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Abstract – Proof carrying code (PCC) is a general
methodology for certifying that the execution of an un-
trusted mobile code is safe. The basic idea is that the
code supplier attaches a certificate to the mobile code
which the consumer checks in order to ensure that the
code is indeed safe. The potential benefit is that the
consumer’s task is reduced from the level of proving to
the level of checking. Recently, the abstract interpre-
tation techniques developed in logic programming have
been proposed as a basis for PCC. This extended ab-
stract reports on experiments which illustrate several is-
sues involved in abstract interpretation-based certifica-
tion. First, we describe the implementation of our sys-
tem in the context of CiaoPP: the preprocessor of the
Ciao multi-paradigm programming system. Then, by
means of some experiments, we show how code certifi-
cation is aided in the implementation of the framework.
Finally, we discuss the application of our method within
the area of pervasive systems.
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1 The Framework

Current approaches to mobile code safety, inspired by
the technique of Proof-Carrying Code (PCC) [15], asso-
ciate safety information in the form of a certificate to
programs. The certificate (or proof) is created by the
code supplier at compile time, and packaged along with
the untrusted code. The consumer who receives the
code+certificate package can then run a checker which
by a straightforward inspection of the code and the cer-
tificate, can verify the validity of the certificate and thus
compliance with the safety policy. The key benefit of
this approach is that the burden of ensuring compliance
with the desired safety policy is shifted from the con-
sumer to the supplier. Indeed the (proof) checker per-
forms a task that should be much simpler, efficient, and
automatic than generating the original certificate. For
instance, in the first PCC system [15], the certificate
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is originally a proof in first-order logic of certain ver-
ification conditions and the checking process involves
ensuring that the certificate is indeed a valid first-order
proof.

The main practical difficulty of PCC techniques is in
generating safety certificates which at the same time: i)
allow expressing interesting safety properties, ii) can be
generated automatically and, iii) are easy and efficient
to check. In [1], the abstract interpretation techniques
[5] developed in logic programming1 are proposed as
a basis for PCC. They offer a number of advantages
for dealing with the aforementioned issues. In particu-
lar, the expressiveness of existing abstract domains will
be implicitly available in abstract interpretation-based
code certification to define a wide range of safety proper-
ties. Furthermore, the approach inherits the automation
and inference power of the abstract interpretation en-
gines used in (Constraint) Logic Programming, (C)LP.

1.1 Certification in the Supplier

In Fig. 1, we illustrate the certification process of
[1] carried out to generate a safety certificate by the
code supplier. It is based on the idea that a partic-
ular subset of the analysis results computed by abstract
interpretation-based fixpoint algorithms can play the role
of certificate for attesting program safety [1]. The certi-
fication process consists in the next four steps.

Safety Policy. A subset of the high-level assertion
language of [16] is used to define the safety policy in
the context of CLP programs. Assertions are syntac-
tic objects which allow us to express “abstract”—i.e.
symbolic—properties over different abstract domains.
Examples are assertions which state information on en-
try points to a program module, assertions which de-
scribe properties of built-ins, assertions which provide
some type declarations, cost bounds, etc. The certi-
fication process starts from an initial program and an

1We refer to [2, 6, 12], and their references, for more details on
analysis techniques developed in logic programming.
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Figure 1: Abstract Interpretation-based Mobile Code Certification in CiaoPP

abstract domain and obtains a set of safety assertions
from the predefined assertions for system predicates and
those provided by the user. The Safety Policy consists
in guaranteeing that safety assertions hold for the given
program (and entries) in the context of the desired ab-
stract domain.

Fixpoint Analyzer. A main idea in [1] is that the
certificate is automatically generated by a fixpoint ab-
stract interpretation-based analyzer. In particular, the
goal dependent (a.k.a. goal oriented) analyzer of [12]
plays the role of Fixpoint Analyzer. This analysis algo-
rithm receives as input, in addition to the program and
the abstract domain, a set of calling patterns (or en-
tries). A calling pattern is a description of the calling
modes into the program. For simplicity, we assume that
the program comes enhanced with its entries. Due to
space limitations, and given that it is now well under-
stood, we do not describe here the fixpoint algorithm
(details can be found in, e.g., [2, 12]). An interesting
point to note is that analysis results in [12] are repre-
sented by means of two data structures in the output:
the answer table and the arc dependency table. In [1], we
show that a particular subset of the analysis results—
namely the answer table—is sufficient for mobile code
certification.

Verification condition generator. Then, a verifi-
cation condition generator, VCGen, computes from the
assertions and the answer table a verification condition
in order to attest compliance of the program with re-
spect to the safety policy. The formal definition of VC-

Gen is outside the scope of this paper (it can be found
in [1]). Intuitively, the verification condition is a con-
junction of boolean expressions whose validity ensures
the consistency of a set of assertions w.r.t. the answer
table computed by the analyzer.

Validator. The condition is sent to an automatic Val-

idator which attempts to check its validity w.r.t. the an-
swer table. This validation may yield three different
possible status: i) the verification condition is indeed
checked and the answer table is considered a Valid Cer-

tificate, ii) it is disproved, and thus the certificate is not
valid and the code is definitely not safe to run (we should
obviously correct the program before continuing the pro-
cess); iii) it cannot be proved nor disproved, which may
be due to several circumstances. For instance, it can
happen that the analysis is not able to infer precise
enough information to verify the conditions. The user
can then provide a more refined description of initial
calling patterns or choose a different, finer-grained, do-
main. Although, it is not showed in the picture, in both
the ii) and iii) cases, the certification process needs to be
restarted until achieving a verification condition which
meets i). If it succeeds, the answer table constitutes
a valid certificate and can be sent to the consumer to-
gether with the program.

1.2 Validation in the Consumer

The validation process of [1] performed by the code
consumer is similar to the certification process described
in Fig. 1 by replacing the fixpoint analyzer by an Anal-

ysis Checker. Indeed, the supplier sends the program
together with the certificate to the consumer and, to re-
tain the safety guarantees, the consumer can trust nei-
ther the code nor the certificate. Thus, in the validation
process, a code consumer not only checks the validity of
the answer table but it also (re-)generates a trustwor-
thy verification condition, as it is done by the supplier
in the above figure.

The whole validation process is centered around the
following observation: the checking algorithm can be de-
fined as a very simplified “one-pass” analyzer [1]. In-
tuitively since the certification process already provides
the fixpoint result as certificate, an additional analysis
pass over it cannot change the result. Thus, as long
as the answer table is valid, one single execution of the
abstract interpreter validates the certificate. The defi-
nition of the checker can be found in [1].

2 Experiments in CiaoPP
The above abstract interpretation-based code certifi-

cation framework has been implemented in CiaoPP [11]:
the preprocessor of the Ciao program development sys-
tem [3]. Ciao is a multi-paradigm programming system,



allowing programming in logic, constraint, and func-
tional styles. At the heart of Ciao is an efficient logic
programming-based kernel language. This allows the
use of the very large body of approximation domains, in-
ference techniques and tools for abstract interpretation-
based semantic analysis which have been developed to
a powerful and mature level in this area (see, e.g.,
[14, 4, 9, 12] and their references). These techniques and
systems can approximate at compile-time, always safely,
and with a significance degree of precision, a wide range
of properties which is much richer than, for example,
traditional types. This includes data structure shape
(including pointer sharing), independence, bounds on
data structure sizes, and other operational variable in-
stantiation properties as well as procedure-level proper-
ties such as determinacy, termination, non-failure and
bounds on resource consumption (time or space cost).
The latter tasks are performed in an integrated fashion
in CiaoPP.

In the context of CiaoPP, the abstract interpretation-
based certification system is implemented in Ciao
1.11#200 [3] with compilation to bytecode. In essence,
we have used the efficient, highly optimized, state-of-
the-art analysis system of CiaoPP (which is part of a
working compiler) as fixpoint analyzer for generating
safety certificates. The checker has been implemented
also as a simplification of such generic abstract inter-
preter. Our aim here is to present not the techniques
used by CiaoPP for code certification (which are de-
scribed in [1]) but its main functionalities by means of
some examples.

Example 2.1 (sharing+freeness) The next program
mmultiply multiplies two matrices by using two auxil-
iary predicates: multiply which performs the multipli-
cation of a matrix and an array and vmul which com-
putes the vectorial product of two arrays (by multiplying
all their elements):

mmultiply([],_,[]).

mmultiply([V0|Rest], V1, [Result|Others]):-

mmultiply(Rest, V1, Others),

multiply(V1,V0,Result).

multiply([],_,[]).

multiply([V0|Rest], V1, [Result|Others]):-

multiply(Rest, V1, Others),

vmul(V0,V1,Result).

vmul([],[],0).

vmul([H1|T1], [H2|T2], Result):-

vmul(T1,T2, Newresult),

Product is H1*H2,

Result is Product+Newresult.

One of the distinguishing features of logic program-
ming is that arguments to procedures can be uninstanti-
ated variables. This, together with the search execution

mechanism available (generally backtracking) makes it
possible to have multi-directional procedures. I.e., rather
than having fixed input and output arguments, execu-
tion can be “reversed”. Thus, we may compute the “in-
put” arguments from known “output” arguments. How-
ever, predicate is/2 (used as an infix binary operator)
is mono-directional. It computes the arithmetic value of
its second (right) argument and unifies it with its first
(left) argument. The execution of is with an uninstan-
tiation rightmost argument results in a run-time error.
Therefore, a safety issue in this example is to ensure
that calls to the built-in predicate is are performed with
ground data in the right argument.

We can infer this safety information by analyzing
the above program in CiaoPP using a mode and inde-
pendence analysis (“sharing+freeness”). In the “shar-
ing+freeness” domain, var denotes variables that do not
point yet to any data structure, mshare denotes pointer
sharing patterns between variables and ground variables
which point to data structures which contain no point-
ers. The analysis is performed with the following entry

assertion which allows specifying a restricted class of
calls to the predicate.

:- entry mmultiply(X,Y,Z):( var(Z), ground(X),

ground(Y) ).

It denotes that calls to mmultiply will be performed with
ground terms in the first two arguments and a free vari-
able in the last one.

For the above entry, the output of CiaoPP yields,
among others, the following set of assertions which con-
stitute our safety certificate:

:- true pred A is B+C

: ( mshare([[A]]),var(A),ground([B,C]) )

=> ( ground([A,B,C]) ).

:- true pred A is B*C

: ( mshare([[A]]),var(A),ground([B,C]) )

=> ( ground([A,B,C]) ).

The “true pred” assertions above specify in a combined
way properties of both: “:” the entry (i.e., upon call-
ing) and “=>” the exit (i.e., upon success) points of all
calls to the predicate. These assertions for predicate is

express that the leftmost argument is a free unaliased
variable while the rightmost arguments are input values
(i.e., ground on call) when is is called (:). Upon suc-
cess, all three arguments will get instantiated. Given
this information, we can verify that the safety condition
is accomplished and thus the code is safe to run. Thus,
the above analysis output can be used as a certificate to
attest a safe use of predicate is.

The above experiment has been performed using a shar-
ing+freeness domain. However, the whole method is
domain–independent. This allows plugging in different
abstract domains, provided suitable interfacing func-
tions are defined. From the user point of view, it is



sufficient to specify the particular abstract domain de-
sired. For instance, CiaoPP can also infer (parametric)
types for programs both at the predicate level and at
the literal level [9, 10, 18]. Clearly, type information is
very useful for program certification, verification, opti-
mization, debugging (see, e.g., [11]).

Example 2.2 (eterms) Our next experiment uses the
regular type domain eterms [18] to analyze the same
program of Ex. 2.1. We use in our examples term as
the most general type (i.e., it corresponds to all possible
terms), list to represent lists and num for numbers.
We also allow parametric types such as list(T) which
denotes lists whose elements are all of type T. Type list

is clearly equivalent to list(term).
The program is analyzed w.r.t. the following entry as-

sertion which specifies that calls to mmultiply are per-
formed with matrices in the first two arguments:

:- entry mmultiply(X,Y,Z): (var(Z),

list(X,list(num)),list(Y,list(num))).

CiaoPP output yields, among other, the following as-
sertions for the built-in predicate is:

:- true pred A is B+C

: ( term(A),num(B),num(C) )

=> ( num(A),num(B),num(C) ).

:- true pred A is B*C

: ( term(A),num(B),num(C) )

=> ( num(A),num(B),num(C) ).

They indicate that calls to is will be performed with
numbers in the rightmost argument (thus, ground terms)
and will return, upon success, a number in the first ar-
gument. Therefore, they also constitute a valid (and
more precise) certificate for the safety issue described in
Ex. 2.1.

3 Applications in Pervasive

Computing
Pervasive computing platforms are becoming ever

smaller and more powerful, and are embedded every-
where, even in living organisms. They can contain so-
phisticated models of our personal environment that
help us to make everyday decisions; they have the power
to do mathematical and logical reasoning in order to
perform intelligent tasks. As a result, verification and
validation techniques have to keep pace with the huge
requirements for intelligent, user-oriented applications
that must run on devices with a minimum of comput-
ing resources. In this context, there is a large number of
computing devices which may range from personal com-
puters to PDAs, mobile phones, dedicated processors,
smart cards, wearable computers and such like. Such
devices are often characterized by having a relatively

small amount of computing resources [19]. As a result,
time efficiency is an issue since often these devices have
to operate on real-time tasks. Also, and possibly more
importantly, memory efficiency is an issue. If either the
software used is too large to fit in the device or needs
too much memory to run, then it is simply not possible
to use such software.

Abstract interpretation-based techniques are able to
reason about computational properties which can be
useful for controlling efficiency issues in the context of
pervasive computing systems. For instance, CiaoPP can
infer lower and upper bounds on the sizes of terms and
the computational cost of predicates [7, 8]. Cost bounds
are expressed as functions on the sizes of the input argu-
ments and yield the number of resolution steps. Various
measures can be used for the “size” of the input, such
as list-length, term-size, term-depth, integer-value, etc.
The idea is that the system can disregard code which
makes requirement that are too large in terms of com-
puting resources (in time and/or space). Let us see an
example.

Example 3.1 The following program inc all incre-
ments all elements of a list by adding one to each of
them.

inc_all([],[]).

inc_all([H|T],[NH|NT]) :-

NH is H+1,

inc_all(T,NT).

The following assertions have been added by the user of
the pervasive computing system:

:- entry inc_all(A,B) : (list(A,num),var(B)).

:- check calls inc_all(A,B)

: list(A,num).

:- check success inc_all(A,B)

=> list(B,num).

:- check comp inc_all(A,B)

: ( list(A,num), var(B) )

+ steps_ub(length(A)+1).

The entry assertion specifies that calls to inc all must
be performed with a list of numbers in the first argument
while the second one must be a free variable. The next
three check assertions express the intended semantics
of the program. The third one intends to check that,
upon success, the second argument of calls to inc all

will be a list of numbers. Finally, the last computational
(comp) assertion tries to verify that the upper bound of
the predicate is the sum of the length of the first list and
one. The idea is that the code will be accepted provided
all assertions can be checked.

The cost analysis available in CiaoPP infers, among
others, the following assertions for the above program
and entries:



:- checked calls inc_all(A,B)

: list(A,num).

:- checked success inc_all(A,B)

=> list(B,num).

:- checked comp inc_all(A,B)

: ( list(A,num), var(B) )

+ steps_ub(inc_all(A,B),length(A)+1).

:- true pred inc_all(A,B)

: ( list(A,num), var(B) )

=> ( list(A,num), list(B,num) )

+ ( not_fails, is_det,

steps_ub(length(A)+1) ).

Therefore, the status of the last three check assertions
has become checked, which means that they have been
validated and thus the program is safe to run (accord-
ing to the intended meaning). The last procedure-level
assertion merges them all and, additionally, indicates
that calls to the predicate do not fail and their execution
is deterministic by combining information available for
other abstract domains.

Apart from expressing relevant properties, when devel-
oping software for deployment on Smart Cards (and sim-
ilar ambient computing devices), two more important
issues arise: 1) Pervasive computing is characterized by
having a relatively large number of untrusted computing
devices which interact. Thus, when modeling such a sys-
tem, it is not realistic to consider one device in isolation:
it will receive plenty of mobile data from the environ-
ment. In this context, the safety of the deployed soft-
ware is crucial, as the cost of recalling unfit devices can
be prohibitive. 2) It is essential to simplify the (safety)
verification process and reduce its resource usage. In-
deed, Smart Cards typically provide less than 4Kb of
RAM while it is possible to use only up to 128Kb for
storing the application and static data. Such resource
considerations tend to dominate the development pro-
cess for pervasive systems, forcing developers to write
low-level code from scratch, as mobile system develop-
ers have found in their own experience.

PCC techniques—based on certificates which are
computed outside the device—constitute a good sce-
nario for the certification of software deployed in perva-
sive systems. They compute tamper-proof certificates
which simplify code verification and pass them along
with the code. In our abstract interpretation-based con-
text, although global analysis is now routinely used as
a practical tool, it is still unacceptable to run the whole
analyzer to validate the certificate as it involves consid-
erable cost. One of the main reasons is that the fix-
point algorithm is an iterative process which often com-
putes answers (repeatedly) for the same call due to pos-
sible updates introduced by further computations. At
each iteration, the algorithm has to manipulate rather
complex data structures—which involve performing up-
dates, lookups, etc.—until the fixpoint is reached. Luck-

ily, in abstract interpretation-based code certification,
the burden on the consumer side is reduced by using a
simple one-traversal checker, which is a very simplified
and efficient abstract interpreter which does not need
to compute a fixpoint. The benchmark results in [1]
show that the speedup achieved by the checking is ap-
proximately 1.63 in just analysis time which, we believe,
makes our approach practically applicable in pervasive
contexts.

A similar proposal is presented in [17] to split the
type-based bytecode verification of the KVM (an em-
bedded variant of the JVM) in two phases, where the
producer first computes the certificate by means of a
type-based dataflow analyzer and then the consumer
simply checks that the types provided in the code cer-
tificate are valid. This approach is extended in [13] to
real world Java Software. As in our case, the valida-
tion can be done in a single, linear pass over the byte-
code. However, these approaches are designed limited
to types, whereas our approach supports a very rich set
of domains especially well-suited for this purpose, in-
cluding complex properties such as computational and
memory cost, non-failure, determinacy, etc. (as we have
seen in the examples in this section) and possibly even
combining several of them.

4 Conclusions
Abstract interpretation-based verification forms the

corner stone of the safety model of CiaoPP: the pre-
processor of the Ciao multi-paradigm programming sys-
tem. It ensures the integrity of the runtime environment
even in the presence of untrusted code. The framework
uses modular, incremental, abstract interpretation as a
fundamental tool to infer information about programs.
This information is used to certify and validate pro-
grams, to detect bugs with respect to partial specifica-
tions written using program assertions, to generate and
simplify run-time tests and to perform high-level opti-
mizations such as multiple abstract specialization, par-
allelization, and resource usage control. Among these
applications, we herein focus on the use of abstract
interpretation-based verification for the purpose of mo-
bile code safety by following the standard PCC method-
ology. We report on some experiments in CiaoPP at
work which illustrate how the actual process of pro-
gram certification is aided in an implementation of this
framework. We also discuss the application of abstract
interpretation-based code certification to the area of
pervasive computing systems, which may lack comput-
ing resources to perform static analysis. We point out
that computational properties inferred by CiaoPP can
be useful for controlling resource usage and filtering out
mobile code which does not meet certain cost require-
ments. Also, the fact that our approach follows PCC
techniques—in which the certificate is generated out-
side the device—makes it potentially applicable in this



pervasive context. However, controlling it in a perfect
way proves far from obvious, and a range of challeng-
ing open problems remain as topics for further research.
For instance, we plan to study a more precise model of
the memory requirements of small devices. The size of
certificates needs to be minimized as much as possible
to fit in such limited systems. We believe that they can
be further reduced by omitting the information which
has to be necessarily re-computed by the checker. This
is the subject of ongoing research.
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