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Abstract. A range of methodologies and techniques are available to
guide the design and implementation of language extensions and domain-
specific languages on top of a base language. A simple yet powerful
technique to this end is to formulate the extension via source-to-source
transformation rules that are interleaved across the different compilation
passes of the base language. Despite being a very successful approach, it
has the main drawback that the input source code is lost in the process.
As a result, during the whole workflow of program development (warning
and error reporting, source-level debugging, or even program analysis)
the tools involved report in terms of the base language, which is confusing
to users. In this paper, we propose an augmented approach to language
extensions for Prolog, where symbolic annotations are included in the
target program. These annotations allow the selective reversal of the
translated code. We illustrate the approach by showing that coupling
it with minimal extensions to a generic Prolog debugger allows us to
provide users with a familiar, source-level view during the debugging of
programs which use a variety of language extensions, such as functional
notation, DCGs, or CLP{Q,R}.

Keywords: language extensions, debuggers, logic programming, constraint pro-
gramming

1 Introduction

One of the key decisions when specifying a problem or writing a program to solve
it is choosing the right language. Even when using recent high-level and multi-
paradigm languages, the programmer often still needs precise, domain-specific
vocabulary, notations, and abstractions which are usually not readily available.
These needs are the main motivation behind the development of domain-specific
languages, which enable domain experts to express their solutions in terms of
the most appropriate constructs.

However, designing a new language can be an intimidating task. A range of
methodologies and tools have been developed over the years in order to simplify
this process, from compiler-compilers to visual environments [13]. A simple, yet
powerful technique for the implementation of domain-specific languages is based
on source-to-source transformations. Although in this process the source and



target language can be completely different, it is frequent to be just interested
in some idiomatic extensions, i.e., adding domain-specific features to a host lan-
guage while preserving the availability of most of the facilities of this language.
Examples of such extensions are adding functional notation to a language that
does not support it, adding a special notation for grammars (such as Definite
Clause Grammars (DCGs) [16]), etc. Such transformations have been proposed
in the context of object-oriented programming (e.g., Polyglot for Java, [15]),
functional programming (e.g., Embedded DSL facilities for Haskell, [9]), or logic
programming (e.g., the term_expansion facility in most Prolog systems, or the
extended mechanisms of Ciao [2,8]). In this approach, the language implemen-
tations provide a collection of hooks that allow the programmer to extend the
compiler and implement both syntactic and semantic variations.

An important practical aspect is that, in addition to appropriate notation,
the programmer also needs environments that help during program development.
In particular, basic tools such as editors, analyzers, and, specially, debuggers are
fundamental to productivity. However, in contrast to the significant attention
given to mechanisms and tools for defining language extensions, comparatively
few approaches have been proposed for the efficient construction of such develop-
ment environments for domain-specific languages. In some cases ad-hoc editors,
debuggers, analyzers, etc. have been developed from scratch. However, this ap-
proach is time consuming, error prone, hard to maintain, and usually not scalable
to a variety of language extensions.

A more attractive alternative, at least conceptually, is to reuse the tools
available for the target language, such as its debuggers or analyzers. This can
in principle save much implementation effort, in the same way in which the
source-to-source approach leverages the implementation of the target language to
support the domain-specific extensions. However, the downside of this approach
is that these tools will obviously communicate with the programmer in terms of
the target language. Since a good part of the syntactic structure of the input
source code is lost in the transformation process, these messages and debugger
steps in terms of the target language are often not easy to relate with the source
level and then the target language tools are not really useful for their intended
purposes. For example, a debugging trace may display auxiliary calls, temporary
variables, and obscure data encodings, with no trivial relation with the control
or data domain at the source level. Much of that information is not only hard
to read, but in most cases it should be invisible to the programmer or domain
expert, who should not be forced to understand how the language at the source
level is embedded in the supporting language.

In this paper, we propose an approach for recovering symbolically the source
of particular translations (that is, reversing them and providing an unexpanded
view when required) in order to make target language level development tools
useful in the presence of language extensions. Our solution is presented in the
context of Ciao [8], which uses a powerful language extension mechanism for
supporting several paradigms and (sub-)languages. We augment this extension
mechanism with support for symbolic annotations that enable the recovery of



the source code information at the target level. As an example application, we
use these annotations to parameterize the Ciao interactive debugger, so that it
displays domain-specific information, instead of plain Prolog goals. Our approach
requires only very small modifications in the debugger and the compiler, which
can still handle other language extensions in the usual way.

The paper is organized as follows: Section 2 presents a concrete extension
mechanism and illustrates the limitations of the traditional translation approach
in our context. Section 3 presents our approach to unexpansion, and guidelines
for instrumenting language extensions so that the intervening translations can be
reversed as needed into their input source code. Section 4 presents the application
of the approach to the case of debuggers. Finally, Section 5 presents related work
and Section 6 concludes and suggests some future work.

2 Language extensions and their limitations

We present a concrete language extension mechanism based on translations (the
one implemented in the Ciao language) and then illustrate the limitations of
the traditional translation-based extension approach in our context. In Ciao [8],
language extensions are implemented through packages [2], which encapsulate
syntactic extensions for the input language, translation rules for code generation
to support new semantics, and the necessary run-time code. Packages are sep-
arated into compile-time and run-time parts. The compile-time parts (termed
compilation modules) are only invoked during compilation, and are not included
in executables, since they are not necessary during execution. On the other hand,
the run-time parts are only required for execution and are consequently included
in executables. This phase distinction has a number of practical advantages, in-
cluding obviously the reduction of executable sizes.

More formally, let us assume that an extension for some language denoted
as Le is defined by package PkgMode, and that the compiler passes include calls
to a generic expansion mechanism JexpandK, which takes a package, an input
program in the source language, and generates a program in the target language
L. That is, given JexpandKe = JexpandK(PkgMode), for a program Pe ∈ Le we
can obtain the expanded version JexpandKe(Pe) = P ∈ L. Note that in practice,
Ciao contains finely grained translation hooks, which allow a better integration
with the module system and the composition of translations [14]. This level of
detail is not necessary for the scope of this paper; thus, for the sake of simplicity,
the expansion will work on whole programs at a time.

Functional notation. We illustrate the translation process in Ciao with an
example from the functional notation package [3]. This package extends the lan-
guage with functional-like syntax for relations. Informally, this extension allows
including terms with predicate symbols as part of data terms, while interpreting
them as predicate calls with an implicit last argument. It also allows defining
clauses in functional style where the last argument is separated by a := symbol
(other functionalities are provided, such as expanding goals in the last argument



after the body). The translation can be abstractly specified as a collection of
rewrite rules such as:

(Clauses) trJ p(ā) := C :- B K = (p′(v̄, T ) :- v̄ = ā, B, T = C)
(Calls) trJ q(. . . p(ā) . . .) K = (p′(ā, T ), q(. . . T . . .))

The first rule describes the meaning of a clause in functional notation, where p′
is the predicate in plain syntax corresponding to the definition of p in functional
notation (i.e., using :=). The second rule must be applied using a leftmost-
innermost strategy for every p function symbol that appears in the goal q, where
T is a new variable (skipping higher-order terms).

The usual evaluation order in logic programming corresponds to eager, call-
by-value evaluation (but lazy evaluation is possible as shown in [3]). We refer to
the actual implementation later in this section.

Example 1. The program excerpt below defines a predicate f/2 in functional
notation and its translation into plain Prolog code. Its body contains nested
calls to k/2 and l/2, and also syntactic sugar for a conditional (if-then-else)
construct (using the syntax: CondGoal ? ThenExpr | ElseExpr) .

Source code (functional notation)

f(X) := X < 42 ?
(k(l(m(X))) * 3)

| 1000.
k(X) := X + 1.
l(X) := X - 2.
m(X) := X.

Target code (plain Prolog)

f(X,Res) :- X < 42, !,
m(X, M), l(M, L), k(L, K),
T is K * 3, T = Res.

f(X,1000).
k(X,Res) :- Res is X+1.
l(X,Res) :- Res is X-2.
m(X, X).

Forgetful translations and loss of symbolic information. Both the stan-
dard compilation and the translations for language extensions are typically fo-
cused on implementing some precise semantics during execution. That is, the
correctness of the translation guarantees that for all programs Pe ∈ Le, the
expected semantics JexecKe for that language can be described in terms of a pro-
gram P ∈ L and its corresponding execution mechanism JexecK. That is, for all
Pe ∈ Le there exists a P = JexpandKe(Pe) so that JexecKe(Pe) = JexecK(P ).

Most of the time, symbolic information at the source level is lost, since it is
not necessary at run time. In particular, such information removal and loss of
structure is necessary to perform important program optimizations (e.g., assign-
ing some variables to registers without needing to keep the symbolic name, its
relation to other variables in the same scope, etc.). When programs are not exe-
cuted, but manipulated at a symbolic level, the translation-based approach is no
longer valid on its own. For example, assume a simple debugger that interprets
the source and allows the user to inspect variable values at each program point
interactively. In this case the translation, as a program transformation, must



PkgMode DbgMod

Pe JexpandK P JexpandK Pdbg

Fig. 1. The translation process and application of the standard debugger.

2 2 Call: f(3,_6378) ?
3 3 Call: <(3,42) ?
4 3 Call: m(3,_6658) ?
5 3 Call: l(3,_6663) ?
6 4 Call: is(_6663,3-2) ?
...
9 3 Call: is(_6673,2*3) ?
10 3 Call: =(_6378,6) ?

Fig. 2. Excerpt of the display of the interactive debugger.

preserve not only the input/output behaviour but also some other observable
features (such as line numbers or variable names).

In order to explore the particular case of debuggers more closely, Figure 1 il-
lustrates the translation process of a source program, using a compilation module
PkgMode containing the translation rules for extension e. If the developer asks
the Ciao interpreter to debug this program, further instrumentation is applied
that is also defined in part as a language extension, DbgMod in Figure 1; this
instrumentation customizes the code by encapsulating it into a predicate that
specifies whether a part of the code is spy-able or not. The following example
illustrates in a concrete case the limitations of this process.

Example 2 (Interactive debugging). Consider the code and transformation of Ex-
ample 1. If the target-level debugger is used without any other provision, follow-
ing the process of Figure 1, debugging a call to f(3,T) amounts to debugging
its translation, as illustrated in the trace of Figure 2 (the exit calls are omitted
in order to save space). The problem of this trace is twofold: first, the interac-
tive debugging does not make explicit the actual source-level predicate that is
currently being tested. Second, understanding the trace forces the developer to
make the mental effort of analyzing the debugged data and mapping it back to
the source code. This effort increases if the source code contains operators that
do not exist on the target (Prolog) side. The first case can be easily overcome
when operator definitions are shared, e.g., using a graphical editor and catch-
ing the operator with the line number and the occurence number of the call.
However, the second case implies remembering the mapping between the source
and the target operator. Furthermore, things get even more tedious when one
instruction in the source language is translated into a composition of goals.
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Fig. 3. Observation problem at the source level (left); Observation using symbolic
information (right).

3 Building reversible extensions

In this section we provide an informal definition of unexpansion with respect
to a language extension. We then present guidelines in order to instrument a
compilation module for such a language extension. This instrumentation aims to
drive the process of reconstructing a program in terms of the language extension
(or source language) in which the program is written. Through this mechanism,
a language extension can be made reversible. To illustrate our purpose, we apply
the guidelines and parameterize one of the translation rules used in the functional
notation extension.

3.1 Expansion, unexpansion, and observers

We use the term unexpansion to designate the inverse of the expansion JexpandKe,
that is, the recovering of the original Pe source program from P . Unfortunately,
this inverse is rarely a one-to-one mapping. For example, f(3,T) in L corre-
sponds to both T=f(3) and f(3,T) (with f/1 using functional notation). For
another example, a clause can either be translated into one or many clauses, as
depicted in Example 1 for f in functional notation.

Having multiple solutions for unexpansion can be confusing for the user and
impractical for automatic transformations. However, the most important use of
unexpansion in our context is to observe the behavior of only certain program
aspects at the source language level. In this case, unexpansion seems more treat-
able. For that purpose we define the term observer accordingly: an observer is
an interface that provides some specific source-level information about a par-
ticular program. The observer can be either static or dynamic. Specifically, we
can consider as observers monitors (e.g., interactive debuggers, tracers, and pro-
filers) for dynamic observation, and verifiers (e.g., static analyzers and model
checkers) for static observation. Thus, a source-level view may correspond to the
current instruction being invoked in an interactive debugger, or to a trace of the
memory state, in a tracer, or perhaps the dependencies between the program
variables, in a static analyzer, all of them represented in terms of the source
language abstractions.

The correspondance between expansion and unexpansion, in the context of
an observer, is sketched in Figure 3. We assume that we have observers Obse(i)



and Obs(i) for the source and target languages, respectively. We denote by i some
particular observable aspect and by V the aspect (e.g., “line numbers” and an
integer). On the left diagram we depict the impossibility of getting information
at the Le level in general. To provide the programmer with source-level observers,
our approach relies on extending the expansion (JexpandKsym

e ) with additional
symbolic information (which can be significantly smaller than the sources). Then,
observers Obssym(i) can retrieve V (e.g., a single number encoding the row and
columns) and map it back to Ve (e.g., the row and columns). This composition
provides an effective Obssym

e (i).
We now propose guidelines for easily instrumenting the translation module

of a language extension, in such a way that observers can be parameterized with
respect to this instrumentation.

3.2 Instrumentation of a compilation module

Instrumenting a compilation module involves annotating its translation rules
with source code information that can then be used by an observer (i.e., the
debugger in our application example). We illustrate the instrumentation process
on the functional extension example.

Guidelines. The first step in making a language extension reversible is to deter-
mine which parts of the source code need to be kept available in the expansion
process. The second step is to determine how and where to propagate this infor-
mation, so that it can be accessed whenever the developer requires observation
during program execution. The third step is to determine the representation of
the observable data.

Event and data analysis. What events do we want to observe? What do we
want to observe about them? These selections should be useful for following
the control flow and state changes during program execution. For example, in
a λ-calculus-like language, the definition and the application of a function are
two of the key elements to follow in order to debug a program [17]. As another
example, in a goal involving expressions in functional notation, the debugger
must be aware of which positions correspond to data terms and which positions
to predicate calls.

Decomposition. How is a source statement decomposed into target code? The
answer to this question implies in part how the data that we want to observe
should be propagated. For example, while the generic debugger may step through
a number of target-level statements, a source-specific debugger may have to con-
sider a single source statement as corresponding to all those steps. This applies
for example in the conditional statement C ? A | B of the functional notation,
where A is translated into an (at least) two-goal target code segment.

Representation. How should the data to be observed be represented? In a purely
syntactic extension, data always represents elements of the concrete syntax. Nev-
ertheless, it is interesting to consider this question when displaying the runtime
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Fig. 4. Annotated translation: source-level code (left) and target-level code (right).

context, such as the state of the memory, for semantic extensions. For example,
in a CLP{Q,R} extension, variables are bound at run-time to complex terms
attached to attributed variables which reflect the internal, low-level represen-
tation of the constraint store, while what the programmer would like to see is
a symbolic representation of the constraints among the variables in the source
constraint language.

Some examples.We now present three excerpts of code written using language
extensions, namely CLPQ (the case for CLPR is analogous), DCG, and the
functional notation. The source-level code is represented as a concrete syntax
tree in Figure 4, left part. It is translated into Prolog code as depicted in Figure 4,
right part.

The annotation process implies tagging each element of the source code that
is intended to be observed, i.e., each element meant to be or to refer to a “first-
class” concept of the language extension, whether it is defined as a clause or
a goal. For example, in a DCG rule such as “rel --> rpn, vt” (Figure 4, top
part), rpn and vt are annotated, as these functors lead to a call to another
grammar rule. In contrast, elements surrounded by brackets (e.g., {vt(VT)})
correspond to plain Prolog, and thus do not require any source level-related



special handling. During the expansion process of the source-level code, the
target goals correspondingly keep a reference to the source identifiers.

3.3 Implementation of the instrumentation process

To instrument the translation rules we propose to annotate the target parameter
of each rule (i.e., the argument in which the code generated by the translation
is returned). This annotation is defined as a predicate and provides the symbolic
information, encoded as a Prolog term, to drive the process of recovering source
code data within the observer. Symbolic information could be a list of variables
(along with a function that recovers their value at the source level from the
target context, i.e., its environment and store), or a single string to be displayed
at the observer output at run time, e.g., in the case of an interactive debugger.

Definitions.We currently distinguish two types of annotations: the $clause_info
annotation, which is wrapped around target clauses, and the $goal_info anno-
tation (or meta-information), which is wrapped around target goals. The pur-
pose of each of these annotations is to gather symbolic information to recover
a source-level statement or a source-level call, respectively. Additionally, this
distinction enables handling clauses and goals properly, in particular to retrieve
their location in source modules.

Both annotations are handled according to the wrapped target element.
Specifically, $clause_info takes three arguments: the target clauses (Clauses in
Example 3), a source-level representation (SI), and an identifier (Id) to option-
ally enable later retrieval of the translated statement. The body of the source-
level statement is itself tagged so as to map to the corresponding target goals
when the statement is evaluated. The $goal_info annotation takes two ar-
guments: the target goal or goal composition, and an identifier, enabling the
retrieval of the source-level call in the body of a statement.

Application to the functional notation translation. We illustrate this an-
notation process with Example 3. Specifically, we instrument the two translation
predicates defunc and defunc_goal, translating the source-level clauses and
goals. The text in italic corresponds to the instrumentation code added over the
original translation predicates. Note that defining this code’s body (according
to the data to observe) can defined as a hook of an extension module.

Example 3. Instrumentation of the translation rules for functional notation.

defunc((FuncHead := FuncVal), $clause_info(Clauses, Id, SI) :-
identify_functional_calls(FuncVal, FuncVal_withIds),
defunc_rec((FuncHead := FuncVal_withIds), Clauses, SI0),
build_syminfo([FuncHead,’:=’|SI0],SI).

defunc_rec((FuncHead := FuncValOpts_withIds), Clauses, [SI1|SIR]) :-
FuncValOpts_withIds = (FuncVal1 | FuncValR), !,
Clauses = [Clause1 | ClauseR],



defunc_rec((FuncHead := FuncVal1), Clause1, SI1), (1)
defunc_rec((FuncHead := FuncValR), ClauseR, SIR). (2)

defunc_goal(FuncCall, Goal) :-
recover_id(FuncCall, Id),
normalize(FuncCall, NormGoal),...,
Goal = ’Eval’(’$goal_info’(NormGoal, Id), _Ret_Arg).

Clause translation The FuncHead part on the left corresponds to a predicate
declaration; the FuncValOpts part on the right corresponds to goal invocations
(this results from the data analysis guideline). As introduced in Section 3.2, the
source-level elements of the predicate body are tagged using the user-defined
functor identify_functional_calls. Specifically, each relevant element of the
body is associated with a unique identifier, in order to enable the retrieval of its
position by the observer.

The symbolic information attached to the annotation is represented by the
contents of variable SI, created by predicate build_syminfo. This variable is
handled by an observer, according to the nature of the program view it aims to
provide. For example, line numbers, variables, or function names can be attached
to it. It can even be left as a free variable, if the observer can automatically
retrieve the information.

Notice that the declaration FuncHead := FuncValOpts is decomposed into
many goals, marked (1) and (2), if the | operator appears inside its right part.
Therefore, the translation needs to indicate to the observers that the declaration
is to be treated as a single one. This is done by grouping the symbolic information
computed by the evaluation of goals (1) and (2) into the $clause_info wrapper,
set as its last argument in the first predicate defunc.

Goal translation To relate target goals with their symbolic information the
goal translation predicates are instrumented with (1) predicate recover_id
which extracts identifier Id of the annotated source-level goal, and (2) predi-
cate $goal_info which is wrapped around the translation code NormGoal. Eval
is not wrapped since it is an intermediate goal in the expansion process.

This approach based on symbolic information enables us to envision a range of
program views, from simple syntax recovery to high-level representation of analy-
sis results: annotations can be enriched with source-specific procedures to handle
various representations of the target program, enabling different instantiations of
the annotation variable. They can even hold procedures that perform advanced
computations parameterized with the symbolic information (e.g., counting the
number of times a function is invoked).

The instrumentation method is outlined in the schema of Figure 5, which
depicts a declaration of the form f(X) := Cond ? B1 | B2. In this figure, the
variable names Sx correspond to identifiers of some program elements associ-
ated with some symbolic information, and the expressions trJxK correspond to a
translation of the term x. Overlined elements represent syntactic nodes.



SI1︷ ︸︸ ︷
f(X) :=

SCond︷ ︸︸ ︷
Cond ?

SB1︷︸︸︷
B1 |

SB2︷︸︸︷
B2 .

f(X) := Cond ? B1.
f(X) := B2.

’$clause_info’([
(f(X, R) :-

’$goal_info’(trJCondK, SCond),
’$goal_info’((!, trJB1K), SB1)),

(f(X, R) :- ’$goal_info’(trJB2K, SB2)
],

[f(X),’:=’,SCond:Cond,’?’,SB1:B1, ’|’,SB2:B2],
SI1)

(Decomposition)

(Translation with sym-
bolic annotations)

Fig. 5. Instrumented translation of a clause in functional notation.

Implementation overview. The annotations are integrated into the compi-
lation process of an extension module. The overall process of making program
behavior observable at the source level through an observer is depicted in Fig-
ure 6. Let us describe the extractor and the controller parts of this process.

compilation module (e) + annotations (Sym)

source 
program (Pe)

Observer (Obsesym(i))
controller processor

translated
program (P, Sym)

Compiler ([expand])
translatorextractor

program view (Ve) program view (V)

Fig. 6. Overview of the compilation process extended with annotations.

Extending the translation process: extractor. Handling the annotations required
a slight extension of the translation phase of the compiler. The extension is as fol-
lows: the $clause_info annotation is handled inside the original processing step
of clauses; the $goal_info annotation is handled in the processing step of goals.
Specifically, the annotation attached to each clause is encapsulated into an aux-
iliary clause generated in the same phase as the regular target clause(s). In doing
so, the symbolic information is available whenever an observer needs it. During
the goal translation step, the target goals that are wrapped by a $goal_info
annotation are kept executable, enabling the annotation to be ignored whenever
the source code needs to be processed by a target-level observer.



Customizing the observer: controller Existing observers for Prolog (such as de-
buggers, profilers, or static analyzers) can then be customized according to
the generated symbolic information. This customizing process is necessarily
application-specific, but we provide some general hints as guidelines:

(Hint 1) Collect all the elements requested by the observer (e.g., line numbers,
function names, or some text) and make them accessible as a data structure
in the arguments of the observer predicates.

(Hint 2) Complement the observer functions that do some processing on some
element (clause or goal), by checking if this element holds some symbolic in-
formation (i.e., as $clause_info or $goal_info). For example, if a $goal_info
wrapper is encountered, extract the name of the source-level goal and make
it display it instead of the name of its corresponding target-level goal(s).
Otherwise, preserve the target-level behavior.

(Hint 3) Identify locations in the observer where it needs to remember the last
data computed with source-level information. For example, such data can
correspond to a counter of execution times of a given function, when the
observer is a profiler.

4 Application to the interactive debugger

We now illustrate the use of a reversible language extension to parameterize the
generic interactive debugger of Ciao. We describe the modifications performed
on the debugger, and show the resulting source-level trace for our initial example
(Example 1).

4.1 Implementation details

In the case of the debugger, the required symbolic information corresponds to a
source node (e.g., [k(X), ’:=’, +(X, 1)] as in Example 1). As a result, the
extraction process consists solely of storing each source node before its expansion.

Once the source-level information is extracted and mapped to the appropriate
target term (or composition of target terms, cf. the guidelines in Section 3), it
is interpreted by the debugger. To step through the source code instead of the
target code, the controller part of the debugger checks for the presence of
a meta-information call at the level of the translated program (Hint 1), and
displays a trace step accordingly. In particular, it is responsible for locating the
name and execution counter of the target goal in the nodes corresponding to this
goal, and for replacing it with the related symbolic information, e.g., the name
and the counter of the source-level goal associated with this target goal (Hint
2). Note that if a source-level goal maps to a composition of goals, the controller
will behave as if only one step occurs, hiding the underlying target goals in the
trace display either until another annotated goal is encountered, or until the last
target-level goal has been (silently) executed. The information necessary to this
source-level step is stored, in order to refer to it in a later step (e.g., exit or failure



2 2 Call: ex0:f(3,_6371) ?
3 3 Call: f(3) := 3 < 42 ? k(l(m(3))) * 3 | 1000 ?
4 4 Call: f(3) := 3 < 42 ? k(l(m(3))) * 3 | 1000 ?
5 5 Call: m(3) := 3 ?
6 4 Call: f(3) := 3 < 42 ? k(l(m(3))) * 3 | 1000 ?
7 5 Call: l(3) := 3 - 2
8 4 Call: f(3) := 3 < 42 ? k(l(m(3))) * 3 | 1000 ?
9 5 Call: k(1) := 1 + 1
10 3 Call: f(3):= 3 < 42 ? k(l(m(3))) * 3 1000 ?
2 2 Exit: ex0:f(3,12) ?

Fig. 7. An excerpt of the debugger trace, customized with source information.

step implying backtracking) (Hint 3). When a goal invoked in the debugger is
neither annotated nor part of an annotation, the controller executes its original
procedure to display the standard, expanded debug information.

4.2 Source-level tracing: the functional example revisited

With this instrumentation, Example 1 is now debugged in source code terms,
as illustrated in Figure 7. Note that the debugger now displays the complete
declaration (see second line) defining f, instead of a single part of a clause (see
the second line in Example 1). When a function evaluation returns a value (which
is the case of all the functions f/1, k/1, l/1, m/1), intermediate unifications are
performed by the generic debugger. When the debugger is instrumented with a
controller (i.e., the handler of annotations), these unification steps are ignored
(skipped over), since they have no representation in the original source code.

5 Related Work

There exist frameworks and generative approaches that facilitate the develop-
ment of DSL tools for programming, including debuggers [6,20]. For example,
the Eclipse Integrated Development Environment [6], provides an API and an
underlying framework that can greatly help in the development of a debugger [5].
Emacs is another example of such environments, with facilities in the same line
as Eclipse. However, these tools are large and have a significant learning curve,
and, more importantly, their facilities are centered more around the graphical
navigation of the source code and interfacing with a command-line debugger,
while the focus of our work is on bridging syntactic or semantic aspects between
two sides of a translation, within such a command-line debugger. In that sense
our work is complementary to (and in practice combines well with) the facilities
in Eclipse, Emacs, and related environments. Generative approaches have been
suggested (e.g., based on aspect weaving into the language grammar [22]) in
order to reduce developer burden when using intricate APIs.

However, none of these approaches provide a methodology for developing reli-
able and maintainable debuggers. As a result, the development of debuggers has



remained difficult, inciting DSL tool developers to implement ad-hoc solutions,
through extension-specific modifications and adaptations of the debugger code.
For example, SWI-Prolog and Logtalk include a debugger for Prolog with built-in
support for language extensions like DCGs programs [21], which is purely based
on storing line numbers within the code. As mentioned in the introduction, this
approach, although useful in practice, is limited to a reduced kind of extensions.

Our objective has been to develop a more general approach, which we have
illustrated by applying the same methodology to several extensions including
functional notation, DCGs, and CLP{Q,R}.

Lindeman et al. [11] have proposed recently a declarative approach to defining
debuggers. To this end, they use SDF [19], a rewriting system, to instrument the
abstract syntax tree with debugging annotations. However, it does not seem
obvious that their approach could be applied to other observer tools. Indeed,
instrumentation is achieved by providing debugger-specific information, in the
form of events. In contrast, our instrumentation process makes it possible to
easily add and handle different kinds of meta-information.

Unexpansion and decompilation only differ in the hypothesis used in decom-
pilation: that the original source code may not be available. It is interesting
however to compare to existing related decompilation approaches. Bowen [1]
proposes a compilation process from Prolog to object code which makes it pos-
sible to define decompilation as an inverse call to compilation, provided some
reordering of calls is performed. Gomez et al. [7] also propose a decompilation
process for Java based on partial evaluation. However, these approaches have not
been designed to be applicable to a large class of different language extensions.
More generally, while it is in theory possible (although predictably hard with
current technology) to implement fully reversible transformations, this approach
runs into the problem that such inversions are non-deterministic in general, in
the sense that a given target code can be generated from multiple source texts.
Presenting the programmer with a different code that what is in the source
program could be even more confusing that debugging the target code directly.

More similar to our solution is the approach of Tratt [18], which also targets
language extensions, and where source information is injected into the abstract
syntax tree of the source program. This information is exploited to report errors
in terms of the language extension. However, they only discuss how to inject such
information in the syntax tree, and do not explain how to use this information
when building or adapting tools.

The macro-expansion passing style [4] approach makes it possible to easily
implement observers. Our approach differs from this one by relying on the ex-
isting generic debugger (Ciao’s in our examples): it focuses on what changes are
required in the debugger and the extension framework so that symbolic informa-
tion for unexpansion is handled in a way that is independent from the concrete
language extension.



6 Conclusion and future work

We have presented a generic approach that enables a debugger for a target lan-
guage to display trace information in terms of the language extension in which a
source program is written, using the Ciao debugger as an example. The proposed
approach is based on an extension of the usual mechanisms for term expansion,
and in particular of their modular implementation in Ciao through packages.
Nevertheless, we believe that our proposal could be ported to other Prolog sys-
tems with minor modifications. More specifically, we have defined a methodology
for making relevant parts of the source text and other characteristics available
at the target level by enriching the translation rules. We have shown that the
compiler and the debugger require only small adaptations in order to take this
mechanism into account; these adaptations are generic in the sense that while
the transformation rules are specific to the extension, the compiler and the de-
bugger do not require further modification, for what is arguably a large class of
extensions. In particular, in the paper we have illustrated this approach by ap-
plying it on the functional notation. In the system, we have successfully applied
it also to the DCG and CLP{Q,R} constraint packages.

In future work, we plan to extend the flexibility of the approach by enriching
the annotations to serve different purposes, such as performing computations on
symbolic information. Also, we feel that this initial work on augmenting the lan-
guage extension mechanism already provides us with the basis for adapting the
Ciao pre-processor. In doing so, errors, warnings, or other reports are reported in
terms of the source, domain-specific language, for different extensions, without
requiring further modification of the pre-processor itself. The same would apply
of course to the auto-documenter and the profiler [12]. Finally, we believe we
could leverage Kishon et al.’s framework [10] to check the soundness of our ap-
proach with regard to the intended semantics of a language extension. Doing so
would also make it possible to show the equivalence between the behavior of an
ad-hoc source level debugger and our customization of the target level debugger.
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