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Abstract. Glass-box test data generation (TDG) is the process of au-
tomatically generating test input data for a program by considering its
internal structure. This is generally accomplished by performing sym-
bolic execution of the program where the contents of variables are ex-
pressions rather than concrete values. The main idea in CLP-based TDG
is to translate imperative programs into equivalent CLP ones and then
rely on the standard evaluation mechanism of CLP to symbolically ex-
ecute the imperative program. Performing symbolic execution on large
programs becomes quickly expensive due to the large number and the
size of paths that need to be explored. In this paper, we propose com-
positional reasoning in CLP-based TDG where large programs can be
handled by testing parts (such as components, modules, libraries, meth-
ods, etc.) separately and then by composing the test cases obtained for
these parts to get the required information on the whole program. Im-
portantly, compositional reasoning also gives us a practical solution to
handle native code, which may be unavailable or written in a different
programming language. Namely, we can model the behavior of a native
method by means of test cases and compositional reasoning is able to
use them.

1 Introduction

Test data generation (TDG) is the process of automatically generating test cases
for interesting test coverage criteria. Coverage criteria aim at measuring how
well the program is exercised by a test suite. Examples of coverage criteria are:
statement coverage which requires that each line of the code is executed; path
coverage which requires that every possible trace through a given part of the code
is executed; loop-k (resp. block-k ) which limits to a threshold k the number of
times we iterate on loops (resp. visit blocks in the control flow graph [1]). Among
the wide variety of approaches to TDG (see e.g. [22]), our work focuses on glass-
box testing, where test cases are obtained from the concrete program in contrast
to black-box testing, where they are deduced from a specification of the program.
Also, our focus is on static testing, where we assume no knowledge about the
input data, in contrast to dynamic approaches [7,14] which execute the program
to be tested for concrete input values.

M. Alpuente (Ed.): LOPSTR 2010, LNCS 6564, pp. 99–116, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



100 E. Albert et al.

The standard approach to generating test cases statically is to perform a sym-
bolic execution of the program [15,5,13,18,19,6,21], where the contents of vari-
ables are expressions rather than concrete values. Symbolic execution produces a
system of constraints consisting of the conditions to execute the different paths.
This happens, for instance, in branching instructions, like if-then-else, where we
might want to generate test cases for the two alternative branches and hence
accumulate the conditions for each path as constraints. The symbolic execu-
tion approach has been combined with the use of constraint solvers [19,13,21] in
order to handle the constraint systems by solving the feasibility of paths and,
afterwards, to instantiate the input variables. For instance, a symbolic JVM
machine which integrates several constraint solvers has been designed in [19]
for TDG of Java (bytecode) programs. In general, a symbolic machine requires
non-trivial extensions w.r.t. a non-symbolic one like the JVM: (1) it needs to
execute (imperative) code symbolically as explained above, (2) it must be able
to non-deterministically execute multiple paths (as without knowledge about the
input data non-determinism usually arises).

In recent work [11], we have proposed a CLP-based approach to TDG of imper-
ative programs consisting of three main ingredients: (i) The imperative program
is first translated into an equivalent CLP one, named CLP-translated program in
what follows. The translation can be performed by partial evaluation [10] or by
traditional compilation. (ii) Symbolic execution on the CLP-translated program
can be performed by relying on the standard evaluation mechanism of CLP, which
provides backtracking and handling of symbolic expressions for free. (iii) The use
of dynamic memory requires to define heap-related operations that, during TDG,
take care of constructing complex data structures with unbounded data (e.g., re-
cursive data structures). Such operations can be implemented in CLP [11].

It is well-known that symbolic execution might become computationally in-
tractable due to the large number of paths that need to be explored and also
to the size of their associated constraints (see [20]). While compositionality has
been applied in many areas of static analysis to alleviate these problems, it is
less widely used in TDG (some notable exceptions in the context of dynamic
testing are [8,3]). In this paper, we propose a compositional approach to static
CLP-based TDG for imperative languages. In symbolic execution, composition-
ality means that when a method m invokes another method p for which TDG
has already been performed, the execution can compose the test cases available
for p (also known as method summary for p) with the current execution state and
continue the process, instead of having to symbolically execute p again. By test
cases or method summary, we refer to the set of path constraints obtained by
symbolically executing p using a certain coverage criterion. Compositional TDG
has several advantages over global TDG. First, it avoids repeatedly performing
TDG of the same method. Second, components can be tested with higher pre-
cision when they are chosen small enough. Third, since separate TDG is done
on parts and not on the whole program, total memory consumption may be
reduced. Fourth, separate TDG can be performed in parallel on independent
computers and the global TDG time can be reduced as well.



Compositional CLP-Based Test Data Generation for Imperative Languages 101

class R {
int n; int d;

void simplify(){
int gcd = A.gcd(n,d);

n = n/gcd; d = d/gcd;}
static R[] simp(R[] rs){
int length = rs.length;

R[] oldRs = new R[length];

arraycopy(rs,oldRs,length);

for (int i = 0; i < length; i++)

rs[i].simplify();

return oldRs;}}

class A {
static int abs(int x){
if (x >= 0) return x;

else return -x;

}
static int gcd(int a,int b){
int res;

while (b != 0){
res = a%b; a = b; b = res;}

return abs(a);

}
}

Fig. 1. Java source of working example

Furthermore, having a compositional TDG approach in turn facilitates the
handling of native code, i.e., code which is implemented in a different language.
This is achieved by modeling the behavior of native code as a method summary
which can be composed with the current state during symbolic execution in
the same way as the test cases inferred automatically by the testing tool are.
By treating native code, we overcome one of the inherent limitations of symbolic
execution (see [20]). Indeed, improving the efficiency of TDG and handling native
code are considered main challenges in the fields of symbolic execution and TDG.

We report on a prototype implementation in PET [2], a Partial-Evaluation
based Test case generation tool for Java bytecode. Experimental results on a set
of medium-sized benchmarks already show that compositional TDG can highly
improve the performance over non-compositional TDG.

2 CLP-Based Test Case Generation

In this section, we summarize the CLP-based approach to TDG for imperative
languages introduced in [1] and recently extended to object-oriented languages
with dynamic memory in [11]. For simplicity, we do not take aliasing of references
into account and simplify the language by excluding inheritance and virtual
invocations. However, these issues are orthogonal to compositionality and our
approach could be applied to the complete framework of [11]. Also, although our
approach is not tied to any particular imperative language, as regards dynamic
memory, we assume a Java-like language. In [10], it has been shown that Java
bytecode (and hence Java) can be translated into the equivalent CLP-programs
shown below.

2.1 From Imperative to Equivalent CLP Programs

A CLP-translated program as defined in [11] is made up of a set of predicates.
Each predicate is defined by one or more mutually exclusive clauses. Each clause
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receives as input a possibly empty list of arguments Argsin and an input heap
Hin, and returns a possibly empty output Argsout, a possibly modified output
heap Hout, and an exception flag indicating whether the execution ends normally
or with an uncaught exception. The body of a clause may include a set of guards
(comparisons between numeric data or references, etc.) followed by different
types of instructions: arithmetic operations and assignment statements, calls
to other predicates, instructions to create objects and arrays and to consult the
array length, read and write accesses to object fields or array positions, as defined
by the following grammar:

Clause ::= Pred (Argsin,Argsout,Hin,Hout,ExFlag) :- [G,]B1,B2,. . . ,Bn.
G ::= Num* ROp Num* | Ref∗1 \== Ref∗2
B ::= Var #= Num* AOp Num* | Pred (Argsin,Argsout,Hin,Hout,ExFlag) |

new object(H,C∗,Ref∗,H) |new array(H,T,Num∗,Ref∗,H) |length(H,Ref∗,Var)|
get field(H,Ref∗,FSig,Var) | set field(H,Ref∗,FSig,Data∗,H) |
get array(H,Ref∗,Num∗,Var) | set array(H,Ref∗,Num∗,Data∗,H)

Pred ::= Block | MSig
Args ::= [] | [Data∗|Args]
Data ::= Num | Ref | ExFlag
Ref ::= null | r(Var)

ExFlag ::= ok | exc(Var)

ROp ::= #> | #< | #>= | #=< | #= | #\=
AOp ::= + | - | ∗ | / | mod

T ::= bool | int | C | array(T)
FSig ::= C:FN

H ::= Var

Non-terminals Block, Num, Var, FN, MSig and C denote, resp., the set of predi-
cate names, numbers, variables, field names, method signatures and class names.
Clauses can define both methods which appear in the original source program
(MSig), or additional predicates which correspond to intermediate blocks in the
program (Block). An asterisk on a non-terminal denotes that it can be either as
defined by the grammar or a (possibly constraint) variable.

Example 1. Fig. 1 shows the Java source of our running example and Fig. 2 the
CLP-translated version of method simp obtained from the bytecode. The main
features that can be observed from the translation are: (1) All clauses contain in-
put and output arguments and heaps, and an exception flag. Reference variables

simp([r(Rs)],[Ret],H0,H3,EF) :- length(H0,Rs,Len), Len #>= 0, new array(H0,’R’,Len,OldRs,H1),
arraycopy([r(Rs),r(OldRs),Len],[],H1,H2,EFp), r1([EFp,r(Rs),r(OldRs),Len],[Rt],H2,H3,EF).

simp([null], ,Hin,Hout,exc(ERef)) :- new object(Hin,’NPE’,ERef,Hout).

r1([ok,Rs,OldRs,Length],[Ret],H1,H2,EF) :- loop([Rs,OldRs,Length,0],[Ret],H1,H2,EF).
r1([exc(ERef), , , ], ,H,H,exc(ERef)).

loop([ ,OldRs,Length,I],[OldRs],H,H,ok) :- I #>= Length.
loop([Rs,OldRs,L,I],[Ret],H1,H2,EF) :- I #< L, loopbody1([Rs,OldRs,L,I],[Ret],H1,H2,EF).

loopbody1([r(Rs),OldRs,Length,I],[Ret],H1,H2,EF) :- length(H1,Rs,L), L #>= 0, I #< L,
get array(H1,Rs,I,RSi), loopbody2([r(Rs),OldRs,Length,I,Rsi],[Ret],H1,H2,EF).

loopbody2([Rs,OldRs,Length,I,r(Rsi)],[Ret],H1,H3,EF) :- simplify([r(Rsi)],[],H1,H2,EFp),
loopbody3([EFp,Rs,OldRs,Length,I],[Ret],H2,H3,EF).

loopbody2([ , , , ,null], ,H1,H2,exc(ERef)) :- new object(H1,’NPE’,ERef,H2).

loopbody3([ok,Rs,OldRs,L,I],[Ret],H1,H2,EF) :- Ip #= I+1, loop([Rs,OldRs,L,Ip],[Ret],H1,H2,EF).
loopbody3([exc(ERef), , , , ], ,H,H,exc(ERef)).

Fig. 2. CLP Translation associated to bytecode of method simp
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are of the form r(V) and we use the same variable name V as in the program.
E.g., argument Rs of simp corresponds to the method input argument. (2) Java
exceptions are made explicit in the translated program, e.g., the second clauses
for predicates simp and loopbody2 capture the null-pointer exception (NPE). (3)
Conditional statements and iteration in the source program are transformed into
guarded rules and recursion in the CLP program, respectively, e.g., the for-loop
has been converted to the recursive predicate loop. (4) Methods (like simp) and
intermediate blocks (like r1) are uniformly represented by means of predicates
and are not distinguishable in the translated program.

2.2 Symbolic Execution

When the imperative language does not use dynamic memory, CLP-translated
programs can be executed by using the standard CLP execution mechanism with
all arguments being free variables. However, in order to generate heap-allocated
data structures, it is required to define heap-related operations which build the
heap associated with a given path by using only the constraints induced by
the visited code. Fig. 3 summarizes the CLP-implementation of the operations
in [11] to create heap-allocated data structures (like new object and new array)
and to read and modify them (like set field, etc.) which use some auxiliary pred-
icates (like deterministic versions of member member det, of replace replace det,
and nth0 and replace nth0 for arrays) which are quite standard and hence their
implementation is not shown.

The intuitive idea is that the heap during symbolic execution contains two
parts: the known part, with the cells that have been explicitly created during
symbolic execution appearing at the beginning of the list, and the unknown
part, which is a logic variable (tail of the list) in which new data can be added.

Importantly, the definition of get cell/3 distinguishes two situations when
searching for a reference: (i) It finds it in the known part (second clause). Note
the use of syntactic equality rather than unification, since references at execution
time can be variables. (ii) Otherwise, it reaches the unknown part of the heap (a
logic variable), and it allocates the reference (in this case a variable) there (first
clause).

The heaps generated by using the operations in Fig. 3 adhere to this grammar:

Heap ::= [] | [Loc|Heap] Cell ::= object(C∗,Fields∗) | array(T∗,Num∗,Args∗)
Loc ::= (Num∗,Cell) Fields ::= [] | [f(FN,Data∗)|Fields∗]

Observe that a heap is represented as a list of locations which are pairs made up
of a unique reference and a cell, which in turn can be an object or an array. An
object contains its type and its list of fields, each of them contains its signature
and data contents. An array contains its type, its length and the list of its ele-
ments. An important point to note is that the list of fields of an object is always
in normal form, i.e., all fields of the class are present and ordered. This is accom-
plished by the calls to predicate normalize/2 within get field/3 and set field/4,
which initializes the list of fields producing the corresponding template list if it
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has not been initialized yet. Note that this initialization is only produced the
first time a call to get field/3 or set field/4 is performed on an object. In con-
trast, in [11] the list of fields can be partial (not all fields are present but just
those that have been accessed) and is not ordered (fields occur in the order they
are accessed during the corresponding execution). The need for normalization is
motivated later in Sec. 3.1.

Example 2. Let us consider a branch of the symbolic execution of method simp
which starts from simp(Ain,Aout,Hin,Hout,EF), the empty state φ0 = 〈∅, ∅〉 and
which (by ignoring the call to arraycopy for simplicity) executes the predi-
cates simp1→ length→ ≥→ new array→ r11→ loop1→ ≥→ true. The subindex 1
indicates that we pick up the first rule defining a predicate for execution. As cus-
tomary in CLP, a state φ consists of a set of bindings σ and a constraint store θ.
The final state of the above derivation is φf = 〈σf , θf 〉 with σf = {Ain = [r(Rs)],

Aout = [r(C)], Hin = [(Rs, array(T, L, ))| ], Hout = [(C, array(′R′, L, ))|Hin], EF = ok} and
θf = {L = 0}. This can be read as “if the array at location Rs in the input heap
has length 0, then it is not modified and a new array of length 0 is returned”.
This derivation corresponds to the first test case in Table 3 where a graphical
representation for the heap is used. For readability, in the table we have applied
the store substitution to both Heapin and Heapout terms.

2.3 Method Summaries Obtained by TDG

It is well-known that the execution tree to be traversed in symbolic execution is in
general infinite. This is because iterative constructs such as loops and recursion
whose number of iterations depends on the input values usually induce an infinite
number of execution paths when executed with unknown input values. It is
therefore essential to establish a termination criterion which, in the context of
TDG, is usually defined in terms of the so-called coverage criterion (see Sec. 1).
Given a method m and a coverage criteria, C, in what follows, we denote by
Symbolic-Execution(m, C) the process of generating the minimal execution
tree which guarantees that the test cases obtained from it will meet the given
coverage criterion. The concept of method summary corresponds to the finite
representation of its symbolic execution for a given coverage criterion.

Definition 1 (method summary). Let T C
m be the finite symbolic execution tree

of method m obtained by using a coverage criterion C. Let B be the set of successful
branches in T C

m and m(Argsin,Argsout,Hin,Hout,EF) be its root. A method sum-
mary for m w.r.t. C, denoted SC

m, is the set of 6-tuples associated to each branch
b ∈ B of the form: 〈σ(Argsin),σ(Argsout),σ(Hin),σ(Hout),σ(EF),θ〉, where σ and
θ are the set of bindings and constraint store, resp., associated to b.

Each tuple in a summary is said to be a (test) case of the summary, denoted c,
and its associated state φc comprises its corresponding σ and θ, also referred to as
context φc. Intuitively, a method summary can be seen as a complete specification
of the method for the considered coverage criterion, so that each summary case
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new object(H,C,Ref,H’) :- build object(C,Ob), new ref(Ref), H’ = [(Ref,Ob)|H].
new array(H,T,L,Ref,H’) :- build array(T,L,Arr), new ref(Ref), H’ = [(Ref,Arr)|H].

length(H,Ref,L) :- get cell(H,Ref,Cell), Cell = array( ,L, ).

get field(H,Ref,FSig,V) :- get cell(H,Ref,Ob), FSig = C:FN, Ob = object(T,Fields),
T = C, normalize(C,Fields), member det(field(FN,V),Fields).

get array(H,Ref,I,V) :- get cell(H,Ref,Arr), Arr = array( , ,Xs), nth0(I,Xs,V).

set field(H,Ref,FSig,V,H’) :- get cell(H,Ref,Ob), FSig = C:FN, Ob = object(T,Fields),
T = C, normalize(C,Fields),
replace det(Fields,field(FN, ),field(FN,V),Fields’),
set cell(H,Ref,object(T,Fields’),H’).

set array(H,Ref,I,V,H’) :- get cell(H,Ref,Arr), Arr = array(T,L,Xs),
replace nth0(Xs,I,V,Xs’), set cell(H,Ref,array(T,L,Xs’),H’).

get cell(H,Ref,Cell) :- var(H), !, H = [(Ref,Cell)| ].
get cell([(Ref’,Cell’)| ],Ref,Cell) :- Ref == Ref’, !, Cell = Cell’.

get cell([ |RH],Ref,Cell) :- get cell(RH,Ref,Cell).
set cell(H,Ref,Cell,H’) :- var(H), !, H’ = [(Ref,Cell)|H].

set cell([(Ref’, )|H],Ref,Cell,H’) :- Ref == Ref’, !, H’ = [(Ref,Cell)|H].
set cell([(Ref’,Cell’)|H’],Ref,Cell,H) :- H = [(Ref’,Cell’)|H”], set cell(H’,Ref,Cell,H”).

Fig. 3. Heap operations for symbolic execution [11]

corresponds to the path constraints associated to each finished path in the corre-
sponding (finite) execution tree. Note that, though the specification is complete
for the criterion considered, it will be, in general, a partial specification for the
method, since the finite tree may contain incomplete branches which, if further
expanded, may result in (infinitely) many execution paths.

Example 3. Table 1 shows the summary obtained by symbolically executing
method simplify using the block-2 coverage criterion of [1] (see Sec. 1): The
summary contains 5 cases, which correspond to the different execution paths
induced by calls to methods gcd and abs. For the sake of clarity, we adopt
a graphical representation for the input and output heaps. Heap locations are
shown as arrows labeled with their reference variable names. Split-circles repre-
sent objects of type R and fields n and d are shown in the upper and lower part,

Table 1. Summary of method simplify

Ain Aout Heapin Heapout EF Constraints

r(A)
F
0A

M
0A ok F<0, N=-F, M=F/N

r(A)
F
0A 1

0A ok F>0

r(A)
0
0A

0
0A AEB exc(B)

r(A)
F
GA

M
NA ok G<0, F mod G=0, K=-G, M=F/K, N=G/K

r(A)
F
GA

M
1A ok G>0, F mod G=0, M=F/G
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compose summary(Call) :-
Call =..[M,Ain,Aout,Hin,Hout,EF],
summary(M,SAin,SAout,SHin,SHout,SEF,σ),
SAin = Ain, SAout = Aout, SEF = EF,
compose hin(Hin,SHin),
compose hout(Hin,SHout,Hout),
load store(σ).

compose hin( ,SH) :- var(SH), !.
compose hin(H,[(R,Cell)|SH]) :-

get cell(H,R,Cell’), Cell’ = Cell,
compose hin(H,SH).

compose hout(H,SH,H) :- var(SH), !.
compose hout(Hin,[(Ref,Cell)|SHout],Hout) :-

set cell(Hin,Ref,Cell,H’),
compose hout(H’,SHout,Hout).

Fig. 4. The composition operation

respectively. Exceptions are shown as starbursts, like in the special case of the
fraction “0/0”, for which an arithmetic exception (AE) is thrown due to a divi-
sion by zero. In summary examples of Tables 2 and 3, split-rectangles represent
arrays, with the length of the array in the upper part and its list of values (in
Prolog syntax) in the lower one.

In a subsequent stage, it is possible to produce actual values from the obtained
path constraints (e.g., by using labeling mechanisms in standard clpfd domains)
therefore obtaining executable test cases. However, this is not an issue of this
paper and we will rely on the method summaries only in what follows.

3 A Compositional CLP-Based TDG Approach

The goal of this section is to study the compositionality of the CLP-based ap-
proach to TDG of imperative languages presented in the previous section.

3.1 Composition in Symbolic Execution

Let us assume that during the symbolic execution of a method m, there is a
method invocation to p within a state φ. In the context of our CLP approach,
the challenge is to define a composition operation so that, instead of symbolically
executing p its (previously computed) summary Sp can be reused. For this, TDG
for m should produce the same results regardless of whether we use a summary
for p or we symbolically execute p within TDG for m, in a non-compositional
way.

Fig. 4 shows such a composition operation (predicate compose summary/1).
The idea is therefore to replace, during symbolic execution, every method invo-
cation to p by a call compose summary(p(. . .)) when there is a summary available
for it. Intuitively, given the variables of the call to p, with their associated state
φ, compose summary/1 produces, on backtracking, a branch for each compatible
case c ∈ Sp, composes its state φc with φ and produces a new state φ′ to continue
the symbolic execution with. We assume that the summary for a method p is
represented as a set of facts of the form summary(p,SAin,SAout,SHin,SHout,SEF,θ).
Roughly speaking, state φc is compatible with φ if: 1) the bindings and con-
straints on the arguments can be conjoined, and 2) the structures of the input
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heaps match. This means that, for each location which is present in both heaps,
its associated cells match, which in turn requires that their associated bindings
and constraints can be conjoined. Note that compatibility of a case is checked
on the fly, so that if φ is not compatible with φc some call in the body of com-
pose summary/1 will fail.

As it can be observed by looking at the code of compose summary/1, the in-
put and output arguments, and the exception flags are simply unified, while the
constraint store θ is trivially incorporated by means of predicate load store/1.
However, the heaps require a more sophisticated treatment, mainly due to the
underlying representation of sets (of objects) as Prolog lists. Predicate com-
pose hin/2 composes the input heap of the summary case SHin with the current
heap Hin, producing the composed input heap in Hin. To accomplish this, com-
pose hin/2 traverses each cell in SHin, and: 1) if its associated reference is not
present in Hin (first rule of get cell/3 succeeds), it is added to it, 2) if is is present
in Hin (second rule of get cell/3 succeeds) then the cells are unified. This is pos-
sible since we are assuming that every object that arises in the heap during
symbolic execution has its list of fields in normal form (see Sec. 2.2). This allows
using just unification (Cell = Cell’) for the aim of matching cells.

Similarly, compose hout/3 composes the output heap of the summary case
SHout with the current heap Hin, producing the composed output heap in Hout.
As can be seen in Figure 4, compose hout/3 traverses each cell in SHout and, if
its associated reference is not present in H (first rule of set cell/4 succeeds), then
it is added to it. Otherwise (second rule of set cell/4 succeeds) it overwrites the
current cell. In both cases, set cell/4 produces a new heap H’ which is passed as
first argument to the recursive call to compose hout/3. This process continues
until there are no more cells in SHout, in which case the current heap is returned.
Again this is possible thanks to the normal form of object fields.

As noticed before, further features of imperative languages not considered in
this paper, such as inheritance and pointer aliasing, can be handled by com-
pose summary/1 for free by just using the corresponding extensions of get cell/3
and set cell/4 defined in [11].

Example 4. When symbolically executing simp, the call simplify(Ain,Aout,Hin,Hout,

EF) arises in one of the branches with state σ = {Ain = [r(E0)], Aout = [], Hin =

[(0, array(′R′, L, [E0| ])), (Rs, array(′R′, L, [E0| ]))|RHin]} and θ = {L ≥ 0} . The com-
position of this state with the second summary case of simplify succeeds and
produces the state σ′ = σ ∪ {E0 = B, RHin = [(B, ob(′R′, [field(n, F), field(d, 0)]))| ],
Hout=[. . . , (B, ob(′R′, [field(n, 1), field(d, 0)]))| ]} and θ′={L ≥ 0, F > 0}. The dots in
Hout denote the rest of the cells in Hin.

3.2 Approaches to Compositional TDG

In order to perform compositional TDG, two main approaches can be considered:
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Table 2. Summary of method arraycopy

Ain Aout Heapin Heapout EF Constraints

[X,Y,0] H H ok ∅

[r(A),null,Z]
L

[V| ]A
L

[V| ]A NPEB exc(B) Z>0, L>0

[null,Y,Z] H NPEA exc(A) Z>0

[X,Y,Z] H
AEA exc(A) Z<0

[r(A),r(B),1]
L1

[V| ]A
L2

[V2| ]B
L1

[V| ]A
L2

[V| ]B ok L1>1, L2>0

Context-sensitive. Starting from an entry method m (and possibly a set of pre-
conditions), TDG performs a top-down symbolic execution such that, when a
method call p is found, its code is executed from the actual state φ. In a context-
sensitive approach, once a method is executed, we store the summary computed
for p in the context φ. If we later reach another call to p within a (possibly differ-
ent) context φ′, we first check if the stored context is sufficiently general. In such
case, we can adapt the existing summary for p to the current context φ′ (by re-
lying on the operation in Fig. 4). At the end of each execution, it can be decided
which of the computed (context-sensitive) summaries are stored for future use.
In order to avoid the problems of computing summaries which end up being not
sufficiently general, in the rest of this paper we focus in the context-insensitive
approach presented below.
Context-insensitive. Another possibility is to perform the TDG process in a
context-insensitive way. Algorithm 1 presents this strategy, by abstracting some
implementation-related details. Intuitively, the algorithm proceeds in the follow-
ing steps. First, it computes the call graph (line 3) for the entry method mP of
the program under test, which gives us the set of methods that must be tested.
The strongly connected components (SCCs for short) for such graph are then
computed in line 4. SCCs are then traversed in reverse topological order starting
from an SCC which does not depend on any other (line 6). The idea is that each
SCC is symbolically executed from its entry mscc w.r.t. the most general context
(i.e., true) (line 8). If there are several entries to the same SCC, the process is
repeated for each of them. Hence, it is guaranteed that the obtained summaries
can always be adapted to more specific contexts.

In general terms, the advantages of the context-insensitive approach are that
composition can always be performed and that only one summary needs to be
stored per method. However, since no context information is assumed, summaries
can contain more test cases than necessary and can be thus more expensive to
obtain. In contrast, the context-sensitive approach ensures that only the required
information is computed, but it can happen that there are several invocations to
the same method that cannot reuse previous summaries (because the associated
contexts are not sufficiently general). In such case, it is more efficient to obtain
the summary without assuming any context.



Compositional CLP-Based Test Data Generation for Imperative Languages 109

Algorithm 1. Context-insensitive compositional TDG
Input: Program P , Coverage criterion C
Output: Test suite T for program P w.r.t. C
1: procedure Bottom-up-tdg(P , C)
2: Let mP be the entry method of P
3: G ← callGraph(mP)
4: SCC ← stronglyConnectedComponents(G)
5: SCC′ ← buildTopologicalOrderList(SCC)
6: for all scc ∈ SCC′ do
7: for all mscc ∈ entryMethods(scc) do
8: Smscc

c ← Symbolic-Execution(mscc, C)
9: end for

10: end for
11: end procedure

3.3 Handling Native Code during Symbolic Execution

An inherent limitation of symbolic execution is the handling of native code,
i.e., code implemented in another (lower-level) language. Symbolic execution
of native code is not possible since the associated code is not available and it
can only be handled as a black box. In the context of hybrid approaches to
TDG which combine symbolic and concrete execution, a solution is concolic ex-
ecution [9] where concrete execution is performed on random inputs and path
constraints are collected at the same time; native code is executed for concrete
values. Although we believe that such approach could be also adapted to our
CLP framework, we concentrate here on a purely symbolic approach. In this
case, the only possibility is to model the behavior of the native code by means
of specifications. Such specifications can be in turn treated as summaries for the
corresponding native methods. They can be declared by the code provider or
automatically inferred by a TDG tool for the corresponding language. Interest-
ingly, the composition operator uses them exactly in the same way as it uses the
summaries obtained by applying our own symbolic execution mechanism. Let us
see an example.

Example 5. Assume that method arraycopy is native. A method summary for
arraycopy can be provided, as shown in Table 2, where we have (manually)
specified five cases: the first one for arrays of length zero, the second and third
ones for null arrays, the fourth one for a negative length, and finally a normal
execution of non-null arrays. Now, by using our compositional reasoning, we can
continue symbolic execution for simp by composing the specified summary of
arraycopy within the actual context. In Table 3, we show the entire summary
of method simp for a block-2 coverage criterion obtained by relying on the
summaries for simplify and arraycopy shown before.

A practical question is how method summaries for native code should be pro-
vided. A standard way is to use assertions (e.g., in JML in the case of Java)
which could be parsed and easily transformed into our Prolog syntax.
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3.4 Compositionality of Different Coverage Criteria

Though we have presented in Sec. 3.1 above a mechanism for reusing existing
summaries during TDG, not all coverage criteria behave equally well w.r.t. com-
positionality. A coverage criterion C is compositional if whenever performing
TDG of a method m w.r.t. C, if we use a previously computed summary for a
method p w.r.t. C in a context which is sufficiently general, the results obtained
for m preserve criterion C. In other words, if a criterion is compositional, we do
not lose the required coverage because of using summaries.

Unfortunately, not all coverage criteria are compositional. For example, state-
ment coverage is not compositional, as illustrated in the example below.

Example 6. Consider the following simple method:

p(int a,int b){if (a > 0 || b > 0) S;}

where S stands for any statement, and the standard shortcut semantics for Java
boolean expressions is used. This means that as soon as the expression has a
definite true or false value, it is not further evaluated. In our case, once the
subexpression a > 0 takes the value true, the whole condition definitely takes
the value true, the subexpression b > 0 is not evaluated, and S is executed.

If assuming the top (most general) context, a summary with a single case
{a > 0} is sufficient to achieve statement coverage. Consider now that p is called
from an outer scope with a more restricted context in which a ≤ 0. Then, using
such summary instead of performing symbolic execution of p does not preserve
statement coverage, since it is not guaranteed that statement S is visited. It
depends on the particular value picked for b for testing, which is unconstrained
in the summary. If the value for b is picked to be greater than zero, statement
coverage is satisfied, but not otherwise. Note that by considering a context where
a ≤ 0 from the beginning, a summary with the single entry {b > 0} would be
computed instead.

Table 3. Summary of method simp

Ain Aout Heapin Heapout EF Constraints

r(A) r(B)
0
[]A

0
[]A

0
[]B ok ∅

null X H
NPEA exc(A) ∅

r(A) r(C)
1

[r(B)]A
F
0B

1
[r(B)]A

M
0B

1
[r(B)]C ok F<0, K=-F, M=F/K

r(A) r(C)
1

[r(B)]A
F
0B

1
[r(B)]A

1
0B

1
[r(B)]C ok F>0

r(A) X
1

[r(B)]A
0
0B

1
[r(B)]A

0
0B

1
[r(B)]C AED exc(D) ∅

r(A) r(C)
1

[r(B)]A
F
GB

1
[r(B)]A

M
NB

1
[r(B)]C ok G<0, F mod G=0, K=-G, M=F/K, N=G/K

r(A) r(C)
1

[r(B)]A
F
GB

1
[r(B)]A

M
1B

1
[r(B)]C ok G>0, F mod G=0, M=F/G

r(A) X
1

[null]A
1

[null]A
1

[null]C NPEB exc(B) ∅
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As this example illustrates, a challenge in compositional reasoning is to preserve
coverage when using summaries previously computed for a context φ which is suf-
ficiently general, but not identical to φ′, the one which appears during the particu-
lar invocation of the method. More precisely, compositionality of coverage criteria
requires that the following property holds: given a summary S obtained for p in a
context φ w.r.t. C, a summary S′ for a more restricted context φ′ can be obtained
by removing from S those entries which are incompatible with context φ′.

For instance, the block-k coverage criterion used in the examples of the paper
is compositional. This is because there is a one to one correspondence between
entries in the summary and non-failing branches in the symbolic execution tree
obtained for φ. If we are now in a more restricted context φ′, those branches which
become failing branches are exactly those whose precondition is incompatible with
φ′. Therefore, we obtain identical results by working at the level of the symbolic
execution tree or that of the entries in the summary.

Table 4. Benchmarks

Benchmark NMs RCs RMs RIs Tdec

NodeStack 6 3 12 94 32
ArrayStack 7 3 11 103 39
NodeQueue 6 3 15 133 48
NodeList 19 9 33 449 277
DoublyLinkedList 13 2 20 253 107
SortedListInt 6 2 8 155 58
SLPriorityQueue 12 14 42 515 330
BinarySearchTree 14 15 54 717 620
SLIntMaxNode 9 2 12 232 99
SearchTreeInt 9 1 10 189 75

In fact, we can classify coverage criteria into two categories: local and global.
A criterion is local when the decision on whether the path should be included or
excluded in the summary can be taken by looking at the corresponding path only.
Acriterion is global whenweneed to lookatother pathsbeforedeterminingwhether
to includeagivenpath in the summaryornot.Asexamples,bothblock-kanddepth-
k are local,whereas statement coverage is global: a givenpath is not needed if it does
not visit statements not covered by any of the previously considered paths.

In general, local criteria are compositional, whereas global criteria are not. The
reason for such non-compositionality is that we may decide not to include certain
paths which are not required for achieving the criterion in a contextφ but which are
needed in a more specific context φ′, since other paths which achieved the criterion
are now incompatible with the context and have been removed from the summary.

3.5 Reusing Summaries Obtained for Different Criteria

In the discussion about compositionality presented in Sec. 3.4 above, we always
assume that the same criterion C is used both for m and the summary of p.
Another interesting practical question is: given a summary computed for p w.r.t.
a criteria C′, can we use it when computing test cases for m w.r.t. a criteria C?
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As an example, by focusing on block-k, assume that C′ corresponds to k = 3
and C to k = 2. We can clearly adapt the summaries obtained for k = 3 to the
current criteria k = 2. Even more, if one uses the whole summary for k = 3,
the required coverage k = 2 is ensured, although unnecessary test cases are
introduced. On the contrary, if C′ corresponds to k = 2 and C to k = 3 the
coverage criterion is not preserved for m. However, this can be acceptable when
we would like to perform TDG of different levels to different parts of the code,
depending on their size, relevance, level of trust, etc. For instance, code which
is safety-critical can be more exhaustively tested using coverage criteria that
ensures a higher degree of coverage. In contrast, code which is more stable (e.g.,
library methods) can be tested using more lightweight coverage criteria.

Another issue is what happens when the existing summary is for a completely
unrelated criterion. There, it is not possible to guarantee that the criterion for
m is guaranteed. Nevertheless, such summaries can be used for obtaining infor-
mation on the output states of p in order to be able to continue the symbolic
execution of m after the calls to p terminate. This is especially relevant when p
is native, since in that case performing symbolic execution instead of using the
summary is not an alternative.

Table 5. Experimental results

Benchmark
Cov. Non-Compositional Compositional Gains

Crit. Ttcg N US CC Ttcg N US CC SG SC ΔTtdg

NodeStack
block-2 6.7 9 112 100% 10.3 9 94 100% 11 12 0.65
block-3 6.7 9 112 100% 6.7 9 94 100% 12 11 1.00

ArrayStack
block-2 13.0 15 203 100% 13.0 15 161 100% 10 10 1.00
block-3 13.3 15 203 100% 13.0 15 161 100% 10 10 1.03

NodeQueue
block-2 10.3 15 160 100% 13.0 15 149 100% 13 13 0.79
block-3 10.3 15 160 100% 13.3 15 149 100% 13 13 0.78

NodeList
block-2 120.0 102 1856 96% 103.7 102 684 96% 52 28 1.16
block-3 130.0 102 1856 96% 110.3 102 684 96% 28 52 1.18

DoublyLinkedList
block-2 160.3 116 5060 99% 130.3 116 1967 99% 39 12 1.23
block-3 200.0 133 6068 99% 160.3 133 2164 99% 12 51 1.25

SortedListInt
block-2 133.3 49 2781 100% 77.0 49 775 100% 22 5 1.73
block-3 4233.7 447 63593 100% 1713.0 447 6542 100% 5 176 2.47

SLPriorityQueue
block-2 533.3 266 5828 94% 566.7 266 1195 94% 114 62 0.94
block-3 786.7 350 7910 94% 856.3 350 1369 94% 62 128 0.92

BinarySearchTree
block-2 693.0 307 9210 96% 706.3 307 5203 96% 463 63 0.98
block-3 1526.7 559 21162 96% 1486.7 559 11143 96% 63 733 1.03

SLIntMaxNode
block-2 299.7 109 5012 100% 230.0 109 1172 100% 27 8 1.30
block-3 28150.3 2957 328096 100% 20419.7 2957 34770 100% 8 520 1.38

SearchTreeInt
block-2 279.7 90 5707 100% 143.0 90 726 100% 33 8 1.96
block-3 45003.0 5140 553536 100% 20236.7 5140 12980 100% 8 232 2.22

4 Experimental Results

We have implemented our proposed compositional approach using the context-
insensitive algorithm in Sec. 3.2 within PET [2], an automatic TDG tool for
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Java bytecode, which is available for download and for online use through its
web interface at http://costa.ls.fi.upm.es/pet.

In this section we report on some experimental results which aim at demon-
strating the applicability and effectiveness of compositional TDG. As bench-
marks, we consider a set of classes implementing some traditional data
structures ranging from simple stacks and queues to sorted and non-sorted linked
lists (both singly and doubly linked lists), priority queues and binary search
trees. Some benchmarks are taken from the net.datastructures library [12], a
well-known library of algorithms and data-structures for Java. Table 4 shows
the list of benchmarks we have used, together with some static information: the
number of methods for which we have generated test cases (column NMs); the
number of reachable classes, methods and Java bytecode instructions (columns
RCs, RMs and RIs) (excluding code of the Java libraries) and the time taken
by PET to decompile the bytecode to CLP (Tdec), including parsing and load-
ing all reachable classes. All times are in milliseconds and are obtained as the
arithmetic mean of five runs on an Intel(R) Core(TM)2 Quad CPU Q9300 at
2.5GHz with 1.95GB of RAM, running Linux 2.6.26 (Debian lenny).

Table 5 aims at comparing the performance and effectiveness of the com-
positional approach against the non-compositional one by using two coverage
criteria, block-2 and block-3. In general the latter one expands much further the
symbolic execution tree, thus allowing us to compare scalability issues. For each
run, we measure, for both the compositional and non-compositional approaches,
the time taken by PET to generate the test cases (column Ttcg), the number
of obtained test cases (N), the number of unfolding steps performed during the
symbolic execution process (US), and the code coverage (CC). In the case of
the compositional approach we also measure the number of generated summaries
(SG) and summary compositions performed (SC). The code coverage measures,
given a method, the percentage of bytecode instructions which are exercised by
the obtained test cases, among all reachable instructions (including all transi-
tively called methods). This is a common measure in order to reason about the
effectiveness of the TDG. As expected, the code coverage is the same in both
approaches, and so is the number of obtained test cases. Otherwise, this would in-
dicate a bug in the implementation. The last column (ΔTtdg) shows the speedup
of the compositional approach computed as X/Y where X is the Ttcg value of
the non-compositional approach and Y the Ttcg value of the compositional one.

By looking at the gains, we observe that the compositional approach outper-
forms the non-compositional one in most benchmarks. Let us observe also that,
in general, the further the symbolic execution tree is expanded (i.e., when the
block-3 criterion is used), the higher the gains are. There are, however, cases
where the performance of the compositional approach is equal to, or even worse
than, that of the non-compositional one. Importantly, those cases usually cor-
respond to very simple methods whose complexity is not enough so that the
overhead of applying the compositional scheme pays off.

After a careful study of the obtained results, we conclude that there can
be many factors that influence the performance of the compositional approach.
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The most important ones are: the complexity of the program under test (espe-
cially that of its call graph and its strongly connected components), the con-
straint solving library, and, the kind of constraint-based operations performed
and, in particular, whether they are arithmetic constraints or heap related op-
erations. In this direction, we have carried out the following experiment. Given
a method p which simply calls repeatedly (three or four times) method q, we
consider two versions of it: q1 which performs both heap and arithmetic opera-
tions, and q2 with arithmetic operations only. This allows us to detect whether
the kind of constraint-based operations performed influences the performance of
compositional TDG. As expected, with q1 compositional TDG improves notably
(two or even three times faster) over non-compositional TDG. Surprisingly, with
q2 the performance of compositional TDG is basically the same (or even worse).
This explains the lack of improvements in some of our benchmarks. The reason is
that the cost of the TDG process is totally dominated by the constraint solving
operations, in this case by the clpfd solver. Interestingly, if we simplify by hand
the constraints on the summary of q2 we do get significant improvements with
compositional TDG. This illustrates the flexibility of the approach in the sense
that, provided that a summary is available for a method, it can be worth spend-
ing resources in simplifying the constraint stores. Once this is done, they will be
used every time a call to the method is found and thus producing a performance
improvement. On the other hand, this demonstrates that compositional TDG
can significantly benefit from more efficient constraint solving libraries.

Overall, our experimental results support our claim that compositional TDG
improves over non-compositional TDG in terms of scalability. Let us observe
that, in general, the benchmarks where the improvements are higher correspond
to those for which a larger number of unfolding steps (column US) is required.
We have seen also that such improvement could be higher by using a more
efficient constraint solving library. It remains as future work to experiment in
such direction.

5 Conclusions

Much effort has been devoted in the area of symbolic execution to improve scal-
ability and three main approaches co-exist which, in a sense, complement each
other. Probably, the most widely used is abstraction, a well-known technique to
reduce large data domains of a program to smaller domains (see [17]). Another
scaling technique which is closely related to abstraction is path merging [4,16],
which consists in defining points where the merging of symbolic execution should
occur. In this paper, we have focused on yet another complementary approach,
compositional symbolic execution, a technique widely used in static analysis but
notably less common in the field of TDG. We have presented a CLP-based ap-
proach to TDG of imperative languages which can be applied in a compositional
way. This can be important in order to make the approach scalable and, as we
have seen, also provides a practical way of dealing with native code.
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