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ABSTRACT
The aim of program specialization is to optimize programs
by exploiting certain knowledge about the context in which
the program will execute. There exist many program ma-
nipulation techniques which allow specializing the program
in different ways. Among them, one of the best known tech-
niques is partial evaluation, often referred to simply as pro-
gram specialization, which optimizes programs by special-
izing them for (partially) known input data. In this work
we describe abstract specialization, a technique whose main
features are: (1) specialization is performed with respect
to “abstract” values rather than “concrete” ones, and (2)
abstract interpretation rather than standard interpretation
of the program is used in order to propagate information
about execution states. The concept of abstract specializa-
tion is at the heart of the specialization system in CiaoPP,
the Ciao system preprocessor. In this paper we present a
unifying view of the different specialization techniques used
in CiaoPP and discuss their potential applications by means
of examples. The applications discussed include program
parallelization, optimization of dynamic scheduling (concur-
rency), and integration of partial evaluation techniques.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming—Automatic analysis of algorithms, Program trans-
formation; D.3.2 [Programming Languages]: Lan-
guage classification—Constraint and logic languages; D.3.4
[Programming Languages]: Processors—Optimization,
Compilers

General Terms
Languages, Performance, Theory

Keywords
Abstract Interpretation, Program Specialization, Partial
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1. INTRODUCTION
The aim of program optimization is, given a program P

to obtain another program P ′ which is semantically equiv-
alent to P but behaves better for some criteria of interest.
One typical way of optimizing programs is by specializing
them for some particular context. This allows automatically
overcoming losses in performance which are due to general
purpose algorithms. This situation is becoming more and
more frequent due to the use of techniques such as reuse of
general-purpose programs and libraries, and software com-
ponents, which facilitate development but can result in large
programs and even waste of computing resources. More pre-
cisely, the aim of program specialization is, given a program
P and certain knowledge φ about the context in which P
will be executed, to obtain a program Pφ which is equiva-
lent to P for all contexts which satisfy φ and which behaves
better from some given point of view.

In the case of partial evaluation [4, 24], the knowledge φ
which is exploited is the so-called static data, which cor-
responds to (partial) knowledge at specialization (compile)
time about the input data. Data which is not known at
specialization time is called dynamic. The program is op-
timized by performing at specialization time those parts of
the program execution which only depend on static data.

Another very general setting for specialization specially
relevant in the context of logic programs, which has been
proposed in [39], is to define the knowledge about the con-
text as a so-called static property φ(X1, . . . , Xn), where
X1, . . . , Xn are the formal arguments of the top-level proce-
dure P and φ is defined as a logic program. However, this
approach suffers from an important difficulty in using the
context information in an automated and effective way.

The approach we follow in abstract specialization is that
the information φ available on the context is captured by
an abstract substitution. One advantage of this approach is
that there are well known techniques which allow handling
information represented as abstract substitutions by using
abstract interpretation techniques [6].

1.1 An Overview of Specialization Techniques
For the purpose of comparing different existing tech-

niques, let us classify the existing specialization techniques
according to how the final, optimized, program is obtained.
Of course, this classification is rather crude and many of
the existing techniques can be seen as a combination of the
three approaches which we will discuss. The first approach
which we describe, and which we will call program with an-
notations, consists of two phases. During the first phase,



some static program analysis technique is used in order to
annotate the program with analysis information. In the sec-
ond phase, the program is optimized using the information
obtained. This approach is conceptually simple, though ei-
ther or both of the phases mentioned can indeed be rather
complex. A well known example of this kind of techniques
is the “off-line” approach to partial evaluation, in which a
binding-time analysis phase is followed by another one in
which the residual program is generated.

The second class of techniques we consider, which we will
call the transformational approach, is based on program
transformation techniques, such as fold/unfold transforma-
tions (such as the ones developed in [3, 48]). In this scheme,
a series of n semantic-preserving program-transformation
steps are performed such that initially P = P0. Then, each
Pi+1 is obtained from Pi by applying some transformation
Ti, i.e., Pi+1 = Ti(Pi), which preserves the semantics of the
program. Finally P ′ = Pn. Transformational techniques
are very powerful, the main difficulty being in automatically
deciding a proper sequence of programs transformations to
perform in order to obtain (an optimal) program P ′.

The third and last possibility which we consider, and
which we will denote the semantic approach, is based on
the existence of an algorithm S which, given a program P
and some knowledge φ, builds a semantic representation of
the program S(P,φ) which captures the behaviour of P in
some precise way for all contexts which satisfy φ. Then,
there is a code generation algorithm which builds the pro-
gram Pφ from S(P,φ) in a straightforward way. Often this
semantic representation can be seen as a graph. The kind of
graph obtained depends on the particular semantics used by
the algorithm. The “on-line” approach to partial evaluation
is, in our terminology, a semantic approach since the be-
haviour of the program is precisely captured by the partial
evaluation algorithm.

A particular algorithm for the on-line partial evaluation
of logic programs is partial deduction [35, 26]. Though
on-line partial evaluation can be considered an instance of
fold/unfold transformations, the comparatively significant
success of partial deduction techniques is probably due to
the fact that they are often formalized as a semantic ap-
proach. I.e., an algorithm exists which can be used to build
the semantic representation of the program. The existing
algorithms for partial deduction [35, 10, 28] are parameter-
ized by different control strategies. Usually, control is di-
vided into components: “local control,” which controls the
unfolding for a given atom, and “global control,” which en-
sures that the set of atoms for which a partial evaluation is
to be computed remains finite. Several strategies for global
and local control have been proposed which produce good-
quality partial evaluations of programs [36, 31]. Regarding
the correctness of partial deduction, two conditions, defined
on the set of atoms to be partially evaluated, have been
identified which ensure correctness of the transformation:
“closedness” and “independence” [35].

1.2 Abstract Specialization through A Moti-
vating Example

One of the distinguishing features of logic programming
(LP) is that arguments to procedures can be uninstanti-
ated variables. This, together with the search execution
mechanism available (generally backtracking) makes it pos-
sible to have multi-directional procedures. I.e., rather than

having fixed input and output arguments, execution can be
“reversed”. Thus, we may compute the “input” arguments
from known “output” arguments.

Example 1.1. Consider the logic program below. As
usual in LP, predicates (procedures) are referred to in the
text as name/arity, where arity is the number of arguments
of the predicate. The predicate ground/1 is a boolean test
which succeeds if and only if its argument is bound at run-
time to a term without variables, and the predicate is/2

(used as an infix binary operator) computes the arithmetic
value of its second (right) argument and unifies it with its
first (left) argument.
plus(X,Y,Z):- ground(X),ground(Y),!,Z is X + Y.

plus(X,Y,Z):- ground(Y),ground(Z),!,X is Z - Y.

plus(X,Y,Z):- ground(X),ground(Z),!,Y is Z - X.

The procedure plus/3 defines the relation such that the third
argument is the addition of the first and second arguments.
The procedure plus/3 is multi-directional. For example, the
call plus(1, 2, Sum) can be used to compute the addition
of 1 and 2. Also, the call plus(Num, 2, 3) can be used to
determine which is the number Num such that when added to
2 returns 3.

Thus, the definition of plus/2 behaves declaratively as
long as at least two of the input arguments are ground.
However, this good behavior of plus/3 when compared to a
mono-directional operation such as is/2 is at the expense of
some overhead which is incurred at run-time in order to se-
lect the appropriate clause to execute out of the three exist-
ing ones. Imagine now that at compile-time it is known that
the call to plus/3 will be of the form plus(1, 2, Sum). In
such case it is clear that the first clause will be selected and
the execution will return the value 3 for the argument Sum.
This is a typical example of an execution which can benefit
from (traditional, “concrete”) partial evaluation where φ is
the knowledge that the initial call is plus(X,Y,Z) with X=1

and Y=2.
In spite of the relative maturity of partial evaluation of

logic programs, it is well known that the technique has cer-
tain shortcomings. Imagine we are interested in optimizing
the code:
p(X,Y,Res):- plus(X,Y,Tmp), plus(1,Tmp,Res).

where plus/3 is defined as above. By observing the pro-
gram we can conclude that after the execution of the
call plus(X,Y,Tmp) all three arguments are ground. As
a result, the call plus(1,Tmp,Res) can be optimized to
Res is 1 + Tmp.

Unfortunately, in traditional partial evaluation no infor-
mation on the value of the argument Tmp is propagated to
the call plus(1,Tmp,Res). The intrinsic problem underlying
this shortcoming of partial evaluation is that the only infor-
mation which can be captured about values of arguments
are concrete values. In the case of logic programming, values
are captured by substitutions. This shortcoming of partial
evaluation has been identified and several proposals exist
which try to overcome it. Our proposal, abstract special-
ization, addresses this problem directly. Abstract special-
ization allows specializing calls with respect to abstract sub-
stitutions instead of concrete substitutions as in traditional
partial evaluation. As will be discussed in Section 2, ab-
stract substitutions are in this context finite representations
of possibly infinite sets of data. Each such representation
method is called an abstract domain. The kind of informa-



tion which can be captured by abstract substitutions varies
from one abstract domain to another. For example, we can
have an abstract domain which allows capturing type infor-
mation.1 Such domain can be used to determine that in
the call plus(1,Tmp,Res) the argument Tmp is bound to a
number. We can use this information in order to abstractly
execute the two ground terms in the first clause of plus/3

to the value true. We can even execute the !/0 procedure
call and eliminate the rest of clauses for plus/32. We can
thus optimize the original program to:
p(X,Y,Res):- plus(X,Y,Tmp), Res is 1 + Tmp.

Also, the call plus(X,Y,Tmp) can be optimized. Since Tmp
is a variable which is local to the clause, it can be determined
to be a free variable (and thus definitely not ground). Thus,
the program can be optimized to:
p(X,Y,Res):- plus1(X,Y,Tmp), Res is 1 + Tmp.

plus1(X,Y,Z):- ground(X),ground(Y),!,Z is X + Y.

where plus1/3 is a specialized version of plus/3. Generaliz-
ing from the examples above we can develop a specialization
system which is able to perform the optimizations shown
above. The specialization system will be able to: (1) capture
more general information than traditional substitutions, i.e.,
it will capture abstract substitutions, (2) propagate such in-
formation in a correct way using a suitable semantics, and
(3) carry out the optimizations enabled by the information
available.

In the rest of the paper we present such a system. The
structure of the paper is as follows. After recalling some
basic concepts of abstract interpretation in Section 2, we
present the concept of abstract executability in Section 3.
Then we introduce our generic abstract multiple specializa-
tion framework in Section 4. We continue with several appli-
cations of abstract multiple specialization: in the context of
automatic program parallelization in Section 5, optimization
of dynamic scheduling in Section 6, and partial evaluation
in Section 7. Finally, Section 8 discusses related work and
Section 9 presents some conclusions.

2. ABSTRACT INTERPRETATION
Static Program analysis aims at deriving at compile-time

certain properties of the run-time behavior of a program.
We provide some background and notation on abstract in-
terpretation [6], which is arguably one of the most successful
techniques for static program analysis.

In abstract interpretation, the execution of the program
is “simulated” on an abstract domain (Dα) which is simpler
than the actual, concrete domain (D). An abstract value is
a finite representation of a, possibly infinite, set of actual
values in the concrete domain (D). The set of all possible
abstract semantic values represents an abstract domain Dα

which is usually a complete lattice or cpo which is ascending
chain finite. However, for this study, abstract interpretation
is restricted to complete lattices over sets both for the con-
crete 〈2D,⊆〉 and abstract 〈Dα,v〉 domains.

Abstract values and sets of concrete values are related via
a pair of monotonic mappings 〈α, γ〉: abstraction α : 2D →

1Alternatively we could use an abstract domain which cap-
tures groundness information natively and obtain the same
optimized program.
2The procedure call !/0 is used to eliminate other alterna-
tives.

Dα, and concretization γ : Dα → 2D, such that

∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y.

Note that in general v is induced by ⊆ and α (in such a
way that ∀λ, λ′ ∈ Dα : λ v λ′ ⇔ γ(λ) ⊆ γ(λ′)). Similarly,
the operations of least upper bound (t) and greatest lower
bound (u) mimic those of 2D in some precise sense.

Example 2.1 (A domain for mode analysis).
Consider the following toy abstract domain Dα which cap-
tures mode information (i.e., the state of instantiation of
program variables upon procedure call). An abstract substi-
tution λ over a set of variables X = {X1, . . . , Xn} assigns
to each variable Xi a value v in the set {ground, var, any}
where each v represents an infinite set of terms. The fact
that a variable Xi is assigned an abstract value v indicates
that Xi will be bound at run-time to some term belonging to
v. ground is the set of all terms without variables; var is the
set of unbound variables (possibly aliased to other unbound
variables); and any is the set of all terms. The abstract do-
main is complemented by the abstract substitutions ⊥ and >.
As usual in abstract interpretation, ⊥ denotes the abstract
substitution such that γ(⊥) = ∅. The substitution > is such
that γ(>) = D. In our domain, > corresponds to assigning
any to each variable in X. 2

Since our discussion will concentrate on logic programs,
we also recall some classical definitions in logic program-
ming. An atom has the form p(t1, ..., tn) where p is a predi-
cate symbol and the ti are terms. We often use t to denote
a tuple of terms. A clause is of the form H:-B1, . . . , Bn

where H, the head, is an atom and B1, . . . , Bn, the body, is
a possibly empty finite conjunction of atoms. Atoms in the
body of a clause are often called literals. A program is a
finite sequence of clauses.

2.1 Goal-Dependent analysis
Goal-dependent analyses are characterized by generating

information which is valid only for a restricted set of calls
to a predicate, as opposed to goal-independent analyses
whose results are valid for any call to the predicate. Goal-
dependent analyses allow obtaining results which are special-
ized (restricted) to a given context. As a result, they provide
in general better (stronger) results than goal-independent
analyses. In addition, goal-dependent analyses provide in-
formation on both the call and success states for each pred-
icate, whereas goal-independent analyses in principle only
provide information on success states of predicates. For
these reasons, and since program specialization greatly re-
lies on information about call states to predicates, we will
restrict the discussion to goal-dependent analyses.

In order to improve the accuracy of goal-dependent anal-
yses, some kind of description of the initial calls to the pro-
gram should be given.3 With this aim, we will use entry

declarations in the spirit of [2]. Their role is to restrict the
starting points of analysis to only those calls which satisfy a
declaration of the form ‘:- entry Pred : Call. ’ where Call
is an abstract call substitution for Pred. For example, the
following declaration informs the analyzer that at run-time
all initial calls to the predicate qsort/2 will have a term
without variables in the first argument position:
:- entry qsort(A,B) : ground(A).

3Predicate calls which are not initial will be called internal.



Property Definition Sufficient condition

L is abstractly RT (L,P ) ⊆ TS(L, P ) ∃λ′ ∈ ATS(B, Dα) :
executable to true in P λL v λ′

L is abstractly RT (L,P ) ⊆ FF (L,P ) ∃λ′ ∈ AFF (B, Dα) :
executable to false in P λL v λ′

Table 1: Abstract Executability

Though our framework allows having several entry declara-
tions (for the same or different exported predicates), for the
sake of clarity of the presentation we restrict ourselves to
having one entry declaration only. Also, CiaoPP [21] sup-
ports a more general language, which includes properties
defined in the source language [40]. In this setting, goal de-
pendent abstract interpretation takes as input (1) a program
P (2) an atom p, (3) an abstract substitution λ in (4) an ab-
stract domain Dα which describes restrictions on the initial
values, and computes a set of triples Analysis(P, p, λ,Dα)
= {〈p1, λ

c
1, λ

s
1〉, . . . , 〈pn, λc

n, λs
n〉}. In each triple 〈pi, λ

c
i , λ

s
i 〉,

pi is an atom and λc
i and λs

i are, respectively, the abstract
call and success substitutions.4 Due to space limitations,
and given that it is now well understood, we do not de-
scribe here how we compute Analysis(P, p, λ,Dα). More
details can be found in [22, 44] and their references. Given
Analysis(P, p, λ, Dα) = {〈p1, λ

c
1, λ

s
1〉, . . . , 〈pn, λc

n, λs
n〉}, cor-

rectness of abstract interpretation guarantees that the fol-
lowing propositions hold:

Proposition 2.2 (Correctness w.r.t. successes).
The abstract success substitutions cover all the concrete
success substitutions which appear during execution, i.e.,
∀i = 1..n ∀θc ∈ γ(λc

i ) if piθc succeeds in P with computed
answer substitution θs then θs ∈ γ(λs

i ).

Proposition 2.3 (Correctness w.r.t. calls).
The abstract call substitutions cover all the concrete calls
which appear during executions described by 〈p, λ〉. I.e., for
any concrete call c originated from an initial goal pθ s.t.
θ ∈ γ(λ) : ∃〈pj , λ

c
j , λ

s
j〉 ∈ Analysis(P, p, λ, Dα) s.t. c = pjθ

′

and θ′ ∈ γ(λc
j).

Proposition 2.3 is related to the closedness condition [35]
required in partial deduction. A tuple 〈pj, λ

c
j ,⊥〉 indicates

that all calls to predicate pj with substitution θ ∈ γ(λc
j)

either fail or loop, i.e., they do not produce any success
substitutions. An analysis is said to be multivariant if more
than one triple 〈p, λc

1, λ
s
1〉, . . . , 〈p, λc

n, λs
n〉 n > 1 with λc

i 6= λc
j

for some i, j may be computed for the same predicate p.

3. ABSTRACT EXECUTABILITY
The concept of abstract executability [17, 45] allows reduc-

ing at compile-time certain program fragments to the val-
ues true, false, or error, or to a simpler program fragment,
by application of the information obtained via abstract in-
terpretation. This allows optimizing and transforming the
program (and also detecting errors at compile-time in the
case of error).

4Actually, the analyzers used in practice generate informa-
tion not only at the predicate level, as stated here for sim-
plicity, but also at the clause literal level.

For simplicity, we will limit herein the discussion to reduc-
ing a procedure call or program fragment L (for example, a
“literal” in the case of logic programming) to either true or
false. Each run-time invocation of the procedure call L will
have a local environment which stores the particular values
of each variable in L for that invocation. We will use θ to
denote this environment (composed of assignments of values
to variables, i.e., substitutions) and the restriction (projec-
tion) of the environment θ to the variables of a procedure
call L is denoted θ|L.

We now introduce some definitions. Given a procedure
call L to a predicate which performs no side-effects in a
program P we define the trivial success set of L in P as
TS(L, P ) = {θ|L : Lθ succeeds exactly once in P with empty
answer substitution (ε)}. Similarly, given a procedure call
L from a program P we define the finite failure set of L in
P as FF (L,P ) = {θ|L : Lθ fails finitely in P}.

Finally, given a procedure call L from a program P we
define the run-time substitution set of L in P , denoted
RT (L,P ), as the set of all possible substitutions (run-time
environments) in the execution state just prior to executing
L in any possible execution of program P .

Table 1 shows the conditions under which a procedure call
L is abstractly executable to either true or false. In spite
of the simplicity of the concepts, these definitions are in
general not directly applicable in practice since RT (L, P ),
TS(L, P ), and FF (L, P ) are generally not known at compile
time. However, a collecting semantics is generally used as
concrete semantics for abstract interpretation so that anal-
ysis computes for each procedure call L in the program an
abstract substitution λL which is a safe approximation of
RT (L,P ), i.e. ∀L ∈ P . RT (L, P ) ⊆ γ(λL).

Also, under certain conditions we can compute either au-
tomatically or by hand sets of abstract values ATS(L, Dα)
and AFF (L, Dα) where L stands for the base form of L, i.e.,
all the arguments of L contain distinct free variables. In-
tuitively, they contain abstract values in domain Dα which
guarantee that the execution of L trivially succeeds (resp.
finitely fails). Soundness requires that ∀λ ∈ ATS(L, Dα)
γ(λ) ⊆ TS(L, P ) and ∀λ ∈ AFF (L, Dα) γ(λ) ⊆ FF (L, P ).

Even though the simple optimizations illustrated above
may seem of narrow applicability, in fact for many builtin
procedures such as those that check basic types or which
inspect the structure of data, even these simple optimiza-
tions are indeed very relevant. Two non-trivial examples
are their application to simplifying independence tests in
program parallelization [45], discussed in Section 5, and the
optimization of delay conditions in logic programs with dy-
namic procedure call scheduling order [41], discussed in Sec-
tion 6.

Also, the class of optimizations which can be performed
can be made to cover traditional lower-level optimizations
as well, provided the lower-level code to be optimized is



“reflected” (i.e., is made explicit) at the source level or if the
abstract interpretation is performed directly at the object
level.

4. ABSTRACT MULTIPLE SPECIALIZA-
TION

The traditional approach used in analysis-based optimiz-
ing compilers is to first analyze the program and then use the
information in Analysis(P, p, λ, Dα) to annotate the pro-
gram with information which is then used for optimiza-
tion. Often, the underlying analysis algorithm is multi-
variant. However, analysis information for the different
versions of a procedure call is “flattened”, i.e., “lubbed”
together before being used for optimization. Though this
approach allows important optimizations, it produces opti-
mizations which may be suboptimal when compared with
the optimizations which could be achieved if separate spe-
cializations were implemented for the different versions con-
sidered by multi-variant analysis. More precisely, sup-
pose {〈pj , λ

c
1, λ

s
1〉, . . . , 〈pj , λ

c
n, λs

n〉} n > 1 are the tuples in
Analysis(P, p, λ, Dα) for predicate pj . Generally, only one
version for pj is implemented, which is equivalent to special-
izing pj w.r.t. λc

1 t λc
2, . . . t λc

n.
The main idea that we will exploit is to generate a dif-

ferent version of pj for each tuple 〈pj , λ
c
i , λ

s
i 〉. Then, each

version can be specialized w.r.t. λc
i regardless of the rest of

the call substitutions λc
j ∀j 6= i. Hopefully, this will lead

to further opportunities for optimization in each particu-
lar version. Note that if analysis terminates the number of
tuples in Analysis(P, p, λ, Dα) for each predicate must be
finite, and thus the resulting program will be finite. We will
refer to this kind of specialization as abstract multiple spe-
cialization [43, 45]. An important observation here is that
abstract multiple specialization is not a program with an-
notations approach but rather a semantic approach in the
terminology of Section 1.1.

4.1 Analysis And–Or Graphs
Traditional, goal dependent abstract interpreters for LP

based on Bruynooghe’s analysis framework [1], in order to
compute Analysis(P, p, λ, Dα), construct an and–or graph
which corresponds to (or approximates) the abstract seman-
tics of the program. We will denote by AO(P, p, λ, Dα) the
and–or graph computed by the analyzer for a program P
with calling pattern 〈p, λ〉 using the domain Dα. Such and–
or graph can be viewed as a finite representation of the (pos-
sibly infinite) set of and–or trees explored by the (possibly
infinite) concrete execution. Concrete and–or trees which
are infinite can be represented finitely through a widening
into a rational tree. Also, the use of abstract values instead
of concrete ones allows representing infinitely many concrete
execution trees with a single abstract analysis graph. Finite-
ness of AO(P, p, λ, Dα) (and thus termination of analysis) is
achieved by considering an abstract domain Dα with certain
characteristics (such as being finite, or of finite height, or
without infinite ascending chains) or by the use of a widen-
ing operator [6].

The graph has two sorts of nodes: those which correspond
to atoms (called or–nodes) and those which correspond to
clauses (called and–nodes). Or–nodes are triples 〈pi, λ

c
i , λ

s
i 〉.

As before, λc
i and λs

i are, respectively, a pair of abstract
call and success substitutions for the atom pi. For clarity,

in the figures the atom pi is superscripted with λc to the
left and λs to the right of pi respectively. For example,
the or–node 〈p(A), {}, {A/a}〉 is depicted in the figure as
{}p(A){A/a}. And–nodes are pairs 〈Id,H〉 where Id is a
unique identifier for the node and H is the head of the clause
to which the node corresponds. In the figures, they are
represented as triangles and H is depicted to the right of the
triangles. Note that the substitutions (atoms) labeling and–
nodes are concrete whereas the substitutions labeling or–
nodes are abstract. Finally, squares are used to represent the
empty (true) atom. Or–nodes have arcs to and–nodes which
represent the clauses with which the atom (possibly) unifies.
And–nodes have arcs to or–nodes which represent the atoms
in the body of the clause. Note that several instances of the
same clause may exist in the analysis graph of a program.
In order to avoid conflicts with variable names, clauses are
standardized apart before adding to the analysis graph the
nodes which correspond to such clause.

Intuitively, analysis algorithms are just graph traversal al-
gorithms which, given P, p, λ, and Dα, build AO(P, p, λ, Dα)
by processing program clauses from left to right, adding the
required nodes, and computing success substitutions until a
global fixpoint is reached. For a given P, p, λ, and Dα there
may be many different analysis graphs. However, there is
a unique least analysis graph which gives the most precise
information possible. This analysis graph corresponds to
the least fixpoint of the abstract semantic equations. Each
time the analysis algorithm creates a new or–node for some
pi and λc

i and before computing the corresponding λs
i , it

checks whether Analysis(P, p, λ, Dα) already contains a tu-
ple for (a variant of) pi and λc

i . If that is the case, the or–
node is not expanded and the already computed λs

i stored in
Analysis(P, p, λ, Dα) is used for that or–node. This is done
both for efficiency and for avoiding infinite loops when an-
alyzing recursive predicates. As a result, several instances
of the same or–node may appear in AO, but only one of
them is expanded. We denote by expansion(N) the in-
stance of the or–node N which is expanded. If there is
no tuple for pi and λc

i in Analysis(P, p, λ, Dα), the or–
node is expanded, λs

i computed, and 〈pi, λ
c
i , λ

s
i 〉 added to

Analysis(P, p, λ, Dα). Note that the success substitutions
λs

i stored in Analysis(P, p, λ, Dα) are tentative and may be
updated during analysis. Only when a global fixpoint is
reached the success substitutions are safe approximations of
the concrete success substitutions.

For clarity of the presentation, in the examples below we
use the concrete domain as abstract domain. However, this
cannot be done in general since analysis may not terminate.
We will present other examples with more realistic domains
later in the paper.

Example 4.2. Consider the simple example program be-
low taken from [28]. Figure 1 depicts a possible result of
analysis for the initial call p(A) with A unrestricted. The
dotted arc indicates that the corresponding or–nodes have
renamings of the same abstract call substitution.
p(X):- q(X), r(X).

q(a).

q(X):- q(X).

r(a).

r(b).

Clearly, in the example program above the clause r(b)

is useless and could be eliminated. Note that analysis has



Algorithm 4.1 (Code Generation). Given Analysis(P, p, λ, Dα) and AO(P, p, λ, Dα) generated by
analysis for a program P an atom p with abstract substitution λ ∈ Dα do:

• For each tuple N = 〈a(t), λc, λs〉 ∈ Analysis(P, p, λ, Dα) generate a distinct predicate with name
predN = name(〈a(t), λc, λs〉).

• Each predicate predN is defined by the sequence of clauses

– (predN (t1) :- b′1) :: . . . :: (predN(tn) :- b′n)
where expansion(N, AO) = ON and
children(ON , AO) = 〈Id1, p1(t1)〉 :: . . . :: 〈Idi, pi(ti)〉 :: . . . :: 〈Idn, p(tn)〉

• Each body b′i is defined as

– b′i = (predi1(ti1), . . . , prediki
(tiki

))
where predij = name(〈aij(tij), λ

c
ij , λ

s
ij〉), and

children(〈Idi, pi(ti)〉, AO) = 〈ai1(ti1), λ
c
i1, λ

s
i1〉 :: . . . :: 〈aiki

(tiki
), λc

iki
, λs

iki
〉.

Figure 2: Algorithm for Code Generation
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Figure 1: And–or analysis graph for a recursive pro-

gram

determined that in all successes of q(X), and thus in calls
to r(X), the argument X will be bound to the value a. This
is achieved by performing a fixpoint computation on the
success values of q(X). This is why in Figure 1 the or–node
〈r(X), {X/a}, {X/a}〉 only has one child (and–node).

4.2 Code Generation from an And–Or Graph
After introducing some notation, Algorithm 4.1 which

generates a program from an analysis and–or graph is pre-
sented in Figure 2. Given a non-root node N , we denote by
parent(N,AO) the node M ∈ AO such that there is an arc
from M to N in AO, and children(N, AO) is the sequence of
nodes N1 :: . . . :: Nn n ≥ 0 such that there is an arc from N
to N ′ in AO iff N ′ = Ni for some i and ∀i, j = 0, . . . , n. Ni is
to the left of Nj in AO iff i < j. Note that children(N, AO)
may be applied both to or– and and–nodes. We assume
the existence of an injective function name which (1) given
Analysis(P, p, λ, Dα) returns a unique predicate name for
each tuple and (2) name(〈q(t), λc, λs〉) = q iff q(t) = p (the
exported predicate) and λc = λ (the restriction on initial
calls), to ensure that top-level – exported – predicate names
are preserved.

Basically, the algorithm for code generation shown in Fig-
ure 2 creates a different version (predicate) name for each

different (abstract) call substitution λc to each predicate
pi in the original program. This is easily done by asso-
ciating a version to each or–node. Note that in principle
such versions are identical except that atoms in clause bod-
ies are renamed to always call the appropriate version. Let
AO(P, p, λ, Dα) be an and–or graph. We denote by P ′ =
code gen(AO(P, p, λ, Dα)) that P ′ is the program obtained
by applying Algorithm 4.1 to AO(P, p, λ, Dα). Correctness
of P ′ w.r.t. P for all initial calls pθ with θ ∈ γ(λ) is given
by the correctness of the abstract interpretation procedure,
as the extended program P ′ is obtained by simply materi-
alizing the (implicit) program with multiple versions from
which the analysis has obtained its information.

Example 4.3. The program generated by the code gener-
ation algorithm for the and–or graph in Figure 1 is shown
below. The useless clause r(b) has been eliminated.
p(X):- q(X), r(X).

q(a).

q(X):- q(X).

r(a).

The example above shows how the use of and–or graphs
allows removing useless clauses. The example below shows
how generating multiple specialized versions of a predicate
can lead to optimizations which are not possible if only one
version were implemented.

Example 4.4. Consider again the program P in Exam-
ple 1.1. The and–or graph AO(P, p,>, Dα) where Dα is a
domain which captures mode information will have two or-
nodes for predicate plus/3 with different abstract call sub-
stitutions (we abbreviate ground by g):

〈plus(X ′, Y ′, Z′), {Z′/var}, {X ′/g, Y ′/g,Z′/g}〉 and
〈plus(X ′′, Y ′′, Z′′), {X ′′/g, Y ′′/g}, {X ′′/g, Y ′′/g, Z′′/g}〉.
Now each of these call patterns can be optimized separately
by abstractly executing the groundness tests. The final
specialized program obtained is shown below:
p(X,Y,Res) :- plus1(X,Y,Tmp), plus2(1,Tmp,Res).

plus1(X,Y,Z) :- ground(X), ground(Y), !, Z is X+Y.

plus2(X,Y,Z) :- Z is X+Y.

Note that this program could be further improved by un-
folding the call plus2(1,Tmp,Res). This will be further dis-
cussed in Section 7. Also, two versions have been generated



for predicate plus/3, namely plus1/3 and plus2/3. In order
to avoid code explosion our system performs a minimizing
step a posteriori on the and–or graph in order to produce
the minimal number of versions while maintaining all opti-
mizations [45].

5. PROGRAM PARALLELIZATION
The final aim of parallelism is to achieve the maximum

speed (effectiveness) while computing the same solution
(correctness) as the sequential execution. The two main
types of parallelism which can be exploited in logic pro-
grams are well known: or-parallelism and and–parallelism.
In this work we concentrate on the case of and–parallelism.
And-parallelism refers to the parallel execution of the liter-
als in the body of a clause. See, for example, [18] and its
references. If only independent goals are executed in parallel,
both correctness and efficiency can be ensured [23].

5.1 The Annotation Process and Run-time
Tests

The annotation (parallelization) process can be viewed as
a source–to–source transformation from standard Prolog to
a parallel dialect. Herein, we will use the & operator [20].
Execution of literals separated by & is performed in parallel
if sufficient processors are available. Otherwise they will be
executed sequentially.

The automatic parallelization process is performed as fol-
lows [37]: firstly, if requested by the user, the Prolog pro-
gram is analyzed using one or more global analyzers. Sec-
ondly, since side–effects cannot be allowed to execute freely
in parallel, the original program is analyzed using the global
analyzer described in [38] which propagates the side–effect
characteristics of builtins determining the scope of side–
effects. Finally, the annotators perform a source–to–source
transformation of the program in which each clause is anno-
tated with parallel expressions and conditions which encode
the notion of independence used. In doing this they use
the information provided by the global analyzers mentioned
before.

5.2 An Example: Matrix Multiplication
A Prolog program for matrix multiplication is shown be-

low. The declaration :-module(mmatrix,[mmultiply/3]). is
used by the (goal dependent) analyzer to determine that
only calls to mmultiply/3 may appear in top-level queries.
In this case no information is given about the arguments in
calls to the predicate mmultiply/3 (however, this could be
done using one or more entry declarations [2]).

:-module(mmatrix,[mmultiply/3]).

mmultiply([], ,[]).
mmultiply([V0|Rest], V1, [Result|Others]):-

multiply(V1,V0,Result), mmultiply(Rest, V1, Others).
multiply([], ,[]).
multiply([V0|Rest], V1, [Result|Others]):-

vmul(V0,V1,Result), multiply(Rest, V1, Others).
vmul([],[],0).
vmul([H1|T1], [H2|T2], Result):-

Product is H1*H2, vmul(T1,T2, Newresult),
Result is Product+Newresult.

If, for example, we want to specialize the program for
the case in which the first two arguments of mmultiply/3

are ground values and we inform the analyzer about this,
the program would be parallelized without the need for any
run-time tests. In our case the analyzer must in principle

g

g

3i

3i

mm

m1

m4

m2
3i

m3

mm1

g+3i

Figure 4: Call Graph of Specialized mmatrix

assume no knowledge regarding the instantiation state of
the arguments at the module entry points.

Figure 3 contains the result of automatic paralleliza-
tion under these assumptions. if-then-elses are written
(cond -> then ; else), i.e., using standard Prolog syn-

tax. The predicate vmul/3 is not shown in Figure 3 be-
cause automatic parallelization has not detected any prof-
itable parallelism in it (due to granularity control) and its
code remains the same as in the original program.

It is clear from Figure 3 that a good number of run-time
tests has been introduced during the parallelization process.
If the tests succeed the parallel code is executed. Otherwise
the original sequential code is executed. The boolean test
indep(X,Y) succeeds if and only if X and Y have no vari-
ables in common. For conciseness and efficiency, a series
of tests indep(X1,X2), ..., indep(Xn-1,Xn) is written as
indep([[X1,X2], ..., [Xn-1,Xn]]).

Clearly, these tests may cause considerable overhead in
run-time performance, to the point of not even knowing at
first sight if the parallelized program will offer speedup, i.e.,
if it will run faster than the sequential one. We will use ab-
stract multiple specialization in order to reduce the run-time
overhead and increase the speedup of parallel execution.

It is important to mention that abstract multiple special-
ization is able to automatically detect and extract some in-
variants in recursive loops: once a certain run-time test has
succeeded it does not need to be checked in the following
recursive calls [17]. Figure 4 shows the call graph of the spe-
cialized parallel program. The program itself is not shown
for space limitations but can be found in [45]. In the figure,
mm stands for mmultiply/3 and m for multiply/3. In the
and–or graph computed by analyis there are two or–nodes
for predicate mmultiply/3, four for multiply/3, and eight
for vmul/3. The minimization algorithm collapses all or–
nodes for vmul/3 into one since the different call patterns
do not lead to interesting optimizations. However, two ver-
sions are generated for mm: mm and mm1 and four for m. In
Figure 4 edges are labeled with the number of tests which
are avoided in each call to the corresponding version with
respect to the non specialized program. For example, g+3i
means that each execution of this specialized version avoids
a groundness and three independence tests. It can be seen
in the figure that once the groundness test in any of mm, m1,
or m2 succeeds, it is detected as an invariant, and the more
optimized versions mm1, m3, and m4 respectively will be used
in all remaining iterations.



mmultiply([],_,[]).
mmultiply([V0|Rest],V1,[Result|Others]) :-

(ground(V1), indep([[V0,Rest],[V0,Others],[Rest,Result],[Result,Others]]) ->
multiply(V1,V0,Result) & mmultiply(Rest,V1,Others)

; multiply(V1,V0,Result), mmultiply(Rest,V1,Others)).

multiply([],_,[]).
multiply([V0|Rest],V1,[Result|Others]) :-

(ground(V1), indep([[V0,Rest],[V0,Others],[Rest,Result],[Result,Others]]) ->
vmul(V0,V1,Result) & multiply(Rest,V1,Others)

; vmul(V0,V1,Result), multiply(Rest,V1,Others)).

Figure 3: Parallel mmatrix

6. OPTIMIZATION OF DYNAMIC
SCHEDULING

Most “second-generation” logic programming languages
provide a flexible scheduling in which computation gener-
ally proceeds left-to-right, but some calls are dynamically
“delayed” until their arguments are sufficiently instantiated.
This general form of scheduling, often referred to as dynamic
scheduling, which can be seen as a (restricted) class of con-
currency, increases the expressive power of (constraint) logic
programs. Unfortunately, it also has a significant time and
space overhead.

In this section we present by means of examples two differ-
ent classes of transformations. The first class simplifies the
delay conditions associated with a particular literal. The
second class of transformations reorders a delayed literal
and moves it closer to the point where it wakes up. Both
classes of transformations essentially preserve the search
space and hence the operational behavior of the original pro-
gram. However, reordering may change the execution order
of delayed literals that are woken at exactly the same time.
Note that this order is system dependent and it is rare for
programmers to rely on a particular ordering.

Using the CiaoPP system we have built a tool which au-
tomatically optimizes logic programs with delay using the
above transformations. Initial experiments suggest that sim-
plification of delay conditions is widely applicable and can
significantly speed up execution, while reordering is less ap-
plicable but can also lead to substantial performance im-
provements.

6.1 Programs with Delaying Conditions
In dynamically scheduled languages the execution of some

literal can be delayed until a particular delay condition
holds. A delay condition, Cond, takes the current run-time
environment and returns true or false indicating if evalu-
ation can proceed or should be delayed. Typical primitive
delay conditions are ground(X) and nonvar(X). The latter
holds iff X is bound to a non-variable term. Delay condi-
tions can be combined to allow more complex delay be-
haviour. They can be conjoined, written (Cond1, Cond2),
or disjoined, written (Cond1; Cond2).

A delaying literal is of the form when(Cond, L), where
Cond is a delay condition and L is a literal. Evaluation
of L will be delayed until Cond holds for the current con-
straint store. Delay information can be predicate-based and
literal-based. In the former, the delaying literal appears as
a declaration before the definition of the predicate, each in-
stance of the predicate inheriting the delay condition. In

the latter, the delaying literal appears in the body of some
clause only affecting the literal L. It is straightforward to
use predicate-based declarations to imitate literal-based de-
lay, and vice versa. For simplicity, we will restrict ourselves
to literal-based delay.

In logic programs with dynamic scheduling, a literal is ei-
ther an atom or a delaying literal. We are assuming that all
rule heads are normalized, since this simplifies the examples
and corresponds to what is done in the analyzer.5 This is not
restrictive since programs can always be normalized. How-
ever, so as to preserve the behaviour of the original program
under dynamic scheduling, the normalization process must
ensure that head unifications are performed simultaneously,
that is, grouped together in one primitive constraint.

6.2 Simplifying Dynamic Scheduling
Delay conditions may be evaluated each time a variable is

touched. Simplifying such conditions can then lead to signif-
icant performance improvement. Essentially the behaviour
of a delay condition is only relevant during the lifetime of the
delaying literal. Hence, we can replace one delay condition
by another (more efficient) condition if they are equivalent
for all constraint stores that occur during the lifetime of the
delaying literal.

Example 6.1. Dynamic scheduling can be used in order
to obtain much more general code. Consider for example the
following program for naive reverse:
:- module(nrev,[nrev/2]).
nrev([],[]).
nrev([X|Xs], Rs) :- nrev(Xs, R), app(R, [X], Rs).

app([],L,L).

app([X|Xs], Ys, [X|Zs]) :- app(Xs, Ys, Zs).

The nrev/2 predicate can be used in order to reverse a
list. For example, the call nrev([1,2,3],Y) will return
Y=[3,2,1]. Since this program does not contain any im-
purities, we may in principle use it backwards, i.e., a call
such as nrev(X,[1,2,3]) should return Y=[3,2,1]. In fact,
any Prolog system would compute that. However, if we ask
for a second solution, the execution loops! One possible so-
lution to avoid this behaviour is to reorder the two literals
in the recursive clause of nrev/2, i.e.:
nrev([X|Xs], Rs) :- app(R, [X], Rs), nrev(Xs, R).
However, now this program cannot be used forwards. This
problem can be solved by means of dynamic scheduling
which allows having a definition of nrev/2 which works in
both directions. Such a program is shown below:

5CiaoPP does not need to normalize programs in order to
analyze them, except for programs with dynamic scheduling.



nrev([],[]).
nrev([X|Xs], Rs) :-

when((nonvar(Xs);ground(R)),nrev(Xs, R)),
when((nonvar(R);nonvar(Rs)),app(R, [X], Rs)).

app([],L,L).
app([X|Xs], Ys, [X|Zs]) :-

when((nonvar(Xs);nonvar(Zs)),app(Xs, Ys, Zs)).

This has the disadvantage that dynamic scheduling may
introduce important run-time overhead. However, we can
use abstract specialization in order to optimize the above
code for the required usage. In fact, our prototype spe-
cializer for dynamic scheduling [41] is able to optimize the
program back to the original code without delays shown in
Example 6.1 if it can infer that at the call the first argument
is definitely ground. Also, it will reorder the two literals in
the recursive clause of append if analysis guarantees that
calls have a free variable in the first argument and the sec-
ond argument is ground.

6.3 Reordering Delaying Literals
In spite of the apparent simplicity of the specialization

of dynamic scheduling, it is indeed rather involved. First,
the analysis has to be able to handle logic programs with
dynamic scheduling. Doing so accurately is a complex task.
Second, the purpose of specialization is not that the final
program can be executed without delays but rather that the
operational semantics, i.e., the search space, of the program
is maintained.

Example 6.2. In order to illustrate this we show the fol-
lowing example in which a naive algorithm for sorting lists
is presented. It is based on the specification of the sorting
algorithm: the resulting list must be a permutation of the
input list and be sorted.

naive_sort(List, Sorted) :-
when(nonvar(Sorted),sorted_list(Sorted)),
permute(List, Sorted).

sorted_list([]).
sorted_list([Fst|Oths]) :-

when(nonvar(Oths),sorted_list1(Fst, Oths)).

sorted_list1(_, []).
sorted_list1(Fst, [Snd|Rest]) :-

when((ground(Fst),ground(Snd)),Fst =< Snd),
when(nonvar(Rest),sorted_list1(Snd, Rest)).

permute([],[]).
permute(List,Result):-

when((nonvar(List);nonvar(Oths)),
delete(Elem, List, Oths)),

Result = [Elem|Perm1],
permute(Oths, Perm1).

delete(Elem, [Elem|Oths], Oths).
delete(Elem, List, Oths):-

head(List,Oths) = head([Fst|TM],[Fst|R]),
when((nonvar(TM);nonvar(R)),delete(Elem, TM, R)).

Thanks to the use of dynamic scheduling the code above
has the following desirable features: (1) it can be used in
order to sort a list; (2) if the second argument is ground, it
can be used in order to generate all the possible lists (per-
mutations) of a given sorted list; (3) though it is not a fast
sorting algorithm, it behaves relatively well for small lists
due to co-routining: generation of the permutation is inter-
leaved with tests of its sortedness as new items are added to

the partial solution, i.e., it is a test while generate algorithm
rather than a generate and test one.

Of course, another alternative would have been to write
by hand a program which checks sortedness of partial solu-
tions explicitly. This has the disadvantage that it separates
the code apart from its specification and that the obvious
resulting code is once again not reversible.

Example 6.3. In a call such as naive sort([1,2,3],L)

the literal when(nonvar(Sorted),sorted_list(Sorted))

will delay at the execution of predicate naive_sort/2

whereas it will definitely not delay after the execution of the
literal permute(List, Sorted). We may thus be tempted to
reorder it across the following literal in the clause, obtain-
ing:
naive sort(List, Sorted) :-

permute(List,

Sorted), sorted list(Sorted). which no longer needs
dynamic scheduling. However, this resulting program would
definitely be much less efficient than the original one since
this changes the co-routining behaviour and thus the search
space, and we end up in the generate and test algorithm. 2

Though our specializer reordered the literals in the naive
reverse example, it does not in this one. This is because
the specializer only reorders a delaying literal Li until after
literal Li+1 if either (1) Li is guaranteed not to wake up
during the execution of Li+i or (2) if it does, it can only
wake up in program points of Li+1 which are final. More
details can be found in [41]. The program obtained by our
specializer when the first argument is ground is shown below:

naive_sort(List,Sorted) :-
when(nonvar(Sorted),sorted_list(Sorted)),
permute(List,Sorted).

sorted_list([]).
sorted_list([Fst|Oths]) :-

when(nonvar(Oths),sorted_list1(Fst, Oths)).

sorted_list1(_, []).
sorted_list1(Fst, [Snd|Rest]) :-

when((ground(Fst),ground(Snd)),Fst =< Snd),
when(nonvar(Rest),sorted_list1(Snd, Rest)).

permute([],[]).
permute(List,Result) :-

delete(Elem,List,Oths),
Result=[Elem|Perm1],
permute(Oths,Perm1).

delete(Elem, [Elem|Oths], Oths).
delete(Elem, List, Oths):-

head(List,Oths) = head([Fst|TM],[Fst|R]),
delete(Elem,TM,R).

6.4 Automating the Optimization
In order to perform the optimizations discussed, the ab-

stract interpretation framework used has to handle dynamic
scheduling. Different analysis frameworks have been pro-
posed for this. In our prototype we use the approach of [8].
For reordering, the analyzer needs to provide, in addition to
a description of calling contexts, a description of the set of
waking up literals at each program point.

The experimental results in [41] demonstrate that both
simplification and reordering can lead to an order of mag-
nitude performance improvement, and that they give rea-
sonable speedups in most benchmarks. This is important



because dynamic scheduling looks set to become increas-
ingly prevalent in (constraint) logic programming languages
because of its importance in implementing constraint solvers
and controlling search as well as for implementing concur-
rency. In all these contexts, delay declarations are automat-
ically introduced by the compiler. This has the advantage
that it avoids the tedious and error prone task of having to
do it by hand. Also, they are a clear target for abstract
specialization.

7. INTEGRATION WITH PARTIAL EVAL-
UATION

Most of the practical algorithms for program specializa-
tion use, to a greater or lesser degree, information generated
by static program analysis. As already mentioned, one of the
most widely used techniques for static analysis is abstract
interpretation [6]. In fact, some of the relations between ab-
stract interpretation and partial evaluation have been iden-
tified before [12, 17, 9, 5, 43, 32, 25, 42, 29, 47, 7].

However, the role of analysis is so fundamental that it
is natural to consider whether partial evaluation could be
achieved directly by a generic, top-down abstract interpre-
tation system.

7.1 And–Or Graphs Vs. SLD Trees
Almost all existing approaches to the (on-line) partial

evaluation of logic programs use the same operational se-
mantics, i.e SLD resolution, for both program execution and
partial evaluation. Different alternative derivations of SLD
resolution which may occur during execution constitute dif-
ferent branches in the SLD tree. See for example [34]. In
partial deduction a slight modification to this semantics is
required in order to allow incomplete derivations and thus
incomplete SLD trees.

However, it is known [32] that the propagation of success
information during partial evaluation is not optimal com-
pared to that potentially achievable by abstract interpre-
tation. The higher accuracy of abstract interpretation has
already been hinted in Example 4.2.

We now show a further example of the power of abstract
interpretation. This time, rather than the concrete domain
we will use the abstract domain eterms [50] currently im-
plemented in the CiaoPP system, and which is based on the
concept of regular types [13]. Note that in this example the
concrete domain cannot be used straight away, since the set
of values which need to be represented is infinite.

Example 7.1. Consider the following program and the
initial call r(X)
r(X) :- q(X),p(X).

q(a).

q(f(X)) :- q(X).

p(a).

p(f(X)) :- p(X).

p(g(X)) :- p(X).

It can be observed that the third clause for p can be elim-
inated in the specialized program, since the call substitution
for p(X) (i.e., the success substitution for q(X)) is of the
form X=a or X=f(a) or X=f(...f(a)...). Thus, the clause
p(g(X)) :- p(X). is useless. Our implementation of the
abstract domain eterms is able to determine that the value
of X in any call to p(X) is described by the regular type rt

whose definition as a regular unary Prolog program follows:

rt(a).

rt(f(A)) :- rt(A).

Our specializer is in fact able to use this information in order
to remove the useless clause mentioned above. Note that
standard partial evaluation algorithms based on unfolding
will not be able to eliminate the third clause for p, since an
atom of the form p(X) will be produced, no matter what
local and global control is used.6

In addition to allowing the elimination of useless clauses,
our specialization system is able to perform more aggressive
optimizations, as shown in the example below.

Example 7.2. Consider the following program which de-
fines a predicate flatten and sort/2.

flatten_and_sort(Struct,Sorted_List):-
sorted_int_list(Struct),
Sorted_List=Struct.

flatten_and_sort(Struct,Sorted_List):-
int_list(Struct),
sort(Struct,Sorted_List).

flatten_and_sort(Struct,Sorted_List):-
list_of_int_lists(Struct),
flatten_list(Struct,Unsorted_List),
sort(Unsorted_List,Sorted_List).

flatten_and_sort(Struct,Sorted_List):-
tree(Struct),
flatten_tree(Struct,Unsorted_List),
sort(Unsorted_List,Sorted_List).

The argument Struct is a data structure which can be: a
sorted list of integers, a list of integers, a list of lists of inte-
gers, or a tree which stores an integer in each non-leaf node.
The predicate first determines which of the four possibilities
mentioned above is the case and then, if needed, it uses the
appropriate procedure for flattening before sorting the list
of arguments, which is the output of the procedure. Clearly,
if the input data structure is a list of integers there is no
need for flattening the list. Furthermore, if it is already
sorted, there is no need to sort it either. Though we could
define a flatten predicate which is able to flatten both lists
and binary trees, it is often the case that distinct predicates
for flattening lists and for flattening trees already exist (in
different libraries).

We show below the Prolog definition of the properties
sorted int list/1, int list/1, and list of int lists/1.
It can be observed that the last two predicates are indeed
unary logic programs which correspond to deterministic reg-
ular types. This is indicated to CiaoPP with the declaration
regtype.

sorted_int_list([]).
sorted_int_list([N]):- int(N).
sorted_int_list([A,B|R]):- int(A), int(B),

A =< B, sorted_int_list([B|R]).

:- regtype int_list/1.
int_list([]).
int_list([H|L]):- int(H), int_list(L).

:- regtype list_of_int_lists/1.
list_of_int_lists([]).
list_of_int_lists([H|L]):-

int_list(H), list_of_int_lists(L).

:- regtype tree/1.
tree(void).
tree(t(L,N,R)):- int(N), tree(L), tree(R).

6Conjunctive partial deduction [33] can solve this problem
in a completely different way.



The regtype declaration is checked by CiaoPP against the
code defining the property. If the code does not correspond
to a deterministic regular type, an error message is issued. If
it is, this information can be used by the specializer in order
to be able to abstractly execute to the value true the whole
execution of the predicate. The sufficient conditions for this
are (1) the predicate does not perform any side-effects, and
(2) the calling abstract substitution must be equal or more
particular than the success substitution for the predicate.
Note that abstractly executing a predicate call to false using
regular types does not need the regtype declaration. Any
call to a predicate p can be abstractly executed to false if (1)
execution of p is guaranteed not to perform any side-effects
(2) the call substitution is incompatible with the success sub-
stitution of p or equivalently, the success substitution using
goal-dependent analysis for p and λc

p is the empty substitu-
tion ⊥. This is further discussed in Section 7.3. For example,
if we call sorted int list(Struct) with Struct bound to
a binary tree, the system can determine that this call is in-
compatible with the success type of sorted int list, which
for the regular type analysis is approximated by int list.

For example, the above program when specialized using
the eterms domain for the call main/0, defined as:
main:-int list(L),append(L,[3],L1),flatten and sort(L1, ).

optimizes the definitions of flatten and sort/2 and
int list/2 as shown below.
flatten and sort(Struct,Sorted List) :-

sorted int list(Struct), sort(Struct,Sorted List).

flatten and sort(Struct,Sorted List) :-

sort(Struct,Sorted List).

sorted int list([]).

sorted int list([N]).

sorted int list([A,B|R]) :- A=<B, sorted int list([B|R]).

Since analysis using eterms infers that the call to
flatten and sort/2 has got a non-empty list of integers as
first argument, the specializer is able to abstractly execute
the tests for list of int lists/1 and tree/1 to false, since
they are incompatible with their calling types. In addition,
the list/1 test in the second clause for flatten and sort/2

has been abstractly executed to true, the same as the
integer/1 tests in sorted int list/1. This is an example
in which abstract execution allows “executing” at compile-
time a test whose execution would require traversing the
data structure at run-time.

The examples above show that and–or graphs allow a
level of success information propagation not possible in tra-
ditional partial evaluation. This observation already pro-
vides motivation for studying the integration of full partial
evaluation in an analysis/specialization framework based on
abstract interpretation.

7.2 Partial Evaluation using And–Or Graphs
We now discuss how the global and local control aspects

of on-line partial evaluation appear in the setting of abstract
interpretation algorithms.

7.2.1 Global Control in Abstract Interpretation
Effectiveness of traditional partial deduction greatly de-

pends on the set of atoms A = {A1, . . . , An} for which (spe-
cialized) code is to be generated. This set is mainly de-
termined by the global control used. However, in abstract
specialization the role of the atoms in A is played by the set
of or–nodes Analysis(P, p, λ,Dα). The choice of abstract

domain and widening operators (if any) will determine the
number of or–nodes (equivalently, A). The finer-grained the
abstract domain is, the larger the set A will be. In conclu-
sion, the role of so-called global control in partial evalua-
tion is played in abstract interpretation by our particular
choice of abstract domain and widening operators (which
are strictly required for ensuring termination when the ab-
stract domain contains ascending chains which are infinite –
as is the case for the concrete domain and for domains based
on regular types).

Note that the specialization framework we propose is very
general. Depending on the kind of optimizations we are
interested in performing, different domains (and widening
operators) should be used and thus different A sets would
be obtained.

7.2.2 Local Control in Abstract Interpretation
Local control in partial evaluation determines how each

atom in A should be unfolded. However, in traditional ab-
stract interpretation frameworks each or–node is related by
just one (abstract) unfolding step to its children. This cor-
responds to a trivial local control (unfolding rule) in partial
evaluation.

Note that if we use abstract domains for analysis which
allow propagating enough information about the success of
an or–node, it is possible to perform useful specialization
on other or-nodes. This requires that the lub operator not
lose “much” information, for example by allowing sets of
abstract substitutions. The advantage of this method is
that no modification of the abstract interpretation frame-
work is required. An example of this has been shown in
Example 7.1. Such specialization is not possible by meth-
ods based on unfolding (unfolding is a standard program
transformation technique in which an atom in the body of
a clause, i.e., a call to a procedure, is conceptually replaced
by the code of such procedure).

Another approach to overcoming this limitation of ab-
stract interpretation is the use of node-unfolding [47]. Node-
unfolding is a graph transformation technique which given
an and–or graph AO and an or–node N in AO builds a new
and–or graph AO′. Such graph transformation mimics the
effect of traditional unfolding.

Example 7.3. Consider the program below. The analy-
sis graph generated without performing any node-unfolding
is shown in Figure 5 as AO, using the concrete domain as
abstract domain and the most specific generalization (msg)
as lub operator for summarizing different success substitu-
tions into one. As discussed in Section 7.2.3 below, the msg
is a rather crude lub operator. However, we use it for the
sake of clarity of the example.
p(X):- q(X), r(X).

q(a).

q(b).

r(a).

r(b).

AO′ is an analysis graph for the same program but this
time the or–node 〈q(X), {}, {}〉 has been unfolded. Fi-
nally, graph AO′′ in the figure is the result of applying
node-unfolding twice to AO′, once w.r.t. 〈p(a), {}, {}〉 and
another one w.r.t 〈p(b), {}, {}〉. The code generated by
code gen(AO′′) is the program:
p(a).

p(b).



p(X)

p(A)

{} {} {}{} {} {} {} {}

r(a) r(b)

r(X)q(X)
{} {} {} {}

r(a) r(b)

r(a) r(b)

{}

p(b)p(a)

{} {} {}

{} {}

p(a)

{}

p(A)

{}

p(b)

q(a) q(b)

{}{}

{}

{} {}

{}

{} {}

{}{}

AO

p(A)

AO

AO’ AO’’

Figure 5: Example Node Unfoldings

An important question is the moment at which node-
unfolding is performed, i.e., during or after building AO.
The simplest possibility is to perform node-unfolding of an
or–node prior to computing its success substitution. This
corresponds to what is done in partial deduction: local con-
trol is performed first and then atoms are passed to global
control. It allows performing node-unfolding after comput-
ing the success-substitution of an or-node, even after com-
puting the final and–or graph. This allows having more
information prior to deciding whether to unfold a node or
not. Thus, we consider it a more challenging approach. The
main difficulty lies in being able to efficiently rebuild the
analysis and–or graph so as to reach a fixpoint after the
graph is modified by node-unfolding. We believe that this
cost can be kept quite reasonable by the use of incremental
analysis techniques such as those presented in [22, 44].

7.2.3 Abstract Domains and Widenings for Partial
Evaluation

We now address the features which an abstract domain
(and associated widening operators) should have in order to
be appropriate for performing partial evaluation within the
abstract specialization framework. They should (1) simulate
the effect of unfolding, which is how bindings are propagated
in partial evaluation. The abstract domain has to be capable
of tracking such bindings. This suggests that domains based
on term structure are required. In addition, the domain (2)
needs to capture disjunctive information. This makes it pos-
sible to distinguish, in a single abstract substitution, several
bindings resulting from different branches of computation.
A term domain whose least upper bound is based on the msg
(most specific generalization), for instance, will rapidly lose
information about multiple answers since all substitutions
are combined into one binding.

We now discuss two classes of domains which have the
above mentioned features. One class is based on sets of
depth-k substitutions with set union as the least upper
bound operator. However, uniform depth bounds are usu-
ally either too imprecise (if k is too small) or generate much
redundancy if larger values of k are chosen. One way to elim-
inate the depth-bound k in the abstract domain is to depend
on a suitable widening operator which will guarantee that
the set of or–nodes remains finite. Many techniques have
been developed for global control of partial evaluation. Such
techniques make use of advanced data structures such as
characteristic trees [11], [27] (related to neighborhoods [49]),
trace-terms [14], and global trees [36], and combinations of
them [31]. Thus, it seems possible to adapt these techniques
to the case of abstract interpretation and formalize them as
widening operators.

The second class of domains are those based on regular-
types [13, 19, 50] and seem very good candidates, their
main drawback being that inter-argument dependencies are
lost. Independently of our work in CiaoPP, recently there
has been a lot of interest in the application of regular
types for improving partial evaluation [15, 30]. The use of
non-deterministic regular types [16] presents an interesting
trade-off since on one hand they allow improved accuracy
but on the other they require a higher computational cost
and their applicability to program specialization should be
further explored.

7.3 Code Generation using Success Substitu-
tions

One important feature of abstract specialization not avail-
able in partial evaluation is that for each or-node, in addition
to a call substitution, there is also an abstract substitution
which describes the success of the call. If the properties



captured by the abstract domain are downwards closed (as
is the case with variable bindings), it is natural to consider
specialization w.r.t. success substitutions rather than call
substitutions (only). We first recall some notation from [47].

Definition 7.4 (partial concretization). A func-
tion part conc : Dα → D is a partial concretization iff
∀λ ∈ Dα ∀θ′ ∈ γ(λ) ∃θ′′ s.t. θ′ = part conc(λ)θ′′.

part conc(λ) can be regarded as containing (part of) the def-
inite information about concrete bindings that the abstract
substitution λ captures. Note that different partial con-
cretizations of an abstract substitution λ with different accu-
racy may be considered. For example if the abstract domain
is a depth-k abstraction and λ = {X/f(f(Y ))orX/f(a)}, a
most accurate part conc(λ) is {X/f(Z)}. Note also that
part conc(λ) = ε where ε is the empty substitution, is a
trivially correct partial concretization of any λ.

It is straightforward to modify Algorithm 4.1 in order to
exploit answer substitutions as well. Such algorithm can
be found in [47]. Specialization w.r.t. answers will in gen-
eral provide further specialized (and optimized) programs
as in general the success substitution (which describes an-
swers) computed by abstract interpretation is more infor-
mative (restricted) than the call substitution. However, this
cannot be done for example if the program contains calls to
extra-logical predicates such as var/1.

Specializing w.r.t answer substitutions enables optimiza-
tions which are not possible to achieve by finite unfolding.
For example, abstract interpretation can detect both finite
and infinite failure of a predicate p. In both cases, the ab-
stract success substitution for p will be ⊥. If p does not
perform side effects, the definition of p generated by our
specializer is p(t):- fail., as it is known to produce no
answers. Even if the success substitution λs for 〈p, λc, λs〉 is
not ⊥, individual clauses for p whose success substitution is
⊥ (useless clauses) for the considered λc are removed from
the final program.

Note that the specialized program may fail finitely while
the original one loops. We believe this kind of optimizations
are desirable in most cases. However, optimization w.r.t.
answers is optional in our system.

8. RELATED WORK
Abstract specialization is a framework which can be used

successfully in different contexts. We have discussed its ap-
plication to program parallelization and optimization of dy-
namic scheduling. The framework is generic in that it can be
instantiated with different abstract domains which provide
different kinds of information according to the optimizations
which we aim at performing. If the abstract domain cap-
tures term structure then it is possible to obtain informa-
tion which can then be used to perform optimizations which
are very related to those which take place during partial
evaluation.

The integration of partial evaluation and abstract inter-
pretation has been attempted before, both from the par-
tial evaluation and the abstract interpretation perspectives.
Some preliminary studies are [12, 9] in which an integration
is attempted from the point of view of partial evaluation.
Another integration in the context of functional programs is
presented in [5]. On the other hand, the drawbacks of tradi-
tional partial evaluation techniques for propagating success

information are identified in [32] and some of the possible
advantages of a full integration of partial evaluation and ab-
stract interpretation are presented in [25].

From an abstract interpretation perspective, the integra-
tion has also received considerable attention. The first com-
plete framework for multiple specialization based on ab-
stract interpretation is presented in [51]. The first im-
plementation and experimental evaluation appears in [43].
However, these systems do not perform unfolding.

To the best of our knowledge, the first relatively satisfac-
tory framework for the integration of abstract interpretation
and partial evaluation is [42, 47].

A completely different framework for the integration of
partial deduction and abstract interpretation is presented
in [29]. In this formulation a top-down specialization algo-
rithm is presented which assumes the existence of an abstract
unfolding and an abstract resolution operation and which
generalizes existing algorithms for partial evaluation. Such
framework provides interesting insights on the problems in-
volved together with correctness conditions which can be
used to prove that a given specialization framework, which
possibly uses abstract interpretation, is correct. One im-
portant difference is that in our approach a single (and al-
ready existing) top-down abstract interpretation algorithm
augmented with an unfolding rule performs propagation of
both the call and success patterns in an integrated fashion,
whereas in [29] the success propagation used is added in an
ad hoc way and is not multivariant, and thus less precise.

Another difference between the two approaches is that [29]
is capable of dealing with conjunctions and not only atoms.

The need for more general information than the concrete
substitutions handled by partial evaluation has been iden-
tified repeatedly in previous work, such as [5, 39]. Though
the aims of abstract specialization and those of [39] are quite
similar, the means proposed to achieve them are completely
different. Also, abstract interpretation is not used and it
sticks to the more traditional SLD semantics.

More recently, [7] presents a very general view which inte-
grates program transformation and abstract interpretation.
This result allows formalizing partial evaluation as an ab-
stract interpretation (as done by abstract specialization).
This new formalization of program transformation may en-
able other novel program optimization techniques.

9. CONCLUSIONS
Abstract specialization can be seen as a semantic ap-

proach much in the same way as existing frameworks for
partial deduction [35, 26, 10, 28] and also as other attempts
at the integration of partial evaluation and abstract inter-
pretation of logic programs [29, 15, 30]. One of the main
differences between abstract specialization and the afore-
mentioned techniques is the underlying semantics. Abstract
specialization is based on and–or trees whereas the rest are
based on SLD trees. Though SLD-trees have the conceptual
advantage that the semantics used for program specializa-
tion is almost identical to that used during program execu-
tion, our approach has other practical and conceptual ad-
vantages. For example, optimizations based on and–or trees
can be done to preserve number and order of solutions, an
issue often overlooked by traditional partial deduction sys-
tems. Furthermore, they allow performing optimizations not
achievable by means of unfolding, including the detection of
infinite failure.



A pragmatic motivation for this work is the availability of
off-the-shelf generic abstract interpretation engines such as
the one in CiaoPP [21]7 which greatly facilitate the efficient
implementation of analyses. Such analysis can deal with all
features of real programs [2] in an accurate way, including
builtins, libraries and modules [46]. But, more generally, we
argue that the existence of such an abstract interpreter in
advanced optimizing compilers is likely, and thus using the
analyzer itself to perform partial evaluation can result in a
great simplification of the architecture of the compiler.

Acknowledgments
This work has been funded in part by EU IST FET project
ASAP (IST-2001-38059) and by MCyT projects CUBICO
(TIC02-0055) and ADELA (HI2000-0043). The authors
would like to thank F. Bueno for his help in the implemen-
tation of the tools herein presented. Thanks are also due to
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