterators. The policy is to assign an
iteration to a core when it needs work to do (although it is notoptimal in all the cases). It works
with client code(code with well-understood sequential semantics) in whichdata parallelism is
implicit and returns a set of iterations assigned to a set of processors. It has mechanisms for de-
tecting and solving conflicts (concurrent accesses to a given object for more than one iteration).
The assignment is performed balancing the load of each processor.

We have seen how, in general, different tools use the same approach like, for example,
management of DAGs [107, 105, 119, 108] or polyhedral model [17, 18]. Furthermore each
approach uses more or less the same mechanisms. In real termsthis means that the same
algorithms are particularly implemented by each tool that makes use of them. The problem
is that each tool has its own intermediate representation and the algorithms are designed to be
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applied to them. As a result developers are re-implementingalgorithms every time that they
construct a new optimizing compiler. A new method [34] suggests to separate the algorithms
from the intermediate representation in order to be able to reuse their implementation for any
platform. This new component technology seems to be very promising (even more due to the
popularity that grids are reaching).

In general terms the programming languages that are supported by automatic parallelization
tools are C [118, 99, 78, 121, 39, 21, 19], FORTRAN [99, 78, 37, 15, 27, 21, 70, 36, 19] and
Java [36]3 [5].

3In the future.
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Chapter 3

The Granularity Control Problem

We start by discussing the basic issues to be addressed in ourapproach to granularity control, in
terms of the generic execution model described in [79]. In particular, we discuss how conditions
for deciding between parallel and sequential execution canbe devised. We consider a generic
execution model: letg = g1, . . . ,gn be a task such that subtasksg1, . . . ,gn are candidates for
parallel execution.Ts represents the cost (execution time) of the sequential execution of g and
Ti represents the (sequential) cost of the execution of subtask gi.

There can be many different ways to executeg in parallel, involving different choices of
scheduling, load balancing, etc., each having its own cost (execution time). To simplify the
discussion, we will assume thatTp represents in some way all of the possible costs. More con-
cretely,Tp ≤ Ts should be understood as “Ts is greater or equal than any possible value forTp.”

In a first approximation, we assume that the points of parallelization ofg are fixed. We also
assume, for simplicity, and without loss of generality, that no tests – such as, perhaps, “indepen-
dence” tests [28, 62] – other than those related to granularity control are necessary. Thus, the
purpose of granularity control will be to determine, based on some conditions, whether thegi ’s
are going to be executed in parallel or sequentially. In doing this, the objective is to improve the
ratio between the parallel and sequential execution times.

Performing an accurate granularity control at compile-time is difficult since most of the in-
formation needed, as for example, input data size, is only known at run-time. An useful strategy
can be to do as much work as possible at compile-time and postpone some final decisions to
run-time. This can be achieved by generating at compile-time cost functions which estimate
task costs as a function of input data sizes, which are then evaluated at run-time when such
sizes are known. Then, after comparing costs of parallel andsequential executions, it can be
determined which of these types of executions must be performed. This scheme was proposed
by [33] in the context of logic programs and by [103] in the context of functional programs. An
interesting goal is to ensure thatTp ≤ Ts. In general, this condition cannot be determined before
executingg, while granularity control should intuitively be carried out ahead of time. Thus, we
are forced to use approximations. The way in which these approximations can be performed, is
the subject of the two following sections.
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Chapter 4

The Conservative (Safe) Approach

The approach proposed in [79] consists on using safe approximations, i.e., evaluating a (sim-
ple) sufficient condition to ensure that the parallel execution will not take more time than the
sequential one. EnsuringTp ≤ Ts corresponds to the case where the action taken when the con-
dition holds is to run in parallel, i.e., to a philosophy weretasks are executed sequentially unless
parallel execution can be shown to be faster. We call this “parallelizing a sequential program.”
The converse approach, “sequentializing a parallel program,” corresponds to the case where the
objective is to detect whether the sufficient conditionTs ≤ Tp holds.

Parallelizing a Sequential Program In order to derive a sufficient condition for the inequal-
ity Tp ≤ Ts, we obtain upper bounds for its left-hand-side and lower bounds for its right-hand-
side, i.e., a sufficient condition forTp ≤ Ts is Tu

p ≤ T l
s , whereTu

p denotes an upper bound on
Tp andT l

s a lower bound onTs. We will use the superscriptsl andu to denote lower and upper
bounds respectively throughout the paper. The discussion about how these upper and lower
bounds on the sequential and parallel execution times can beestimated are outside the scope of
this paper. We refer the reader to [86] and [79] for a full description of compile-time analysis
that obtain lower and upper bounds on sequential and parallel execution times respectively as
functions of input data sizes.

Sequentializing a Parallel Program Assume now that we want to detect whenTs≤ Tp holds,
because we have a parallel program and want to profit from performing some sequentializations.
In this case, a sufficient condition forTs ≤ Tp is Tu

s ≤ T l
p.
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Chapter 5

The Fuzzy Approach

In some scenarios, it is not allowed to perform parallelizations if it does not ensure any speedup.
However, in most environments it is justified to sacrifice efficiency in some cases in order to
improve the speedup on average or in the majority of the cases. Thus our approach is to give up
strictly ensuring thatTp ≤ Ts holds and to use some relaxed heuristics using fuzzy logic able to
detect favorable cases.

We use as a decision criteria the formulaTp ≤ Ts. It is easy to transform the formula in
1≤ Ts/Tp or the equivalentTs/Tp ≥ 1. We are implicitly using a crisp criteria in the sense that
we use an operator whose truth values are defined mathematically.

If we move to classical logic and want to represent the condition of parallelizing or not a set
of subtasks using a logic predicate, we could definegreater/2as a predicate of two arguments
that is successful if the first one is greater than the second one and false otherwise. We could
check the conditiongreater(Ts/Tp,1)or rename this condition to a logic predicate,greater1/1, of
arity 1 that compares its argument with 1, succeeds if it is greater than 1 and fails otherwise (i.e.,
greater1(1.8)succeeds, whereasgreater1(0.8)fails). With the boolean condition represented by
the predicategreater1/1it is easy to follow the conservative approach presented in Chapter 4.

For a gentle intuition to fuzzy logic, we continue talking about this predicate. We can see
that the concept of being “greater than” is very strict in thesense that some cases in which the
value is close to 1 are going to be rejected. Let us introduce the concept of truth value. Till now
we have been using two truth valuestrueandfalse, or 1 and 0. But if we introduce levels of truth
we could for example provide for a logic predicate intermediate truth values in between 0 and 1.
We have defined other predicates similar togreater1/1that are more flexible in their semantics.
They arequite_greater/1and rather_greater/1. Their definition is clearer in Figure 5.1 (and
described in Section 7.1). With this set of predicates we aregoing to define a fuzzy framework
for the experimental possibilities of using a fuzzy criteria to take decisions about parallelization
of tasks.
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Figure 5.1: Fuzzy sets for greater.
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5.1 Decision Making

Instead of deciding about the goodness of the parallelization depending on a crisp condition
as in the conservative approach, in this paper we are going tomake the decision attending to a
couple of certainty factors:SEQ, the certainty factor that is going to represent the preference (its
truth value) for executing the sequential variant of a program, andPAR, the certainty factor that
is going to represent the preference (its truth value) for executing the parallel variant of such
program. Both certainty factors are real numbers,SEQ, PAR∈ [0,1]. The way of assigning a
value to each certainty factor is not unique. We can define different fuzzy heuristics for their
calculation. In Section 7.2 we are going to compare a set of them to choose (in Section 7.3) our
selected model.

Once the values ofSEQandPARhave been already assigned, ifPAR> SEQthen our task
scheduling prototype executes the parallel variant of the program, otherwise it executes the
sequential one.
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Chapter 6

Estimating Execution Times

We have seen (Chapter 3) that we need to know execution times for performing granularity con-
trol. Since parallel execution times can be derived from thesequential ones [79] (see Chapter 7)
in this section we are focused on obtaining sequential execution times at compile and run time
(Sections 6.2 and 6.3).

6.1 The problem

Our problem is to estimate safe (upper and lower) bounds on execution time. Note that this
problem is a particularization of the one of estimating bounds for any resource consumption.
Safe bounds notion means that ifR is an amount of resource consumption andRl (respectively
Ru) its lower (resp. upper) bound, then:Rl ≤ R≤ Ru.

6.2 Execution Time Estimation

Static analysis techniques [87, 88, 95] have been traditionally used for obtaining (upper and
lower) bounds on resource usage.CiaoPP[22], the advanced program development framework
in which our work has been developed, is able to obtain boundson the usage that a program
makes of different resources. As far as we know this analysisis also the most precise one
because it isdata sensitivei.e., bounds are functions or inputs data sizes.

An example of sequential execution time estimation [86] at compile time using CiaoPP is
shown in Figure 6.1. In this case, for brevity, we only present the upper bound (ub) on the
execution time. Lower bounds are written in the same format but replacingub by lb. The
assertion

+ cost(ub,exectime,13101.358*(exp(2,int(N)-1)*int(N))

-7828.215000000001*exp(2,int(N)-1)+3864.789*exp(2,int(N))-7729.578).

must be read as follows: an upper bound on the sequential execution time ofhanoi(N,A,B,C,_)

(where N is the number of disks and A, B and C are the rods) is equal to 13101.358∗N∗2N−1−
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Figure 6.1: Code and CiaoPP executions time estimation for hanoi.

hanoi(1,A,_1,C,[mv(A,C)]) :- !.
hanoi(N,A,B,C,M) :-

N1 is N-1,
hanoi(N1,A,C,B,M1),
hanoi(N1,B,A,C,M2),
concat(M1,[mv(A,C)],T),
concat(T,M2,M) .

:- true pred hanoi(N,A,B,C,M)
: ( num(N), elem(A), elem(B), elem(C), var(M) )

=> ( num(N), elem(A), elem(B), elem(C), rt11(M),
size(ub,N,int(N)), size(ub,A,0), size(ub,B,0),
size(ub,C,0), size(ub,M,exp(2,int(N))-1.0) )

+ cost(ub,exectime,13101.358*(exp(2,int(N)-1)*int(N))
-7828.215000000001*exp(2,int(N)-1)+3864.789*exp(2,int(N))-7729.578).

Table 6.1: Qsort sequential execution time equations estimated.

Benchmark Data Size Approx. Cost Function

Qsort(L,_) x=length(L)
T l

s 0.013+5.46e−5∗x+0.0034∗x∗ log(x)
Tu

s 0.24−0.016∗x+0.0014∗x2

7828.215∗2N−1+3864.789∗2N −7729.578. For more information on the assertion language
in which the output of the analysis is written we refer the reader to [94].

CiaoPP’s sequential execution time estimation at compile time only deals with a subset of
Ciao Prolog while real programs can be written using the wholeset. So, in order to test our
approach, another option is to obtain the equations in a two-phase process. The stages are
profiling and linear regression respectively. In the profiling phase, sequential execution times
are measured directly over the platform using best and worstinput values (if possible) for lower
and upper bounds respectively. For example, forqsort (see code in Figure 6.2) we have to deal
with the degree of order of the elements. The worst case is a list whose elements are already
ordered while the best case is a uniformly distributed list of random elements. In the second
phase, the linear cost model of the execution time is obtained. For example, for qsort the model
for the lower bound isA∗1+B∗X+C∗X ∗ log(X) whereX is the length of the input list and
A, B and Care the parameters of the cost model that we want to estimate.Models are obtained
with CiaoPP, performing execution steps consumption analysis [95]. Then the parameters of
the average cost models are estimated using the Ciao costmodel module [85]. Table 6.1 shows
both upper and lower bounds on the execution time of qsort.

Furthermore, there are more techniques for estimating sequential execution times at run-
time. They can be directly measured or, if we need more information, they can be profiled (see
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Figure 6.2: Qsort code.

qsort([],[]).
qsort([X|L],R) :-

partition(L,X,L1,L2),
qsort(L2,R2),
qsort(L1,R1),
append(R1,[X|R2],R).

partition([],_,[],[]).
partition([E|R],C,[E|Left1],Right) :-

E < C, !,
partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]) :-
E >= C,
partition(R,C,Left,Right1).

append([],X,X).
append([H|X],Y,[H|Z]) :- append(X,Y,Z).

Section 6.3).

6.3 Profiling

We have developed a profiling [89] that can be used for estimating execution times. It is a
profiling method for logic programs that owns the following features:

1. The accumulated execution time of program procedures do not overlap, which means that
the total resource usage of a program can be computed in a compositional way, by adding
the resource usage of all its procedures.

2. It gives separate accumulated resource usage information of a given procedure depending
on where it is called from.

3. It is tightly integrated in a program development framework which incorporates in a uni-
form way run-time checking, static verification, unit-testing, debugging, and optimiza-
tion. Our profiler is used for run-time checking as well as debugging purposes whitin this
framework.

4. It includes a (configurable) automatic process for detecting procedures that are perfor-
mance bottlenecks following several heuristics.

5. The user can configure the best trade-off between overheadand collected information.
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Other features of our profiler are the combination of time profiling with count profiling,
which has proved to be non-trivial [82], and the modularity,which allows specifying which
modules should be instrumented for profiling. These and other original features of our profiler
are possible thanks to the usage of theCiao’s module system and the automatic code transfor-
mation throughCiao’s semantic packages.

The profiling technique is based on associating (either automatically or manually) cost cen-
ters to certain program elements, such as procedures or calls in clause bodies. The concept of
cost centeris inspired in the one defined by Morgan [102] in the context offunctional languages.
However, we have adapted this concept to deal with the uniquefeatures of logic programming.
A cost centerfor us is a place in a program (typically a predicate or a literal in a body clause)
where data about computational events are accumulated eachtime the place is reached by the
program execution control flow. In our current implementation both predicates and literals can
be marked as cost centers. We introduce a special cost center, namedremainder cost center

(denotedrcc), used for accumulating data about events not corresponding to any defined cost
center.

In order to deal with the control flow of Prolog, we adopt the “box model” of Lawrence
Byrd [23], where predicates (procedures) are seen as “black boxes” in the usual way. However,
due to backtracking, the simple call/return view of procedures is not enough, and we have a
“4-port box view” instead. Thus, given agoal (i.e., a unique, run-time call to a predicate), there
are four ports (events) in Prolog execution: (1)call goal (start to execute goal), (2)exit goal
(succeed in producing a solution to goal), (3)redogoal (attempt to find an alternative solution
to goal), and (4)fail goal (exit with failure, if no further solutions to goal are found). Thus,
there are two ports for “entering” the box (call andredo), and two ports for “leaving” it (exit

andfail).

6.3.1 Definitions

Lets see some definitions of elements of our profiler:

Definition 1 (Calls relation). We define thecalls relation between predicates in a program as

follows: p calls q, written p q, if and only if a literal with predicate symbol q appears in the

body of a clause defining p. Let ⋆ denote the reflexive transitive closure of .

Definition 2 (Cost center set). Given a program P to be profiled, the cost center set for P

(denoted CP), is the set CP = {p | p is a predicate of P marked as a cost center}∪{rcc}, where

rcc is the remainder cost center.

Definition 3 (Cost center call-graph). Thecost center call-graphof a program P (denoted GP)

is the graph defined by the set of nodes CP and the set of edges V, such that(p,q) ∈V iff:

1. p is not the remainder cost center (i.e., p6= rcc), q 6= rcc, p ⋆ q and there is no t∈CP

such that p ⋆ t and t ⋆ q, or
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2. p= rcc, and for all s being a literal of the program P, we have: (1) q= s if s∈CP, (2)

q= r if exist r ∈CP such that s ⋆ r and there is no t∈CP such that s ⋆ t and t ⋆ r,

or (3) q= rcc otherwise.

Definition 4 (Edge cumulated resource usage). Each edge(c,d) ∈ GP has a label, Rcd, which

represents the cumulated resource usage of the computationsince cost center d was entered

from cost center c, until a new cost center is entered or the computation finishes. This allows to

give separate resource usage information of a given procedure depending on where it is called

from.

Figure 6.3: Profiling example. Source code, call-graph and cost centers call-graph.

:− c o s t _ c e n t e r p / 0 , q / 0 .
p :−

q , r .

p q r rcc p r

Example 1. Figure 6.3 illustrates how the resource usage information is stored in the edges of

the cost center call-graph during the profiling process. At any time in this process, only one

edge is active. When execution enters a predicate which is defined as a cost center, the resource

usage monitored so far is stored in the active edge, and otheredge is activated. Consider

the programp, and its call-graph and cost center call-graph. Before starting the program

execution, the active edge is(rcc, rcc). Then,p is called. Sincep is defined as a cost

center, the resource usage monitored so far is cumulated in the active edge(rcc, rcc), the

counters are reset, and the active edge changes to(rcc, p). Then, the execution of the body

of p starts by executingq. Sinceq is not defined as a cost center, the active edge remains the

same as before,(rcc, p) (and the counters are not reset). When the execution ofq finishes,

r is called. Sincer is defined as a cost center, the resource usage monitored so far is cumulated

in the active edge(rcc, p), the counters are reset, and the active edge changes to(p, r).

Sincer is the last call in the definition ofp, when the execution ofr finishes, the resource usage

monitored far is cumulated in(p, r) and the program execution finishes.

Definition 5 (Cumulated resource usage of a cost center). The cumulated resource usage in a

given cost center d (denoted Rd) is the cumulated resource usage of the computation since cost

center d is reached, until a new cost center is entered or the computation finishes.

Lemma 1. The cumulated resource usage in a given cost center is the sumof the cumulated

resource usages of its incident edges: Rd = ∑(c,d)∈V Rcd.

Proof. Trivial, based on the cumulated resource usage of an edge.

Lemma 2. The total resource usage of a program P, denoted TP, is the addition of the cumulated

resource usage of all its cost centers: RP = ∑c∈CP
Rc
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Proof. Trivial, by the definition of cumulated resource usage of a cost center.

Note that our definition of cumulated resource of a cost center is compositional, in the
sense that the total resource usage of a set predicates can becomputed by adding the cumulated
resource usage of each predicate. This doesn’t happens in traditional profilers, where the cumu-
lated execution time of different predicates may overlap (and thus, the addition of them may be
greater than their actual resource usage).

6.3.2 Using Profiling Techniques in Granularity Control

For understanding how profiling techniques can be succesfully applied to granularity control it
is useful to know how they provide they results.

Figure 6.4: An example of profiler output.

:- module(_, _, [profiler]).
:- cost_center p1/0, p2/0, q/1.

p1 :-
q(a),
q(b),
q(c),
q(d).

p2 :-
q(a).

main :-
p1,
p2.

q(a).
q(b).
q(c).
q(d).

rcc

p1

p2

q

40.57%

7.92%

28.08%

20.17%

3.26%

Example 2. Figure 6.4 contains a program with a set of predicates defined as cost centers and

the output of the profiler after profiling the goalmain. The measured resource is execution time.

The percentage of execution time that each cost center predicate consumes can be obtained by

adding the labels of all its incident edges. Thusp1, p2 and q consumes 40.57%, 7.92% and

23.43% respectively.

In this case we have simplified the output. Our profiling tool returns the number of ticks
(or units of time) accumulated in each cost edge (according to the procedure descibed in Sec-
tion 6.3.1). But the same information is clearer with percentages.

Other works for improving automatic parallelization are based on balancing the load of
the parallel executions (see Performance Factors in Section 2.1.3). It has been shown that
these techniques reduce the execution time of the parallel programs [115, 120]. Load balancing
schedulings guarantee the best usage of the execution units.
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Lets see a simple example of how we can apply our profiling to load balancing at compile-
time. As we have explained in Chapter 3 there are many ways of executing a task in parallel.
Let g be a task andg= g1,g2,g3 where all thegi ’s are candidates for parallel execution. In a
system with 3 (or more) processorsg can be executed in the following ways (note that the par-
allel execution operator is represented as& ): g1,g2,g3 / g1&g2&g3 / g1&(g2,g3) / g2&(g1&g3)

/ g3&(g1,g2).
The load of executing two tasksx,y sequentially is equal tocost(x)+cost(y) while if they are
executed in parallel is equal tomax(cost(x),cost(y)) wherecost(t) is the cost of executing the
taskt.
Automatic parallelization will transformg= g1,g2,g3 into g= g1&g2&g3. This transformation
reduces the execution time ofg from Tg1 +Tg2 +Tg3 to max(Tg1,Tg2,Tg3) and keeps the 3 pro-
cessors busy this amount of time. Remember thatTi refers to the sequential execution time of
the taski.
Assume that eachTgi is executed in the processori and suppose thatTg1 = Tg2+Tg3. This means
that the processors 2 and 3 will be idleTg3 andTg2 units of time respectively.
The factTg1 = Tg2 +Tg3 can be derived from the information provided by our profiler.Then if
the automatic parallelization process takes it into account it will transform g = g1,g2,g3 into
g = g1&(g2,g3). This transformation reduces the execution time ofg from Tg1 +Tg2 +Tg3 to
max(Tg1,(Tg2+Tg3))which in this case is equal tomax(Tg1,Tg2,Tg3), i.e., it is the same execution
time than the one of the transformation performed without profiling information. Nevertheless
this scheduling keeps only 2 processors busy this amount of time.

Thus taking into account profiling information in automaticparallelization provides load
balancing scheduling that optimizes the usage of the execution units which, at the same time,
increases the system performance.
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Chapter 7

Experimental Results

We have developed a prototype (Section 7.1) of a fuzzy task scheduler based on the approach
described in Chapter 5. We have prepared a common framework totest the behavior of a set
of different heuristics (Section 7.2) and we have compared them also with the rules of the
conservative approach (Chapter 4) in order to be able to select the best results (Section 7.3).
For a better understanding of these experiments, we presentthe behavior of our prototype for a
progression of execution time data (Section 7.4). Finally,we have tested our prototype with real
programs (Section 7.5) in order to demonstrate that it can besuccessfully applied in practice.

7.1 Prototype Implementation

All the selection methods have been implemented inCiao Prolog. The classical logic rules
have been implemented using the CLP(Q) package and the fuzzy logic rules using theRfuzzy

package.
We have decided to use logic programming for implementing our approach because of its sim-
plicity and for taking the advantage of some useful extensions provided by theCiao Prolog

framework. In particular,Ciao Prologhas integrated static analysis techniques for obtaining
upper and lower bounds on execution times and a fuzzy libraryfor the calculation of certainty
factors.
As explained before, in our new approach to granularity control, the decision of how to exe-
cute is based on the certainty factors associated to both, sequential and parallel executions. So
that, first of all, we have to quantify such certainty and thendecide how to execute. The value
to the certainty factors is provided by fuzzy rules that are able to combine fuzzy values using
aggregation operators. According to RFuzzy syntax:

SEQ(P,Vs) : op cond1(V1),cond2(V2), ...condn(Vn).

PAR(P,Vp) : op
′
cond

′

1(V
′

1),cond
′

2(V
′

2), ...cond
′

n(V
′

n).

The truth valueVs represents how much executing the programP in a sequential way is ade-
quate.Vs is obtained by combining the truth values of the partial conditionsV1, ...,Vn with the
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aggregation operatorop. Symmetrically,Vp represents how much adequate is the parallel exe-
cution for the programP.
The bigger factor (SEQ or PAR) will point out the selected execution (sequential or parallel).

In order to test the behavior of our method we have developed aset of conditions comparing
a group of values of execution times:{T l

p,T
m
p ,Tu

p ,T
l
s ,T

m
s ,Tu

s } by pairs. The comparison that
makes each condition is calculated with the fuzzy relationsquite_greaterand rather_greater

(represented in Figure 5.1), whose definitions are:

quite_greater(X) =







0 i f X ≤−7
X+7
15 i f −7< X < 8

1 i f X ≥ 8

rather_greater(X) =







0 i f X ≤−14
X+14

29 i f −14< X < 15
1 i f X ≥ 15

We also use therelative harmonic difference, an experimental relation described in [86] as fol-
lows:
harmonic_di f f (X,Y) = (X−Y)∗ (1/X+1/Y)/2.
We have selected this relation because it compares two numbers in a relative and symmetric
way, i.e.:
harmonic_di f f (X,Y) =−harmonic_di f f (Y,X).
The harmonic differenceonly works well for positive numbers, but as we are working with
execution times, it is enough for our purposes.

These fuzzy relations can be redefined with different bounds, although in this prototype
we have only used the values 0, 7 and 14. These bounds have beenselected according to the
magnitude of the execution times that we provide for the programs (see Table 7.2) in order to
obtain significant results depending on the selected fuzzy relation.

7.2 Heuristic Comparison

In this section we discuss the evaluation of our prototype with different aggregation operators. A
suite of benchmarks to test the prototype has been developed. Each benchmark has been defined
in terms of its execution times (average, upper and lower bounds on parallel and sequential exe-
cution times) in order to see if the new approach provides better results than the conservative
one. Obviously, in real cases, these values will need to be estimated at compile-time using a
program analyzer like, for example,CiaoPP[60, 86]. Table 7.2 contains the description of the
benchmarks. Each row shows the information of one program. The first column contains the
name of the program and, under it and between brackets, the name of the figure which contains
the graphical representation of the benchmark. This figure allows to identify the optimal execu-
tion in a graphic way. The following columns show :T l

s (lower bound on sequential execution
time),Tm

s (average sequential execution time),Tu
s (upper bound on sequential execution time),

T l
p (lower bound on parallel execution time),Tm

p (average parallel execution time) andTu
p (upper

bound on parallel execution time). Each execution time is inmicroseconds.
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Table 7.1: Aggregation operators execution time.

Program
Aggregation Operator
max dprod dluka

p1 1.23 1.11 1.04
p2 0.42 0.51 0.45
p3 0.93 0.88 0.88
p4 0.43 0.51 0.45
p5 0.62 0.76 0.63
p6 0.56 0.62 0.57

average 0.70 0.73 0.67

Figures 7.1, 7.2, 7.3, 7.4, 7.5 and 7.6 describe the benchmarks in a graphic way. In horizontal
we find both (parallel and sequential) executions. In vertical we find, for each execution, the
interval comprised between its upper and lower bound on execution time.

To make things simpler we have made the following translations in the conditions: the fuzzy
set is calledgt and therelative harmonic differencerelation is calledhd.
The rules offuzzy logicfor calculating each conditionPARi or SEQi (i ∈ [1,2,3], see Table 7.3)

have been composed using several aggregation operators butthe results have shown that only
the t-conorms max (max), Lukasiewicz (dluka) and sum (dprod) are correct (i.e. always suggest
the optimal execution) so we do not mention the rest1 in the results. We have seen how the three
t-conorms max (max), Lukasiewicz (dluka) and sum (dprod) have the same behavior. Thus,
in order to chose one of these aggregation operators, we havefollowed the criteria of the one
more efficiently evaluated. In this sense, we have measured the execution time of evaluating the
conditionPAR1 for each program using the three operators. These executiontimes have been
obtained over an Intel platform (Intel Pentium 4 CPU 2.60GHz). They are shown in Table 7.1.
The first column shows the name of the program (see Table 7.2) and the three next ones, the
aggregation operators. Each row shows the execution time (in microseconds) of the evaluation
of the conditionPAR1 (see Table 7.3) for the program using the three mentioned operators. The
last row contains, for each operator, an average value on theexecution time of evaluating such
condition for all the programs. As we can see, the results arevery similar for the aggregation
operatorsmaxanddlukawhile for dprodare almost always bigger. Althoughmaxis a little bit
less efficient (on average) thandluka, maxseems to be the best option due to its simplicity.

The whole set of proposed certainty factors and the results for each approach are shown
in Table 7.3. They correspond to the case of parallelizing a sequential program (i.e., where
the action taken by default when there is no evidence towardsexecuting is parallel is to execute
sequentially). The first column shows the name of the program. The second column shows what
would be the right (optimal) decision about the type of execution that should be performed
(either parallel or sequential). The rest of the columns contain the results of evaluating the

1The rest of the tested operations are:min, lukaandprod.
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Table 7.2: Benchmarks -times in microseconds-.

❳
❳

❳
❳
❳

❳
❳
❳
❳

❳
❳
❳

Program
Time

T l
s Tm

s Tu
s T l

p Tm
p Tu

p

p1 400 600 800 100 175 250
(Figure 7.1)

p2 50 175 300 350 550 750
(Figure 7.2)

p3 250 525 800 300 375 450
(Figure 7.3)

p4 50 150 250 100 325 550
(Figure 7.4)

p5 200 400 600 200 325 450
(Figure 7.5)

p6 150 325 500 100 275 450
(Figure 7.6)

Figure 7.1: Program p1 execution times.

Figure 7.2: Program p2 execution times.
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Figure 7.3: Program p3 execution times.

Figure 7.4: Program p4 execution times.

Figure 7.5: Program p5 execution times.
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Figure 7.6: Program p6 execution times.

conditions. Columns 3 and 4 contain the results obtained using the conservative approach,
while columns 5-18 contain the results obtained using our proposed conditions based on fuzzy
logic. Each column in the later group of columns correspondsto a different fuzzy condition.
The selected type of execution (using the process explainedin Section 5.1) are highlighted.
SEQi and PARi are the truth values obtained for the certainty factors of the sequential and
parallel executions of the programpi. We have performed the experiments for two different
levels of flexibility usingquite_greaterand rather_greaterrespectively. The decisions made
by using the fuzzy conditions are always the optimal ones forthese experiments. However,
the conservative approach (classical logic) disagrees with the optimal ones in half of the cases.
For example, the conditionTu

p ≤ T l
s holds forp1 (see Figure 7.1). Thus, the parallel execution

of p1 is more efficient than the sequential one. In this case, both the conservative approach

(classical logic) and thefuzzy logicapproach agree in that the execution ofp1 should be pa-
rallel. The converse condition (Tu

s ≤ T l
p) holds for programp2 (see Figure 7.2), and thus, the

optimal action is executing it sequentially. In this case, also both approaches agree in that the
execution ofp2should be parallel.
For programs 3-6, the classical logic truth values (PARc and SEQc) are always zero, which
means that the suggested type of execution issequentialfor all of these programs (i.e., the
default type of execution). However, from Figures 7.3, 7.4,7.5 and 7.6, we can see that in some
cases the optimal decision is to execute these programs in parallel.
For example, consider programp3 (see Figure 7.3). We have thatTu

p = 450µsandT l
s = 250µs,

and thusTu
p ≤ T l

s does not hold. The decision of executingp3 sequentiallymade byclassical

logic is safe. However, in this case, sinceTu
s = 800 µs, assuming thatp3 is run a significant

number of times, we have that on average, executingp3 in parallel would be more efficient than
executing it sequentially. In contrast, our proposed fuzzyapproach selects the optimal type of
execution forp3: its two subtasks should be executed in parallel. Programp4 (see Figure 7.4)
represents the opposite case. In this caseTu

s = 250µsandT l
p = 100µssoTu

s ≤ T l
p does not hold.
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Table 7.3: Selected executions using the whole set of rules.

Program Optimal

Classical Logic Fuzzy Logic
(Greater) (Quite greater)
Classical Fuzzy 1 Fuzzy 2 Fuzzy 3 Fuzzy 4 Fuzzy 5 Fuzzy 6 Fuzzy 7

PARc SEQc PAR1 SEQ1 PAR2 SEQ2 PAR3 SEQ3 PAR4 SEQ4 PAR5 SEQ5 PAR6 SEQ6 PAR7 SEQ7

p1 Parallel 1 0 0.73 0.48 0.73 0.48 0.73 0.48 0.57 0.35 0.57 0.35 0.57 0.35 0.57 0.36
p2 Sequential 0 1 0.48 0.93 0.49 0.93 0.49 0.93 0.34 0.58 0.33 0.59 0.34 0.58 0.31 0.58
p3 Parallel 0 0 0.56 0.54 0.58 0.54 0.58 0.54 0.48 0.44 0.48 0.44 0.48 0.44 0.47 0.44
p4 Sequential 0 0 0.5 0.61 0.5 0.61 0.5 0.61 0.41 0.52 0.41 0.52 0.41 0.52 0.41 0.52
p5 Parallel 0 0 0.54 0.53 0.55 0.53 0.55 0.53 0.47 0.45 0.47 0.45 0.47 0.45 0.47 0.45
p6 Parallel 0 0 0.56 0.52 0.56 0.52 0.56 0.52 0.48 0.45 0.48 0.45 0.48 0.45 0.48 0.45

Program Optimal

Classical Logic Fuzzy Logic
(Greater) (Rather greater)
Classical Fuzzy 1 Fuzzy 2 Fuzzy 3 Fuzzy 4 Fuzzy 5 Fuzzy 6 Fuzzy 7

PARc SEQc PAR1 SEQ1 PAR2 SEQ2 PAR3 SEQ3 PAR4 SEQ4 PAR5 SEQ5 PAR6 SEQ6 PAR7 SEQ7

p1 Parallel 1 0 0.62 0.49 0.62 0.49 0.62 0.49 0.53 0.42 0.53 0.42 0.53 0.42 0.54 0.42
p2 Sequential 0 1 0.49 0.72 0.49 0.72 0.49 0.72 0.41 0.54 0.41 0.55 0.41 0.54 0.4 0.54
p3 Parallel 0 0 0.53 0.52 0.54 0.52 0.54 0.52 0.49 0.47 0.49 0.47 0.49 0.47 0.48 0.47
p4 Sequential 0 0 0.5 0.55 0.5 0.55 0.5 0.55 0.45 0.51 0.45 0.51 0.45 0.51 0.45 0.51
p5 Parallel 0 0 0.52 0.51 0.52 0.51 0.52 0.51 0.48 0.47 0.48 0.47 0.48 0.47 0.48 0.47
p6 Parallel 0 0 0.53 0.51 0.53 0.51 0.53 0.51 0.49 0.47 0.49 0.47 0.49 0.47 0.49 0.47

Conditions:
PARc is Tu

p ≤ T l
s

SEQc is Tu
s ≤ T l

p

PAR1 is max(gt(T l
s/Tu

p ),gt(T l
s/T l

p),gt(Tm
s /Tm

p ))

SEQ1 is max(gt(T l
p/Tu

s ),gt(T l
p/T l

s ),gt(Tm
p /Tm

s ))

PAR2 is max(gt(T l
s/Tu

p ),gt(T l
s/T l

p),gt(Tu
s /Tu

p ))

SEQ2 is max(gt(T l
p/Tu

s ),gt(T l
p/T l

s ),gt(Tu
p /Tu

s ))

PAR3 is max(gt(T l
s/Tu

p ),gt(T l
s/T l

p),gt(Tm
s /Tm

p ),gt(Tu
s /Tu

p ))

SEQ3 is max(gt(T l
p/Tu

s ),gt(T l
p/T l

s ),gt(Tm
p /Tm

s ),gt(Tu
p /Tu

s ))

PAR4 is rel_hd(0.5∗hd(Tm
s ,Tm

p )+0.25∗hd(Tu
s ,T

u
p )+0.25∗hd(T l

s ,T
l
p))

SEQ4 is rel_hd(0.5∗hd(Tm
p ,Tm

s )+0.25∗hd(Tu
p ,T

u
s )+0.25∗hd(T l

p,T
l
s ))

PAR5 is rel_hd((hd(Tm
s ,Tm

p )+hd(Tu
s ,T

u
p )+hd(T l

s ,T
l
p))/3)

SEQ5 is rel_hd((hd(Tm
p ,Tm

s )+hd(Tu
p ,T

u
s )+hd(T l

p,T
l
s ))/3)

PAR6 is rel_hd(0.25∗hd(Tm
s ,Tm

p )+0.5∗hd(Tu
s ,T

u
p )+0.25∗hd(T l

s ,T
l
p))

SEQ6 is rel_hd(0.25∗hd(Tm
p ,Tm

s )+0.5∗hd(Tu
p ,T

u
s )+0.25∗hd(T l

p,T
l
s ))

PAR7 is rel_hd(0.25∗hd(Tm
s ,Tm

p )+0.25∗hd(Tu
s ,T

u
p )+0.5∗hd(T l

s ,T
l
p))

SEQ7 is rel_hd(0.25∗hd(Tm
p ,Tm

s )+0.25∗hd(Tu
p ,T

u
s )+0.5∗hd(T l

p,T
l
s ))
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But in this caseTu
p = 550µsandTu

s = 250µs. Thus, the best choice seems to be executingp4

sequentially. This is the type of execution suggested by ourfuzzy conditions. However, using
classical logic, the selected execution is sequential (theone selected by default when none of
the sufficient conditionsPARc nor SEQc hold). However, our fuzzy logic conditions provide
enough evidences that support the decision of executing in parallel.
In the situations illustrated by the last two programs it is not so clear what type of execution
should be selected. For programp5we have thatTu

p = 450µsandT l
s = 200µs. Thus, since the

sufficient conditionTu
p ≤ T l

s for executing in parallel does not hold, it seems that the program
should be executed sequentially. However, sinceT l

p = 200 µsandTu
s = 600µs, the sufficient

conditionTu
s ≤ T l

p for executing in parallel does not hold either. Now, using our fuzzy logic
approach, taking the four valuesT l

p,T
u
p ,T

l
s and Tu

s into account, a certainty factor of nearly 0.5
suggests that the best choice is to executep5 in parallel.
For programp6 (see Figure 7.6), none of the sufficient conditionsTu

p ≤ T l
s andTu

s ≤ T l
p (for

selecting parallel and sequential execution respectively) hold. However, sinceTu
p ≤ Tu

s and
T l

p ≤ T l
s hold, it is clear that the execution time of the sequential execution is going to belong

to an interval whose limits are bigger than the limits of the parallel execution. Thus, is it more
likely that the execution time of the parallel execution be less than the execution time of the
sequential one, so that the right decision seems to executep6 in parallel. We can see that our
proposed fuzzy conditions also suggests the parallel execution.

Finally, we can see that in those cases in which classical logic suggests a type of execution
(with truth value 1), our fuzzy logic approach suggests the same type of execution (sequential
or parallel).

7.3 Selected Fuzzy Model

Table 7.3 shows that all the fuzzy conditions (Fuzzy 1-7) select the same type of execution, se-
quential or parallel (independently of the fuzzy set used, eitherquite_greateror rather_greater).
Our goal is to detect those situations where the parallel execution is faster than the sequential
one, such that a conservative (safe) approach is not able to detect it but the fuzzy approach is.
ApproachesFuzzy 4, 5, 6 and7 suggest parallel execution with less evidence thanFuzzy 1, 2

and3 for both fuzzy sets (quite_greaterandrather_greater). As we are interested in suggesting
to execute in parallel with evidences as bigger as possible we rule out this subset of conditions
and we focus our attention in the first set. BothFuzzy 2and3 obtain the same values in all cases.
Furthermore they provide higher evidences for parallel execution than the conditionFuzzy 1.
This fact can be seen in programsp3, p5 andp6. As Fuzzy 2is a subset ofFuzzy 3, evalu-
ating the first one is more efficient than the second one (theFuzzy 3condition has one more
comparison). Thus, the condition that we have selected isFuzzy 2:

PAR is max(gt(T l
s/Tu

p ),gt(T l
s/T l

p),gt(Tu
s /Tu

p ))
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Figure 7.7: Progression of executions of the example program p3.

This condition obtains a better average case behavior by relaxing decision conditions (and losing
some precision). There may be cases in which our approach will select the slowest executi-
on, however it will select the fastest one in a bigger number of cases. This tradeoff between
safety and efficiency makes this new approach only applicable to non-critical systems, where
no constraints about execution times must be met, and a wrongdecision will only cause a
slowdown which is admissible. In the same way that it happensin the conservative approach,
the fuzzy approach for sequentializing a parallel program is also symmetric to the problem of
parallelizing a sequential program. The condition that we have selected for sequentializing a
parallel program is:

SEQ is max(gt(T l
p/Tu

s ),gt(T l
p/T l

s),gt(Tu
p/Tu

s ))

7.4 Decisions Progression

Focusing on programp3 and using the fuzzy setquite_greaterwith the selected fuzzy model
(Section 7.3) we have developed an incremental experiment whose results are in Table 7.4. The
main goal is to see how with this fuzzy logic approach we can select the optimal execution in
those cases in which the conservative approach is not able togive a conclusion, and also, how
our fuzzy logic approach detects all situations (safely) detected optimal by the conservative
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Table 7.4: Progression of decisions using the fuzzy set quite greater.

Execution Optimal
Classical Logic Fuzzy Logic

(Greater) (Quite greater)
Classical Fuzzy 2

PARc SEQc PAR2 SEQ2

p3_execution1 Parallel 1 0 0.68 0.49
p3_execution2 Parallel 0 0 0.64 0.5
p3_execution3 Parallel 0 0 0.61 0.52
p3_execution4 Parallel 0 0 0.6 0.53
p3_execution5 Parallel 0 0 0.58 0.54
p3_execution6 Parallel 0 0 0.57 0.56
p3_execution7 Sequential 0 0 0.56 0.57
p3_execution8 Sequential 0 0 0.55 0.58
p3_execution9 Sequential 0 0 0.54 0.6
p3_execution10 Sequential 0 0 0.54 0.61
p3_execution11 Sequential 0 0 0.53 0.62
p3_execution12 Sequential 0 0 0.53 0.64
p3_execution13 Sequential 0 0 0.52 0.65
p3_execution14 Sequential 0 0 0.52 0.66
p3_execution15 Sequential 0 1 0.52 0.68

Conditions:
PARc is Tu

p ≤ T l
s

SEQc is Tu
s ≤ T l

p

PAR2 is max(gt(T l
s/Tu

p ),gt(T l
s/T l

p),gt(Tu
s /Tu

p ))

SEQ2 is max(gt(T l
p/Tu

s ),gt(T l
p/T l

s),gt(Tu
p/Tu

s ))

approach. Figure 7.7 shows all the execution scenarios. Thesequential execution times are
fixed, while the parallel execution ones depend on each scenario. The later are represented by
pairs (T l

p(i),T
u
p (i)) wherei is the concrete case. The parallel execution times of each scenario

are the times of the previous one plus 50 units, in order to appreciate the progression. The times
of the first scenario areT l

p(1) = 100µsandTu
p (1) = 250µs. Attending to classical logic we can

see how only whenPARc = 1 or SEQc = 1 we obtain a justified answer (that the program must
be executed in parallel or sequentially respectively). In the rest of the cases the selected type
of execution issequentialby default, since we are following the philosophy of parallelizing a
sequential program, and there are no evidences towards either type of execution. On the other
hand, fuzzy logic always selects the optimal execution (supported by evidences).

7.5 Experiments with Real Programs

Former experiments (Section 7.2) have shown that our fuzzy granularity control framework is
able to capture which is the optimal type of execution on average. Moreover, in order to ensure
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Table 7.5: Real benchmarks.

Qsort qsort(n) sorts a list of n random elements.
Substitute substitute(n) replaces by 2 the x’s that appears in an

expresion (x + x ...) composed by n +’s and n+1 x.
Fib fib(n) obtains the nth Fibonacci number.
Hanoi hanoi(n) solves Hanoi puzzle with 3 rods

and n disks.

that our approach can be applied in practice, we have performed some experiments with real
programs (and real execution times). The experimental assessments have been made over an
UltraSparc-T1, 8 cores x 1GHz (4 threads per core), 8GB of RAM,SunOS 5.10.

We have tested thefuzzy modelselected in Section 7.3, so that only upper and lower bounds
on (parallel and sequential) execution times were needed. Sequential execution times have been
measured directly over the execution platform (executing the worst and best possible cases)
while the parallel ones have been estimated.

The number of cores of the processor is denoted asp, the number of tasks (candidates for
parallel or sequential execution) asn, and the relation⌈n/p⌉ is denoted ask. We consider
two different overheads of parallel execution: (a) the timeneeded for creating n parallel tasks,
calledCreate(n), and (b) an upper bound on the time taken from the point in which a para-
llel subtaskgi is created until its execution is started by a processor, denoted asSysOverheadi.
Both types of overheads have been experimentally measured for the execution platform. For the
first one, we have measured directly the time of creatingp threads. The second one has been
obtained by using the expression(S/2)−P, whereSandP are the measured execution times of
a program consisting of two perfectly balanced parallel tasks running with one and two threads
respectively.

There are different ways of executing a task in parallel depending on the scheduling. The
highest parallel execution time will be the one with the worst scheduling (i.e. the one in which
the cores are idle as much as possible). Figure 7.8 represents both, the best and the worst
possible scheduling scenarios. In each scenario, columns show the number of cores cores (from
1 to p) and rows the execution iterations (from 1 to k). In eachiteration the level of occupation
of each core is colored while the amount of time in which it is idle is in white. Longest tasks
are the lightest ones. It can be seen how the way in which thesetasks are assigned to the cores
has a direct implication on the efficiency.

Suppose that the execution times of then subtasksTs1,Ts2, ...,Tsn of g (Chapter 3) are in
descending order. Then we can estimate parallel execution time of both scheduling cases as
follows:

Tbest
p =Create(p)+

k

∑
i=0

(SySoverhead1+(i∗p)+Tu
s1+(i∗p)

) (7.1)
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Figure 7.8: Best and worst schedulings in a parallel system.

Tworst
p =Create(p)+

k

∑
i=1

(SySoverheadi +Tu
si
) (7.2)

Assuming that an ideal parallel execution environment has no overheads, we can estimate
T l

p and Tu
p as follows:

T l
p = T l

s/p (7.3)

Tu
p =Create(p)+

k

∑
i=1

(SySoverheadi +Tu
si
) (7.4)

Table 7.6: Selected executions for real programs using the fuzzy set Quite Greater.

Execution Optimal
Classical Logic Fuzzy Logic

Speedup(Greater) (Quite greater)
Classical Fuzzy 2

PARc SEQc PAR2 SEQ2

qsort(250) Parallel 0 0 0.6 0.53 1.66
qsort(500) Parallel 0 0 0.6 0.53 1.74
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Table 7.6: (continued).

Execution Optimal
Classical Logic Fuzzy Logic

Speedup(Greater) (Quite greater)
Classical Fuzzy 2

PARc SEQc PAR2 SEQ2

qsort(750) Parallel 0 0 0.6 0.53 1.74
qsort(1000) Parallel 0 0 0.6 0.53 1.75
qsort(1250) Parallel 0 0 0.6 0.53 1.71
substitute(0) Sequential 0 0 0.53 0.53 1.0
substitute(10) Sequential 0 0 0.6 0.65 1.0
substitute(20) Sequential 0 0 0.6 0.59 0.97
substitute(30) Parallel 0 0 0.6 0.57 1.09
substitute(40) Parallel 0 0 0.6 0.56 1.22
substitute(50) Parallel 0 0 0.6 0.56 1.32
substitute(60) Parallel 0 0 0.6 0.55 1.39
substitute(70) Parallel 0 0 0.6 0.55 1.47
substitute(80) Parallel 0 0 0.6 0.55 1.51
substitute(90) Parallel 0 0 0.6 0.54 1.55
substitute(100) Parallel 0 0 0.6 0.54 1.59
substitute(110) Parallel 0 0 0.6 0.54 1.62
substitute(120) Parallel 0 0 0.6 0.54 1.64
substitute(130) Parallel 0 0 0.6 0.54 1.66
substitute(140) Parallel 0 0 0.6 0.54 1.69
substitute(150) Parallel 0 0 0.6 0.54 1.70
substitute(160) Parallel 0 0 0.6 0.54 1.72
substitute(170) Parallel 0 0 0.6 0.54 1.73
substitute(180) Parallel 0 0 0.6 0.54 1.74
substitute(190) Parallel 0 0 0.6 0.54 1.75
substitute(200) Parallel 0 0 0.6 0.54 1.77

fib(1) Sequential 0 0 0.53 0.53 1.0
fib(2) Sequential 0 0 0.6 0.59 0.64
fib(3) Sequential 0 0 0.6 0.56 0.82
fib(4) Parallel 0 0 0.6 0.53 1.04
fib(5) Parallel 1 0 0.6 0.52 1.0
fib(6) Parallel 1 0 0.6 0.51 1.0
fib(7) Parallel 1 0 0.6 0.51 1.0
fib(8) Parallel 1 0 0.6 0.51 1.0
fib(9) Parallel 1 0 0.6 0.5 1.0
fib(10) Parallel 1 0 0.6 0.5 1.0
fib(11) Parallel 1 0 0.6 0.5 1.0
fib(12) Parallel 1 0 0.6 0.5 1.0
fib(13) Parallel 1 0 0.6 0.5 1.0
fib(14) Parallel 1 0 0.6 0.5 1.0
fib(15) Parallel 1 0 0.6 0.5 1.0
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Table 7.6: (continued).

Execution Optimal
Classical Logic Fuzzy Logic

Speedup(Greater) (Quite greater)
Classical Fuzzy 2

PARc SEQc PAR2 SEQ2

fib(16) Parallel 1 0 0.6 0.5 1.0
fib(17) Parallel 1 0 0.6 0.5 1.0
fib(18) Parallel 1 0 0.6 0.5 1.0

hanoi(1) Sequential 0 0 0.53 0.53 1.0
hanoi(2) Sequential 0 0 0.6 1 1.0
hanoi(3) Sequential 0 0 0.6 0.9 1.0
hanoi(4) Sequential 0 0 0.6 0.68 1.0
hanoi(5) Sequential 0 0 0.6 0.58 0.94
hanoi(6) Parallel 0 0 0.6 0.53 1.28
hanoi(7) Parallel 1 0 0.6 0.51 1.0
hanoi(8) Parallel 1 0 0.6 0.5 1.0
hanoi(9) Parallel 1 0 0.6 0.5 1.0
hanoi(10) Parallel 1 0 0.6 0.5 1.0
hanoi(11) Parallel 1 0 0.6 0.5 1.0
hanoi(12) Parallel 1 0 0.6 0.5 1.0
hanoi(13) Parallel 1 0 0.6 0.5 1.0
hanoi(14) Parallel 1 0 0.6 0.5 1.0

Table 7.7: Selected executions for real programs using the fuzzy set Rather Greater.

Execution Optimal
Classical Logic Fuzzy Logic

Speedup(Greater) (Rather greater)
Classical Fuzzy 2

PARc SEQc PAR2 SEQ2

qsort(250) Parallel 0 0 0.55 0.51 1.66
qsort(500) Parallel 0 0 0.55 0.51 1.74
qsort(750) Parallel 0 0 0.55 0.51 1.74
qsort(1000) Parallel 0 0 0.55 0.51 1.75
qsort(1250) Parallel 0 0 0.55 0.51 1.71
substitute(0) Sequential 0 0 0.51 0.51 1.0
substitute(10) Sequential 0 0 0.55 0.58 1.0
substitute(20) Sequential 0 0 0.55 0.55 1.0
substitute(30) Parallel 0 0 0.55 0.54 1.09
substitute(40) Parallel 0 0 0.55 0.53 1.22
substitute(50) Parallel 0 0 0.55 0.53 1.32
substitute(60) Parallel 0 0 0.55 0.52 1.39
substitute(70) Parallel 0 0 0.55 0.52 1.47
substitute(80) Parallel 0 0 0.55 0.52 1.51
substitute(90) Parallel 0 0 0.55 0.52 1.55
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Table 7.7: (continued).

Execution Optimal
Classical Logic Fuzzy Logic

Speedup(Greater) (Rather greater)
Classical Fuzzy 2

PARc SEQc PAR2 SEQ2

substitute(100) Parallel 0 0 0.55 0.52 1.59
substitute(110) Parallel 0 0 0.55 0.52 1.62
substitute(120) Parallel 0 0 0.55 0.52 1.64
substitute(130) Parallel 0 0 0.55 0.52 1.66
substitute(140) Parallel 0 0 0.55 0.52 1.69
substitute(150) Parallel 0 0 0.55 0.52 1.70
substitute(160) Parallel 0 0 0.55 0.52 1.72
substitute(170) Parallel 0 0 0.55 0.52 1.73
substitute(180) Parallel 0 0 0.55 0.52 1.74
substitute(190) Parallel 0 0 0.55 0.52 1.75
substitute(200) Parallel 0 0 0.55 0.52 1.76

fib(1) Sequential 0 0 0.51 0.51 1.0
fib(2) Sequential 0 0 0.55 0.54 0.64
fib(3) Sequential 0 0 0.55 0.53 0.81
fib(4) Parallel 0 0 0.55 0.51 1.04
fib(5) Parallel 1 0 0.55 0.51 1.0
fib(6) Parallel 1 0 0.55 0.5 1.0
fib(7) Parallel 1 0 0.55 0.5 1.0
fib(8) Parallel 1 0 0.55 0.5 1.0
fib(9) Parallel 1 0 0.55 0.5 1.0
fib(10) Parallel 1 0 0.55 0.5 1.0
fib(11) Parallel 1 0 0.55 0.5 1.0
fib(12) Parallel 1 0 0.55 0.5 1.0
fib(13) Parallel 1 0 0.55 0.5 1.0
fib(14) Parallel 1 0 0.55 0.5 1.0
fib(15) Parallel 1 0 0.55 0.5 1.0
fib(16) Parallel 1 0 0.55 0.5 1.0
fib(17) Parallel 1 0 0.55 0.5 1.0
fib(18) Parallel 1 0 0.55 0.5 1.0

hanoi(1) Sequential 0 0 0.51 0.51 1.0
hanoi(2) Sequential 0 0 0.55 0.93 1.0
hanoi(3) Sequential 0 0 0.55 0.7 1.0
hanoi(4) Sequential 0 0 0.55 0.59 1.0
hanoi(5) Sequential 0 0 0.55 0.54 0.94
hanoi(6) Parallel 0 0 0.55 0.51 1.28
hanoi(7) Parallel 1 0 0.55 0.5 1.0
hanoi(8) Parallel 1 0 0.55 0.5 1.0
hanoi(9) Parallel 1 0 0.55 0.5 1.0
hanoi(10) Parallel 1 0 0.55 0.5 1.0
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Table 7.7: (continued).

Execution Optimal
Classical Logic Fuzzy Logic

Speedup(Greater) (Rather greater)
Classical Fuzzy 2

PARc SEQc PAR2 SEQ2

hanoi(11) Parallel 1 0 0.55 0.5 1.0
hanoi(12) Parallel 1 0 0.55 0.5 1.0
hanoi(13) Parallel 1 0 0.55 0.5 1.0
hanoi(14) Parallel 1 0 0.55 0.5 1.0

Conditions:
PARc is Tu

p ≤ T l
s

SEQc is Tu
s ≤ T l

p

PAR2 is max(gt(T l
s/Tu

p ),gt(T l
s/T l

p),gt(Tu
s /Tu

p ))

SEQ2 is max(gt(T l
p/Tu

s ),gt(T l
p/T l

s),gt(Tu
p/Tu

s ))

Tables 7.6 and 7.7 show the results. First columns show the same information than in
Table 7.4 although in this tableProgram refers to the real benchmarks, which are described
in Table 7.5. Note that in this case, in order to determine theoptimal execution, both sequential
and parallel execution times have been measured directly over the platform. The last row shows
thespeedupof our fuzzy approach with respect to the conservative approach: Speedup= Tc

Tf
,

whereTc is the time of the selected execution using the conservativeapproach andTf is the time
of the selected execution using our fuzzy approach. A value bigger than one ofspeedupmeans
that the execution selected with our approach is faster thanthe one selected by the conservative
one.

We can distinguish two main set of cases: on one handqsortandsubstitute, and on the other
handfib andhanoi. In the first set theupper boundon the sequential execution time is different
from thelower boundwhereas in the second set, both are equal. This is understandable, since
the execution time for the first set of cases not only depends on the length of the input list, but
also on the values of its elements. Thus, for a given list length, there may be different execution
times, depending on the actual values of the lists with such length. However, in the second set
of cases, the execution time only depends on the size (using the integer value metric) of the
input argument, and all executions for the same input data size take the same execution time.
Our approach improves provides better average case behaviour than the conservative approach
in both cases.

Figures 7.9, 7.10, 7.11 and 7.12 show, in detail, how both approaches work in particular
cases in a graphical way. Input has the same meaning that in previous Tables (7.6 and 7.7) and
execution times are presented in milliseconds. In all the figures the more conservative approach
is calledClassicand represented with a stars line while our approach is called Fuzzyand its
symbol is a white square.
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Figure 7.9: Qsort selected executions.
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Figure 7.10: Substitute selected executions.
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Figures 7.11 and 7.12 show how forfibonacciandhanoi both approaches have nearly the
same behavior for all the tested cases. In fact, at this scale, the scarce cases in which there
is a slowdown (see Tables (7.6 and 7.7) can not be appreciated. Figures 7.9 and 7.10 show
the behavior forqsort andsubstitute. It is clear how the times of the executions selected by
our approach are smaller (except in a small number of cases that is insignificant), and how the
difference between both approaches becomes bigger when input data sizes increase.

48



Figure 7.11: Fibonacci selected executions.
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Figure 7.12: Hanoi selected executions.
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Chapter 8

Conclusions

We have applied fuzzy logic to the program optimization field, in particular, to automatic gran-
ularity control in parallel/distributed computing. We have derived fuzzy conditions for deciding
whether to execute some tasks in parallel or sequentially, using information about the cost of
tasks and parallel execution overheads. We have developed aprofiling tool that can be also
applied to the program optimization field.

We have performed an experimental assessment of the fuzzy conditions and identified the
ones that have the best average case behavior. We have also compared our proposed fuzzy
conditions with existing sufficient (conservative) ones for performing granularity control. Our
experiments showed that the proposed fuzzy conditions result in better program optimizations
(on average) than the conservative conditions. The conservative approach ensures that executi-
on decisions will never result in a slowdown, but loses some parallelizations opportunities (and
thus, no speedup is obtained). In contrast, the fuzzy approach makes a better use of the para-
llel resources and although fuzzy conditions can produce slowdown for some executions, the
whole computation benefits from some speedup on average (always preserving correctness). Of
course, the fuzzy approach is applicable in scenarios wherethe no slowdown property is not
needed, as for example video games, text processors, compilers, etc.

Experiments performed with real programs (and real execution times) have demonstrated
that our approach can be successfully applied in practice. We intend to perform a more rigorous
and broad assessment or our approach, by applying it to largereal life programs and using fully
automatic tools for estimating execution times.

Although a lot of work still remains to be done, the preliminary results are very encouraging
and we believe that it is possible to exploit all the potential offered by multicore systems by
applying fuzzy logic to automatic program parallelizationtechniques.
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