
On Improving Run-time Checking in Dynamic
Languages∗

Nataliia Stulova†1,2

1 IMDEA Software Institute, Madrid, Spain
nataliia.stulova@imdea.org

2 Universidad Politécnica de Madrid (UPM), Madrid, Spain

Abstract
In order to detect incorrect program behaviors, a number of approaches have been proposed,
which include a combination of language-level constructs (procedure-level annotations such as
assertions/contracts, gradual types, etc.) and associated tools (such as static code analyzers and
run-time verification frameworks). However, it is often the case that these constructs and tools
are not used to their full extent in practice due to a number of limitations such as excessive run-
time overhead and/or limited expressiveness. This issue is especially prominent in the context
of dynamic languages without an underlying strong type system, such as Prolog. In our work
we propose several practical solutions for minimizing the run-time overhead associated with
assertion-based verification while keeping the correctness guarantees provided by run-time checks.
We present the solutions in the context of the Ciao system, where a combination of an abstract
interpretation-based static analyzer and run-time verification framework is available, although
our proposals can be straightforwardly adapted to any other similar system.

1998 ACM Subject Classification D.3.3 Language Constructs and Features, D.2.4 Software/Pro-
gram Verification, D.2.5 Testing and Debugging, F.3.1 Specifying and Verifying and Reasoning
about Programs, F.3.3 Studies of Program Constructs, F.3.2 Semantics of Programming Lan-
guages

Keywords and phrases Runtime Verification, Assertions, Prolog, Logic Programming

Digital Object Identifier 10.4230/OASIcs.ICLP TCs.2017.

1 Introduction

Detecting incorrect program behaviors is an important part of the software development
life cycle. It is also a complex and tedious one, in which dynamic languages bring special
challenges.

A number of techniques have been proposed to aid in the process, among which we center
our attention on the use of language-level constructs to describe expected program behavior,
and of associated tools to compare actual program behavior against expectations, such as
static code analyzers/verifiers and run-time verification frameworks.

Approaches that fall into this category are the assertion-based frameworks used in
(Constraint) Logic Programming [10, 24, 16, 19], soft/gradual typing approaches in functional

∗ Research supported in part by projects EU FP7 318337 ENTRA, Spanish MINECO TIN2012-39391
StrongSoft, TIN2015-67522-C3-1-R TRACES and TIN2008-05624 DOVES, and Comunidad de Madrid
TIC/1465 PROMETIDOS-CM and S2013/ICE-2731 N-Greens Software, and Madrid Region program
M141047003 N-GREENS.

† Supervised by José F. Morales1 and Manuel V. Hermenegildo1,2

© Nataliia Stulova, José F. Morales and Manuel V. Hermenegildo;
licensed under Creative Commons License CC-BY

Technical Communications of the 33rd International Conference on Logic Programming (ICLP 2017).
Editors: Ricardo Rocha and Tran Cao Son; Article No. ; pp. :1–:10

Open Access Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.ICLP TCs.2017.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de

XX:2 On Improving Run-time Checking in Dynamic Languages

programming [5, 34, 32] and contract-based extensions in object-oriented programming [17,
18, 11]. These tools are aimed at detecting violations of the expected behavior or certifying
the absence of any such violations, and often involve a certain degree of run-time testing,
specially for non-trivial properties.

In practice, however, run-time overhead often remains impractically high, specially for
complex properties, such as, for example, deep data structure tests. This reduces the
attractiveness of run-time checking to programmers, which may allow sporadic checking of
very simple conditions, but tend to turn off run-time checking for more complex properties.
Some approaches even opt for limiting the expressiveness of the assertion language in order
to reduce the overhead.

Our research objective is twofold:

First, we aim for enhancing the expressiveness of the assertion language to reflect all the
features of the related programming language, including, e.g., higher-order constructs,
and to do so in a way that allows the programmer to write precise program specifications
while not imposing a learning or programming burden on them.
At the same time, our goal is to efficiently check such specifications, mitigating the
associated run-time overhead as much as possible without compromising the safety
guarantees that the checks provide.

While our work is general and system-independent, we present it for concreteness in the
context of the Ciao run-time checking framework. The Ciao model [13, 24] is well understood,
and different aspects of it have been incorporated in popular (C)LP systems, such as Ciao,
SWI, and XSB [14, 31, 21].

2 Current Research Results

2.1 Supporting Higher-Order Properties
Higher-order programming is a widely adopted programming style that adds flexibility to
the software development process. Within the (Constraint) Logic Programming ((C)LP)
paradigm, Prolog has included higher-order constructs since the early days, and there have
been many other proposals for combining the first-order kernel of (C)LP with different
higher-order constructs, e.g., [35, 23, 4]). Many of these proposals are currently in use in
different (C)LP systems and have been found very useful in programming practice, inheriting
the well-known benefits of code reuse (templates), elegance, clarity, and modularization.

When higher-order constructs are introduced in the language it becomes necessary to
describe properties of arguments of predicates/procedures that are themselves also predi-
cates/procedures. While the combination of contracts and higher-order has received some
attention in functional programming [12, 9], within (C)LP the combination of higher-order
with the previously mentioned assertion-based approaches has received comparatively little
attention to date. Current Prolog systems simply use basic atomic types (i.e., stating
simply that the argument is a pred, callable, etc.) to describe predicate-bearing variables
(see Fig. 1). Other approaches [1] are more oriented instead towards meta programming,
describing meta-types but there is no notion of directionality (modes), and only a single
pattern is allowed per predicate.

Our proposal [26] contributes towards filling this gap between higher-order (C)LP pro-
grams and assertion-based extensions for error detection and program validation. Our
starting point is the Ciao assertion model, which we have enhanced with a new class of
properties, “predicate properties” (or predprops), for which we have proposed a syntax and

N. Stulova XX:3

1 :- pred min(X,Y,Cmp ,Min) : callable (Cmp).
2
3 min(X,Y,P,Min) :- P(R,X,Y), R <= 0, Min = X.
4 min(X,Y,_,Y).
5
6 less(0,A,A). lt(’=’,A,A).
7 less (-1,A,B) :- A < B. lt(’<’,A,B) :- A < B.
8 less(1,_,_). lt(’>’,_,_).
9

10 test_min :- min (4,2,lt ,2). % lt /3 is passed , but less /3 is expected

Figure 1 A simple program with a higher-order predicate min/4 that accepts a custom comparator
predicate.

1 :- comparator (Cmp) {
2 :- pred Cmp(Res ,M,N) : (num(M), num(N)) => between (-1,1, Res).
3 }.
4
5 :- pred min(X,Y,Cmp ,Min) : comparator (Cmp).

Figure 2 A predprop comparator example and an anonymous assertion in its definition.

semantics. These new properties can be used in assertions for higher-order predicates to
describe the properties of the higher-order arguments. An example of a predprop is provided
in Fig. 2, where an anonymous assertion (note the variable symbol Cmp in place of a predicate
symbol) is used to describe a comparison predicate, that is not known at compilation time.
By reusing the original assertion language syntax to describe call and success conditions of
predicate-bearing arguments we allow both for better integration of these new constructs
into the verification framework and at the same time lessening the burden on a programmer,
who needs to provide such annotations.

Our predprop properties specify conditions for predicates that are independent of the
usage context. This corresponds in functional programming to the notion of tight contract
satisfaction [9], and it contrasts with alternative approaches such as loose contract satis-
faction [12]. In the latter, contracts are attached to higher-order arguments by implicit
function wrappers. The scope of checking is local to the function evaluation. Although this
is a reasonable and pragmatic solution, we believe that our approach is more general and
more amenable to combination with static verification techniques. For example, avoiding
wrappers allows us to remove checks (e.g., by static analysis) without altering the program
semantics. Moreover, our approach can easily support loose contract satisfaction, since it is
straightforward in our framework to optionally include wrappers as special predprops.

2.2 Trading Memory for Speed
While having become an integral part of software development process, run-time testing can
generally incur a high penalty in execution time and/or space over the standard, test-less
program execution. A number of techniques have been proposed to date to reduce this
overhead, including simplifying the checks at compile time via static analysis [2, 13] or
reducing the frequency of checking, including for example testing only at a reduced number
of points [19, 20]. Our proposal of [27] describes an approach to run-time testing that is
efficient while being minimally obtrusive and remaining exhaustive. It is based on the use of
memoization to cache intermediate results of check evaluation in order to avoid repeated
checking of previously verified properties over the same data structure.

Memoization has of course a long tradition in (C)LP in uses such as tabling resolution [33,

ICLP 2017 TCs

XX:4 On Improving Run-time Checking in Dynamic Languages

99

19

3

36

25 1

1 tree(e).
2 tree(t(L,_,R)) :- tree(L), tree(R).
3
4 t(,99,)
5 t(,19,) t(,36,)
6 e t(,3,) t(,25,) t(,1,)
7 e e e e e e
8

Figure 3 A minimalistic tree data structure implementation as a regular type tree/1

8]. Memoization has also been used in program analysis [36, 22], where tabling resolution is
performed using abstract values. However, in tabling and program analysis it is call-success
patterns that are usually tabled, whereas in our case the aim is to cache the results of test
execution.

We concentrate our attention on checks for conformance of run-time heap structures to
regular types [7], a useful subset of properties that are often used in assertions. An example
in Fig. 3 shows a binary tree (left) and its possible implementation as a regular type together
with an instance of that type describing the tree (right).

Our approach is based on the observation that run-time checks of regular types are
monotonic instantiation checks, i.e., terms only become more and more instantiated with
every subsequent state that the program enters.1 We extend the Ciao run-time checking
framework with a common cache, accessible to run-time checks, that stores tuples (x, t),
where x is a term address and t is an identifier of a regular type. After the initial check
on the term is performed, the corresponding tuple is added to the cache and for all the
subsequent checks on the term, the check is replaced by a (computationally cheaper) cache
lookup operation.

While studying the resulting performance of the enhanced verification framework we
have observed that a straightforward use of a cache does not necessarily lead to a significant
reduction in checking cost. An important issue that must be taken into account is the
character of cache rewrites: as the terms grow in size cache collisions happen more often,
which leads to element eviction. This in turn cancels out the advantage that using a cache
gives: the ability to just lookup the regular type of some term without actually performing
the check of it. However, this effect can be remedied by limiting the depth of terms that are
stored in the cache (e.g., not caching terms with depth more than some n).

The idea of using memoization techniques to speed up checks has attracted some attention
recently [15]. Their work (developed independently from ours) is based on adding fields to
data structures to store the properties that have been checked already for such structures. In
contrast, our approach has the advantage of not requiring any modifications to data structure
representation, or to the checking code, program, or core run-time system.

2.3 Intertwining Compile- and Run-time Checks
A complementary approach to run-time overhead reduction consists in using static analysis to
minimize the number and cost of the run-time checks that need to be placed in the program
to detect incorrect program behaviors. This idea was pioneered by the Ciao system where a
number of (abstract interpretation-based) static analyses are combined in order to verify

1 This is not the case of course if the language allows mutable variables and they are used in the program,
but in those cases variable inmutability is tracked by the compiler / preprocessor.

N. Stulova XX:5

assertions to the largest extent possible at compile time, and for simplifying and reducing
the number of remaining properties that need to be introduced in the program as run-time
checks. However, while there has been evidence from use, there has been little systematic
experimental work presented to date measuring the actual impact of analysis on reducing
run-time checking overhead.

In our work [28] we generalize the existing practices as four assertion checking modes,
each of which represents a trade-off between code annotation depth, execution time slowdown,
and program behavior safety guarantees:

Unsafe: no run-time checks are generated from program assertions, program execution
is fast but incorrect program behaviors may stay undetected; the run-time overhead is
nonexistent.
Client-Safe: run-time checks are generated from the assertions of the program’s interface
(providing behavior guarantees for its the clients), yet internal program assertions remain
unchecked; the run-time overhead is taken as a minimal unavoidable one.
Safe-RT : run-time checks are generated from all program assertions; this mode of checking
is characterized with the strongest behavior safety guarantees yet is at the same time
associated with highest check costs;
Safe-CT-RT : a variation of Safe-RT checking mode with an additional static analysis
phase, during which some of program assertions may be proven to always hold and
generating run-time checks from them can be omitted; depending on the kind of analysis
and the program the overhead generated by the checks from remaining assertions may be
closer to that of Client-Safe Safe-RT modes.

We also define a transformation-based approach in order to implement each one of these
modes. The differences between the transformations used in different modes are illustrated
in Fig. 4. Starting with the source of the program and its assertions in the bottom-left
corner, a sequence of preprocessing and compilation steps (denoted by arrows) is applied.
Respective components of the verification framework that perform the source transformations
are represented as hexagons.

We then concentrate on the reduction of the number of run-time tests via (abstract
interpretation-based) program analysis. To this end we propose a technique that enhances
analysis precision by taking into account that any assertions that cannot be proved statically
will be the subject of run-time testing. In practice it means that it is safe to make the two
following assumptions for any predicate that has an assertion specifying properties that
should hold on calls and success:

The calls conditions hold after the analysis has entered the predicate definition, since
either the checks for these calls conditions have already succeeded or the program has
exited with error.
The relevant success conditions hold after the predicate has exited, since, again, at this
point either these success conditions have already succeeded or the program has exited
with error.

2.4 Benefiting from Information Hiding
While dynamic languages offer programmers great flexibility in term creation and manip-
ulation, for the very same reason the need for exhaustive run-time checks arises in order
to guarantee the data manipulation safety and correctness. Reusable libraries, i.e., library
modules that are pre-compiled independently of the client, pose special challenges in this
context. The key issue here is that there is virtually no control on how and where valid
terms can be created, and thus it is quite common in the client-library interaction that any

ICLP 2017 TCs

XX:6 On Improving Run-time Checking in Dynamic Languages

Code

Assertions

Program
Code

Assertion
conditions

Program
Code

Assertion
conditions
(reduced)

Program

Code

Program
Code

Run-time
checks
(exports)

Program
Code

Run-time
checks
(all)

Program
Code

Run-time
checks
(reduced)

Program

Unsafe Client-safe Safe-RT Safe-CT-RT

Normalizer

RT-checks

Static
Analysis

Figure 4 Source transformation differences per checking mode.

of these modules can create any data shape and pass it. As a consequence, (often expensive)
run-time checks on the module boundaries become a necessary evil. In our work [29] we
propose a possible solution to overhead reduction for run-time checks on module boundaries
based on the information hiding principle (which is adopted in many other systems in form
of encapsulation or opaque data types).

Currently, most mature Prolog implementations adopt some flavor of a module system,
predicate-based in SWI [37], SICStus [30], YAP [25], ECLiPSe [6], and atom-based in XSB [31].
The difference between the two systems is the strictness of the term visibility rules: in an
atom-based system local to the module terms are not visible outside it if they are not a part
of the module interface. The Ciao approach [3] has until now been closer to a predicate-based
module system.

We propose an extension of the predicate-based module system, that allows to specify
only a subset of module terms as local (hidden) ones. Our argument is that in this setup
we have the guarantee of the module terms’ structural homogeneity, as only one module is
allowed to construct/deconstruct some particular data shapes. With this there is no need to
perform thorough checks of properties that verify the correctness of the data term structure
at the module boundaries. Instead, it would suffice to perform checks of shallow versions of
data shape properties: the weakened forms of the original properties that are semantically
equivalent to them in the context of the possible program executions. These versions typically
require asymptotically fewer execution steps and in some cases of the calls across module
boundaries allow us to achieve constant run-time overhead.

To illustrate the idea behind the approach, let us consider that the tree/1 regular type
from Fig. 3 is defined in a following module bintrees:

1 :- module (bintrees ,[tree /1, add /3, del /3, find /2]). % exported predicates
2
3 :- hide e/0. % __ hidden
4 :- hide t/3. % / functors

N. Stulova XX:7

5
6 :- regtype tree /1.
7 tree(e).
8 tree(t(L,_,R)) :- tree(L), tree(R).
9

10 :- pred add(El ,T0 ,T1) : tree(T0) => tree(T1).
11 add(El ,T0 ,T1) :- ...
12
13 ... % rest of the implementation of module predicates

If we can assure by static analysis that none of the exported predicates of bintrees
passes t(_,_,_) terms outside the module, which could allow module clients to construct
arbitrary terms with this functor (e.g., t([. . .],_,[. . .])), then we can safely substitute the
full tree/1 property in the precondition check for add/1 (and also in precondition checks
for other exported predicates!) by its shallow version:

1 :- regtype shallow_tree /1.
2 shallow_tree (e).
3 shallow_tree (t(_,_,_)).
4
5 :- pred add(El ,T0 ,T1) : shallow_tree (T0) => tree(T1).
6 add(El ,T0 ,T1) :- ...

This way in all calls across module bintrees boundaries the cost of precondition checks
goes down from linear in the size of the term to constant (functor correctness check).

Preliminary experimental results and details about the algorithms that perform the
inference of shallow properties and conditions under which it is safe to use them in run-time
checks are provided in a technical report, to which [29] refers to.

3 Conclusions and Future Work

The specification-based runtime verification approach has attracted significant interest in
recent decades, both from academia and industry. As it is the case with any other open
problem, finding an approach that would suit each and every system is hard, and thus opting
for tailored partial solutions is more practical.

In our work we have concentrated on the peculiarities of the run-time verification task in
the context of dynamic languages and their use in (C)LP systems. We have proposed an
enhancement for the Ciao assertion language that allows us to capture the concrete execution
contexts of higher-order terms and thus adapts the verification framework to this new use
case. We have also proposed several solutions for reducing the overhead associated with
run-time checks, that treat the issue from several different angles.

While for concreteness of presentation our work was carried out within the Ciao language
and combined static/dynamic verification framework, our results are general and system-
independent. We believe they can be straightforwardly transferred to the contexts of other
declarative languages. In addition, given the advances in verification of a wide class of
programming languages, including imperative languages, by translation into Horn clauses
and proving properties at this level, and the fact that this approach is fully supported in the
Ciao system, we argue that our results can easily be adapted to a much broader spectrum of
languages.

For future work we plan to concentrate first on fully incorporating the optimization
techniques described here into Ciao’s run-time verification framework, as now they are
available as separate system bundles. Among the issues we would also like to address
more profoundly are further developments on blame assignment in the case of higher-order
assertion checking, scalability evaluation of the combination of all optimization techniques,
and providing on-line demos and documentation.

ICLP 2017 TCs

XX:8 On Improving Run-time Checking in Dynamic Languages

Acknowledgements. We would like to thank the anonymous reviewers for providing valuable
comments and suggestions that had helped to improve this paper.

References

1 C. Beierle, R. Kloos, and G. Meyer. A Pragmatic Type Concept for Prolog Supporting
Polymorphism, Subtyping, and Meta-Programming. In Proc. of the ICLP’99 Workshop on
Verification of Logic Programs, Las Cruces, Electronic Notes in Theoretical Computer Sci-
ence, volume 30, issue 1. Elsevier, 2000. URL: http://www.elsevier.nl/locate/entcs/
volume30.html.

2 F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski, and
G. Puebla. On the Role of Semantic Approximations in Validation and Diagnosis of Con-
straint Logic Programs. In Proc. of the 3rd. Int’l Workshop on Automated Debugging–
AADEBUG’97, pages 155–170, Linköping, Sweden, May 1997. U. of Linköping Press. URL:
ftp://cliplab.org/pub/papers/aadebug_discipldeliv.ps.gz.

3 D. Cabeza and M. Hermenegildo. A New Module System for Prolog. In International Con-
ference on Computational Logic, CL2000, number 1861 in LNAI, pages 131–148. Springer-
Verlag, July 2000.

4 D. Cabeza, M. Hermenegildo, and J. Lipton. Hiord: A Type-Free Higher-Order Logic
Programming Language with Predicate Abstraction. In Ninth Asian Computing Science
Conference (ASIAN’04), number 3321 in LNCS, pages 93–108. Springer-Verlag, December
2004.

5 Robert Cartwright and Mike Fagan. Soft Typing. In Programming Language Design and
Implementation (PLDI 1991), pages 278–292. SIGPLAN, ACM, 1991.

6 Cisco Systems. ECLIPSE User Manual, 2006.
7 P.W. Dart and J. Zobel. Efficient Run-Time Type Checking of Typed Logic Programs.

Journal of Logic Programming, 14:31–69, October 1992.
8 S. Dietrich. Extension Tables for Recursive Query Evaluation. PhD thesis, Departament

of Computer Science, State University of New York, 1987.
9 Christos Dimoulas and Matthias Felleisen. On contract satisfaction in a higher-order world.

ACM Trans. Program. Lang. Syst., 33(5):16, 2011.
10 W. Drabent, S. Nadjm-Tehrani, and J. Małuszyński. The Use of Assertions in Algorithmic

Debugging. In Proceedings of the Intl. Conf. on Fifth Generation Computer Systems, pages
573–581, 1988.

11 Manuel Fähndrich and Francesco Logozzo. Static contract checking with abstract inter-
pretation. In Proceedings of the 2010 International Conference on Formal Verification of
Object-oriented Software, volume 6528 of FoVeOOS’10, pages 10–30, Berlin, Heidelberg,
2011. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1949303.1949305.

12 Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions. In
Mitchell Wand and Simon L. Peyton Jones, editors, ICFP, pages 48–59. ACM, 2002.

13 M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial Specifications,
and an Extensible Assertion Language for Program Validation and Debugging. In K. R. Apt,
V. Marek, M. Truszczynski, and D. S. Warren, editors, The Logic Programming Paradigm:
a 25–Year Perspective, pages 161–192. Springer-Verlag, July 1999.

14 M. V. Hermenegildo, F. Bueno, M. Carro, P. López, E. Mera, J.F. Morales, and G. Puebla.
An Overview of Ciao and its Design Philosophy. Theory and Practice of Logic Pro-
gramming, 12(1–2):219–252, January 2012. http://arxiv.org/abs/1102.5497. doi:doi:
10.1017/S1471068411000457.

http://www.elsevier.nl/locate/entcs/volume30.html
http://www.elsevier.nl/locate/entcs/volume30.html
ftp://cliplab.org/pub/papers/aadebug_discipldeliv.ps.gz
http://dl.acm.org/citation.cfm?id=1949303.1949305
http://dx.doi.org/doi:10.1017/S1471068411000457
http://dx.doi.org/doi:10.1017/S1471068411000457

N. Stulova XX:9

15 Emmanouil Koukoutos and Viktor Kuncak. Checking Data Structure Properties Orders of
Magnitude Faster. In Borzoo Bonakdarpour and Scott A. Smolka, editors, Runtime Verifi-
cation, volume 8734 of Lecture Notes in Computer Science, pages 263–268. Springer Inter-
national Publishing, 2014. URL: http://dx.doi.org/10.1007/978-3-319-11164-3_22,
doi:10.1007/978-3-319-11164-3_22.

16 Claude Laï. Assertions with Constraints for CLP Debugging. In Pierre Deransart, Manuel V.
Hermenegildo, and Jan Maluszynski, editors, Analysis and Visualization Tools for Con-
straint Programming, volume 1870 of Lecture Notes in Computer Science, pages 109–120.
Springer, 2000.

17 Leslie Lamport and Lawrence C. Paulson. Should your specification language be typed?
ACM Transactions on Programming Languages and Systems, 21(3):502–526, May 1999.

18 Gary T. Leavens, K. Rustan M. Leino, and Peter Müller. Specification and verification
challenges for sequential object-oriented programs. Formal Asp. Comput., 19(2):159–189,
2007.

19 E. Mera, P. López-García, and M. Hermenegildo. Integrating Software Testing and Run-
Time Checking in an Assertion Verification Framework. In 25th Int’l. Conference on Logic
Programming (ICLP’09), volume 5649 of LNCS, pages 281–295. Springer-Verlag, July 2009.

20 E. Mera, T. Trigo, P. López-García, and M. Hermenegildo. Profiling for Run-Time Checking
of Computational Properties and Performance Debugging. In Practical Aspects of Declar-
ative Languages (PADL’11), volume 6539 of Lecture Notes in Computer Science, pages
38–53. Springer-Verlag, January 2011.

21 Edison Mera and Jan Wielemaker. Porting and refactoring Prolog programs: the PROSYN
case study. TPLP, 13(4-5-Online-Supplement), 2013.

22 K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency
Using Abstract Interpretation. Journal of Logic Programming, 13(2/3):315–347, July 1992.

23 Gopalan Nadathur and Dale Miller. Higher–Order Logic Programming. In D. Gabbay,
C. Hogger, and A. Robinson, editors, Handbook of Logic in Artificial Intelligence and
Logic Programming, volume 5. Oxford University Press, 1998.

24 G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic Assertion-
Based Debugging of Constraint Logic Programs. In Logic-based Program Synthesis and
Transformation (LOPSTR’99), number 1817 in LNCS, pages 273–292. Springer-Verlag,
March 2000.

25 Vítor Santos Costa, Luís Damas, and Ricardo Rocha. The YAP Prolog System. Theory
and Practice of Logic Programming, 2011. http://arxiv.org/abs/1102.3896v1.

26 N. Stulova, J. F. Morales, and M. V. Hermenegildo. Assertion-based Debugging of Higher-
Order (C)LP Programs. In 16th Int’l. ACM SIGPLAN Symposium on Principles and
Practice of Declarative Programming (PPDP’14). ACM Press, September 2014.

27 N. Stulova, J. F. Morales, and M. V. Hermenegildo. Practical Run-time Checking via
Unobtrusive Property Caching. Theory and Practice of Logic Programming, 31st Int’l.
Conference on Logic Programming (ICLP’15) Special Issue, 15(04-05):726–741, September
2015. URL: http://arxiv.org/abs/1507.05986.

28 N. Stulova, J. F. Morales, and M. V. Hermenegildo. Reducing the Overhead of Assertion
Run-time Checks via static analysis. In 18th Int’l. ACM SIGPLAN Symposium on Prin-
ciples and Practice of Declarative Programming (PPDP’16), pages 90–103. ACM Press,
September 2016.

29 N. Stulova, J. F. Morales, and M. V. Hermenegildo. Term Hiding and its Impact on
Run-time Check Simplification (Extended Abstract). In Proceedings of the Technical Com-
munications of the 33rd International Conference on Logic Programming (ICLP 2017),
Melbourne, Australia, August 28 - September 1, 2017. OASIcs, August 2017.

ICLP 2017 TCs

http://dx.doi.org/10.1007/978-3-319-11164-3_22
http://dx.doi.org/10.1007/978-3-319-11164-3_22
http://arxiv.org/abs/1507.05986

XX:10 On Improving Run-time Checking in Dynamic Languages

30 Swedish Institute for Computer Science, PO Box 1263, S-164 28 Kista, Swe-
den. SICStus Prolog User’s Manual, 4.1.1 edition, December 2009. Available from
http://www.sics.se/sicstus/.

31 Terrance Swift and David Scott Warren. XSB: Extending Prolog with Tabled Logic Pro-
gramming. TPLP, 12(1-2):157–187, 2012.

32 Asumu Takikawa, Daniel Feltey, Earl Dean, Matthew Flatt, Robert Bruce Findler, Sam
Tobin-Hochstadt, and Matthias Felleisen. Towards practical gradual typing. In John Tang
Boyland, editor, 29th European Conference on Object-Oriented Programming, ECOOP
2015, July 5-10, 2015, Prague, Czech Republic, volume 37 of LIPIcs, pages 4–27. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. URL: http://dx.doi.org/10.4230/
LIPIcs.ECOOP.2015.4, doi:10.4230/LIPIcs.ECOOP.2015.4.

33 H. Tamaki and M. Sato. OLD Resolution with Tabulation. In Third International Con-
ference on Logic Programming, pages 84–98, London, 1986. Lecture Notes in Computer
Science, Springer-Verlag.

34 Sam Tobin-Hochstadt and Matthias Felleisen. The Design and Implementation of Typed
Scheme. In George C. Necula and Philip Wadler, editors, Proceedings of the 35th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008,
San Francisco, California, USA, January 7-12, 2008, pages 395–406. ACM, 2008.

35 D.H.D. Warren. Higher-order extensions to Prolog: are they needed? In J.E. Hayes, Donald
Michie, and Y-H. Pao, editors, Machine Intelligence 10, pages 441–454. Ellis Horwood Ltd.,
Chicester, England, 1982.

36 R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global Flow
Analysis of Logic Programs. In Fifth International Conference and Symposium on Logic
Programming, pages 684–699. MIT Press, August 1988.

37 J. Wielemaker. The SWI-Prolog User’s Manual 5.9.9, 2010. Available from
http://www.swi-prolog.org.

http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4
http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.4

	Introduction
	Current Research Results
	Supporting Higher-Order Properties
	Trading Memory for Speed
	Intertwining Compile- and Run-time Checks
	Benefiting from Information Hiding

	Conclusions and Future Work

