FACULTAD DE INFORMATICA

—*z’,“ UNIVERSIDAD POLITECNICA DE MADRID .
N POLITECNICA

e
i, =] D I
£ v

TESIS DE MASTER
MASTER EUROPEO EN COMPUTACION LOGICA

FUZZY GRANULARITY CONTROLIN
PARALLEL/DISTRIBUTED COMPUTING

AUTOR: M2 TERESA TRIGO DE LA VEGA
TUTOR: PEDRO LOPEZ GARCIA

SEPTIEMBRE, 2010

Index

1.1 FuzzyLogic Programming i

2.2 Automatic Parallelization Tools and Techniques

Parallel Computing and Multicores. Main Concepts
Automatic Parallelization Tools
Performance

From Manual to Automatic Parallelization.
Automatic Parallelization Basis e
Automatic Parallelization Techniques
Automatic Parallelization of Logic Programs

Declarative Aspects of Multicore Programming

Unsolved Problems
Current Research Topics

Automatic Parallelization Tools

The Granularity Control Problem

The Conservative (Safe) Approach

The Fuzzy Approach

5.1 Decision Making

Abstract

Resumen

1 Introduction

2 State of the Art

2.1 Multicores

2.1.1
2.1.2
2.1.3
2.2.1
2.2.2
2.2.3
2.2.4
2.25
2.2.6
2.2.7
2.2.8

3

4

5

6

Estimating Execution Times
6.1 Theproblem.
6.2 Execution Time Estimation

6.3 Profiling
6.3.1 Definitions

6.3.2 Using Profiling Techniques in Granularity Control

7 Experimental Results

7.1 Prototype Implementation

7.2 Heuristic Comparison
7.3 Selected Fuzzy Model
7.4 Decisions Progression

8 Conclusions

Bibliography

7.5 Experiments with Real Programs

32
32
33
39
40
41

50

51

List of Figures

5.1 Fuzzysetsforgreater. e 24
6.1 Code and CiaoPP executions time estimationforhanoi. 26
6.2 Qsortcode. e e 27
6.3 Profiling example. Source code, call-graph and cosecetll-graph. 29
6.4 Anexample of profileroutput. L L. 30
7.1 Program plexecutiontimes. 35
7.2 Programp2executiontimes., 35
7.3 Program p3 executiontimes. 36
7.4 Program p4 executiontimes.o . 36
7.5 Program p5executiontimes. o0 36
7.6 Program p6 executiontimes. 37
7.7 Progression of executions of the example programp3. 40
7.8 Bestand worst schedulings in a parallel system. 43
7.9 Qsortselectedexecutions. e 48
7.10 Substitute selected executions. e e 48
7.11 Fibonacci selected executions. e 49
7.12 Hanoi selected executions. e 49

List of Tables

6.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7

Qsort sequential execution time equations estimated..

Aggregation operators executiontime.
Benchmarks -times in microseconds-.
Selected executions using the whole setofrules.
Progression of decisions using the fuzzy set quitegreat.
Realbenchmarks.
Selected executions for real programs using the fuzz@siee Greater. . . .
Selected executions for real programs using the fuzzgather Greater.

Abstract

Automatic parallelization has become a mainstream rekdapic for different reasons. For
example, multicore architectures, which are now presesn @vlaptops, have awakened an in-
terest in software tools that can exploit the computing pavi@arallel processors. Distributed
and (multi)agent systems also benefit from techniques ais tor deciding in which locations
should processes be run to make a better use of the avakaiolerces. Any decision on whether
to execute some processes in parallel or sequentially mgste correctness (i.e., the parallel
execution obtains the same results as the sequential)lsoutas to take into account a number
of practical overheads, such as those associated withdes&son, possible migration of tasks
to remote processors, the associated communication aashetc. Due to these overheads and
if the granularity of parallel tasks, i.e., the “work available” underneatérnt) is too small, it
may happen that the costs are larger than the benefits inpdugiliel execution. Thus, the aim
of granularity control is to change parallel execution tqusmtial execution or vice-versa based
on some conditions related to grain size and overheads.idmitrk, we have applied fuzzy
logic to automatic granularity control in parallel/distnted computing and proposed fuzzy con-
ditions for deciding whether to execute some given tasksanalfel or sequentially. We have
compared our proposed fuzzy conditions with existing sieffic(conservative) conditions. Our
experiments showed that the proposed fuzzy conditiondtri@smore efficient executions on
average than the conservative conditions. Finally, we ldeveloped a profiler for estimating
the granularity (i.e. execution time) of tasks, which isalseful for other applications such as
performance verification and debugging.

Keywords: Fuzzy Logic Application, Parallel Computing, Automatic &lélization, Gran-
ularity Control, Scheduling, Complexity Analysis.

This work will be published at the International ConferenceRuzzy Computation (ICFC)
in 2010 [112].

Resumen

La paralelizacion automatica se ha convertido en un temawastigacion fundamental por
diferentes razones. Entre ellas, las arquitectaoraliicore que actualmente se encuentran in-
cluso en ordenadores portatiles, han despertado el irdar@srramientasoftwarecapaces de
explotar el poder computacional de los procesadores pasald.os sistemas distribuidos y
multiagente también obtienen beneficio de las técnicas naimégntas para la decision de en
gué ubicacion debe ejecutarse cada proceso con el fin de délavejor uso de los recursos
disponibles. Cualquier decision acerca de si ejecutar akyprocesos en paralelo o secuencial-
mente debe garantizar correcion (es decir, la ejecucicaegdarobtiene los mismos resultados
gue la secuencial) pero ademas debe tener en cuenta untoogaverheadscomo los asoci-
ados a la creacion de tareas, posible migracion de tareasesadores remotos, comunicacion,
etc. Debido a esos overheads sgfanularidadde las tareas paralelas, es decir, el trabajo que
suponen, es muy pequeifia, puede ocurrir que los costes sgaremgue los beneficios de la
ejecucion paralela. Por ello el objetivo del control de gftandad es cambiar la ejecucion de
secuencial a paralela (o viceversa) basandose en corelicietacionadas con el tamarfio del
grano de las tareas y los overheads del sistema. En estpthamaos aplicado l6gica borrosa
al control de granularidad automatico en computacion pkv@istribuida y hemos propuesto
condiciones para decidir si un grupo de tareas debe sertafecaecuencialmente o en par-
alelo. Asimismo, hemos comparado nuestro enfoque borrogmupsto en este trabajo con
condiciones suficientes (conservadoras) existentes. dsadtados experimentales demuestran
gue las nuevas condiciones basadas en légica borrosaiseltejecuciones mas eficientes
(en media) que las conservadoras. Finalmente, hemos olésdoruna herramienta de perfi-
lado (profiler) para estimar la granularidad (el tiempo de ejecucién) gdedeeas, que es a su
vez de utilidad en otras aplicaciones como verificacion ddireiento y depuracion.

Palabras clave: Aplicacién de la l6gica borrosa, computacion paralelaalgdizacion au-
tomatica, planificacion, andlisis de complejidad.

Este trabajo sera publicado en la conferencia internakibrtarnational Conference on Fuzzy
Computation (ICFC)” de 2010 [112].

Chapter 1

Introduction

Automatic parallelization is nowadays of great interestsihighly parallel processors, which
were previously only considered in high performance comguhave steadily made their way
into mainstream computing. Currently, even standard desétal laptop machines include
multicore chips with up to twelve cores and the tendencyas tiese figures will consistently
grow in the foreseeable future. Thus, there is an oppostuaibuild much faster and even-
tually much better software by producing parallel programparallelizing existing ones, and
to exploit these new multicore architectures. Performhig by hand will inevitably lead to a
decrease in productivity. An ideal alternative is automagarallelization. There are however
some important theoretical and practical issues to be adédein automatic parallelization.
Two of them are: (i) preserving correctness (i.e., ensuhatjthe parallel execution obtains the
same results as the sequential one) and (ii) (theoretitf&ipacy (i.e., ensuring that the amount
of work performed by executing some tasks in parallel is meater than the one obtained by
executing the tasks sequentially, or at least, there isovedgiwn). Solutions to these problems
have already been proposed, such as [28, 62]. However, sobsgons assume an idealized
execution environment in which a number of practical ovadsesuch as those associated with
task creation, possible migration of tasks to remote pirss the associated communication
overheads, etc, are ignored. Due to these overheads anelgfahularity of parallel tasks,
I.e., the “work available” underneath them, is too smaliméy happen that the costs of parallel
execution are larger than its benefits.

In order to take these practical issues into account, sontbaue have been proposed
whereby the granularity of parallel tasks and their numlvercantrolled. The aim ofran-
ularity control is to change parallel execution to sequential executionic@-versa based on
some conditions related to grain size and overheads. Gratyutontrol has been studied in the
context of traditional [72, 84], functional [65, 66] and logrrogramming [69, 33, 123, 79].

Taking all these theoretical and practical issues into @aetcan interesting goal in auto-
matic parallelization is thus to ensure that the parallelcexion will not take more time than
the sequential one. In general, this condition cannot berchémed before executing the task
involved, while granularity control should intuitively learried out ahead of time. Thus, we are
forced to use approximations. One clear alternative is &atuate a (simple) sufficient condition

to ensure that the parallel execution will not take more tihan the sequential one. This was
the approach developed in [79]. It has the advantage of mgstitat whenever a given group
of tasks are executed in parallel, there will be no slowdowith wespect to their sequential
execution.

However, the sufficient conditions can be very conservatigme situations and lead to
some tasks being executed sequentially even when theitgd@eecution would take less time.
Although not producing slowdown, this causes a loss in pizdtion opportunities, and thus,
no speedup is obtained. An alternative is to give up streiyuring the no slowdown condition
in all parallel executions and to use some conditions thes Bagood average case behavior. It
Is in this point where fuzzy logic can be successfully agpleeevaluate “fuzzy” conditions that,
although can entail eventual slowdowns in some executgpeedup the whole computation on
average (always preserving correctness).

Itis remarkable the originality of this approach that itimgtfor the expressiveness of fuzzy
logic to improve the decision making in the field of prograntimfization and, in particular, in
automatic program parallelization, including granujadgontrol.

1.1 Fuzzy Logic Programming

Fuzzy logic has been a very fertile area during the last yegpecially in the theoretical side,
but also from the practical point of view, with the developrhef many fuzzy approaches. The
ones developed in logic programming are specially intargdiy their simplicity. The fuzzy
logic programming systems replace their inference meshansLD-resolution, with a fuzzy
variant that is able to handle partial truth. Most of thes#teys implement the fuzzy resolution
introduced by Lee in [74]: the Prolog-Elf system [68], the EFrolog system [14] and the
F-Prolog language [76].

One of the most promising fuzzy tools for Prolog was the “RuPzolog” system [45].
Fuzzy Prolog adds fuzziness to a Prolog compiler using @)Rgstead of implementing a new
fuzzy resolution method, as other former fuzzy Prologs ticegresents intervals as constraints
over real numbers aragregation operatoras operations with these constraints, so it uses the
Prolog built-in inference mechanism to handle the concépadial truth.

RFuzzy

Besides the advantages of Fuzzy Prolog [113, 45], its trutlevepresentation based on con-
straints is too general, which makes it complex to be intggat by regular users. That was the
reason for implementing a simpler variant that was calledz2¥(06, 90, 97, 109]. In RFuzzy,
the truth value is represented by a simple real number.
RFuzzy is implemented as a Ciao Prolog [63] package becausd@iby offers the possi-
bility of dealing with a higher order compilation throughetimplementation of Ciao packages.
The compilation process of a RFuzzy program has two pre-datign steps: (1) the

RFuzzy program is translated into CL#) constraints by means of the RFuzzy package and
(2) the program with constraints is translated into ISO &yddy using the CLPX) package.

As the motivation of RFuzzy was providing a tool for practiegplication, it was loaded
with many nice features that represent an advantage wiffeceé$o previous fuzzy tools to
model real problems. That is why we have chosen RFuzzy fomtpéeimentation of our pro-
totype in this work.

Chapter 2

State of the Art

2.1 Multicores

2.1.1 Parallel Computing and Multicores. Main Concepts

Parallel computers are classified in two main groups: thuesause only one machine (e.g., mul-
ticore and multiprocessor computers) and those that use tian one machine (e.qg., distributed
computers, clusters, massive parallel processing (MRREpadS). A multicore processor is
the one that contains more than one execution unit in onlyabrg while a multiprocessor
has more than one processor (which, at the same time, cantbaibgle or multicore). In a
distributed memory computer the processing elements aneected by a network. A cluster
is a group of coupled computers that work together closeMP#® is a single computer with
many networked processors and grid computing makes usawjuwers communicating over
the Internet.

Executing a task in parallel involves splitting it into sabks, executing these subtasks in
different cores and obtaining the outcome of the main taskdmbining the outcomes of the
subtasks. In a multicore system, one of the cores is in cladrggsembling the final result [40].
Sometimes, the operating system acts as the scheduler islmatharge of the task assignment.
The main problems in parallel execution are the existenaeeaf sources of bugs (like race
conditions) due to the execution of more than one operatidtheasame time (concurrendéy)
and the associated overheads (due to communication andreyization operations) that limit
performance. Cache memories have an important impact ir thesrheads. They can be
shared by all the cores or independent (each core its caShajed cache memories are faster
but they require a method for controlling concurrent acees#hile the independent ones only
need a synchronization protocol.

There are several levels of parallel computiBgt-level parallelism which is based on in-
creasing the word size, reduces the number of instructioaisthe processor must execute to

LIn this field concurrent and parallel are not interchangeaBbncurrent refers to the execution of the threads
interleaved onto a single hardware resource while in a jghetecution we find more than one thread running
simultaneously on different hardware resources [7].

complete an operation. Longer instructions can specifgtatels of more Arithmetic and Logic
Units (ALUs) and thus more operations can be completed ih ebark cycle. Very-Large-
Scale-Integration (VLSI) chips can take advantage of tpg f parallelisminstruction level
parallelismconsists on re-ordering the instructions, that are goinget@xecuted by the pro-
cessor, without changing the result of their execution. &amstructions depend on the result
of previous operations. Without instruction level pardl® no instruction is executed until
these dependencies have been solved. Neverthelessy fudtractions that do not depend on
previous results could be executed in the waiting time. Téréopmance is improved by putting
them first (i.e., re-ordering the instructions flow). Pipelil processors (RISC) increase its per-
formance by re-ordering the instruction flow. Superesgalacessors combine pipelining with
the ability of issuing more than one instruction at the same tinstruction parallelism inherent
in program loops is calledata parallelism(loop iterations over different data), i.e., the same
instruction with different data is executed at the same ti@a the other hanthsk-level par-
allelismrefers to executing in parallel different operations witffiedent data. Multiprocessors
(and multicores) are able to exploit this type of parallalis

Traditionally computers architects have focused theworédfin increasing the performance
by using parallelization techniques. Hardware structengdoited bit, instruction and data
parallelism. This optimizations were made at hardward lgitbout any software modification.
As software has become more complex, applications havaieecapable of running multiple
tasks at the same time. In order to take advantage of thidlgdesta (at thread-level) both,
hardware and software, must be adapted [7].

The evolution of the architectures has been characterigeduitiplying by two the num-
ber of transistors that can be placed on an integrated tirgpproximately every two years
(Moore’s Law). Furthermore the clock frequency of these ponents has been multiplied by
two every two years. So every two years we have the double mpoaents working twice
faster in the same space. The power consumption and theegeddeat are the two main prob-
lems that have limited the development of more powerful essors. On one hand, the gate
that switches the electricity on and off gets thinner as @asistor gets smaller and the flow of
electrons through this element could not be blocked. Thestiergy consumption becomes
unboundable. On the other hand, transistors switch fastéreaclock frequency is increased
and thus also consume more power and also generate moreé@gat [

Multicore systems are a good solution to this problem. Hawiore than one core working
at low frequencies we can continue improving the produgtiwihile the heat dissipation and
the energy consumption can be controlled.

The evolution steps from single cores to multicores can bedan [7]. They can be summa-
rized as follows: the natural next approach seemed to bepradessor systems. Nevertheless
the cost of adding more processors was unaffordable. Sanitiied solution was to use addi-
tional logical processorsymultaneous multithreadingy SMT (Hyper-Threading Technology
is Intel’s implementation). With this technology, both ogiing system and applications sched-
ule multiple threads as if there were several physical maoes. Then they are executed in

parallel over logical processors (but in the end sequéntakr the only physical one). Multi-
core processors (two or more cores in a single processrpahltiprocessing or CMP) are the
next logical transition. The main difference between SM@ &MP is that in the later, threads
are executed in a real parallel way, i.e., at the same time different harware elements. A
multicore is a single processor in which each core is peeceas a logical processor with all
the associated resources [117] (while in SMT, resourceslamezd). From the programmer
point of view, multicores (and also multiprocessors) agegame than SMT, i.e., programs use
the physical cores as they use the logical processors offiet&chnology.

2.1.2 Automatic Parallelization Tools

CMPs are composed by small processors whose ability of findstguction-level parallelism
is also reduced. Thus, these processors depend on thredgérallelism [53]. Operating
systems are already designed to take advantage of theserctatectures [117], nevertheless
traditional applications are not enough to take advantégleem, because they have only one
execution thread. So it is necessary to develop progranismatre than one execution thread
or to parallelize the existing ones. Both tasks are complekmnne to errors and increase
the complexity inherent to the software development pracésitomatic parallelization (see
Section 2.2) seems to be a good solution.

2.1.3 Performance

In order to obtain the best performance, resources mustdztasmuch as possible. Never-
theless, in any case for N processors a speédfpN is never going to be achieved, i.e., the
parallel execution will never be N times faster than the segjal one.
There is an upper bound on the usefulness of adding mordgdamedcution units that depends
on the portion of the program that can be parallelized. Tdusis gathered in Amhdal’s law [7].
This bound is set up %WhereSis the non-parallelizable fraction of the programq&< 100).
In a system withn processing units the speedup will be equagglfw] or more precisely
m whereH(n) is the overhead associated to the parallel execution {{Sgkrating
System overhead due to threads creation plus the overhead dommunication and synchro-
nization between threads).
Gustafson’s law reinforces Amdahl’s law by taking into asebtwo facts: that the problem
size is not fixed and that the size of the sequential sectipartis on the number of processors.
In this case the speedup is equaRe- n(P — 1) whereP is the parallelizable fraction of the
program and is the number of processing units.

Previous laws reveal one of the main drawbacks of multicombsch is their lower serial
performance. Single-thread applications are only exelcutene core and thus they can not
take advantage of the multicore architecture. As cores irulticore architecture are slower

Sequential Execution Time
Parallel Execution Time

2Speedup=

than the ones in single core machines the execution of aesthgtad application will take

more in this new architectures.

Up to now we have assumed that every core in a multicore psocgsovides the same per-
formance but this is true only in symmetric multicore prams. In an asymmetric multicore
processor, each core can provide a different performanaecdild solve the main disadvan-
tage of multicores having a faster core for executing shtiglead applications, while at the
same time, with slower cores we can keep the energy consumatid the heat dissipation
under control. In practice, without considering asymmatrthe design of the applications its
benefits can not be exploited [12]. That means that, in géneithout adapting the design of
the applications, symmetric multicores are expected t@beeletter. It has been shown [12]
that the more asymmetry the more negative effects. In getierampacts on performance are
that: it becomes less predictable (although unpredictaloibuld be eliminated with the oper-

ating system kernel and applications asymmetry-awareuadér certain conditions they can
increase the performance of the serial fragments of code.

Performance Factors

Parallel execution performance can be affected by the garballector (it can interfere in the
execution of the program), scheduling, locking, synchration, cache thrashing (allocation
overhead), Operating System (identified as the primarycgoaf instability), work imbalanc-
ing among threads buffer spaces (that are warmed up in thatérations so they must be
discarded) and the number of processors in the system [12].

Work imbalancing among threads is an issue that must be takemaccount. The scheduler
must keep the cores busy as much as possible and with sinat&rl@eads. In order to avoid the
effects of having big tasks they can be divided into sma#ieks [114].

In any case performance scalability is limited. Lower clé@quencies combined with pipelin-
ing result in higher performance. Overheads due to the ¢xecof sequential portions of code
can be compensated by executing the workloads long eno&gh [9

The hierarchy of memory of multicores is one of the element&/lich they present the
bigger number of particularities. For the best performatheefollowing properties are im-
portant [98]: fast cache-to-cache communication, larget 8hared capacity, fast L2 to core
latency and fair cache resource sharing.

In multicores, the higher clock frequency the higher mend@sand (on and off-chip) and the
higher on-chip cache size the longer average memory aceé&ss d

A shared L2 cache is able to eliminate data replication (goavides a larger cache capaci-
ty) but, as a main drawback, it suffers longer hit latency eoihpetitions of its resources are
possible.

Memory latency and bandwidth (among processor, memorwangt file system and disk)
can be examined using benchmarks. The cache-to-cacheydtaghly relevant in workload
performance) and the speedup can be determined using tleepsanedure. In this last case it
is needed to run single thread and multithread benchmarks.

9

2.2 Automatic Parallelization Tools and Techniques

2.2.1 From Manual to Automatic Parallelization

As said before, traditional software is not enough for tglkadvantage of parallel architectures
because it only has one execution thread. Thus it is negessdevelop programs with more
than one execution thread working concurrently (or to peliaé the existing ones). Both tasks
are complex and prone to errors and increase the own cormptithe software development.
One of the main problems of the programmers is that it is maatrto understand how parallel
programs behave in multicore systems. VisAndOr, a tool fenalizing parallel execution of
logic programs was presented in [24]. This tool is usefulusers in order to realize about the
behavior of the programs in a graphical way. Many automadi@lielization tools also allow
to visualize parallel executions [75, 105, 116, 6, 36, 1].edétools solve some of the main
problems so automatic parallelization seems to be a gooti@ol

2.2.2 Automatic Parallelization Basis

A parallel execution must provide the same results thandfaential one and also reduce (or at
least not increase) the amount of work performed, i.e., l@sorrect and efficient [79]. There
are two types of parallelism in logic programming. In Anddkelism some goals of a given
body clause are executed at the same time. In Or-Paralleifierent clauses, i.e., branches of
the derivation tree, are explored simultaneously. We areded on And-Parallelism, in concrete
on Independent And-Parallelism (IAP). In this kind of pébém the goals are executed in
parallel when they are strictly independent, i.e., the etien of a goal does not affect to the
others. This feature can be determined before the exec{gta@ompile-time). Or-Parallelism
is out of the scope of this work.

In automatic parallelization it is necessary to take intwoamt the granularity of the parallel
tasks [33, 79] (the work available under them). Overheadstduhe work involved in task
creation, scheduling, communication, synchronizatido, @ppear in parallel execution sce-
narios. These overheads can cause that parallel execakes more time than the sequential
one (which is known as slowdown. The extra amount of work depends directly on the num-
ber of processing units whereas one program execution dgrtake advantage of the same
number of processing units that its number of threads (Aglktw). In general terms every
program has two parts: the one that is parallelizable andieethat is not. The code of the
non-parallelizable part contains dependent calculatidihe longest chain of these operations
is known as theeritical path. The execution time of the critical path is a lower bound oa th
parallel execution time.

Methods for estimating the granularity of a goal at compiteet can be found in [33] and in
[79]. The distributed random-access model (DRAM) preseitdg83] considers costs related
to tasks communication and tries to reduce the overheattdeia executing in parallel. In this
model there is an interprocessor communication (besidesatbesses to the RAM memory)

10

with an associated cost. The main goal is to minimize thewti@ttime instead of maximizing
the usage of processing resources.

2.2.3 Automatic Parallelization Techniques

One of the main problems of automatic parallelization i¢ th@ need complex program ana-
lysis. Program proofs are helpful in order to validate setjaéprograms and also in order to
parallelize them. An algorithm that given a proven prograamsforms its proof obtaining a
proven parallelized and optimized program is presente@ii [
Abstract Interpretation can be also used to validate progr@n general it can be used to com-
pute properties at compile-time). It can be applied in caggsogram specialization in which
the input values are unknown as, for example, program gdizgtion. The &-Prolog [101]
compiler uses abstract multiple specialization to perfautomatic parallelization. CiaoPP,
the preprocessor of the Ciao multiparadigm programmingesystiso uses modular, incremen-
tal abstract interpretation to perform high-level progrmamsformations (including automatic
parallelization) [60]. Ciao is the successor of &-Prolog][57

It is usual to translate the program into an intermediateasgnmtation as, for example, Di-
rected Acyclic Graph (DAG), in order to detect parallelisii§, 78, 121, 105, 6, 119, 108, 60].
First the program is translated into its DAG and then progteansformations are performed
over it. The method presented in [107] selects the scheglaligorithm that best assign the
DAG to the target parallel machine. It is based on five deniwels taking into account the
characteristics of the DAG of a C program. The levels are: mamication cost, execution
time, level to task ratio, granularity and number of prooessEach level suggests a subset of
algorithms according to the characteristics of the DAG.Ttiee intersection of these subsets
is evaluated and the optimal scheduling algorithm is setkect

Other approaches infer parallelism by detecting piecesagfiams that access disjoint parts
of the heap, i.e., that are independent [41, 48, 55].

2.2.4 Automatic Parallelization of Logic Programs

The parallelism present in the execution of logic prograarsize of two classes: explicit (mes-
sage passing, threads, ...) or implicit (Or and And-pdiait§ [31]. In both cases it can be
exploited in a simple way [46]. In fact, work in parallel legprogramming (LP) began at the
same time than the work in LP [47]. Its high level nature, thespnce of non-determinism,
its referential transparency and other features allow tainlspeedup by executing in parallel.
Automatic parallelization can be performed without anyrustervention. Formal methods can
be relatively easily used to prove correctness and effigiefiche performed transformation
(due to the semantics of logic languages). Logic languages heen extended with explicit
constructs for concurrency (or by modifying the semanticthe language) in oder to allow
manual parallelization. This extensions complements thenaatic parallelization process.
Due to its properties, automatic parallelization of logiograms can be considered to paral-

11

lelize automatically programs written in other languaggdsranslating them into logic pro-
grams. In Parafrase-2 [99] the source program is transiatedn intermediate (logic) repre-
sentation which is parallelized instead of the source pnogrCiaoPP [64] techniques [94, 93,
92] can analyze several languages via an Intermediate Repation (IR) based on blocks that
are easier to manipulate. Each block is similar to a Hornsgdaln the same way this clausular
representation could be scheduled in a set of parallel amakesgial tasks. So translating any
source language into this clausular form we would be able&tyae any source language in a
simple way. The problem is reduced to the translation of thece language into the clausular
form.

The &-Prolog system is described in [59]. It is a practicapiementation of a parallel execu-
tion model for Prolog. It exploits strict and non-strict pelism and supports both, manual
and automatic parallelization. It takes advantage of theegsdized version of Independent
And-Parallelism (IAP) presented in [61]. A full descriptiof the framework for the auto-
matic parallelization of logic programs for restrictedagyevel IAP can be found in [91]. &-
ACE [100, 47] is another system based on the logic programmpangdigm (SICStus Prolog)
than exploits all sources of parallelism.

2.2.5 Declarative Aspects of Multicore Programming

Declarative (functional, logic, constraint-based, elanguages specify what the program does
without entering in details of how it is done. Due to this mésature they allow to write
simpler parallel programs and their parallelism can beatgd in a easier way (with respect
to imperative ones). Since the mid Noughties (2006) moshefrésults are presented in the
Declarative Aspects of Multicore Programming (DAMP).

Some parallel programming languages have been presergedlePHaskell [80, 52] (pH)
is implicitly parallel and combines the declarative exemutmodel with the (Eager) Haskell
syntax and types. Partially computed data are held in the.Hesamain problem is the cost asso-
ciated with non-strictness. More efforts on implementiegted data parallelism have obtained
excellent speedups [25]. Despite of the efforts, no higloperance benefits were obtained
in all the cases. In order to improve speedups one optionébange the way in which users
compose parallel programs by inserting higher-order #lyoic schemas in the program [8].
When Haskell synchronization primitives are used it is neagsto take into account that not
all of them have the same efficiency [110].

NESL [16] was developed in the early Nineties and revisiteBAMP’06. It allows to describe

parallel algorithms that can be analyzed at runtime. Onéehtain targets of our work is to
do as much analysis tasks as possible at compile time. [Respihe drawback of not being
analyzable at compile time it has the following advantagesan be programmed, analyzed
and debugged in a simple way. It has a cost semantics thattallestimate the amount of work
that a program performs without taking into account implatagon details as the number of
processors. It is true that a model that takes into accouatlsi®f the system is not going to

12

be portable but it is going to be more precise. CiaoPP [64}sdlkis problem in the following
way: when a technique depends on a system detalil it is olotaimeng the installation process.
As C is awide used language in the industry, it is analyzedemew context in which parallel
computing is emerging as the most natural way of computgB88h Declarative languages
seems to be more promising (faster on multicores and phsall@xpressed easily) but much
important code is written in imperative languages as C. Tlsédmution is to perform the easi-
est software translation to a declarative language. Jekglfunctional programming language
that can be easily translated to/from C. This solution alltasaintain some code in C.

The Hume Programming Language [52] is for concurrent asymaius multithreading safety-
critical systems. It presents a high level of parallelisrd amnimizes communication and syn-
chronization operations.

Current and future LP programs and systems have been revidite 31, 57]. In general,
parallel LP systems exploit parallelism from symbolic apgions by keeping the control in
LP. Advances in LP have been made separately and they wowldrbeined. At the same time
implementation technologies should be simplified in oraesimplify further developments.
Taking into account the overheads by performing granyladntrol (using the results of cost
analysis) [57, 58] seems to be a very promising approachusecaf its no slowdown guar-
antee. Prolog has become more popular since the late Nesghfihat is why some Prolog
systems have been adapted in order to support principlesooking in Parallel Logic Pro-
gramming [32]. The parallelism of other types of applicaidnumerical, etc.) can be also
exploited.

Solutions to the problems introduced by the new executiodehiself have also being
presented. They must be solved in a safe way [56]. New prxiesthave been presented in
order to guarantee mutual exclusion in critical sectionsiding the use of locks [43]. With
this solution the control continue being declarative anaditacks are avoided. Of course, the
sequential meaning is preserved when new primitives amk Iested transactions are the ones
with worst cost [43, 81, 25].

Automatic parallelization [58] requires automatic defmetof independent tasks which, at
the same time, requests a definition of independence. Irgeihe term independence is the
condition that guarantee correctness and efficiency. Gaetyucontrol optimizations (like sim-
plifying comparisons of cost equations and stopping grantylcontrol) have been shown very
promising. Using events we can obtain flexible parallel ekeas but in a more difficult way
than if we use threads [104]. In order to have the best of eartdwhe two approaches have
been combined by abstracting both elements [122]. Therdifteparts of the programs are
written using the more suitable mechanisms and then bothrafied.

Threads and events are not the only mechanisms that can thelndact the use of threads is
prone to errors and bugs. An alternative could be an apprbaséd on using sieves [77]. It
has a simpler semantics, so reasoning about that progragasier. Another advantage is its
scalability, suitable for a bigger number of processors.

Transactions are an alternative that makes concurrentgroging simpler, improves scalabil-

13

ity and increases performance. If there is a situation irctvithe transaction can not continue
in a correct way then its effects are revoked and the traloseist aborted and, when possible,
it will be re-executed. Nevertheless this can cause a slawvdor long-living transactions.
Memorization allow re-executing when is possible (whenacpdure is retried with the same
argument then it is not evaluated again). So memorizati@maguees that communication ac-
tions performed in the aborted execution can be satisfiechwiestransactions is retried [124].
In general the synchronization of parallel computationstine guaranteed. Join patterns were
a way for threads and asynchronous distributed computatidhey have been improved [49]
in order to provide synchronization in more complex corg€riessage-passing, token-passing,
etc.).

One of the main problems of performing static analysis atfta¥time is that input values
are unknown. Although performing as much work as possibt®atpile time reduces the run-
time overhead, sometimes it is better to postpone the decisitil execution time. This is the
case of some self-adjusting-computation techniques [B%]ng these techniques the parallel
execution is updated depending on the program data. A chanogagation algorithm is used.
More semantics [9] have been developed for other progragnfaimguages in order to allow
formal verification.

As we have pointed out before, concurrent operations redoé definition of some memory
management rules in order to guarantee correct resultsai@éee languages usually deal with
simple big structures while functional or object-orientadguages tend to work with small
complex elements. New heap managers need to be developedh&ins based on reference
counting with impact quantification has been already preski2].

Speculative execution is also a technique for detectingliedism in sequential programs. It
is well understood when the computation is relatively se{ptad and write in known locations)
but it becomes more complicated in cases with multithrelaalsdcommunicate and synchronize
a lot. Using (n-way) barriers [125] expressions are guar@edil barriers are satisfied) and
speculative execution becomes easier to understand.

More approaches started to appear in the late Noughtiedbfectworiented languages like
Java. A novel approach that uses traces as units of pazatieln has been presented [20].
This work shows that the approach is viable and increasgsattiermance (by comparing with
parallelizations performed by hand).

2.2.6 Unsolved Problems

Despite of the work that has been developed during the lastdds in automatic paralleliza-
tion, problems with nested loops (frequent in scientific andineering applications) are still
unsolved. Some efforts towards an effective automaticligéization system use a polyhe-
dral model for data dependencies and program transformbtue been presented [17]. This
model provides a powerful abstraction on such nested longsaems to be a solution to the
problem ofgcc and many vendor compilers. Nested data parallelism have traditionally

14

implemented by vectorizing program transformations algothis approach modifies the data
representation. Traditional compilers (like NESL [16])ct@ized the whole program includ-
ing parts that rely on non-vectorizable features. Subs#qrantributions [26] only vectorizes
suitable program parts and then vectorized and non-veetbrnodules are integrated.

In scientific and engineering applications stencil compors are also usual, but automatic
parallelization must deal also with irregular programs. @oens that are able to transform
sequential code from stencil applications into optimizedafiel code have been developed
previously. Nevertheless, loop parallelization withogpgsial techniques originates load imbal-
ancing. The approach presented in [71] is for automaticligdization of stencil codes that
explicitly addresses the issue of load-balanced execwutidiles. Its effectiveness has been
shown. On the other hand irregular programs [73] origindfferént kinds of computations
that must be executed in parallel with complex depender@éseen iterations. The system
Galois [73] (described in more detail below) deals sucegigsivith this problems.

Work in [29] is for automatic parallelization on symmetricased-memory multiproces-
sors (SMPs). It supports unbalanced processor loads atidges$ parallel sections. Due to
its features the speedup is a real multiplicative over lyigigtimized uniprocessor execution
times. The presented solution is for FORTRAN 90 and High perémce FORTRAN. The
compiler has been obtained by modifying the back end of thalssmpiler obtaining, in the
end, a platform-independent solution. The conceptualdatians of other automatic scheme
for Fortran programs are detailed in [10]. The main goal esdhtection of DO loops suitable
to execute in parallel because iterations (and executioes) are similar.

2.2.7 Current Research Topics

In the mid Noughties some of the current research topics wersented in a seminar [11].
The main launched ideas were: (a) to compile one functiohetiime aggccdoes. This will
allow to exploit task level parallelism available in a siaghread with independent tasks due
to the possibility of executing hundreds of executions petecin machines with unbounded
resources. (b) Convergent scheduling. A new framework thedlgies and facilitates the appli-
cation of constraints and scheduling heuristics. It alsmlpces better schedules. (c) Including
tasks granularity in tasks graphs. This can be achievedjas@raph Rewrite System (GRS).
It merges tasks into larger ones and ensures that the pamatton of the task graph is not
increasing by reducing cost of the communication. (d) Dyiecasuheduling for load balancing.
Instead of traditionally information about processor wogkls obtained via profiling. This ap-
proach uses new scheduling strategies that take into acegstem irregularities that can be
predictable. (e) Scheduling in spiral as it is done in digitgnal processing (DSP). Spiral takes
high-performance implementations for the domain of DS#gforms and translates them into
a search problem for the best implementation of a given fisamstion on a given computer
system. (f) Load balancing strategies for irregular patallvide and conquer computations
as quicksort: re-pivoting, serialization of subproblems,(g) Lookahead scheduling for re-

15

configurable data-parallel applications. (h) Genericvgaffé pipelining at the assembly level.
Useful in cases of constraints on time and space like in egdxedystems. (i) Telescoping
languages build compile-time support for user-definedrabsbns and for their optimization.

() Scheduling for heterogeneous systems and grid envieosn Extends previous work (for
homogeneous systems) so that the same program can be atsieekisn heterogeneous sys-
tems and grid environment (dynamic changing executionrenment). It is also needed to
take into account the communication networks and the dysranaf the platforms. (k) Data

re-distribution selected for multiprocessor tasks (M«ggor the scheduling. It plays an im-
portant role that must be taken into account. (I) Schediegarchical malleable task graphs,
I.e. tasks that can be executed on several processors.

In the last 10 years most of the work in parallel job schedyulas been done in sys-
tems with large homogeneous architectures and workloaasa@bed by both computation and
communication-intensive applications. Some of the nomabvations presented on the Job
Scheduling Strategies for Parallel Processing (JSSPPafd&lescribed below. (a) Scheduling
for a mixed workload. The workload has become highly vagaimd more complex. First of
all itis needed to understand the workload in order to satisf new conflicting scheduling re-
guirements (for example processes competing over resosutker from degraded performance
when co-scheduled or, on the contrary, collaborating meegsuffer it when not co-scheduled).
For dealing with mixed workload it is also needed to deal witiorities. (b) Power consump-
tion is lower in multicores than in single core processord @ums also limits the performance.
Tradeoffs between performance and power consumption neuatiressed. This fact will be-
come more important when the number of cores becomes biggethe granularity of the
tasks becomes finer. (c) Asymmetric cores heterogeneigonme cases having more than one
core with the same features is not enough in order to solvertitdem. Automatic parallelizers
must be take this fact into account. In general every chamtfesisystem architecture introduces
parallelization constraints. (d) Grids are a better optmexecute workloads with little paral-
lelism. This explains in part why they are becoming more papiNevertheless job scheduling
in grids is more difficult than in single parallel machineséese it is needed to perform both
the machine allocation and the scheduling itself. When tleewion is performed over a grid
its properties (heterogeneity, service levels agreemeataurity, ...) determine the execution.
(e) Virtualization or running multiple operating systenvieanments in one or more nodes at
the same time. The scheduling must depend on the operattgnsyn which it is going to be
executed. Research in this field has started recently.

In summary, the considerations that have bigger influenqeaoallel scheduling are: work-
load, heterogeneity, scheduling for power, security, eaonand metrics.

2.2.8 Automatic Parallelization Tools

Some of the automatic parallelization tools [30] that hgweeared since the early Nineties are
described below.

16

Hypertool [118] (1990) receives a partitioned C program @tdrns the partitions allocated to
the available processors (with the needed synchronizptiamtives) besides their correspond-
ing explanations. Its algorithm is based on performingraations and on the critical path
method. If the user is not satisfied with the result the partistrategy can be redefined (using
the information and the explanations provided by the taorder to improve the results.
Parafrase-2 [99, 3] also appeared in 1990. It takes a seguprdgram (written in C or FOR-
TRAN, for example) and returns a set of tasks and code for stingdthem. It also shows
compiler information to the user (through its GUI). The ibfanguage is transformed into an
intermediate representation. The compiler performs syimdependence and interprocedural
analysis followed by auto-scheduling at coarse-grainllef&ecode generator is used for each
language desired as output.

OREGAMI [78] (1991) uses a parallel program in OCCAM, C*, Dinoy,Ra or FORTRAN
as input. Instead of generating target code this tool géeeisome mapping directives. Its
purpose is to map parallel computations to message-pgsaratiel architectures by exploiting
regularity. The tool allows the user to guide and to evaltfaenapping decisions.

PYRROS [121, 4] was presented in 1992. It takes a task grapitsadsociated sequential C
code and performs a static scheduling plus a parallel C cod@éssage-passing architectures
(with synchronization primitives).

Parallax [75] (1993) also needs a task graph as input (agent &n estimation of -or real- task
execution times and the target machine as an interconndciimlogy graph). It returns Gantt
chart schedules, speedup graphs and processor and coratiamigse/efficiency charts. It also
displays an animation of the simulated running program.

Starting the mid Nineties (1994) three tools were preseRARSA [105], DF [39] and Comp-
Sys HPF & FM [37]. The first one receives a sequential SISALgprm and displays the
expected runtime behavior of the scheduled program at destipie. The input program is
translated into a DAG with execution delays for the targettesy specification. The second
one makes use of theilaments packagevhich is a library of C code that runs on several
distributed-memory machines. It takes a sequential C codegaves the resulting applica-
tion code written in C plus Filaments calls for distributdtheed memory systems to the user.
The last one works with High Performance FORTRAN and FORTRANrbtpdures obtain-
ing synchronous SPMD code, structured as alternating phafdecal computation and global
communications. HPF and FM procedures are clearly disisiga and are compiled with the
HPF or FM compiler respectively. The communication is dieté@nd generated using pattern
matching. Processes do not need to synchronize duringdoogbutations.

Paradigm [15, 2] (1995) also works with FORTRAN. In concrétikes a sequential F77/HPF
program and constructs an explicit message-passing wefBi@ input program is transformed
into an intermediate representation and the data paiititiols made automatically. This tool
exploits both data and functional parallelism while ovesl@omputation and communication.
It contains a generic library interface.

ProcSimity [116] is also from 1995 but it works with independluser job streams and returns

17

trace files, the selected algorithm and system (and jobppadnce metrics. It supports both
stochastic independent user job streams and communiqaditerns for the actual parallel ap-
plications, apart from selected allocation and schedwdiggrithms on a set of architectures.
In 1996 appeared RIPS [106] and MARS [27]. RIPS takes a set of tastk returns a schedul-
ing of them. It schedules incoming tasks incrementally amulines the advantages of static
and dynamic scheduling. MARS receives a sequential F77 audlesdurns a machine specific
parallel FORTRAN code. It uses loop generation techniquesuyding Parameter Integer Pro-
gramming -PIP-). The input program is translated into anogated syntax tree. The system
operates on the linear algebraic representation of ther@mog

The next tools date back of 1997. Then the activity on dewetpputomatic parallelization
tools slowed down until the year 2000. PROMIS [21] works witith C and FORTRAN. The
output consists in code for a simulated shared-memory prattessor wherein each proces-
sor is a pipelined VLIW. This multisource and multitargetadkelizing compiler allows loop
level and instruction level parallelization techniques. SIF [6] takes a sequential program
that manipulates, obtaining parallel code generated Hydiveg appropriate library procedures
from a standard package. Users can compile the resultetlgbgmagram to generate native
parallel machine code on the target machine for testing.ifjn& program is transformed into
a task graph. The algorithm selects the best schedulindhéofeénerated ones) in which the
communication primitives are inserted automatically. tdery to improve the results users can
repeat the whole process.

The activity on developing automatic parallelization ®oxemerges in the year 2000 with tools
like Hypertool/2 and SADS&DBSADS. Hypertool/2 [119] dealglwgraphs. It takes a CDAG
generated at compile-time, expanded incrementally intd@ Bnd returns its parallel schedul-
ing (in a way that can be incrementally executed at runtifibg execution model is incremen-
tal and it uses the HPMCP (Horizontal Parallel Modified Critieath) algorithm in which each
processor applies the MCP algorithm to its partition. SADEIADS [50] transforms a task
tree into a set of scheduled tasks. The process comprisgbédancing and memory locality.
ParAgent [70] (2002) requires a F77 serial program thasfaams into a parallel F77 program
with primitives for message passing that are portable toidiged memory platforms. It has an
interactive GUI to help the user. The same interface can &e tessee the synchronization/ex-
change points and the communication patterns of the pbapatigram.

The next year, 2003, is the one of PETSc, SUIF and Cronus/1.SPET3] solves a set of
partial differential equations (PDES) providing its numatl solution. It consists on a variety
of libraries. Each of them manipulates a particular familyobjects and the operations that
can be performed on them. SUIF [44] receives a main prograftettadriver) and applies a
series of transformations on it. Eventually writes out thi@imation. Cronus/1 [111] takes a
serial program and the number of processors as input. iin®the resulted parallel code (for
the given number of processors) written in C containing foretroutines forSDSand MPI
primitives for data communication.

ASKALON [36, 1] (2005) is a tool set for supporting the dev@teent of parallel and distributed

18

(grid) applications. It is composed by 4 tools, each one amsagd by remote grid services that
are shared. It allows visualization of performance and wutiata diagrams both online and
post-mortem. It supports mostly FORTRAN90 based distrithated parallel programs. In the
future, ASKALON tools will also support Java programs witie tnovel developed Java-based
programming paradigm (for performance-oriented paraltel distributed computing).
AspectJ [5] is an extension to the Java programming langtegenables clean modularization
of aspects that are difficult to implement in a modular wayhsag error checking and handling,
synchronization and performance optimizations. A loom jpoint model allows AspectJ to
intervene directly in loops (direct parallelization of fmowithout refactoring the code) and thus
parallelization was presented in 2006 [54]. The model itam a control-flow analysis at
the bytecode level in order to avoid the ambiguities at the@®level. The extension which
provides AspectJ with a loop join point is called LoopsAJ.
PLuTo [19]: A Practical and Fully Automatic Polyhedral Pragh Optimization system was
presented in 2007. It performs source-to-source trangfhoms in order to optimize programs
by obtaining parallelism and locality at the same time. Ksato a polyhedral model it deals
properly with nested loops. It is done by performing absioacon them [17]. The transformed
code is then reordered in order to improve cache localityarnghrallelized loops. This system
improves the result by using realistic cost functions anddaybining parallelism and locality.
It accepts C, Fortran and any high-level language whose pdhgh domains can be obtained.
It also generates OpenMP from C code. More tool informatias wresented in 2008 [18].
An extensible implementation was presented in MLton in 2[@8]. It works with a DAG of
the sequential program. It deals with one graph for all thesfiide parallel executions in which
the nodes are the units of work and the edges are sequenp@hdencies. The scheduling
(which is a traversal) of a program is determined by a systelioyp The system includes three
scheduling polices. A cost semantics allows the users tenstahd the impact of the different
schedule policies without taking into account other impdetation details.
Galois [73] (2008) is a system that supports parallel exesutf irregular (management of
pointer-based data structures like trees and graphs thefearays and matrices) applications.
Its main features are an iterators set for expressing vatrklised data parallelism and a run-
time system that performs optimistic parallelization adgh iterators. The policy is to assign an
iteration to a core when it needs work to do (although it isapitmal in all the cases). It works
with client code(code with well-understood sequential semantics) in whliata parallelism is
implicit and returns a set of iterations assigned to a setadfgssors. It has mechanisms for de-
tecting and solving conflicts (concurrent accesses to angipgect for more than one iteration).
The assignment is performed balancing the load of each gsoce

We have seen how, in general, different tools use the sam®aqip like, for example,
management of DAGs [107, 105, 119, 108] or polyhedral motié) 18]. Furthermore each
approach uses more or less the same mechanisms. In realttesnmeans that the same
algorithms are particularly implemented by each tool thakes use of them. The problem
is that each tool has its own intermediate representatidrttaalgorithms are designed to be

19

applied to them. As a result developers are re-implemergiggrithms every time that they
construct a new optimizing compiler. A new method [34] siglgeo separate the algorithms
from the intermediate representation in order to be ablewse their implementation for any
platform. This new component technology seems to be vemgiog (even more due to the
popularity that grids are reaching).

In general terms the programming languages that are s@gploytautomatic parallelization
tools are C [118, 99, 78, 121, 39, 21, 19], FORTRAN [99, 78, &{,27, 21, 70, 36, 19] and
Java [36]° [5].

3In the future.

20

Chapter 3

The Granularity Control Problem

We start by discussing the basic issues to be addressedapproach to granularity control, in
terms of the generic execution model described in [79]. hi@aar, we discuss how conditions
for deciding between parallel and sequential executionbeadevised. We consider a generic
execution model: le§ = gi,...,gn be a task such that subtasfs. .., gy are candidates for
parallel executionTs represents the cost (execution time) of the sequentialuéxecof g and

T, represents the (sequential) cost of the execution of skigtas

There can be many different ways to execgtia parallel, involving different choices of
scheduling, load balancing, etc., each having its own e@sqution time). To simplify the
discussion, we will assume th§ represents in some way all of the possible costs. More con-
cretely, Tp < Ts should be understood a3%s'is greater or equal than any possible valueTot

In a first approximation, we assume that the points of pdizditon of g are fixed. We also
assume, for simplicity, and without loss of generalitytthatests — such as, perhaps, “indepen-
dence” tests [28, 62] — other than those related to gramyleontrol are necessary. Thus, the
purpose of granularity control will be to determine, basedome conditions, whether tiges
are going to be executed in parallel or sequentially. In gdiis, the objective is to improve the
ratio between the parallel and sequential execution times.

Performing an accurate granularity control at compileetisidifficult since most of the in-
formation needed, as for example, input data size, is ondywkrat run-time. An useful strategy
can be to do as much work as possible at compile-time and qgustpome final decisions to
run-time. This can be achieved by generating at compile-tbost functions which estimate
task costs as a function of input data sizes, which are thalu&ed at run-time when such
sizes are known. Then, after comparing costs of parallelssggiential executions, it can be
determined which of these types of executions must be paé&dr This scheme was proposed
by [33] in the context of logic programs and by [103] in the ot of functional programs. An
interesting goal is to ensure thB < Ts. In general, this condition cannot be determined before
executingg, while granularity control should intuitively be carriedtamhead of time. Thus, we
are forced to use approximations. The way in which thesecequpations can be performed, is
the subject of the two following sections.

21

Chapter 4

The Conservative (Safe) Approach

The approach proposed in [79] consists on using safe appatians, i.e., evaluating a (sim-
ple) sufficient condition to ensure that the parallel executvill not take more time than the
sequential one. Ensuriniy < Ts corresponds to the case where the action taken when the cor
dition holds is to run in parallel, i.e., to a philosophy w&asks are executed sequentially unless
parallel execution can be shown to be faster. We call thisdlfeizing a sequential program.”
The converse approach, “sequentializing a parallel pragreorresponds to the case where the
objective is to detect whether the sufficient conditigr< Tp holds.

Parallelizing a Sequential Program In order to derive a sufficient condition for the inequal-
ity Tp, < Ts, we obtain upper bounds for its left-hand-side and lowembsifor its right-hand-
side, i.e., a sufficient condition faf, < Tsis Tj' < T, whereTg denotes an upper bound on
Tp andTSI a lower bound ofs. We will use the superscriptsandu to denote lower and upper
bounds respectively throughout the paper. The discusdiontehow these upper and lower
bounds on the sequential and parallel execution times castbeated are outside the scope of
this paper. We refer the reader to [86] and [79] for a full dgdion of compile-time analysis
that obtain lower and upper bounds on sequential and pleakeution times respectively as
functions of input data sizes.

Sequentializing a Parallel Program Assume now that we want to detect whiei< Ty, holds,

because we have a parallel program and want to profit fronopeithg some sequentializations.
In this case, a sufficient condition fdg < Tpis T < T},

22

Chapter 5
The Fuzzy Approach

In some scenarios, it is not allowed to perform paralleicz#t if it does not ensure any speedup.
However, in most environments it is justified to sacrificecgdincy in some cases in order to
improve the speedup on average or in the majority of the cd$as our approach is to give up
strictly ensuring thal, < T holds and to use some relaxed heuristics using fuzzy lodectab
detect favorable cases.

We use as a decision criteria the formila< Ts. It is easy to transform the formula in
1 <Ts/T, or the equivalenTs/Tp, > 1. We are implicitly using a crisp criteria in the sense that
we use an operator whose truth values are defined mathettyatica

If we move to classical logic and want to represent the camdif parallelizing or not a set
of subtasks using a logic predicate, we could defjremter/2as a predicate of two arguments
that is successful if the first one is greater than the secoedaad false otherwise. We could
check the conditiogreater(TE/Tp,1) or rename this condition to a logic predicagesater1/1 of
arity 1 that compares its argument with 1, succeeds if iteatgr than 1 and fails otherwise (i.e.,
greaterl(1.8succeeds, wheregseater1(0.8¥ails). With the boolean condition represented by
the predicatgreaterl/1lit is easy to follow the conservative approach presented ap@n 4.

For a gentle intuition to fuzzy logic, we continue talkingoaib this predicate. We can see
that the concept of being “greater than” is very strict in $e@se that some cases in which the
value is close to 1 are going to be rejected. Let us introdueeoncept of truth value. Till now
we have been using two truth valuese andfalse or 1 and 0. But if we introduce levels of truth
we could for example provide for a logic predicate internageliruth values in between O and 1.
We have defined other predicates similagteaterl/1that are more flexible in their semantics.
They arequite_greater/landrather_greater/1 Their definition is clearer in Figure 5.1 (and
described in Section 7.1). With this set of predicates weganeg to define a fuzzy framework
for the experimental possibilities of using a fuzzy criéeio take decisions about parallelization
of tasks.

23

Figure 5.1: Fuzzy sets for greater.

1

0.8

0.6

0.4

0.2

0
20 -15 10 5

Ratio Ratio Ratio
Greater Quite greater Rather greater

5 10 15 20 20 -15 10 5 5 10 15 20 20 -i5 10 5 5 10 15 20

5.1 Decision Making

Instead of deciding about the goodness of the parallatizadepending on a crisp condition
as in the conservative approach, in this paper we are gointat@ the decision attending to a
couple of certainty factorsSEQ the certainty factor that is going to represent the prefez€its
truth value) for executing the sequential variant of a paograndPAR the certainty factor that
IS going to represent the preference (its truth value) fecakng the parallel variant of such
program. Both certainty factors are real numb&EQ PARe [0,1]. The way of assigning a
value to each certainty factor is not uniqgue. We can defirferéifit fuzzy heuristics for their
calculation. In Section 7.2 we are going to compare a setavhtto choose (in Section 7.3) our
selected model.

Once the values ddEQandPARhave been already assignedPAR > SEQthen our task
scheduling prototype executes the parallel variant of ttognam, otherwise it executes the
sequential one.

24

Chapter 6

Estimating Execution Times

We have seen (Chapter 3) that we need to know execution timpefffmrming granularity con-
trol. Since parallel execution times can be derived fronmstguential ones [79] (see Chapter 7)
in this section we are focused on obtaining sequential éxacttimes at compile and run time
(Sections 6.2 and 6.3).

6.1 The problem

Our problem is to estimate safe (upper and lower) bounds enution time. Note that this
problem is a particularization of the one of estimating sifor any resource consumption.
Safe bounds notion means thaRifs an amount of resource consumption &drespectively
RY) its lower (resp. upper) bound, theR: < R< R,

6.2 Execution Time Estimation

Static analysis techniques [87, 88, 95] have been tradilipmused for obtaining (upper and
lower) bounds on resource usag#aoPP[22], the advanced program development framework
in which our work has been developed, is able to obtain boondhe usage that a program
makes of different resources. As far as we know this analgsédso the most precise one
because it islata sensitive.e., bounds are functions or inputs data sizes.

An example of sequential execution time estimation [86]ahpile time using CiaoPP is
shown in Figure 6.1. In this case, for brevity, we only predée upper boundub) on the
execution time. Lower bounds are written in the same fornudtréplacingub by Ib. The
assertion

+ cost (ub, exectime, 13101. 358*(exp(2,int(N)-1)*int(N))
- 7828. 215000000001*exp(2, i nt (N) - 1) +3864. 789*exp(2,int (N))-7729.578).

must be read as follows: an upper bound on the sequentialigxedime ofhanoi(N,A,B,C,)
(where N is the number of disks and A, B and C are the rods) ialéqu13101358« N 2N—1 —

25

Figure 6.1: Code and CiaoPP executions time estimation for hanoi.

hanoi (1,A, _1,C[mv(A Q]) :- !.
hanoi (N,A B,CM -
NLis N1,
hanoi (N1, A, C, B, M),
hanoi (N1, B, A, C, M2) ,
concat (ML, [nv(A O], T),
concat(T,M, M .

.- true pred hanoi (N,A B,CM
: (num(N), elemA), elemB), elen{C), var(M)
=> (num(N), elemA), elemB), elem(C), rtil(M,
size(ub, N int(N)), size(ub,A 0), size(ub,B,0),
size(ub, C 0), size(ub,Mexp(2,int(N)-1.0))
+ cost (ub, exectinme, 13101. 358*(exp(2,int(N)-1)*int(N))
- 7828. 215000000001*exp(2, i nt (N)- 1) +3864. 789*exp(2,i nt (N))-7729. 578).

Table 6.1: Qsort sequential execution time equations estimated.

Benchmark| Data Size | Approx. | Cost Function
_ T 0.013+ 5.46e— 5% x+ 0.0034+ x log(X)
Qsort(L,) | x=length(L) 454 -0,016+x+ 0.00140:

7828215« 2N-1 4 3864789« 2N — 7729578. For more information on the assertion language
in which the output of the analysis is written we refer thedezao [94].

CiaoPP’s sequential execution time estimation at compie nly deals with a subset of
Ciao Prolog while real programs can be written using the wlkele So, in order to test our
approach, another option is to obtain the equations in apase process. The stages are
profiling and linear regression respectively. In the pnofjlphase, sequential execution times
are measured directly over the platform using best and wagust values (if possible) for lower
and upper bounds respectively. For examplegiwort(see code in Figure 6.2) we have to deal
with the degree of order of the elements. The worst case & avhose elements are already
ordered while the best case is a uniformly distributed lfstamdom elements. In the second
phase, the linear cost model of the execution time is obdaiRer example, for gqsort the model
for the lower bound i#\x 1+ Bx X +Cx* X xlog(X) whereX is the length of the input list and
A, B and Care the parameters of the cost model that we want to estilviatgels are obtained
with CiaoPP, performing execution steps consumption analysis [95lenTthe parameters of
the average cost models are estimated using the Ciao codtmodsle [85]. Table 6.1 shows
both upper and lower bounds on the execution time of gsort.

Furthermore, there are more techniques for estimatingesel execution times at run-
time. They can be directly measured or, if we need more infdion, they can be profiled (see

26

Figure 6.2: Qsort code.

gsort([1.[1).
gsort([X L], R :-

partition(L, X L1,L2),
gsort(L2, R2),
gsort (L1, R1),
append(RL, [X|R2],R).

partition([], _,[].[])-
partition([E/R,C[E| Leftl],Right) :-

E<C !,
partition(R C Leftl, Right).

partition([E R, C Left,[E[Ri ghtl]) :-

E>=C
partition(R C Left, Rightl).

append([], X X).
append([H X],Y,[H Z]) :- append(XY,Z2).

Section 6.3).

6.3 Profiling

We have developed a profiling [89] that can be used for esigaixecution times. It is a
profiling method for logic programs that owns the followireafures:

1.

The accumulated execution time of program proceduregtioverlap, which means that
the total resource usage of a program can be computed in aosttiopal way, by adding
the resource usage of all its procedures.

It gives separate accumulated resource usage informaftengiven procedure depending
on where it is called from.

It is tightly integrated in a program development framewwhich incorporates in a uni-
form way run-time checking, static verification, unit-iegt debugging, and optimiza-
tion. Our profiler is used for run-time checking as well asudghng purposes whitin this
framework.

. It includes a (configurable) automatic process for detgqtrocedures that are perfor-

mance bottlenecks following several heuristics.

. The user can configure the best trade-off between ovedrghdollected information.

27

Other features of our profiler are the combination of timefipbng with count profiling,
which has proved to be non-trivial [82], and the modulantyich allows specifying which
modules should be instrumented for profiling. These andrathginal features of our profiler
are possible thanks to the usage of thao’s module system and the automatic code transfor-
mation throughCi ao’s semantic packages.

The profiling technique is based on associating (eithemaatizally or manually) cost cen-
ters to certain program elements, such as procedures ericallause bodies. The concept of
cost centers inspired in the one defined by Morgan [102] in the contextiattional languages.
However, we have adapted this concept to deal with the urf@ptares of logic programming.
A cost centeffor us is a place in a program (typically a predicate or aditér a body clause)
where data about computational events are accumulatedieazzlthe place is reached by the
program execution control flow. In our current implememtatboth predicates and literals can
be marked as cost centers. We introduce a special cost ceateedremainder cost center
(denotedrcc), used for accumulating data about events not correspgridiany defined cost
center.

In order to deal with the control flow of Prolog, we adopt th@Xmodel” of Lawrence
Byrd [23], where predicates (procedures) are seen as “blacddj in the usual way. However,
due to backtracking, the simple call/return view of progedus not enough, and we have a
“4-port box view” instead. Thus, givengoal (i.e., a unique, run-time call to a predicate), there
are four ports (events) in Prolog execution: ¢B)I goal (start to execute goal), (2kit goal
(succeed in producing a solution to goal), 8)logoal (attempt to find an alternative solution
to goal), and (4¥ail goal (exit with failure, if no further solutions to goal areuind). Thus,
there are two ports for “entering” the bogall andredo), and two ports for “leaving” it €xit
andfail).

6.3.1 Definitions

Lets see some definitions of elements of our profiler:

Definition 1 (Calls relation) We define theallsrelation between predicates in a program as
follows: p calls g, written p~ q, if and only if a literal with predicate symbol q appears irth
body of a clause defining p. Let* denote the reflexive transitive closure-ef

Definition 2 (Cost center set)Given a program P to be profiled, the cost center set for P
(denoted @), is the set & = {p| p is a predicate of P marked as a cost ceftefrcc}, where
rcc is the remainder cost center.

Definition 3 (Cost center call-graph)Thecost center call-grapbf a program P (denoted &
is the graph defined by the set of nodesaDd the set of edges Such that(p,q) € V iff:

1. pis notthe remainder cost center (i.e.;Agcc), q= rcc, p~* g and there is no € Cp
such that p~*t and t~*q, or

28

2. p=rcc, and for all s being a literal of the program P, we have: (13 if se€ Cp, (2)
g =r if exist r € Cp such that s~* r and there is no & Cp such that s~*t and t~»*r,
or (3) g= rcc otherwise.

Definition 4 (Edge cumulated resource usageach edgdc,d) € Gp has a label, Ry, which
represents the cumulated resource usage of the computsitice cost center d was entered
from cost center c, until a new cost center is entered or tmepzdation finishes. This allows to
give separate resource usage information of a given proeedepending on where it is called
from.

Figure 6.3: Profiling example. Source code, call-graph and cost segatigraph.

:— cost_center p/0, q/0. @@@ @9
. O

q, r.

Example 1. Figure 6.3 illustrates how the resource usage informat®atored in the edges of
the cost center call-graph during the profiling process. Ay d@me in this process, only one
edge is active. When execution enters a predicate which rsedidis a cost center, the resource
usage monitored so far is stored in the active edge, and atldge is activated. Consider
the programp, and its call-graph and cost center call-graph. Before stay the program
execution, the active edge(s cc, rcc). Then,p is called. Since is defined as a cost
center, the resource usage monitored so far is cumulatelderactive edgér cc, rcc), the
counters are reset, and the active edge changé¢s ttc, p) . Then, the execution of the body
of p starts by executing. Sinceq is not defined as a cost center, the active edge remains the
same as beford,r cc, p) (and the counters are not reset). When the executianfifishes,

r is called. Since is defined as a cost center, the resource usage monitored sociamulated

in the active edgér cc, p), the counters are reset, and the active edge changgep.tor) .
Sincer is the last call in the definition qf, when the execution offinishes, the resource usage
monitored far is cumulated iop, r) and the program execution finishes.

Definition 5 (Cumulated resource usage of a cost cenfEne cumulated resource usage in a
given cost center d (denote@)Rs the cumulated resource usage of the computation singte co
center d is reached, until a new cost center is entered or dmeputation finishes.

Lemma 1. The cumulated resource usage in a given cost center is theoftine cumulated
resource usages of its incident edgeg:=R}y (¢ 9)ev Red-

Proof. Trivial, based on the cumulated resource usage of an edge. O

Lemma 2. The total resource usage of a program P, denotgdslthe addition of the cumulated
resource usage of all its cost centerss R y ., Re

29

Proof. Trivial, by the definition of cumulated resource usage of st center.]

Note that our definition of cumulated resource of a cost ceisteompositional, in the
sense that the total resource usage of a set predicates campated by adding the cumulated
resource usage of each predicate. This doesn’t happersitidnal profilers, where the cumu-
lated execution time of different predicates may overlaqa #@us, the addition of them may be
greater than their actual resource usage).

6.3.2 Using Profiling Techniques in Granularity Control

For understanding how profiling techniques can be sucdgsfpplied to granularity control it
is useful to know how they provide they results.

Figure 6.4: An example of profiler output.

- module(_, _, [profiler]).
:- cost_center p1/0, p2/0, g/1.

pl:-
a(a),
a(b),

s 40.57% 20.17%
02 28.08% @
q(a).
main :- 7.92% 3.26%
p1,
(7
q(a).
q(b).

a(e).
a(d).

Example 2. Figure 6.4 contains a program with a set of predicates defireedast centers and
the output of the profiler after profiling the goaldain The measured resource is execution time.
The percentage of execution time that each cost centerqgaedconsumes can be obtained by
adding the labels of all its incident edges. Thals p2 and q consumes 40.57%, 7.92% and
23.43% respectively.

In this case we have simplified the output. Our profiling taglrns the number of ticks
(or units of time) accumulated in each cost edge (accordirthe procedure descibed in Sec-
tion 6.3.1). But the same information is clearer with perages.

Other works for improving automatic parallelization aresé@ on balancing the load of
the parallel executions (see Performance Factors in $e2tb.3). It has been shown that
these techniques reduce the execution time of the paratigtpms [115, 120]. Load balancing
schedulings guarantee the best usage of the execution units

30

Lets see a simple example of how we can apply our profilingad lealancing at compile-
time. As we have explained in Chapter 3 there are many wayseaiuixg a task in parallel.
Let g be a task an@ = 91,092,093 where all theg;’s are candidates for parallel execution. In a
system with 3 (or more) process@€an be executed in the following ways (note that the par-
allel execution operator is represente®3s g1, 092,93 / 01&02& 03 / 91& (92, 93) / 92& (91&03)

[93& (91, 92).

The load of executing two tasksy sequentially is equal toost(x) + cost(y) while if they are
executed in parallel is equal toax costx), cost(y)) wherecostt) is the cost of executing the
taskt.

Automatic parallelization will transforrg = g1, 92,93 into g = g1& g2& g3. This transformation
reduces the execution time gffrom Ty, + Tg, + Tg, to maxTg,, Tg,, Tg;) and keeps the 3 pro-
cessors busy this amount of time. Remember Thagfers to the sequential execution time of
the taski.

Assume that eacly, is executed in the processand suppose thdl, = Tg, + Tg,. This means
that the processors 2 and 3 will be idlg andTg, units of time respectively.

The factTg, = Tg, + Tg, can be derived from the information provided by our profilEnen if
the automatic parallelization process takes it into act@unill transform g = g1, 92, g3 into

g = 01&(0g2,93). This transformation reduces the execution timeg dfom Ty, + Ty, + Tg, t0
max Ty, (Tg, + Tg,)) Which in this case is equal toaxTg,, Tg,, Tg,), i.€., it is the same execution
time than the one of the transformation performed withoofijang information. Nevertheless
this scheduling keeps only 2 processors busy this amouihef t

Thus taking into account profiling information in automgpiarallelization provides load
balancing scheduling that optimizes the usage of the eixecuhits which, at the same time,
increases the system performance.

31

Chapter 7

Experimental Results

We have developed a prototype (Section 7.1) of a fuzzy tds&dder based on the approach
described in Chapter 5. We have prepared a common framewaesttthe behavior of a set

of different heuristics (Section 7.2) and we have compaheuint also with the rules of the

conservative approach (Chapter 4) in order to be able totsttledest results (Section 7.3).
For a better understanding of these experiments, we présehbehavior of our prototype for a

progression of execution time data (Section 7.4). Finale/have tested our prototype with real
programs (Section 7.5) in order to demonstrate that it casubeessfully applied in practice.

7.1 Prototype Implementation

All the selection methods have been implemente€iao Prolog The classical logic rules
have been implemented using the CQPpackage and the fuzzy logic rules using Riizzy
package.

We have decided to use logic programming for implementingagyproach because of its sim-
plicity and for taking the advantage of some useful extersiprovided by theCiao Prolog
framework. In particularCiao Prologhas integrated static analysis techniques for obtaining
upper and lower bounds on execution times and a fuzzy lidfarthe calculation of certainty
factors.

As explained before, in our new approach to granularity mnthe decision of how to exe-
cute is based on the certainty factors associated to bajbheséal and parallel executions. So
that, first of all, we have to quantify such certainty and tbenide how to execute. The value
to the certainty factors is provided by fuzzy rules that de & combine fuzzy values using
aggregation operators. According to RFuzzy syntax:

SEQP,Vs) : op cond(V1),conck(Vz),...condh(Vh).
PARP,V,) : op cond,(V;),cond,(V,), ...cond,(Vy).

The truth valué/s represents how much executing the progrm a sequential way is ade-
guate.Vs is obtained by combining the truth values of the partial ¢oows V1, ..., V,, with the

32

aggregation operatarp. SymmetricallyV, represents how much adequate is the parallel exe-
cution for the progrant.
The bigger factor (SEQ or PAR) will point out the selected een (sequential or parallel).

In order to test the behavior of our method we have developsed @f conditions comparing
a group of values of execution time$T',TFQ“,TF‘)J,TS',TSm,TS”} by pairs. The comparison that
makes each condition is calculated with the fuzzy relatigmise _greaterandrather_greater

(represented in Figure 5.1), whose definitions are:
0 if X<-7
quite greate(X) =< XE if —-7<X<8
1 if X>8
0 if X<-14
rather_greateX) = ¢ %334 if —14<X <15
1 if X >15
We also use theelative harmonic differencean experimental relation described in [86] as fol-

lows:

harmonic dif f(X,Y) = (X-=Y)x (1/X+1/Y)/2.

We have selected this relation because it compares two msnba relative and symmetric
way, i.e.:

harmonic dif f (X,Y) = —harmonic dif f (Y, X).

The harmonic differenceonly works well for positive numbers, but as we are workinghwi
execution times, it is enough for our purposes.

These fuzzy relations can be redefined with different bouatteough in this prototype
we have only used the values 0, 7 and 14. These bounds havesdleeted according to the
magnitude of the execution times that we provide for the o (see Table 7.2) in order to
obtain significant results depending on the selected fueiagion.

7.2 Heuristic Comparison

In this section we discuss the evaluation of our prototyh different aggregation operators. A
suite of benchmarks to test the prototype has been develgaeth benchmark has been defined
in terms of its execution times (average, upper and lowentswn parallel and sequential exe-
cution times) in order to see if the new approach providegebetsults than the conservative
one. Obviously, in real cases, these values will need to tm&®d at compile-time using a
program analyzer like, for exampl€jaoPP[60, 86]. Table 7.2 contains the description of the
benchmarks. Each row shows the information of one prograne fifst column contains the
name of the program and, under it and between brackets, the athe figure which contains
the graphical representation of the benchmark. This figlwe/sito identify the optimal execu-
tion in a graphic way. The following columns show, (lower bound on sequential execution
time), T" (average sequential execution tim&y, (upper bound on sequential execution time),
Trl) (lower bound on parallel execution timé},m (average parallel execution time) aﬁﬂ(upper
bound on parallel execution time). Each execution time mgicroseconds.

33

Table 7.1: Aggregation operators execution time.

Aggregation Operator
max | dprod | dluka
pl 1.23| 1.11 | 1.04
p2 0.42| 051 | 0.45
p3 0.93| 0.88 | 0.88
p4 0.43| 051 | 0.45
pS 0.62| 0.76 | 0.63
p6 0.56| 0.62 | 0.57

| average [0.70| 0.73 | 0.67 |

Program

Figures 7.1, 7.2, 7.3, 7.4, 7.5 and 7.6 describe the ben#snraa graphic way. In horizontal
we find both (parallel and sequential) executions. In vattiee find, for each execution, the
interval comprised between its upper and lower bound onugiettime.

To make things simpler we have made the following trangfatia the conditions: the fuzzy
set is calledyt and therelative harmonic differenceelation is callechd.
The rules offuzzy logidor calculating each conditioRAR or SEQ (i € [1,2, 3], see Table 7.3)
have been composed using several aggregation operatatselngsults have shown that only
the t-conorms maxiay, Lukasiewicz @luka) and sumdprod) are correct (i.e. always suggest
the optimal execution) so we do not mention thelresthe results. We have seen how the three
t-conorms maxrfay, Lukasiewicz (luka) and sum dprod) have the same behavior. Thus,
in order to chose one of these aggregation operators, wefbbowed the criteria of the one
more efficiently evaluated. In this sense, we have measheseiecution time of evaluating the
conditionPAR, for each program using the three operators. These exeduties have been
obtained over an Intel platform (Intel Pentium 4 CPU 2.60GH%jey are shown in Table 7.1.
The first column shows the name of the program (see Table Ajree three next ones, the
aggregation operators. Each row shows the execution timmi@roseconds) of the evaluation
of the conditionPAR, (see Table 7.3) for the program using the three mentionexhtgps. The
last row contains, for each operator, an average value oexiénaution time of evaluating such
condition for all the programs. As we can see, the resultvang similar for the aggregation
operatorgnaxanddlukawhile for dprod are almost always bigger. Althoughaxis a little bit
less efficient (on average) thdfuka maxseems to be the best option due to its simplicity.

The whole set of proposed certainty factors and the resoiitedch approach are shown

in Table 7.3. They correspond to the case of parallelizingguential program (i.e., where
the action taken by default when there is no evidence towaxesuting is parallel is to execute
sequentially). The first column shows the name of the progfigme second column shows what
would be the right (optimal) decision about the type of executhat should be performed
(either parallel or sequential). The rest of the columnstaionthe results of evaluating the

1The rest of the tested operations aren, lukaandprod.

34

Table 7.2: Benchmarks -times in microseconds-.

Time I m u | m u
Program Ts | I8 | Ts | T | Too | Tp
pl 400 | 600 | 800 | 100 | 175| 250
(Figure 7.1)
p2 50 | 175| 300 | 350 | 550 | 750
(Figure 7.2)
p3 250 | 525| 800 | 300 | 375| 450
(Figure 7.3)
p4 50 | 150 | 250 | 100 | 325 | 550
(Figure 7.4)
p5 200 | 400 | 600 | 200 | 325| 450
(Figure 7.5)
p6 150 | 325| 500 | 100 | 275 | 450
(Figure 7.6)

Figure 7.1: Program pl execution times.

Time (ps)
oco |
soo |
700 |
600 |
500 |
a0p |
3o |
200 |

100 |

0

T"

™

Sequential
execution

Parallel
execution

Figure 7.2: Program p2 execution times.

Time (ps)
900 |
800 |
700 |
600 |
500 |
400 |
300 |
200 |
100 |

0

T=

|

T"

T™
1

Sequential
execution

35

Parallel
execution

Figure 7.3: Program p3 execution times.

Time (ps)
900 |
800 |
700 |
600 |

500

T
400 | *

300 | ™

200 | '

100 |

0

Sequential Parallel
execution execution

Figure 7.4: Program p4 execution times.

Time (ps)
900 |
800 |
700 |

600 |

500 |
a0p |
300 |
-

200 | .
100 | L r

T

. .

Sequential Parallel
execution execution

Figure 7.5: Program p5 execution times.

Time (ps)
900 |
800 |
700 |
600 |

500

T™
400 | *

300 |

200 | T

100 |

0

Sequential Parallel
execution execution

36

Figure 7.6: Program p6 execution times.

Time (ps)
000 |
800 |
700 |
600 |

500 |

400 |
300 |
200 |

100 |

0

Sequential Parallel
execution execution

conditions. Columns 3 and 4 contain the results obtainedgusia conservative approach,
while columns 5-18 contain the results obtained using ocop@sed conditions based on fuzzy
logic. Each column in the later group of columns correspdods different fuzzy condition.
The selected type of execution (using the process explamé&ection 5.1) are highlighted.
SEQ and PAR are the truth values obtained for the certainty factors ef sbquential and
parallel executions of the prograp. We have performed the experiments for two different
levels of flexibility usingquite greaterandrather_greaterrespectively. The decisions made
by using the fuzzy conditions are always the optimal onedtiese experiments. However,
the conservative approactigssical logig disagrees with the optimal ones in half of the cases.
For example, the conditiofy; < T! holds forp1 (see Figure 7.1). Thus, the parallel execution
of plis more efficient than the sequential one. In this case, bwltdnservative approach
(classical logi¢ and thefuzzy logicapproach agree in that the executionpdfshould be pa-
rallel. The converse conditiom{' < T|c|>) holds for progranp2 (see Figure 7.2), and thus, the
optimal action is executing it sequentially. In this cadepdoth approaches agree in that the
execution ofp2 should be parallel.

For programs 3-6, the classical logic truth valuBaR. and SEQ) are always zero, which
means that the suggested type of executioseiguentiaffor all of these programs (i.e., the
default type of execution). However, from Figures 7.3, 7.8,and 7.6, we can see that in some
cases the optimal decision is to execute these programsaligla

For example, consider progrgm3 (see Figure 7.3). We have th'E# = 450usandTS! =250ps
and thusTF‘,* < TS! does not hold. The decision of executipg sequentiallynmade byclassical
logic is safe. However, in this case, sint€ = 800 us assuming thap3 is run a significant
number of times, we have that on average, execyiBig parallel would be more efficient than
executing it sequentially. In contrast, our proposed fuaggroach selects the optimal type of
execution forp3: its two subtasks should be executed in parallel. Progrdifsee Figure 7.4)

represents the opposite case. In this dgse 250usandTF', =100pssoTg' < TF', does not hold.

37

8¢

Table 7.3: Selected executions using the whole set of rules.

Classical Logic Fuzzy Logic
. (Greater) (Quite greater)
Program| Optimal Classical Fuzzy 1 Fuzzy 2 Fuzzy 3 Fuzzy 4 Fuzzy 5 Fuzzy 6 Fuzzy 7

PAR. | SEQ | PAR | SEQ | PAR | SEQ | PARs | SEQ | PAR, | SEQ | PAR | SEQ | PARs | SEQ | PAR | SEQ
pl Parallel 1 0 0.73| 048 | 0.73 | 048 | 0.73 | 048 | 0.57 | 0.35 | 0.57 | 0.35 | 0.57 | 0.35 | 0.57 | 0.36
p2 Sequential| 0 1 048 | 093 | 049 | 093 | 049 | 093 | 0.34 | 058 | 0.33 | 059 | 0.34 | 0.58 | 0.31 | 0.58
p3 Parallel 0 0 056 | 054 | 068 | 054 | 058 | 054 | 048 | 044 | 0.48 | 0.44 | 048 | 0.44 | 047 | 0.44
p4 Sequential| 0 0 0.5 061 | 05 061 | 05 061 | 041 | 052 | 041 | 052 | 041 | 052 | 041 | 0.52
p5 Parallel 0 0 054 | 053 | 0655 | 053 | 055 | 053 | 047 | 045 | 0.47 | 0.45 | 047 | 0.45 | 047 | 0.45
p6 Parallel 0 0 056 | 052 | 0.56 | 052 | 056 | 052 | 048 | 045 | 0.48 | 0.45 | 048 | 0.45 | 048 | 0.45

Classical Logic Fuzzy Logic

Program| Optimal (Greater) (Rather greater)
Classical Fuzzy 1 Fuzzy 2 Fuzzy 3 Fuzzy 4 Fuzzy 5 Fuzzy 6 Fuzzy 7

PAR. | SEQ | PAR | SEQ | PAR | SEQ | PARs | SEQ | PAR, | SEQ | PAR; | SEQ | PAR, | SEQ | PAR | SEQ
pl Parallel 1 0 062 | 049 | 0.62 | 049 | 0.62 | 0.49 | 053 | 042 | 0.53 | 042 | 053 | 042 | 0.54 | 0.42
p2 Sequential| 0 1 049 | 072 | 049 | 0.72 | 049 | 0.72 | 041 | 054 | 041 | 055 | 041 | 054 | 04 | 0.54
p3 Parallel 0 0 053 | 052 | 054 | 052 | 054 | 052 | 049 | 047 | 049 | 047 | 049 | 0.47 | 048 | 0.47
p4 Sequential| 0 0 05 | 055 | 05 055 | 05 055 | 045 | 051 | 045 | 051 | 045 | 051 | 045 | 0.51
p5 Parallel 0 0 052 | 051 | 052 | 051 | 052 | 051 | 048 | 047 | 048 | 047 | 048 | 0.47 | 048 | 0.47
p6 Parallel 0 0 053 | 051 | 053 | 051 | 053 | 051 | 049 | 047 | 049 | 047 | 049 | 0.47 | 049 | 0.47

Conditions:

PAR.is T} <T{
SEQisTS <T,
PAR is max(gt(Td/T), gt(Td/T4), gt(T/Tim)
SEQ is maxgt(T}/T), gt(T)/Td), at(T"/TM)
PAR is max(gt(Td /TY), gt(Td /T}), gt(T2/TY))
SEQ is max(gt(Ty/T&), gt(Ty/T4), gt(Ty/T&))
PARy is max(gt(T /T§), ot(Td/Th), ot(T"/ T, gt(Te/Ty)

SEQ is maxgt(Ty/Ts"), gt(Tp/Td), gt(Tg"/ T, gt(T3!/Td))

PAR is rel_hd(0.5+hd(T:™, T™) + 0.25% hd(TY, TY) + 0.25x hd(T!, T)))

s 'p

ss'p

s> 'p

SEQ isrel_hd(0.5xhd(T", T{") +0.25x hd(T§, T¢') + 0.25+ hd(T), T4))
)+hd(T4, Tp))/3)

SEQ is rel_hd((hd(TS", Td") + hd(TY, T¥) + hd(T,, T)) /3)

PAR; is rel_hd(0.25xhd(T{", T,") + 0.5+ hd(T¥, T¥) + 0.25x hd(T., T}))
SEQ is rel_hd(0.25xhd(T", TI") + 0.5« hd(TY, T¥) + 0.25+ hd(T,), T))
PAR; is rel_hd(0.25xhd(T{", T,") + 0.25x hd(T¥, T¥') + 0.5« hd(TJ, T}))
SEQ isrel_hd(0.25%hd(T, T™) 4 0.25x hd(TY, T¥) + 0.5« hd(T}, T)))

PAR; is rel_hd((hd(

T T + hd(TY, T

ss'p

But in this casél'lgJI = 550pusandTy = 250pus Thus, the best choice seems to be execytifig
sequentially. This is the type of execution suggested bylumry conditions. However, using
classical logic, the selected execution is sequential dtleeselected by default when none of
the sufficient condition®AR. nor SEQ hold). However, our fuzzy logic conditions provide
enough evidences that support the decision of executingrialpl.
In the situations illustrated by the last two programs ita$ g0 clear what type of execution
should be selected. For progrgghwe have thaﬂ'lg,J =450 usande' = 200us Thus, since the
sufficient conditionT ' < T! for executing in parallel does not hold, it seems that theygznm
should be executed sequentially. However, sm‘l;& 200 psandTg' = 600 us the sufficient
condition T¢! < TF', for executing in parallel does not hold either. Now, using fuzzy logic
approach, taking the four vaIué*é,T”,Ts' and T into account, a certainty factor of nearlys0
suggests that the best choice is to exepbtm parallel.
For programp6 (see Figure 7.6), none of the sufficient conditidifs< T andTY < TF', (for
selecting parallel and sequential execution respecjivetyd. However, sincd; < Tg' and
Tplv < TsI hold, it is clear that the execution time of the sequentiaicexion is going to belong
to an interval whose limits are bigger than the limits of tlaeghlel execution. Thus, is it more
likely that the execution time of the parallel execution bssl than the execution time of the
sequential one, so that the right decision seems to expélteparallel. We can see that our
proposed fuzzy conditions also suggests the parallel ¢éoecu

Finally, we can see that in those cases in which classica kgygests a type of execution
(with truth value 1), our fuzzy logic approach suggests tmaes type of execution (sequential
or parallel).

7.3 Selected Fuzzy Model

Table 7.3 shows that all the fuzzy conditiofaugzy 1-7 select the same type of execution, se-
guential or parallel (independently of the fuzzy set uséleequite _greateor rather_greatey.
Our goal is to detect those situations where the paralledigian is faster than the sequential
one, such that a conservative (safe) approach is not abletéatdt but the fuzzy approach is.
Approached-uzzy 45, 6 and7 suggest parallel execution with less evidence thanzy 1 2
and3 for both fuzzy setsquite_greatermandrather_greate}. As we are interested in suggesting
to execute in parallel with evidences as bigger as possiblawe out this subset of conditions
and we focus our attention in the first set. BBtizzy 2and3 obtain the same values in all cases.
Furthermore they provide higher evidences for paralletetien than the conditioffuzzy 1
This fact can be seen in programp8, p5andp6. As Fuzzy 2is a subset oFuzzy 3 evalu-
ating the first one is more efficient than the second one Ktiezy 3condition has one more
comparison). Thus, the condition that we have select€dzzy 2

PAR is maggt(Td/T3), gt(Te /T)), gt(TE/T3))

39

Time (ps)

900 T (15)

o T (14)
800 T T (13) T (15)

o ! T (12) T (14)
700 T (11) T (13)

o T (10) T (12)
600 T (11)

o T (10)
500 | 7.0

T (6)
400 | L)
T (4
300 T, @) T, (5)
T (2) T (4)
200 | YT (D) T (3)
T (2

100 | T

0

Sequential Parallel
execution execution

Figure 7.7: Progression of executions of the example program p3.

This condition obtains a better average case behavior ayingl decision conditions (and losing
some precision). There may be cases in which our approatiseldct the slowest executi-
on, however it will select the fastest one in a bigger numbierages. This tradeoff between
safety and efficiency makes this new approach only appkcabhon-critical systems, where
no constraints about execution times must be met, and a wdenion will only cause a
slowdown which is admissible. In the same way that it happentise conservative approach,
the fuzzy approach for sequentializing a parallel programl$so symmetric to the problem of
parallelizing a sequential program. The condition that \areehselected for sequentializing a
parallel program is:

SEQ is matgt(Ty/T¢), ot(Tp/Ta). 9t(T5/Tsh)

7.4 Decisions Progression

Focusing on program3 and using the fuzzy sejuite greatemwith the selected fuzzy model
(Section 7.3) we have developed an incremental experimeosaresults are in Table 7.4. The
main goal is to see how with this fuzzy logic approach we caacse¢he optimal execution in
those cases in which the conservative approach is not agiega conclusion, and also, how
our fuzzy logic approach detects all situations (safelyedied optimal by the conservative

40

Table 7.4: Progression of decisions using the fuzzy set quite greater.

Classical Logic| Fuzzy Logic
Execution Optimal (Greater) (Quite greater
Classical Fuzzy 2
PAR. | SEQ | PAR | SEQ
p3_executionl| Parallel 1 0 0.68 | 0.49
p3_execution2| Parallel 0 0 0.64| 05
p3_execution3| Parallel 0 0 0.61 | 0.52
p3_execution4| Parallel 0 0 0.6 0.53
p3_execution5| Parallel 0 0 0.58 | 0.54
p3_execution6| Parallel 0 0 0.57 | 0.56
p3_execution7| Sequential 0 0 0.56 | 0.57
p3_execution8| Sequential 0 0 0.55| 0.58
p3_execution9| Sequential O 0 054 | 0.6
p3_executionl1O Sequential O 0 0.54 | 0.61
p3_executionll Sequential 0 0 0.53 | 0.62
p3_executionl2 Sequential 0 0 0.53 | 0.64
p3_executionl3 Sequential 0 0 0.52 | 0.65
p3_execution14 Sequential O 0 0.52 | 0.66
p3_executionly Sequential O 1 0.52 | 0.68

Conditions:
PAR is Ty < T4
SEQIisTY<T,
PAR, is max(gt(Td /T¢), gt(Te /T5), gt(T/Te))
SEQ is max(gt(T}/T&), gt(T3 /), gt(TY/TY))

approach. Figure 7.7 shows all the execution scenarios. séfaential execution times are
fixed, while the parallel execution ones depend on each goenkhe later are represented by
pairs (Fg,(i),Tg(i)) wherei is the concrete case. The parallel execution times of eaatasio
are the times of the previous one plus 50 units, in order toesggte the progression. The times
of the first scenario ar'éF')(l) = 100psandTy'(1) = 250us Attending to classical logic we can
see how only whelPAR. = 1 or SEQ = 1 we obtain a justified answer (that the program must
be executed in parallel or sequentially respectively).him test of the cases the selected type
of execution issequentiaby default, since we are following the philosophy of paila@lag a
sequential program, and there are no evidences towards gihe of execution. On the other
hand, fuzzy logic always selects the optimal executiongsded by evidences).

7.5 Experiments with Real Programs

Former experiments (Section 7.2) have shown that our fueagugarity control framework is
able to capture which is the optimal type of execution onager Moreover, in order to ensure

41

Table 7.5: Real benchmarks.

Qsort gsort(n) sorts a list of n random elements.
Substitute substitute(n) replaces by 2 the x’s that appears in an
expresion (X + X ...) composed by n +'s and n+1 x.

Fib fib(n) obtains the nth Fibonacci number.
Hanoi hanoi(n) solves Hanoi puzzle with 3 rods
and n disks.

that our approach can be applied in practice, we have pegiisome experiments with real
programs (and real execution times). The experimentakassnts have been made over an
UltraSparc-T1, 8 cores x 1GHz (4 threads per core), 8GB of RBWHOS 5.10.

We have tested thieizzy modetelected in Section 7.3, so that only upper and lower bounds
on (parallel and sequential) execution times were needegliéhtial execution times have been
measured directly over the execution platform (executhmgworst and best possible cases)
while the parallel ones have been estimated.

The number of cores of the processor is denoted, dse number of tasks (candidates for
parallel or sequential execution) asand the relationn/p]| is denoted ak. We consider
two different overheads of parallel execution: (a) the timeeded for creating n parallel tasks,
called Create(n) and (b) an upper bound on the time taken from the point in vhigpara-
llel subtaskg; is created until its execution is started by a processonteeinasSysOverhead
Both types of overheads have been experimentally measurdtefexecution platform. For the
first one, we have measured directly the time of creapitigreads. The second one has been
obtained by using the expressit#y/2) — P, whereSandP are the measured execution times of
a program consisting of two perfectly balanced parallé&¢gasnning with one and two threads
respectively.

There are different ways of executing a task in parallel ddpey on the scheduling. The
highest parallel execution time will be the one with the wecheduling (i.e. the one in which
the cores are idle as much as possible). Figure 7.8 repsgebeitit, the best and the worst
possible scheduling scenarios. In each scenario, coluhavg the number of cores cores (from
1 to p) and rows the execution iterations (from 1 to k). In eiéatation the level of occupation
of each core is colored while the amount of time in which itdkeiis in white. Longest tasks
are the lightest ones. It can be seen how the way in which tlasks are assigned to the cores
has a direct implication on the efficiency.

Suppose that the execution times of theubtasksl s, TS, ..., TS, of g (Chapter 3) are in
descending order. Then we can estimate parallel executi@df both scheduling cases as

follows: ’

Toes'= Creatgp) + .Z)(SySoverheqd(i*p) s,

) (7.1)

ixp

42

Figure 7.8: Best and worst schedulings in a parallel system.

1 2 3 4 5. .pip

Best scheduling Worst scheduling

k
-I-F\)/vorst — Creatdp) + .Z‘(sySoverheaGF T (7.2)
i=

Assuming that an ideal parallel execution environment ltasverheads, we can estimate
TF', and Ty as follows:
| |
Tp =Ts/p (7.3)

k
Ty = Creat€p) + Zl(SySoverheadr Ts) (7.4)
i=

Table 7.6: Selected executions for real programs using the fuzzy #et@Gneater.

Classical Logic| Fuzzy Logic
Execution Optimal (Greater) (Quite greater) Speedup
Classical Fuzzy 2
PAR.| SEQ | PAR | SEQ
gsort(250) Parallel 0 0 0.6 0.53 1.66
gsort(500) Parallel 0 0 0.6 0.53 1.74

43

Table 7.6: (continued).

Classical Logic| Fuzzy Logic
Execution Optimal (Greater) (Quite greater) Speedup
Classical Fuzzy 2
PAR. | SEQ | PAR | SEQ

gsort(750) Parallel 0 0 0.6 0.53 1.74
gsort(1000) Parallel 0 0 0.6 0.53 1.75
gsort(1250) Parallel 0 0 0.6 0.53 1.71
substitute(0) | Sequential 0 0 0.53 | 0.53 1.0
substitute(10)| Sequential 0 0 0.6 0.65 1.0
substitute(20)| Sequential 0 0 0.6 0.59 0.97
substitute(30)| Parallel 0 0 0.6 0.57 1.09
substitute(40)| Parallel 0 0 0.6 0.56 1.22
substitute(50)| Parallel 0 0 0.6 0.56 1.32
substitute(60)| Parallel 0 0 0.6 0.55 1.39
substitute(70)| Parallel 0 0 0.6 0.55 1.47
substitute(80)| Parallel 0 0 0.6 0.55 1.51
substitute(90)| Parallel 0 0 0.6 0.54 1.55
substitute(100) Parallel 0 0 0.6 0.54 1.59
substitute(110) Parallel 0 0 0.6 0.54 1.62
substitute(120) Parallel 0 0 0.6 0.54 1.64
substitute(130) Parallel 0 0 0.6 0.54 1.66
substitute(140) Parallel 0 0 0.6 0.54 1.69
substitute(150) Parallel 0 0 0.6 0.54 1.70
substitute(160) Parallel 0 0 0.6 0.54 1.72
substitute(170) Parallel 0 0 0.6 0.54 1.73
substitute(180) Parallel 0 0 0.6 0.54 1.74
substitute(190) Parallel 0 0 0.6 0.54 1.75
substitute(200) Parallel 0 0 0.6 0.54 1.77
fib(1) Sequential 0 0 0.53 | 0.53 1.0
fib(2) Sequential 0 0 0.6 0.59 0.64
fib(3) Sequential 0 0 0.6 0.56 0.82
fib(4) Parallel 0 0 06 | 0.53 1.04
fib(5) Parallel 1 0 0.6 0.52 1.0
fib(6) Parallel 1 0 0.6 0.51 1.0
fib(7) Parallel 1 0 0.6 0.51 1.0
fib(8) Parallel 1 0 06 | 0.51 1.0
fib(9) Parallel 1 0 0.6 0.5 1.0
fib(10) Parallel 1 0 0.6 0.5 1.0
fib(11) Parallel 1 0 0.6 0.5 1.0
fib(12) Parallel 1 0 0.6 0.5 1.0
fib(13) Parallel 1 0 0.6 0.5 1.0
fib(14) Parallel 1 0 0.6 0.5 1.0
fib(15) Parallel 1 0 0.6 0.5 1.0

N
N

Table 7.6: (continued).

Classical Logic| Fuzzy Logic
Execution Optimal (Greater) (Quite greater) Speedup
Classical Fuzzy 2
PAR. | SEQ | PAR | SEQ

fib(16) Parallel 1 0 0.6 0.5 1.0

fib(17) Parallel 1 0 0.6 0.5 1.0

fib(18) Parallel 1 0 0.6 0.5 1.0
hanoi(1) Sequential 0 0 0.53 | 0.53 1.0
hanoi(2) Sequential 0 0 0.6 1 1.0
hanoi(3) Sequential 0 0 0.6 0.9 1.0
hanoi(4) Sequential 0 0 0.6 | 0.68 1.0
hanoi(5) Sequential 0 0 0.6 0.58 0.94
hanoi(6) Parallel 0 0 0.6 0.53 1.28
hanoi(7) Parallel 1 0 0.6 0.51 1.0
hanoi(8) Parallel 1 0 0.6 0.5 1.0
hanoi(9) Parallel 1 0 0.6 0.5 1.0
hanoi(10) Parallel 1 0 0.6 0.5 1.0
hanoi(11) Parallel 1 0 0.6 0.5 1.0
hanoi(12) Parallel 1 0 0.6 0.5 1.0
hanoi(13) Parallel 1 0 0.6 0.5 1.0
hanoi(14) Parallel 1 0 0.6 0.5 1.0

Table 7.7: Selected executions for real programs using the fuzzy SetrRareater.

Classical Logic| Fuzzy Logic
Execution Optimal (Greater) (Rather greater) Speedup
Classical Fuzzy 2
PAR. | SEQ | PAR | SEQ
gsort(250) Parallel 0 0 055 | 0.51 1.66
gsort(500) Parallel 0 0 055 | 0.51 1.74
gsort(750) Parallel 0 0 0.55| 0.51 1.74
gsort(1000) Parallel 0 0 0.55| 0.51 1.75
gsort(1250) Parallel 0 0 0.55| 0.51 1.71
substitute(0) | Sequential 0 0 051 | 0.51 1.0
substitute(10)| Sequential 0 0 0.55 | 0.58 1.0
substitute(20)| Sequential 0 0 0.55 | 0.55 1.0
substitute(30)| Parallel 0 0 055 | 0.54 1.09
substitute(40)| Parallel 0 0 0.55| 0.53 1.22
substitute(50)| Parallel 0 0 055 | 0.53 1.32
substitute(60)| Parallel 0 0 0.55| 0.52 1.39
substitute(70)| Parallel 0 0 0.55| 0.52 1.47
substitute(80)| Parallel 0 0 0.55| 0.52 1.51
substitute(90)| Parallel 0 0 0.55| 0.52 1.55

N
o

Table 7.7: (continued).

Classical Logic| Fuzzy Logic
Execution Optimal (Greater) (Rather greater) Speedup
Classical Fuzzy 2
PAR. | SEQ | PAR | SEQ

substitute(100) Parallel 0 0 055 | 0.52 1.59
substitute(110) Parallel 0 0 0.55| 0.52 1.62
substitute(120) Parallel 0 0 0.55| 0.52 1.64
substitute(130) Parallel 0 0 0.55| 0.52 1.66
substitute(140) Parallel 0 0 0.55| 0.52 1.69
substitute(150) Parallel 0 0 055 | 0.52 1.70
substitute(160) Parallel 0 0 0.55 | 0.52 1.72
substitute(170) Parallel 0 0 055 | 0.52 1.73
substitute(180) Parallel 0 0 0.55| 0.52 1.74
substitute(190) Parallel 0 0 0.55| 0.52 1.75
substitute(200) Parallel 0 0 0.55| 0.52 1.76
fib(1) Sequential 0 0 051 | 0.51 1.0
fib(2) Sequential 0 0 0.55| 0.54 0.64
fib(3) Sequential 0 0 0.55| 0.53 0.81
fib(4) Parallel 0 0 055 | 0.51 1.04
fib(5) Parallel 1 0 055 | 0.51 1.0
fib(6) Parallel 1 0 0.55 0.5 1.0
fib(7) Parallel 1 0 0.55 0.5 1.0
fib(8) Parallel 1 0 0.55 0.5 1.0
fib(9) Parallel 1 0 0.55 0.5 1.0
fib(10) Parallel 1 0 0.55 0.5 1.0
fib(11) Parallel 1 0 0.55 0.5 1.0
fib(12) Parallel 1 0 0.55 0.5 1.0
fib(13) Parallel 1 0 0.55 0.5 1.0
fib(14) Parallel 1 0 0.55 0.5 1.0
fib(15) Parallel 1 0 0.55 0.5 1.0
fib(16) Parallel 1 0 0.55 0.5 1.0
fib(17) Parallel 1 0 0.55 0.5 1.0
fib(18) Parallel 1 0 0.55 0.5 1.0
hanoi(1) Sequential 0 0 051 | 0.51 1.0
hanoi(2) Sequential 0 0 0.55 | 0.93 1.0
hanoi(3) Sequential 0 0 0.55 0.7 1.0
hanoi(4) Sequential 0 0 0.55| 0.59 1.0
hanoi(5) Sequential 0 0 0.55| 0.54 0.94
hanoi(6) Parallel 0 0 0.55| 0.51 1.28
hanoi(7) Parallel 1 0 0.55 0.5 1.0
hanoi(8) Parallel 1 0 0.55 0.5 1.0
hanoi(9) Parallel 1 0 0.55 0.5 1.0
hanoi(10) Parallel 1 0 0.55 0.5 1.0

N
o

Table 7.7: (continued).

Classical Logic| Fuzzy Logic

Execution Optimal (Greater) (Rather greater) Speedup
Classical Fuzzy 2
PAR. | SEQ | PAR | SEQ
hanoi(11) Parallel 1 0 0.55 0.5 1.0
hanoi(12) Parallel 1 0 0.55 0.5 1.0
hanoi(13) Parallel 1 0 0.55 0.5 1.0
hanoi(14) Parallel 1 0 0.55 0.5 1.0

Conditions:

PAR is Ty < T4

SEQisTY<T,

PAR is max(gt(Td/TY), gt(Te /T, gt(TE/TY))
SEQ is maxgt(T}/T), gt(Ty/Ta), gt(T/T))

Tables 7.6 and 7.7 show the results. First columns show time saformation than in
Table 7.4 although in this tablerogramrefers to the real benchmarks, which are described
in Table 7.5. Note that in this case, in order to determineofftenal execution, both sequential
and parallel execution times have been measured direatiytbe platform. The last row shows
the speedupf our fuzzy approach with respect to the conservative agagroSpeedup= %
whereT, is the time of the selected execution using the conservapipeoach and; is the time
of the selected execution using our fuzzy approach. A vaiggdn than one of peedupneans
that the execution selected with our approach is fasterttione selected by the conservative
one.

We can distinguish two main set of cases: on one adtandsubstituteand on the other
handfib andhanoi In the first set theipper boundn the sequential execution time is different
from thelower boundwhereas in the second set, both are equal. This is undesadti@ndince
the execution time for the first set of cases not only dependb®length of the input list, but
also on the values of its elements. Thus, for a given listtlgrtere may be different execution
times, depending on the actual values of the lists with sength. However, in the second set
of cases, the execution time only depends on the size (usenghteger value metric) of the
input argument, and all executions for the same input dagatske the same execution time.
Our approach improves provides better average case beinalvan the conservative approach
in both cases.

Figures 7.9, 7.10, 7.11 and 7.12 show, in detail, how bothraggihes work in particular
cases in a graphical way. Input has the same meaning thag\wops Tables (7.6 and 7.7) and
execution times are presented in milliseconds. In all tha@éig the more conservative approach
is calledClassicand represented with a stars line while our approach isct&lzzyand its
symbol is a white square.

47

Figure 7.9: Qsort selected executions.

40 T T T

Classic -----
Fuzzy -

35 |
30 | .
25 | i
20 - X .
15 e -

Execution time (ms)

10 | PR N

O 1 1 1 1 1
200 400 600 800 1000 1200 1400
Input data size (list length)

Figure 7.10: Substitute selected executions.

1.8 T T - y
Classic ---*--x]
16 | Fuzzy - &*

14 F
12

1t x
0.8
0.6 | X o g
0.4
0.2

0 -~ I I I
0 50 100 150 200

Input data size (list length)

T
%‘

Execution time (ms)
*

T
"B
1

Figures 7.11 and 7.12 show how fiilbonacciandhanoiboth approaches have nearly the
same behavior for all the tested cases. In fact, at this sttadescarce cases in which there
is a slowdown (see Tables (7.6 and 7.7) can not be appreci&igdres 7.9 and 7.10 show
the behavior fogsort and substitute It is clear how the times of the executions selected by
our approach are smaller (except in a small number of casésstinsignificant), and how the
difference between both approaches becomes bigger whehdata sizes increase.

48

Figure 7.11: Fibonacci selected executions.

400 T T T T

Classic ---*-- |&
350 Fuzzy 8- |4

300 | a
250 | -
200 | /A
150 | [

Execution time (ms)

100 AR
50 ,,ﬂ/]
@,«ﬁ

0 b sm e o oo o pm BT I I

0 2 4 6 8 10 12 14 16 18
Input data size (integer value)

Figure 7.12: Hanoi selected executions.

140 T T T

Classic ---%---
120 Fuzzy 8- 73

Execution time (ms)
=
A o ® O
S ©6 o o
T T T T
%
1 1 1 1

N
o
T
Il

V,,m"'
B8 e & R . o . $ 1
0 2 4 6 8 10 12 14
Input data size (integer value)

o

49

Chapter 8

Conclusions

We have applied fuzzy logic to the program optimization fi@hdparticular, to automatic gran-
ularity control in parallel/distributed computing. We leederived fuzzy conditions for deciding
whether to execute some tasks in parallel or sequentialypgunformation about the cost of
tasks and parallel execution overheads. We have developedfiang tool that can be also
applied to the program optimization field.

We have performed an experimental assessment of the furmitioms and identified the
ones that have the best average case behavior. We have alparenl our proposed fuzzy
conditions with existing sufficient (conservative) onesgerforming granularity control. Our
experiments showed that the proposed fuzzy conditiondtriesetter program optimizations
(on average) than the conservative conditions. The coatesvapproach ensures that executi-
on decisions will never result in a slowdown, but loses soaralfelizations opportunities (and
thus, no speedup is obtained). In contrast, the fuzzy approskes a better use of the para-
llel resources and although fuzzy conditions can produoedbwn for some executions, the
whole computation benefits from some speedup on averagaygpveserving correctness). Of
course, the fuzzy approach is applicable in scenarios wiher@o slowdown property is not
needed, as for example video games, text processors, &) @tc.

Experiments performed with real programs (and real exegutmes) have demonstrated
that our approach can be successfully applied in practieeint®¥nd to perform a more rigorous
and broad assessment or our approach, by applying it tolaaéfe programs and using fully
automatic tools for estimating execution times.

Although a lot of work still remains to be done, the prelimineesults are very encouraging
and we believe that it is possible to exploit all the potdnidffered by multicore systems by
applying fuzzy logic to automatic program parallelizattenhniques.

50

Bibliography

[1] ASKALON - A Programming Environment and Tool Set for Clest and Grid Comput-
ing. http://www.dps.uibk.ac.at/projects/askalon/fiata

[2] Paradigm: A Parallelizing Compiler for Distributed MemgoMessage-Passing Multi-
computers. http://www.ece.northwestern.edu/cpdctgmaParadigm.html

[3] Parafrase-2 Home Page. http://www.csrd.uiuc.edafpase2/index.html
[4] Pyroos Web Page. http://www.cs.rutgers.edu/pub/gelagpyrros/
[5] The Aspectd Project. http://www.eclipse.org/aspect)

[6] Ishfaq Ahmad, Yu-Kwong Kwok, Min-You Wu, and Wei Shu. Awnhatic Parallelization
and Scheduling of Programs on Multiprocessors Using CASCHCRP '97: Proceed-
ings of the International Conference on Parallel Processipages 288—-291, Washing-
ton, DC, USA, 1997. IEEE Computer Society.

[7] Shameem Akhter and Jason RobeMsilti-Core Programming: Increasing Performance
Through Software Multi-threadingntel, Santa Clara, CA, 2006.

[8] Abdallah Deeb I. Al Zain, Kevin Hammond, Jost Berthold,IFfiinder, Greg Michael-
son, and Mustafa Aswad. Low-Pain, High-Gain Multicore Pemgming in Haskell:
Coordinating Irregular Symbolic Computations on Multicoreclitectures. IrDAMP
'09: Proceedings of the 4th Workshop on Declarative Aspettslulticore Program-
ming pages 25-36, New York, NY, USA, 2008. ACM.

[9] Jade Alglave, Anthony Fox, Samin Ishtiag, Magnus O. MyreSusmit Sarkar, Peter
Sewell, and Francesco Zappa Nardelli. The Semantics of Pameé ARM Multipro-
cessor Machine Code. DAMP '09: Proceedings of the 4th Workshop on Declarative
Aspects of Multicore Programmingages 13—-24, New York, NY, USA, 2008. ACM.

[10] R. Allen, D. Callahan, and K. Kennedy. Automatic Deconipos of Scientific Pro-
grams for Parallel Execution. IROPL '87: Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languagages 63—76, New
York, NY, USA, 1987. ACM.

51

[11] Erik Altman, James Dehnert, Christoph W. Kessler, antsJenoop. 05101 Abstracts
Collection — Scheduling for Parallel Architectures: Thedygplications, Challenges. In
Erik Altman, James Dehnert, Christoph W. Kessler, and Jermpneditors Schedul-
ing for Parallel Architectures: Theory, Applications, Chlailges number 05101 in
Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 208 nktionales Begegnungs-
und Forschungszentrum fur Informatik (IBFI), Schloss DagktGermany.

[12] Saisanthosh Balakrishnan, Ravi Rajwar, Mike Upton, andr&d Lai. The Impact of
Performance Asymmetry in Emerging Multicore ArchitecIr8SIGARCH Comput. Ar-
chit. News 33(2):506-517, 2005.

[13] Satish Balay, Kris Buschelman, Victor Eijkhout, WilliaB. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman Mclnnes, and Hong Zhang B&r$mith. The
PETSc User’'s Manual.

[14] J. F. Baldwin, T.P. Martin, and B.W. Pilswortkril: Fuzzy and Evidential Reasoning in
Artificial Intelligence John Wiley & Sons, 1995.

[15] Prithviraj Banerjee, John A. Chandy, Manish Gupta, Eegeh Hodges IV, John G.
Holm, Antonio Lain, Daniel J. Palermo, Shankar Ramaswamg, EBmesto Su. The
Paradigm Compiler for Distributed-Memory Multicompute@omputey 28(10):37-47,
1995.

[16] Guy Blelloch. NESL: Revisited.

[17] U. Bondhugula, M. Baskaran, A. Hartono, S. Krishnamogréh Ramanujam, A. Roun-
tev, and P. Sadayappan. Towards Effective Automatic Rdization for Multicore Sys-
tems. InParallel and Distributed Processing, 2008. IPDPS 2008. EERternational
Symposium qgrpages 1-5, April 2008.

[18] Uday Bondhugula, Albert Hartono, J. Ramanujam, and Pagggpan. A Practical Au-
tomatic Polyhedral Parallelizer and Locality OptimizerPLDI '08: Proceedings of the
2008 ACM SIGPLAN Conference on Programming Language Desidriraplementa-
tion, pages 101-113, New York, NY, USA, 2008. ACM.

[19] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. PlAuFiactical and Fully Au-
tomatic Polyhedral Parallelizer and Locality Optimizeechnical Report OSU-CISRC-
10/07-TR70, The Ohio State University, October 2007.

[20] Borys J. Bradel and Tarek S. Abdelrahman. Automatic THBased Parallelization of
Java Programs. IhCPP '07: Proceedings of the 2007 International Conference on
Parallel Processingpage 26, Washington, DC, USA, 2007. IEEE Computer Society.

52

[21] C.J. Brownhill, A. Nicolau, S. Novack, and C.D. Polychrgoalos. The PROMIS Com-
piler Prototype. InParallel Architectures and Compilation Techniques., 19ceed-
ings., 1997 International Conference,gages 116-125, Nov 1997.

[22] F. Bueno, P. Lépez-Garcia, G. Puebla, and M. Hermenegilthe Ciao Preprocessor.
Technical Report CLIP1/06, Technical University of MadridRM), Facultad de Infor-
matica, 28660 Boadilla del Monte, Madrid, Spain, January6200

[23] L. Byrd. Understanding the Control Flow of Prolog Progeanin S.-A. Tarnlund, edi-
tor, Proceedings of the 1980 Logic Programming Workshsgmges 127-138, Debrecen,
Hungary, July 1980.

[24] M. Carro, L. Gbmez, and M. Hermenegildo. Some Paradigmd/fsualizing Parallel
Execution of Logic Programs. 1993 International Conference on Logic Programming
pages 184-201. MIT Press, June 1993.

[25] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Lyt®a Jones, Gabriele
Keller, and Simon Marlow. Data Parallel Haskell: A Status &&pIn DAMP, pages
10-18, 2007.

[26] Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon Breydones, and Gabriele
Keller. Partial Vectorisation of Haskell Programs, 2008.

[27] Z.S. Chamskiand M.F.P. O’'Boyle. Practical Loop GeneratinSystem Sciences, 1996.,
Proceedings of the Twenty-Ninth Hawaii International Confeesan , volume 1, pages
223-232 vol.1, Jan 1996.

[28] J. Chassin and P. Codognet. Parallel Logic Programmisge8ys.Computing Surveys
26(3):295-336, September 1994.

[29] Jyh-Herng Chow, Leonard E. Lyon, and Vivek Sarkar. Auatia Parallelization for
Symmetric Shared-Memory Multiprocessors. JASCON '96: Proceedings of the 1996
Conference of the Centre for Advanced Studies on CollaborRigearchpage 5. IBM
Press, 1996.

[30] Florina Monica Ciorba. A Brief Survey of Parallelizatiamd/or Code Generation Soft-
ware Tools. Available at www.cslab.ntua.gr/ cflorina/eesé/Brief _survey.doc

[31] Victor Santos Costa. Parallelism in Logic Programs. ikalde at
http://glew.org/damp2006/VitorSantosCosta.pdf

[32] Vitor Santos Costa. On Supporting Parallelism in a Ldgiogramming System., 2008.

[33] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Grkamity Analysis in Logic
Programs. InProc. of the 1990 ACM Conf. on Programming Language Design and
Implementationpages 174-188. ACM Press, June 1990.

53

[34] A. Yu. Drozdov. Component Approach for Construction oft@pzing Compilers.Pro-
gramming and Computer Softwaf@b(5):291-300.

[35] Rob Ennals. Now you C it. Now you don't.

[36] Thomas Fahringer, Alexandru Jugravu, Sabri Pllana,uRRwbdan, Clovis Seragiotto,
Jr., and Hong-Linh Truong. ASKALON: A Tool Set for Cluster a@did Computing:
Research ArticlesConcurr. Comput. : Pract. Experl7(2-4):143—-169, 2005.

[37] I. Foster, Ming Xu, and B. Avalani. A Compilation Systenathntegrates High Perfor-
mance Fortran and Fortran M. Bcalable High-Performance Computing Conference,
1994., Proceedings of thpages 293-300, May 1994.

[38] Eitan Frachtenberg and Uwe Schwiegelshohn. New Chgdienf Parallel Job Schedul-
ing, May 2008.

[39] Vincent W. Freeh, David K. Lowenthal, and Gregory R. Aaws. Distributed Filaments:
Efficient Fine-Grain Parallelism on a Cluster of Workstasiorin OSDI '94: Proceed-
ings of the 1st USENIX conference on Operating Systems Dasujtmplementation
page 15, Berkeley, CA, USA, 1994. USENIX Association.

[40] David Geer. Industry Trends: Chip Makers Turn to Multied’rocessorsComputey
38(5):11-13, 2005.

[41] Rakesh Ghiya, Laurie J. Hendren, and Yingchun Zhu. Deigdarallelism in C Pro-
grams with Recursive Data Structures.d@, pages 159-173, 1998.

[42] Clemens Grelck and Sven-Bodo Scholz. Efficient Heap Meamamt for Declarative
Data Parallel Programming on Multicores, 2008.

[43] Dan Grossma. Design and Implementation Issues for Atitynand Functional Lan-
guages. Available at http://glew.org/damp2006/DanGrasspdf

[44] The SUIF Group. The SUIF Compiler System. Available #pisuif.stanford.edu/

[45] S. Guadarrama, S. Muioz, and C. Vaucheret. Fuzzy Prddogew Approach Using
Soft Constraints PropagatioRuzzy Sets and Systems, F&81(1):127-150, May 2004.
ISSN 0165-0114.

[46] G. Gupta and M. Hermenegildo. ACE: And/Or-parallel Comrbased Execution of
Logic Programs. Technical Report without, T.U. of Madrid (WP Facultad Informat-
ica UPM, 28660-Boadilla del Monte, Madrid-Spain, June 19€lso in Proc. ICLP91
Workshop on Parallel Execution of Logic Programs.

54

[47] G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermgiido. Parallel Execution
of Prolog Programs: a SurveyACM Transactions on Programming Languages and
Systems23(4):472-602, July 2001.

[48] Rajiv Gupta, Santosh Pande, Kleanthis Psarris, andk\@arkar. Compilation Tech-
niques for Parallel SystemParallel Computing25(13-14):1741 — 1783, 1999.

[49] Philipp Haller and Tom Van Cutsem. Implementing JoinshgsExtensible Pattern
Matching, 2008.

[50] B. Hamidzadeh, Lau Ying Kit, and D.J. Lilja. Dynamic TaSkheduling Using Online
Optimization. Parallel and Distributed Systems, IEEE Transactions di11):1151—
1163, Nov 2000.

[51] Matthew Hammer, Umut A. Acar, Mohan Rajagopalan, and AnWM. Ghuloum. S
Proposal for Parallel Self-Adjusting computation.DAMP, pages 3-9, 2007.

[52] Kevin Hammond. Hume and Multicore Architectures.

[53] Lance Hammond, Basem A. Nayfeh, and Kunle Olukotun. AgirChip Multiproces-
sor. Computey 30(9):79-85, 1997.

[54] Bruno Harbulot and John R. Gurd. A Join Point for Loops ipéstJ. INAOSD '06: Pro-
ceedings of the 5th International Conference on AspectrfeSoftware Development
pages 63—-74, New York, NY, USA, 2006. ACM.

[55] L. J. Hendren and A. Nicolau. Parallelizing Program$itmRecursive Data Structures.
IEEE Trans. Parallel Distrib. Syst1(1):35-47, 1990.

[56] Stephan Herhut, Sven-Bodo Scholz, and Clemens Grelcktr@limg Chaos: On Safe
Side-Effects in Data-Parallel Operations. DAMP '09: Proceedings of the 4th Work-
shop on Declarative Aspects of Multicore Programmipgges 59—-67, New York, NY,
USA, 2008. ACM.

[57] M. Hermenegildo, F. Bueno, D. Cabeza, M. Carro, A. Casas,0pek-Garcia, and
G. Puebla. Automatic Parallelization of Logic and Constrédrograms. InDPMC,
Intel Workshop on Declarative Programming Languages fortidore Programming
January 2006.

[58] M. Hermenegildo, F. Bueno, A. Casas, J. Navas, E. Mera, MoCand P. Lopez-Garcia.
Automatic Granularity-Aware Parallelization of Programigh Predicates, Functions,
and Constraints. IlDAMP’07, ACM SIGPLAN Workshop on Declarative Aspects of
Multicore ProgrammingJanuary 2007.

[59] M. Hermenegildo and K. Greene. The &-Prolog System: |Biting Independent And-
Parallelism.New Generation Computing(3,4):233-257, 1991.

55

[60] M. Hermenegildo, G. Puebla, F. Bueno, and P. Lépez-@atategrated Program Debug-
ging, Verification, and Optimization Using Abstract Intexfation (and The Ciao System
Preprocessor)Science of Computer Programmirig(1-2), 2005.

[61] M. Hermenegildo and F. Rossi. On the Correctness and &fiiegi of Independent And-
Parallelism in Logic Programs. IRroc. of the 1989 North American Conference on
Logic Programmingpages 369—389. MIT Press.

[62] M. Hermenegildo and F. Rossi. Strict and Non-Strict |mgledent And-Parallelism in
Logic Programs: Correctness, Efficiency, and Compile-Timed@mms. Journal of
Logic Programming22(1):1-45, 1995.

[63] M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez, J.F. Mesaand G. Puebla. An
Overview of The Ciao Multiparadigm Language and Program @reent Environment
and its Design Philosophy. IRestschrift for Ugo Montanarinumber 5065 in LNCS,
pages 209-237. Springer-Verlag, June 2008.

[64] M. V. Hermenegildo, F. Bueno, M. Carro, P. Lopez, J.F. Mesaand G. Puebla. An
Overview of The Ciao Multiparadigm Language and Program @reent Environment
and its Design Philosophy. In Pierpaolo Degano, Rocco Deldliemd Jose Meseguer,
editors,Festschrift for Ugo Montanayinumber 5065 in LNCS, pages 209-237. Springer-
Verlag, June 2008.

[65] L. Huelsbergen. Dynamic Language Parallelizationchirecal Report 1178, Computer
Science Dept. Univ. of Wisconsin, September 1993.

[66] L.Huelsbergen, J. R. Larus, and A. Aiken. Using Run-Tine Bizes to Guide Parallel
Thread Creation. IiProc. ACM Conf. on Lisp and Functional Programmjdgine 1994.

[67] Clément Hurlin. Automatic Parallelization and Optimiion of Programs by Proof
Rewriting. In Jens Palsberg and Zhendong Su, ediftetjc Analysis Symposium 16th
International Static Analysis Symposiumolume 5673 o.NCS pages 52—-68, Los An-
geles Etats-Unis d’Amérique, 2009. Springer-Verlag. Doft@are/D.1: PROGRAM-
MING TECHNIQUES/D.1.3: Concurrent Programming/D.1.3.1rdfel programming,
D.: Software/D.2: SOFTWARE ENGINEERING/D.2.4: Softwaredgram Verification
IST-FET-2005-015905 Mobius project.

[68] Mitsuru Ishizuka and Naoki Kanai. Prolog-ELF incorpting fuzzy logic. InlJCAI,
pages 701-703, 1985.

[69] S. Kaplan. Algorithmic Complexity of Logic Programs. lbegic Programming, Proc.
Fifth International Conference and Symposium, (Seattleshivigton) pages 780-793,
1988.

56

[70] S.C. Kothari, Jaekyu Cho, Yunbo Deng, S. Mitra, Xindi Bidh, Leung, S.J. Ghan,
and A.J. Bourgeois. Software Tools and Parallel ComputingNfiemerical Weather
Prediction Models. IrParallel and Distributed Processing Symposium., Procegsli
International, IPDPS 2002, Abstracts and CD-ROpAges 236—-243, 2002.

[71] Sriram Krishnamoorthy, Muthu Baskaran, Uday BondhugulaRamanujam, Atanas
Rountev, and P Sadayappan. Effective Automatic Paralteizaf Stencil Computa-
tions. SIGPLAN Not.42(6):235-244, 2007.

[72] B. Kruatrachue and T. Lewis. Grain Size DeterminationParallel ProcessinglEEE
Software January 1988.

[73] Milind Kulkarni, Patrick Carribault, Keshav Pingali, @@esh Ramanarayanan, Bruce
Walter, Kavita Bala, and L. Paul Chew. Scheduling StrategiesOiptimistic Parallel
Execution of Irregular Programs. I8BPAA '08: Proceedings of the twentieth annual
Symposium on Parallelism in Algorithms and Architectupesges 217-228, New York,
NY, USA, 2008. ACM.

[74] R.C.T. Lee. Fuzzy logic and the resolution principl@ournal of the Association for
Computing Machinery19(1):119-129, 1972.

[75] T. Lewis and H. EI-Rewini. Parallax: A Tool for Paralletdgram SchedulingParallel
& Distributed Technology: Systems & Applications, IEBE?):62—72, May 1993.

[76] Deyi Li and Dongbo Liu.A Fuzzy Prolog Database Systedohn Wiley & Sons, New
York, 1990.

[77] Sam Lindley. Implementing Deterministic Declarati@encurrency Using Sieves. In
DAMP, pages 45-49, 2007.

[78] Virginia M. Lo, Sanjay Rajopadhye, Samik Gupta, Davidd&en, Moataz A. Mohamed,
Bill Nitzberg, and Xiaoxiong Zhong Jan Arne Telle. OREGAMI: dls for Mapping
Parallel Computations to Parallel Architectures. 20:23D:42991. The origional publi-
cation is available at springerlink.com (DOI) 10.1007/BB©03319.

[79] P. Lopez-Garcia, M. Hermenegildo, and S. K. Debray. AtiMeology for Granularity
Based Control of Parallelism in Logic Programdournal of Symbolic Computation,
Special Issue on Parallel Symbolic Computafiah(4—6):715—734, 1996.

[80] Jan-Willem Maessen. pH: Lessons Learned. Available at
http://glew.org/damp2006/pH%20Retrospective.pdf

[81] Gabriele Keller Manuel M. T. Chakravarty. Nested Dateeftalism in Haskell. Available
at http://glew.org/damp2006/ndp-mc.pdf

57

[82] A.B. Matos. A matrix model for the flow of control in prolggograms with applications
to profiling. Software Practice and Experienc®4(8):729—746, August 1994,

[83] Carolyn McCreary and Helen Gill. Automatic Determinatiof Grain Size for Efficient
Parallel Processingcommun. ACM32(9):1073-1078, 1989.

[84] C. McGreary and H. Gill. Automatic Determination of Gueize for Efficient Parallel
ProcessingCommunications of the ACN32, 1989.

[85] E. Mera. Estimacion de los coeficientes del analisisatapdejidad mediante técnicas
estadisticas. Technical Report CLIP14/2004.0, Technicalddsity of Madrid, School
of Computer Science, UPM, September 2004.

[86] E. Mera, P. Lopez-Garcia, M. Carro, and M. Hermenegil@owards Execution Time
Estimation in Abstract Machine-Based Languages10th Int'l. ACM SIGPLAN Sym-
posium on Principles and Practice of Declarative Programg{PPDP’08) pages 174—
184. ACM Press, July 2008.

[87] E. Mera, P. Lépez-Garcia, G. Puebla, M. Carro, and M. Heregildo. Using Combined
Static Analysis and Profiling for Logic Program Executionm& Estimation. I22nd
International Conference on Logic Programming (ICLP’0@&umber 4079 in LNCS,
pages 431-432. Springer-Verlag, August 2006.

[88] E. Mera, P. Lopez-Garcia, G. Puebla, M. Carro, and M. Heregildo. Combining
Static Analysis and Profiling for Estimating Execution Teneln Ninth International
Symposium on Practical Aspects of Declarative Languaga®IF07), number 4354 in
LNCS, pages 140-154. Springer-Verlag, January 2007.

[89] E. Mera, T. Trigo, P. L6pez-Garcia, and M. Hermenegilda Approach to Profiling for
Run-Time Checking of Computational Properties and Perform@wbugging. Techni-
cal Report CLIP3/2010.0, Technical University of Madrid (URMchool of Computer
Science, UPM, March 2010.

[90] Susana Mufioz-Hernandez, Victor Pablos-Ceruelo, amhékaStrass. Rfuzzy: An ex-
pressive simple fuzzy compiler. IlVANN (1) pages 270-277, 2009.

[91] K. Muthukumar, F. Bueno, M. Garcia de la Banda, and M. Heregddo. Automatic
Compile-time Parallelization of Logic Programs for Restt;tGoal-level, Independent
And-parallelism.Journal of Logic Programming38(2):165-218, February 1999.

[92] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Cust@hie Resource Usage Anal-
ysis for Java Bytecode. Technical Report UNM TR-CS-2008-02 - CI2608.0, Uni-
versity of New Mexico, Department of Computer Science, UN&huhary 2008.

58

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe éigmounds Inference of
Energy Consumption for Java Bytecode Applicationsl e Sixth NASA Langley Formal
Methods Workshop (LFM O8April 2008. Extended Abstract.

J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Usefitdble Resource Usage
Bounds Analysis for Java Bytecode.Rnoceedings of the Workshop on Bytecode Seman-
tics, Verification, Analysis and Transformation (BYTECOQ®, volume 253 ofElec-
tronic Notes in Theoretical Computer Sciengages 6—86. Elsevier - North Holland,
March 2009.

J. Navas, E. Mera, P. Lopez-Garcia, and M. Hermenegildeer-Definable Resource
Bounds Analysis for Logic Programs. B8rd International Conference on Logic Pro-
gramming (ICLP’07) volume 4670 ofLecture Notes in Computer Scienc@pringer,
2007.

Victor Pablos-Ceruelo, Susana Mufioz-Hernandez, amhémStrass. Rfuzzy frame-
work. Paper presented at the 18th Workshop on Logic-based Methdéi®gramming
Environments (WLPE2008), CoR&bs/0903.2188, 2009.

Victor Pablos-Ceruelo, Hannes Strass, and Susana Miéio#éndez. Rfuzzy—a frame-
work for multi-adjoint fuzzy logic programming. IRuzzy Information Processing Soci-
ety, 2009. NAFIPS 2009. Annual Meeting of the North Ameripages 1-6, June 2009.

Lu Peng, Jih-Kwon Peir, Tribuvan K. Prakash, Yen-Ku&igen, and David M. Koppel-
man. Memory Performance and Scalability of Intel's and ADual-Core Processors:
A Case Study. INPCCC, pages 55-64, 2007.

Constantine D. Polychronopoulos, Miliand B. Gikar, Mairaad R. Haghighat, Chia L.
Lee, Bruce P. Leung, and Dale A. Schouten. The Structure affRae-2: An Advanced
Parallelizing Compiler for ¢ and fortran. Belected Papers of the Second Workshop on
Languages and Compilers for Parallel Computinmges 423—-453, London, UK, UK,
1990. Pitman Publishing.

E. Pontelli, G. Gupta, and M. Hermenegildo. &ACE: A Higlerformance Parallel Pro-
log System. Ininternational Parallel Processing Symposiupages 564-572. IEEE
Computer Society Technical Committee on Parallel Processitiee Computer Soci-
ety, April 1995.

G. Puebla and M. Hermenegildo. Abstract Specialwa#nd its Applications. IACM
Partial Evaluation and Semantics based Program ManipolaiPEPM’03) pages 29—
43. ACM Press, June 2003. Invited talk.

S. A. Jarvis R. G. Morgan. Profiling large-scale lazydiuonal programs.Journal of
Functional Programing8(3):201-237, May 1998.

59

[103] F. A. Rabhi and G. A. Manson. Using Complexity Function€ontrol Parallelism in
Functional Programs. Res. Rep. CS-90-1, Dept. of Computer Ggiemiv. of Sheffield,
England, January 1990.

[104] John Reppy and Yingi Xiao. Toward a Parallel Implemgataof Concurrent ml, 2008.

[105] Behrooz Shirazi, Krishna Kavi, A.R. Hurson, and Pragd@igwas. PARSA: A Parallel
Program Scheduling and Assessment EnvironmenRalallel Processing, 1993. ICPP
1993. International Conference pwolume 2, pages 68—72, Aug. 1993.

[106] Wei Shu and Min-You Wu. Runtime Incremental Paralleh&tuling (rips) on Dis-
tributed Memory ComputersParallel and Distributed Systems, IEEE Transactions on
7(6):637-649, June 1996.

[107] Mauricio Solar and Mario Inostroza. An Automatic Sdhker for Parallel Machines
(Research Note). I&Buro-Par '02: Proceedings of the 8th International Euro+F@on-
ference on Parallel Processingages 212-216, London, UK, 2002. Springer-Verlag.

[108] Daniel Spoonhower, Guy E. Blelloch, Robert Harper, ahdlip B. Gibbons. Space
Profiling for Parallel Functional ProgramSIGPLAN Not.43(9):253—-264, 2008.

[109] Hannes Strass, Susana Mufioz-Hernandez, and Vidiwod?@eruelo. Operational se-
mantics for a fuzzy logic programming system with defautid aonstructive answers.
In IFSA/EUSFLAT Confpages 1827-1832, 2009.

[110] Martin Sulzmann, Edmund S.L. Lam, and Simon Marlow. @anng the Performance
of Concurrent Linked-List Implementations in Haskell. DAAMP '09: Proceedings of
the 4th Workshop on Declarative Aspects of Multicore Pragrang pages 37-46, New
York, NY, USA, 2008. ACM.

[111] Florina Ciorba Theodore, Theodore Andronikos, Dimitiamenopoulos, Panagiotis
Theodoropoulos, and George Papakonstantinou. Simple Ceder&ion for Special
UDLs. InIn 1st Balkan Conference in Informatics (BCI'GZ003.

[112] T. Trigo, P. L6épez-Garcia, and S. Mu noz Hernandez.drdw Fuzzy Granularity Control
in Parallel/Distributed Computing. Imternational Conference on Fuzzy Computation
(ICFC 2010) pages 43-55. SciTePress, October 2010.

[113] C. Vaucheret, S. Guadarrama, and S. Mufioz. Fuzzy Préldgmple General Imple-
mentation using CLP(R). 18th International Conference on Logic for Programming
Artificial Intelligence and Reasoningbilisi, Georgia, October 2002.

[114] Bo Wang. Task Parallel Scheduling over Multi-core 8yst InCloudCom pages 423—
434, 2009.

60

[115] M.H. Willebeek-LeMair and A.P. Reeves. Strategies dgnamic load balancing on
highly parallel computers. I[EEE Transactions on Parallel and Distributed Systems
4:979-993, 1993.

[116] K. Windisch, J.V. Miller, and V. Lo. ProcSimity: An Exgimental Tool for Processor
Allocation and Scheduling in Highly Parallel SystemsFhontiers of Massively Parallel
Computation, 1995. Proceedings. Frontiers '95., Fifth Sgeipm on thepages 414—
421, Feb 1995.

[117] Thomas Wolfgang Burger. Intel Multi-Core ProcessorsidR Reference Guide, August
2005.

[118] M. Y. Wu and D. D. Gajski. Hypertool: A Programming AidrfMessage-Passing Sys-
tems.|EEE Trans. Parallel Distrib. Syst1(3):330-343, 1990.

[119] Min-You Wu, Wei Shu, and Yong Chen. Runtime Parallel &mental Scheduling of
DAGs. InICPP '00: Proceedings of the Proceedings of the 2000 Inteomai Confer-
ence on Parallel Processingage 541, Washington, DC, USA, 2000. IEEE Computer
Society.

[120] Chengzhong Xu and Francis C. Lawad Balancing in Parallel Computers: Theory and
Practice Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[121] Tao Yang and Apostolos Gerasoulis. PYRROS: Static Bagleduling and Code Gen-
eration for Message Passing MultiprocessorslA8 '92: Proceedings of the 6th Inter-
national Conference on Supercomputimgages 428—-437, New York, NY, USA, 1992.
ACM.

[122] Steve Zdancewic. Application-Level Concurrency: Camrig Events and Treads: in-
vited talk. INDAMP, page 2, 2007.

[123] X. Zhong, E. Tick, S. Duvvuru, L. Hansen, A.V.S. Sastigd R. Sundararajan. Towards
an Efficient Compile-Time Granularity Analysis Algorithmn Proc. of the 1992 Inter-
national Conference on Fifth Generation Computer Systgrages 809—-816. Institute
for New Generation Computer Technology (ICOT), June 1992.

[124] Lukasz Ziarek and Suresh Jagannathan. MemoizingiMihleaded Transactions, 2008.

[125] Lukasz Ziarek, Suresh Jagannathan, Matthew FluetUanut A. Acar. Speculative n-
way barriers. IlDAMP '09: Proceedings of the 4th Workshop on Declarativeetsp of
Multicore Programmingpages 1-12, New York, NY, USA, 2008. ACM.

61

