User-Definable Resource Usage
Bounds Analysis for Java Bytecode

Jorge Navas¹

School of Computing
National University of Singapore
Republic of Singapore

Mario Méndez-Lojo²

Department of Computer Science
University Texas at Austin
Austin, TX (USA)

Manuel V. Hermenegildo³

IMDEA-Software, Madrid (Spain),
Departments of Computer Science
⁴University of New Mexico, Albuquerque, NM (USA)
and ⁵Technical University of Madrid, Madrid (Spain).

Abstract

Automatic cost analysis of programs has been traditionally concentrated on a reduced number of resources such as execution steps, time, or memory. However, the increasing relevance of analysis applications such as static debugging and/or certification of user-level properties (including for mobile code) makes it interesting to develop analyses for resource notions that are actually application-dependent. This may include, for example, bytes sent or received by an application, number of files left open, number of SMSs sent or received, number of accesses to a database, money spent, energy consumption, etc. We present a fully automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of application programmer-definable resources. In our context, a resource is defined by programmer-provided annotations which state the basic consumption that certain program elements make of that resource. From these definitions our analysis derives functions which return an upper bound on the usage that the whole program (and individual blocks) make of that resource for any given set of input data sizes. The analysis proposed is independent of the particular resource. We also present some experimental results from a prototype implementation of the approach covering a significant set of interesting resources.

Keywords: Static analysis, resource usage

¹ Email: navas@comp.nus.edu.sg
² Email: marioml@ices.utexas.edu
³ Email: herme@fi.upm.es

1571-0661 © 2009 Elsevier B.V. Open access under CC BY-NC-ND license.
doi:10.1016/j.entcs.2009.11.015
1 Introduction

The usefulness of analyses which can infer information about the costs of computations is widely recognized since such information is useful in a large number of applications including performance debugging, verification, and resource-oriented specialization. The kinds of costs which have received most attention so far are related to execution steps as well as, sometimes, execution time or memory (see, e.g., [27,34,36,20,9,21,40] for functional languages, [38,8,19,42] for imperative languages, and [17,16,18,32] for logic languages). These and other types of cost analyses have been used in the context of applications such as granularity control in parallel and distributed computing (e.g., [29]), resource-oriented specialization (e.g., [13,33]), or, more recently, certification of the resources used by mobile code (e.g., [14,6,12,5,22]). Specially in these more recent applications, the properties of interest are often higher-level, user-oriented, and application-dependent rather than (or, rather, in addition to) the predefined, more traditional costs such as steps, time, or memory. Regarding the object of certification, in the case of mobile code the certification and checking process is often performed at the bytecode level [28], since, in addition to other reasons of syntactic convenience, bytecode is what is most often available at the receiving (checker) end.

We propose a fully automated framework which infers upper bounds on the usage that a Java bytecode program makes of application programmer-definable resources. Examples of such programmer-definable resources are bytes sent or received by an application over a socket, number of files left open, number of SMSs sent or received, number of accesses to a database, number of licenses consumed, monetary units spent, energy consumed, disk space used, and of course, execution steps (or bytecode instructions), time, or memory. A key issue in approach is that resources are defined by programmers and by means of annotations. The annotations defining each resource must provide for some relevant user-selected elements corresponding to the bytecode program being analyzed (classes, methods, variables, etc.), a value that describes the cost of that element for that particular resource. These values can be constants or, more generally, functions of the input data sizes. The objective of our analysis is then to statically derive from these elementary costs an upper bound on the amount of those resources that the program as a whole (as well as individual blocks) will consume or provide.

Our approach builds on the work of [17,16] for logic programs, where cost functions are inferred by solving recurrence equations derived from the syntactic structure of the program. Most previous work deals only with concrete, traditional resources (e.g., execution steps, time, or memory). The analysis of [32] also allows program-level definition of resources, but it is designed for Prolog and works at the source code level, and thus is not directly applicable to Java bytecode due to particularities like virtual method invocation, unstructured control flow, assignment, the fact that statements are low-level bytecode instructions, the absence of backtracking (which has a significant impact on the method used in [32]), etc. Also, the presentation of [32] is descriptive in contrast to the concrete algorithm provided herein. In [2], a cost analysis is described that does deal with Java bytecode and is capa-
import java.net.URLEncoder;

public class CellPhone {
 SmsPacket sendSms(SmsPacket smsPk, Encoder enc, Stream stm) {
 if (smsPk != null) {
 String newSms = enc.format(smsPk.sms);
 smsPk.sms = newSms;
 smsPk.next = sendSms(smsPk.next, enc, stm);
 stm.send(newSms);
 }
 return smsPk;
 }
}

class SmsPacket {
 String sms;
 SmsPacket next;
}

interface Encoder{
 String format(String data);
}

class TrimEncoder implements Encoder{
 @Cost({"cents","0"})
 @Size("size(s)<=size(ret)")
 public String format(String s) {
 return s.trim();
 }
}

class UnicodeEncoder implements Encoder{
 @Cost({"cents","0"})
 @Size("size(s)<=6*size(ret)")
 public String format(String s) {
 return URLEncoder.encode(s);
 }
}

abstract class Stream{
 @Cost({"cents","2*size(data)"})
 native void send(String data);
}

Fig. 1. Motivating example: Java source code and Control Flow Graph of deriving cost relations which are functions of input data sizes. The authors also presented in [3] an experimental evaluation of the approach. This approach is generic, in the same sense as, e.g., [16], in that both the conceptual framework and its implementation allow adaptation to different resources. However, this is done typically in the implementation. Our approach is interesting in that it allows the application programmer to define the resources through annotations directly in the Java source, and without changing the analyzer code or tables in any way. Also, without claiming it as any significant contribution of course, we provide for implementation convenience a somewhat more concrete, algorithmic presentation, in contrast to the more descriptive approach of previous work (including [17,16,32,2,3], etc.).

2 User-Defined Resources: Overview of the Approach

A resource is a fundamental component in our approach. A resource is a user-defined notion which associates a basic cost function with some user-selected elements (class, method, statement) in the program. This is expressed by adding Java annotations to the code. The objective of the analysis is to approximate the usage that the program makes of the resource.

We start by illustrating the overall approach through a working example. The
Java program in Fig. 1 emulates the process of sending text messages within a cell phone. This example is not intended to be realistic, but rather a small piece of code that illustrates a number of aspects of the approach. The source code is provided here just for clarity, since the analyzer works directly on the corresponding bytecode. The phone (class CellPhone) receives a list of packets (SmsPacket), each one containing a single SMS, encodes them (Encoder), and sends them through a stream (Stream). There are two types of encoding: TrimEncoder, which eliminates any leading and trailing white spaces, and UnicodeEncoder, which converts any special character into its Unicode(\uxxxx) equivalent. The length of the SMS which the cell phone ultimately sends through the stream depends on the size of the encoded message.

In the example, the resource is the cost in cents of a dollar for sending the list of text messages. We will assume for the sake of discussion that the carrier charges are proportional to the number of characters sent, and at 2 cents/character. This is reflected by the user in the method that is ultimately responsible for the communication (Stream.send), by adding the annotation @Cost-({"cents","2*size(data)"}). Similarly, the formatting of an SMS made in any implementation of Encoder.format is free, as indicated by the @Cost-({"cents","0"}) annotation (the actual system allows defining overall cost defaults but we express them here explicitly). The analysis then processes these local resource usage expressions and uses them to infer a safe upper bound on the total (global) usage of the defined resources made by the program.

As illustrated by the example, these Java annotations allow defining the resources to be tracked (which is done by simply mentioning them in the annotations) and to provide cost functions for the built-in and external (library) blocks that are relevant to the particular resource (i.e., which affect the usage of such resource). They also allow defining data size relations among arguments and defining and declaring size measures. The resource usage expressions are defined using the following language (which we will call L):

\[
\begin{align*}
(expr) & ::= (expr)(bin_op)(expr) | (\Sigma | \Pi)(expr) \\
& | (expr)(expr) | log_{num}(expr) | -(expr) \\
& | (expr)! | \infty | num \\
& | size(\langle measure\rangle, r_{num}) \\
(bin_op) & ::= + | - | \times | / | % \\
(measure) & ::= int | ref | ... \\
\end{align*}
\]

We now summarize the fundamental steps of the analysis:

Step 1: Constructing the Control Flow Graph.

In the first step, the analysis translates the Java bytecode into an intermediate representation building a Control Flow Graph (CFG). Edges in the CFG connect block methods and describe the possible flows originated from conditional jumps, exception handling, virtual invocations, etc. A (simplified) version of the CFG corresponding to our code example is also shown in Fig. 1.

The original sendSms method has been compiled into two block methods that share the same signature: class where declared, name (CellPhone.sendSms), and number and type of the formal parameters. The bottom-most box represents the
base case, in which we return null, here represented as an assignment of null to the return variable \(r_5 \); the sibling corresponds to the recursive case. The virtual invocation of \texttt{format} has been transformed into a static call to a block method named \texttt{Encoder.format}. There are two block methods which are compatible in signature with that invocation, and which serve as proxies for the intermediate representations of the interface implementations in \texttt{TrimEncoder.format} and \texttt{UnicodeEncoder.format}. Note that the resource-related annotations have been carried through the CFG and are thus available to the analysis.

Step 2: Inference of Data Dependencies and Size Relationships.

The algorithm infers in this phase \textit{size relationships} between the input and the output formal parameters of every block method. We assume that the size of (the contents of) a linked structure pointed to by a variable is the maximum number of pointers we need to traverse, starting at the variable, until \texttt{null} is found. The following equations are inferred by the analysis for the two \texttt{CellPhone.sendSms} block methods (with \(s_{r_i} \) we denote the size of input formal parameter position \(i \), corresponding to variable \(r_i \)):

\[
\begin{align*}
\text{Size}_{\text{sendSms}}^r(s_{r_0}, 0, s_{r_2}, s_{r_3}) & \leq 0 \\
\text{Size}_{\text{sendSms}}^r(s_{r_0}, s_{r_1}, s_{r_2}, s_{r_3}) & \leq 7 \times s_{r_1} - 6 + \text{Size}_{\text{sendSms}}^r(s_{r_0}, s_{r_1} - 1, s_{r_2}, s_{r_3})
\end{align*}
\]

The size of the returned value \(r_5 \) is independent of the sizes of the input parameters \texttt{this}, \texttt{enc}, and \texttt{stm} (\(s_{r_0}, s_{r_2} \) and \(s_{r_3} \) respectively) but not of the size \(s_{r_1} \) of the list of text messages \(\text{smsPk} \) (\(r_1 \) in the graph). Such size relationships are computed based on \textit{dependency graphs}, which represent data dependencies between variables in a block, and user annotations if available. In the example in Fig. 1, the user indicates that the formatting in \texttt{UnicodeEncoder} results in strings that are at most six times longer than the ones received as input \texttt{@Size("size(ret)<=6*size(s)")}, while the trimming in \texttt{TrimEncoder} returns strings that are equal or shorter than the input \texttt{(\&Size("size(ret)<=size(s)")}). In this case the equations provide implicitly the size measure (i.e., that the size of a string is its length). The equation system shown above is approximated by a recurrence solver included in our analysis in order to obtain the closed form solution \(\text{Size}_{\text{sendSms}}^r(s_{r_0}, s_{r_1}, s_{r_2}, s_{r_3}) \leq 3.5 \times s_{r_1}^2 - 2.5 \times s_{r_1} \).

This is a reasonable bound given that we have not specified a maximum size for each string.

Step 3: Resource Usage Analysis.

In this phase, the analysis uses the CFG, the data dependencies, and the size relationships inferred in previous steps to infer a resource usage equation for each block method in the CFG (possibly simplifying such equations) and obtain closed form solutions (in general, approximated –upper bounds). Therefore, the objective of the resource analysis is to statically derive safe upper bounds on the amount of resources that each of the block methods in the CFG consumes or provides. The result given by our analysis for the monetary cost of sending the messages (\texttt{CellPhone.sendSms}) is
Cost_{sendSms}(s_{r0}, 0, s_{r2}, s_{r3}) \leq 0
Cost_{sendSms}(s_{r0}, s_{r1}, s_{r2}, s_{r3}) \leq 12 \times s_{r1} - 12 + Cost_{sendSms}(s_{r0}, s_{r1} - 1, s_{r2}, s_{r3})

i.e., the cost is proportional to the size of the message list (smsPk in the source, r1 in the CFG). Again, this equation system is solved by a recurrence solver, resulting in the closed formula Cost_{sendSms}(s_{r0}, s_{r1}, s_{r2}, s_{r3}) \leq 6 \times s_{r1}^2 - 6 \times s_{r1}.

3 Intermediate program representation

Analysis of a Java bytecode program normally requires its translation into an intermediate representation that is easier to manipulate. In particular, our decompilation (assisted by the Soot [39] tool) involves elimination of stack variables, conversion to three-address statements, static single assignment (SSA) transformation, and generation of a Control Flow Graph (CFG) that is ultimately the subject of analysis. Note that in this representation loops are converted into recursive blocks. The decompilation process is an evolution of the work presented in [31], which has been successfully used as the basis for other (non resource-related) analyses [30]. Our ultimate objective is to support the full Java language but the current transformation has some limitations: it does not yet support reflection, threads, or runtime exceptions. The following grammar describes the intermediate representation; some of the elements in the tuples are named so we can refer to them as node_name.

\[
\begin{align*}
CFG & ::= \text{Block}^+ \\
\text{Block} & ::= (\text{id}:\mathbb{N}, \text{sig}:\text{Sig}, \text{fpars}:\text{Id}^+, \text{annot}:\text{expr}^*, \text{body}:\text{Stmt}^*) \\
\text{Sig} & ::= (\text{class}:\text{Type}, \text{name}:\text{Id}, \text{pars}:\text{Type}^+) \\
\text{Stmt} & ::= (\text{id}:\mathbb{N}, \text{sig}:\text{Sig}, \text{apars}: (\text{Id} | \text{Ct})^+) \\
\text{Var} & ::= (\text{name}:\text{Id}, \text{type}:\text{Type})
\end{align*}
\]

The Control Flow Graph is composed of block methods. A block method is similar to a Java method, with some particularities: a) if the program flow reaches it, every statement in it will be executed, i.e., it contains no branching; b) its signature might not be unique: the CFG might contain several block methods in the same class sharing the same name and formal parameter types; c) it always includes as formal parameters the returned value ret and, unless it is static, the instance self-reference this; d) for every formal parameter (input formal parameter) of the original Java method that might be modified, there is an extra formal parameter in the block method that contains its final version in the SSA transformation (output formal parameter); e) every statement in a block method is an invocation, including builtins (assignment asg, field dereference gtf, etc.), which are understood as block methods of the class Builtin.

As mentioned before, there is no branching within a block method. Instead, each conditional if cond stmt1 else stmt2 in the original program is replaced with an invocation and two block methods which uniquely match its signature: the first block corresponds to the stmt1 branch, and the second one to stmt2. To respect the semantics of the language, we decorate the first block method with the result of
decompiling cond, while we attach cond to its sibling. A similar approach is used in virtual invocations, for which we introduce as many block methods in the graph as possible receivers of the call were in the original program. A set of block methods with the same signature sig can be retrieved by the function getBlocks(CFG, sig).

User specifications are written using the annotation system introduced in Java 1.5 which, unlike JML specifications, has the very useful characteristic of being preserved in the bytecode. Annotations are carried over to our CFG representation, as can be seen in Fig. 1.

Example 1 We now focus our attention on the two block methods in Fig. 1, which are the result of (de)compiling the CellPhone.sendSms method. The input formal parameters r0, r1, r2, r3 correspond to this, smsPk, enc, and stm, respectively. In the case of r1, the contents of its fields next and sms are altered by invoking the stf and accessed by invoking the gtf (abbreviation for setfield and getfield, respectively) builtin block methods. The output formal parameter r4 contains the final state of r1 after those modifications. The value returned by the block methods is contained in r5. Space reasons prevent us from showing any type information in the CFG in Fig 1. In the case of Encoder.format, for example, we say that there are two blocks with the same signature because they are both defined in class Encoder, have the same name (format) and the same list of types of formal parameters {Encoder,String,String}.

4 The resource usage analysis framework
We now describe our framework for inferring upper bounds on the usage that the Java bytecode program makes of a set of resources defined by the application programmer, as described before. The algorithm in Fig 2 takes as input a Control Flow Graph in the format described in the previous section, including the user annotations that assign elementary costs to certain graph elements for a particular resource. The user also indicates the set of resources to be tracked by the analysis. Without loss of generality we assume for conciseness in our presentation a single resource.

A preliminary step in our approach is a class hierarchy analysis [15,30], aimed at simplifying the CFG and therefore improving overall precision. More importantly, we also require the existence of an alias analysis [35,26,11], whose results are used by a third phase (described below) in which data dependencies between variables
in the CFG are inferred. The next step is the decomposition of the CFG into its strongly-connected components. After these steps, two different analyses are run separately on each strongly connected component: a) the size analysis, which estimates parameter size relationships for each statement and output formal parameters as a function of the input formal parameter sizes (Sec. 4.1); and b) the actual resource analysis, which computes the resource usage of each block method in terms also of the input data sizes (Sec. 4.2). Each phase is dependent on the previous one.

The data dependency analysis is a dataflow analysis that yields position dependency graphs for the block methods within a strongly connected component. Each graph $G = (V, E)$ represents data dependencies between positions corresponding to statements in the same block method, including its formal parameters. Vertexes in V denote positions, and edges $(s_1, s_2) \in E$ denote that s_2 is dependent on s_1 (s_1 is a predecessor of s_2). We will assume a predec function that takes a position dependency graph, a statement, and a parameter position and returns its nearest predecessor in the graph. Fig. 3 shows the position dependency graph of the TrimEncoder.format block method.

4.1 Size analysis

We now show our algorithm for estimating parameter size relations based on the data dependency analysis, inspired by the original ideas of [17,16]. Our goal is to represent input and output size relationships for each statement as a function defined in terms of the formal parameter sizes. Unless otherwise stated, whenever we refer to a parameter we mean its position.

The size of an input is defined in terms of measures. By measure we mean a function that, given a data structure, returns a number. Our method is parametric on measures, which can be defined by the user and attached via annotations to parameters or classes. For concreteness, we have defined herein two measures, int for integer variables, and the longest path-length [37,2] ref for reference variables. The longest path-length of a variable is the cardinality of the longest chain of pointers than can be followed from it. More complex measures can be defined to handle other data types such as cyclic structures, arrays, etc. The set of measures will be denoted by \mathcal{M}.

The size analysis algorithm is given in pseudo-code in Fig. 4; its main steps are:

(i) Assign an upper bound to the size of every parameter position of all statements, including formal parameters, for all the block methods with the same signature (genSigSize).

(ii) For a given signature, take the set of size inequations returned by (i) and rename each size relation in terms of the sizes of input formal parameters (normalize).
(iii) Repeat the first step for every signature in the same strongly-connected component (genSizeEqs).

(iv) Simplify size relationships by resolving mutually recursive functions, and find closed form solutions for the output formal parameters (genSizeEqs).

Intermediate results are cached in a memo table mt, which for every parameter position stores measures, sizes, and resource usage expressions defined in the \mathcal{L} language.

The size of the parameter at position i in statement $stmt$, under measure m, is referred to as $\text{size}(m, stmt, i)$. We consider a parameter position to be input if it is bound to some data when the statement is invoked. Otherwise, it is considered an output parameter position. In the case of input parameter and output formal parameter positions, an upper bound on that size is returned by getSize (Fig. 4).

The upper bound can be a concrete value when there is a constant in the referred position, i.e., when the val function returns a non-infinite value:

Definition 4.1 The concrete size value for a parameter position under a particular measure is returned by $\text{val} : \mathcal{M} \times \mathcal{Smt} \times \mathbb{N} \rightarrow \mathcal{L}$, which evaluates the syntactic content of the actual parameter in that position:

$$\text{val}(m, stmt, i) = \begin{cases} n & \text{if } stmt.\text{apars}_i \text{ is an integer } n \text{ and } m=\text{int} \\ 0 & \text{if } stmt.\text{apars}_i \text{ is null and } m=\text{ref} \\ \infty & \text{otherwise} \end{cases}$$

If the content of that input parameter position is a variable, the algorithm searches the data dependency graph for its immediate predecessor. Since the intermediate representation is in SSA form, the only possible scenarios are that either there is a unique predecessor whose size is assigned to that input parameter position, or there is none, causing the input parameter size to be unbounded (∞).

Consider now an output parameter position within a block method, case covered in genOutSize (Fig. 4). If the output parameter position corresponds to a non-recursive invoke statement, either a size relationship function has already been computed recursively (since the analysis traverses each strongly-connected component in reverse topological order), or it is provided by the user through size annotations. In the first case, the size function of the output parameter position can be retrieved from the memo table by using the lookup operation, taking the maximum in case of several size relationship functions, and then passing the input parameter size relationships to this function to evaluate it. In the second scenario, the size function of the output parameter position is provided by the user through size annotations, denoted by the \mathcal{A} function in the algorithm. In both cases, it will able to return an explicit size relation function.

Example 2 We have already shown in the CellPhone example how a class can be annotated. The Builtin class includes the assignment method asg, annotated as follows:

```
public class Builtin {
```
genSizeEqs(SCC, mt, CFG, dg) {
 Eqs ← ∅
 for (sig : SCC)
 Eqs[sig] ← genSigSize(sig, mt, SCC, CFG, dg)
 Sols ← recEqsSolver(simplifyEqs(Eqs))
 for (sig : SCC)
 insert(mt, size, sig, Sols[sig])
 return mt
}

genSigSize(sig, mt, SCC, CFG, dg) {
 Eqs ← ∅
 BMs ← getBlocks(CFG, sig)
 for (bm : BMs)
 Eqs ← Eqs ∪ genBlockSize(bm, mt, SCC, dg)
 return normalize(Eqs)
}

genBlockSize(bm, mt, SCC, dg) {
 Eqs ← ∅
 for (stmt : bm.body)
 I ← stmt input parameter positions
 Eqs ← Eqs ∪ genInSize(stmt, I, mt, dg)
 K ← bm output formal parameter positions
 Eqs ← Eqs ∪ genOutSize(stmt, mt, SCC)
 return Eqs
}

genInSize(elem, Pos, mt, dg) {
 Eqs ← ∅
 for (pos : Pos)
 m ← lookup(mt, measure, elem.sig, pos)
 s ← getSize(m, elem.id, pos, dg)
 Eqs ← Eqs ∪ {size(m, elem.id, pos) ≤ s}
 return Eqs
}

genOutSize(stmt, mt, SCC) {
 {i₁,...,iₙ} ← stmt input positions
 sig ← stmt.sig
 {m₁,...,mₙ} ← {lookup(mt, measure, sig, i₁),
 ..., lookup(mt, measure, sig, iₙ)}
 {s₁,...,sₙ} ← {size(mᵢ, stmt.id, iᵢ),...
 size(mᵢ, stmt.id, iᵢ)}
 Eqs ← ∅
 O ← stmt output parameter positions
 for (o : O)
 mₒ ← lookup(mt, measure, sig, o)
 if (sig ∉ SCC)
 Sizeuser ← Aₒ sig(sᵢ₁,...,sᵢₙ)
 Sizealg ← max(lookup(mt, size, sig, o))
 Sizeₒ ← min(Sizeuser, Sizealg)
 else
 Sizeₒ ← Sizeₒ sig(mₒ, sᵢ₁,...,sᵢₙ)
 Eqs ← Eqs ∪ {size(mₒ, stmt.id, o) ≤ Sizeₒ}
 return Eqs
}

ggetSize(m, id, pos, dg) {
 result ← val(m, id, i)
 if (result ≠ ∞)
 return result
 if (∃(elem, pos_p) ∈ predec(dg, id, pos))
 m_p ← lookup(mt, measure, elem.sig, pos_p)
 if (m = m_p)
 return size(m_p, elem.id, pos_p)
 return ∞
}

Fig. 4. The size analysis algorithm

 @Size{"size(ret)\leq size(o)"}
 public static native Object asg(Object o);
 // ... rest of annotated builtins

which results in equation $A₁^{\text{asg}}(\text{ref}, \text{size(ref, asg, 0)}) \leq \text{size(ref, asg, 0)}$.

If the output parameter position corresponds to a recursive invoke statement, the size relationships between the output and input parameters are built as a symbolic size function. Since the input parameter size relations have already been computed, we can establish each output parameter position size as a function described in terms of the input parameter sizes.

At this point, the algorithm has defined size relations for all parameter positions within a block method.

However, those relations are either constants or given in terms of the immediate predecessor in the dependency graph. The algorithm rewrites the equation system such that we obtain an equivalent system in which only formal parameter positions are involved. This process, called normalization, is shown in Fig. 2

After normalization, the analysis repeats the same process for all block methods.
in the same strongly-connected component (SCC). Once every component has been processed, the analysis further simplifies the equations in order to resolve mutually recursive calls among block methods within the same SCC in the `simplifyEqs` procedure.

In the final step, the analysis submits the simplified system to a recurrence equation solver (`recEqsSolver`, called from `genSizeEqs`) in order to obtain approximated upper-bound closed forms. The interesting subject of how the equations are solved is beyond the scope of this paper (see, e.g., [41]). Our implementation does provide a simple built-in solver (an evolution of the solver of the Caslog system [16]) which covers a reasonable set of recurrence equations such as first-order and higher-order linear recurrence equations in one variable with constant and polynomial coefficients, divide and conquer recurrence equations, etc. However, it also includes an interface to the Parma Polyhedra Library [7] (and previously to other tools such as Mathematica, Matlab, etc.). Work is also under way to interface with the quite interesting solver of [1].

Example 3 We now illustrate the definitions and algorithm with an example of how the size relations are inferred for the two `CellPhone.sendSms` block methods (Fig. 1), using the `ref` measure for reference variables. We will refer to the k-th occurrence of a statement `stmt` in a block method as `stmt_k`, and denote `CellPhone.-sendSms`, `Encoder.format`, and `Stream.send` by `sendSms`, `format`, and `send` respectively. Finally, as mentioned before, we refer to the size of the input formal parameter position `i`, corresponding to variable `r_i`, as `s_{r_i}`.

The main steps in the process are listed in Fig. 5. The first block of rows contains the most relevant size parameter relationship equations for the recursive block method, while the second block of rows corresponds to the base case. These size parameter relationship equations are constructed by the analysis by first following the algorithm in Fig. 4, and then normalizing them (expressing them in terms of the input formal parameter sizes `s_{r_i}`). Also, in the first block of rows we observe that the algorithm has returned $6 \times \text{size(ref, format, 1)}$ as upper bound for the size of the formatted string, $\max(\text{lookup(mt, size, format, 2)})$. The result is the maximum of the two upper bounds given by the user for the two implementations for `Encoder.format` since `TrimEncoder.format` eliminates any leading and trailing white spaces (thus the output is at most as bigger as the input), whereas `UnicodeEncoder.format` converts any special character into its Unicode equivalent (thus the output is at most six times the size of the input), a safe upper bound for the output parameter position size is given by the second annotation.

In the particular case of builtins and methods for which we do not have the code, size relationships are not computed but rather taken from the user `@Size` annotations. These functions are illustrated in the third block of rows. Finally, in the fourth block of rows we show the recurrence equations built for the output parameter sizes in the block method and in the final row the closed form solution obtained.
Size parameter relationships equations (normalized)

<table>
<thead>
<tr>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>size(ref, ne, 0) ≤ size(ref, sendSms, 1) ≤ s_{r1}</td>
</tr>
<tr>
<td>size(ref, ne, 1) ≤ val(ref, ne, 1) ≤ 0</td>
</tr>
<tr>
<td>size(ref, gtf1, 0) ≤ size(ref, ne, 0) ≤ s_{r1}</td>
</tr>
<tr>
<td>size(ref, gtf1, 2) ≤ A_{gtf}^2(ref, size(ref, gtf1, 0),...) ≤ s_{r1} - 1</td>
</tr>
<tr>
<td>size(ref, format, 1) ≤ size(ref, gtf1, 2) ≤ s_{r1} - 1</td>
</tr>
<tr>
<td>size(ref, format, 2) ≤ \max(lookup(nt, size, format, 2))(size(ref, format, 2)) ≤ \max(s_{r1}, 6 \times s_{r1} - 1) ≤ 6 \times (s_{r1} - 1)</td>
</tr>
<tr>
<td>size(ref, send, 1) ≤ size(ref, format, 2) ≤ 6 \times (s_{r1} - 1)</td>
</tr>
<tr>
<td>size(ref, gtf2, 0) ≤ size(ref, gtf1, 0) ≤ s_{r1}</td>
</tr>
<tr>
<td>size(ref, gtf2, 2) ≤ A_{gtf}^2(ref, size(ref, gtf2, 0),...) ≤ s_{r1} - 1</td>
</tr>
<tr>
<td>size(ref, sendSms, 5) ≤ S_{sendSms}^5(ref, size(ref, sendSms, 1),...) ≤ S_{sendSms}^5(ref, s_{r0}, s_{r1} - 1, s_{r2}, s_{r3})</td>
</tr>
<tr>
<td>size(ref, stf1, 0) ≤ size(ref, gtf2, 0) ≤ s_{r1}</td>
</tr>
<tr>
<td>size(ref, stf1, 2) ≤ size(ref, sendSms, 5) ≤ S_{sendSms}^5(ref, s_{r0}, s_{r1} - 1, s_{r2}, s_{r3})</td>
</tr>
<tr>
<td>size(ref, stf1, 3) ≤ A_{stf}^3(ref, size(ref, stf1, 0), size(ref, stf1, 2)) ≤ s_{r1} + S_{sendSms}^5(ref, s_{r0}, s_{r1} - 1, s_{r2}, s_{r3})</td>
</tr>
<tr>
<td>size(ref, stf2, 0) ≤ size(ref, stf1, 3) ≤ s_{r1} + S_{sendSms}^5(ref, s_{r0}, s_{r1} - 1, s_{r2}, s_{r3})</td>
</tr>
<tr>
<td>size(ref, stf2, 2) ≤ size(ref, format, 2) ≤ 6 \times (s_{r1} - 1) ≤ 7 \times s_{r1} - 6 + S_{sendSms}^5(ref, s_{r0}, s_{r1} - 1, s_{r2}, s_{r3})</td>
</tr>
<tr>
<td>size(ref, stf2, 3) ≤ A_{stf}^3(ref, size(ref, stf2, 0), size(ref, stf2, 2)) ≤ 7 \times s_{r1} - 6 + S_{sendSms}^5(ref, s_{r0}, s_{r1} - 1, s_{r2}, s_{r3})</td>
</tr>
<tr>
<td>size(ref, eq, 0) ≤ size(ref, sendSms, 1) ≤ s_{r1}</td>
</tr>
<tr>
<td>size(ref, eq, 1) ≤ val(ref, eq, 1) ≤ 0</td>
</tr>
<tr>
<td>size(ref, asg, 0) ≤ val(ref, asg, 0) ≤ 0</td>
</tr>
<tr>
<td>size(ref, asg, 1) ≤ A_{asg}^1(ref, size(ref, asg, 0)) ≤ 0</td>
</tr>
</tbody>
</table>

Output parameter size functions for builtins (provided through annotations)

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_{gtf}^2(ref, size(ref, gtf, 0),...) ≤ size(ref, gtf, 0) - 1</td>
</tr>
<tr>
<td>A_{asg}^1(ref, size(ref, asg, 0)) ≤ size(ref, asg, 0)</td>
</tr>
<tr>
<td>A_{stf}^3(ref, size(ref, stf, 0), size(ref, stf, 2)) ≤ size(ref, stf, 0) + size(ref, stf, 2)</td>
</tr>
</tbody>
</table>

Simplified size equations and closed form solution

\[
S_{sendSms}^5(ref, s_{r0}, s_{r1}, s_{r2}, s_{r3}) \leq \begin{cases}
0 & \text{if } s_{r1} = 0 \\
7 \times s_{r1} - 6 + S_{sendSms}^5(ref, s_{r0}, s_{r1} - 1, s_{r2}, s_{r3}) & \text{if } s_{r1} > 0
\end{cases}
\]

\[
S_{sendSms}^5(ref, s_{r0}, s_{r1}, s_{r2}, s_{r3}) \leq 3.5 \times s_{r1}^2 - 2.5 \times s_{r1}
\]

Fig. 5. Size equations example

4.2 Resource usage analysis

The core of our framework is the resource usage analysis, whose pseudo code is shown in Fig 6. It takes a strongly-connected component of the CFG, including the set of annotations which provide the application programmer-provided resources and cost functions, and calculates a resource usage function which is an upper bound on the usage made by the program of those resources. The algorithm manipulates the same memo table described in Sec. 4.1 in order to avoid recomputations and access the size relationships already inferred.
genResourceUsageEqs(SCC, res , mt, CFG) {
 Eqs←∅
 for (sig: SCC)
 Eqs[sig]←genSigRU(sig, res, mt, SCC, CFG)
 Sols←recEqsSolver(simplifyEqs(Eqs))
 for (sig: SCC)
 insert(mt, cost, max(Sols[sig]))
 return mt
}

genSigRU(sig, res, mt, SCC, CFG) {
 Eqs←∅
 BMs←getBlocks(CFG, sig)
 for (bm: BMs)
 body←bm.body
 Costbody←0
 for (stmt: body)
 Coststmt←genStmtRU(stmt, res, mt, SCC)
 Costbody←Costbody + Coststmt
 Costbm←genBlockRU(bm, res, mt)
 Eqs←Eqs∪{Costbm ≤ Costbody}
}

genStmtRU(stmt, res, mt, SCC) {
 {i₁,...,iₖ}←stmt input parameter positions
 {sᵢ₁,...,sᵢₖ}←
 max(lookup(mt, size, stmt.sig, i₁)),
 ..., max(lookup(mt, size, stmt.sig, iₖ))
 if (stmt.sig ∈ SCC)
 Costuser←A(stmt.sig)(res, sᵢ₁, ..., sᵢₖ)
 Costalg′←lookup(mt, cost, res, stmt.sig)
 Costalg←Costalg′(sᵢ₁,...,sᵢₖ)
 return min(Costalg, Costuser)
 else
 return Cost(stmt.sig, res, sᵢ₁,...,sᵢₖ)
}

genBlockRU(bm, res, mt) {
 {i₁,...,iₖ}←bm input formal parameter positions
 {sᵢ₁,...,sᵢₖ}←
 lookup(mt, size, bm.id, i₁),..., lookup(mt, size, bm.id, iₖ)
 return Cost(bm.id, res, sᵢ₁,...,sᵢₖ)
}

Fig. 6. The resource usage analysis algorithm

The algorithm is structured in a very similar way to the size analysis (which also allows us to draw from it to keep the explanation within space limits): for each element of the strongly-connected component the algorithm will construct an equation for each block method that shares the same signature representing the resource usage of that block. To do this, the algorithm will visit each invoke statement. There are three possible scenarios, covered by the genStmtRU function. If the signatures of caller and callee(s) belong to the same strongly-connected component, we are analyzing a recursive invoke statement. Then, we add to the body resource usage a symbolic resource usage function, in an analogous fashion to the case of output parameters in recursive invocations during the size analysis.

The other scenarios occur when the invoke statement is non-recursive. Either a resource usage function Costalg for the callee has been previously computed, or there is a user annotation Costusr that matches the given signature, or both. In the latter case, the minimum between these two functions is chosen (i.e., the most precise safe upper bound assigned by the analysis to the resource usage of the non-recursive invoke statement) or a warning is issued.

Example 4 The call (sixth statement) in the upper-most CellPhone.sendSms block method matches the signature of the block method itself and thus it is recursive. The first four parameter positions are of input type. The upper-bound expression returned by genStmtRU is Cost_{sendSms}(s₀, s₁₋₁, s₂, s₃). Note that the input size relationships were already normalized during the size analysis. Now consider the invocation of Stream.send. The resource usage expression for the statement is defined by the function A_{send}(s₁₋₁, 6 × (s₁₋₁)). Note also that there is a resource anno-
Resource usage equations

\[
\begin{align*}
\text{Cost}_{\text{sendSms}}(\$, s_{r0}, s_{r1}, s_{r2}, s_{r3}) & \leq \min(\text{lookup}(mt, \$, \text{nc}), A_{\text{nc}}(\$, s_{r1}, _)) \\
& + \min(\text{lookup}(mt, \$, gtf), A_{\text{gtf}}(\$, s_{r1}, _)) \\
& + \min(\text{lookup}(mt, \$, format), (s_{r1} - 1), A_{\text{format}}(\$, s_{r1} - 1)) \\
& + \min(\text{lookup}(mt, \$, send), A_{\text{send}}(\$, 6 \times (s_{r1} - 1))) \\
& + \min(\text{lookup}(mt, \$, gtf), A_{\text{gtf}}(\$, s_{r1}, _)) + \text{Cost}_{\text{sendSms}}(\$, s_{r0}, s_{r1} - 1, s_{r2}, s_{r3}) \\
& + \min(\text{lookup}(mt, \$, stf), A_{\text{stf}}(\$, s_{r1}, _)) \\
& + \min(\text{lookup}(mt, \$, stf), A_{\text{stf}}(\$, s_{r1}, _)) \\
& + \min(\text{lookup}(mt, \$, asg), A_{\text{asg}}(\$)) \\
& \leq 12 \times (s_{r1} - 1) + \text{Cost}_{\text{sendSms}}(\$, s_{r0}, s_{r1} - 1, s_{r2}, s_{r3})
\end{align*}
\]

\[
\begin{align*}
\text{Cost}_{\text{sendSms}}(\$, s_{r0}, 0, s_{r2}, s_{r3}) & \leq \min(\text{lookup}(mt, \$, eq), A_{\text{eq}}(\$, 0)) \\
& + \min(\text{lookup}(mt, \$, asg), A_{\text{asg}}(\$)) \\
& \leq 0
\end{align*}
\]

\[
\begin{align*}
\text{Cost}_{\text{sendSms}}(\$, s_{r0}, s_{r1}, s_{r2}, s_{r3}) & \leq \left\{ \begin{array}{ll}
0 & \text{if } s_{r1} = 0 \\
12 \times s_{r1} - 12 + \text{Cost}_{\text{sendSms}}(\$, s_{r0}, s_{r1} - 1, s_{r2}, s_{r3}) & \text{if } s_{r1} > 0
\end{array} \right.
\end{align*}
\]

\[
\text{Cost}_{\text{sendSms}}(\$, s_{r0}, s_{r1}, s_{r2}, s_{r3}) \leq 6 \times s_{r1}^2 - 6 \times s_{r1}
\]

Fig. 7. Resource equations example

The analysis has built a resource usage function (denoted by \(\text{Cost}_{\text{body}}\)) that reflects the resource usage of the statements within the block. Finally, it yields a resource usage equation of the form \(\text{Cost}_{\text{block}} \leq \text{Cost}_{\text{body}}\) where \(\text{Cost}_{\text{block}}\) is again a symbolic resource usage function built by replacing each input formal parameter position with its size relations in that block method. These resource usage equations are simplified by calling \(\text{simplifyEqs}\) and, finally, they are solved calling \(\text{recEqsSolver}\), both already defined in Sec. 4.1. This process yields an (in general, approximate, but always safe) closed form upper bound on the resource usage of the block methods in each strongly-connected component. Note that given a signature the analysis constructs a closed form solution for every block method that shares that signature. These solutions approximate the resource usage consumed in or provided by each block method. In order to compute the total resource usage of the signature the analysis returns the maximum of these solutions yielding a safe
<table>
<thead>
<tr>
<th>Program</th>
<th>Resource(s)</th>
<th>t_s</th>
<th>t_r</th>
<th>t</th>
<th>Resource Usage Func.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BST</td>
<td>Heap usage</td>
<td>250</td>
<td>22</td>
<td>367</td>
<td>$O(2^n)$ $n \equiv$ tree depth</td>
</tr>
<tr>
<td>CellPhone</td>
<td>SMS monetary cost</td>
<td>271</td>
<td>17</td>
<td>386</td>
<td>$O(n^2)$ $n \equiv$ packets length</td>
</tr>
<tr>
<td>Client</td>
<td>Bytes received and bandwidth</td>
<td>391</td>
<td>38</td>
<td>527</td>
<td>$O(n)$ $n \equiv$ stream length</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$O(1)$ —</td>
</tr>
<tr>
<td>Dhrystone</td>
<td>Energy consumption</td>
<td>602</td>
<td>47</td>
<td>759</td>
<td>$O(n)$ $n \equiv$ int value</td>
</tr>
<tr>
<td>Divbytwo</td>
<td>Stack usage</td>
<td>142</td>
<td>13</td>
<td>219</td>
<td>$O(\log_2(n))$ $n \equiv$ int value</td>
</tr>
<tr>
<td>Files</td>
<td>Files left open and</td>
<td>508</td>
<td>53</td>
<td>649</td>
<td>$O(n)$ $n \equiv$ number of files</td>
</tr>
<tr>
<td></td>
<td>Data stored</td>
<td></td>
<td></td>
<td></td>
<td>$O(n \times m)$ $m \equiv$ stream length</td>
</tr>
<tr>
<td>Join</td>
<td>DB accesses</td>
<td>334</td>
<td>19</td>
<td>460</td>
<td>$O(n \times m)$ $n, m \equiv$ records in tables</td>
</tr>
<tr>
<td>Screen</td>
<td>Screen width</td>
<td>388</td>
<td>38</td>
<td>536</td>
<td>$O(n)$ $n \equiv$ stream length</td>
</tr>
</tbody>
</table>

Table 1

Times of different phases of the resource analysis and resource usage functions.

Example 5 The resource usage equations generated by our algorithm for the two `sendSms` block methods and the "$" resource (monetary cost of sending the SMSs) are listed in Fig. 7. The computation is partially based on the size relations in Fig. 5. The resource usage of each block method is calculated by building an equation such that the left part is a symbolic function constructed by replacing each parameter position with its size (i.e., $\text{Cost}_{\text{sendSms}}(\$, s$_{r0}$, s$_{r1}$, s$_{r2}$, s$_{r3}$) and $\text{Cost}_{\text{sendSms}}(\$, s$_{r0}$, 0, s$_{r2}$, s$_{r3}$)), and the rest of the equation consists of adding the resource usage of the invoke statements in the block method. These are calculated by computing the minimum between the resource usage function inferred by the analysis and the function provided by the user. The equations corresponding to the recursive and non-recursive block methods are in the first and second row, respectively. They can be simplified (third row) and expressed in closed form (fourth row), obtaining a final upper bound for the charge incurred by sending the list of text messages of $6 \times s_{r1}^2 - 6 \times s_{r1}$.

5 Experimental results

We have completed an implementation of our framework (in Ciao [10], using components from CiaoPP [23], and with help from the Soot tool [39], as mentioned before), and tested it for a representative set of benchmarks and resources. Our experimental results are summarized in Table 1. Column **Program** provides the name of the main class to be analyzed. Column **Resource(s)** shows the resource(s) defined and tracked. Column **t_s** shows the time (in milliseconds) required by the size analysis to construct the size relations (including the data dependency analysis and class hierarchy analysis) and obtain the closed form. Column **t_r** lists the time taken to build the resource usage expressions for all method blocks and obtain their closed form solutions. **t** provides the total times for the whole analysis process. Finally, column **Resource Usage Func.** provides the upper bound functions inferred for the resource usage. For space reasons, we only show the most important (asymptotic) component of these functions, but the analysis yields concrete functions with constants.

Regarding the benchmarks we have covered a reasonable set of data-structures used in object-oriented programming and also standard Java libraries used in real applications. We have also covered an ample set of application-dependent resources...
which we believe can be relevant in those applications. In particular, not only have we represented high-level resources such as cost of SMS, bytes received (including a coarse measure of bandwidth, as a ratio of data per program step), and files left open, but also other low-level (i.e., bytecode level) resources such as stack usage or energy consumption. The resource usage functions obtained can be used for several purposes. In program Files (a fragment characteristic of operating system kernel code) we kept track of the number of file descriptors left open. The data inferred for this resource can be clearly useful, e.g., for debugging: the resource usage function inferred in this case \(O(n)\) denotes that the programmer did not close \(O(n)\) file descriptors previously opened. In program Join (a database transaction which carries out accesses to different tables) we decided to measure the number of accesses to such external tables. This information can be used, e.g., for resource-oriented specialization in order to perform optimized checkpoints in transactional systems. The rest of the benchmarks include other definitions of resources which are also typically useful for verifying application-specific properties: BST (a generic binary search tree, used in [4] where a heap space analysis for Java bytecode is presented), CellPhone (extended version of program in Figure 1), Client (a socket-based client application), Dhrystone (a modified version of a program from [25] where a general framework is defined for estimating the energy consumption of embedded JVM applications; the complete table with the energy consumption costs that we used can be found there), DivByTwo (a simple arithmetic operation), and Screen (a MIDP application for a cellphone, where the analysis is used to make sure that message lines do not exceed the phone screen width). The benchmarks also cover a good range of complexity functions \(O(1), O(\log(n)), O(n), O(n^2), \ldots, O(2^n), \ldots\) and different types of structural recursion such as simple, indirect, and mutual.

6 Conclusions

We have presented a fully-automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of application programmer-definable resources. Our analysis derives a vector of functions, one for each defined resource. Each of these functions returns, for each given set of input data sizes, an upper bound on the usage that the whole program (and each individual method) make of the corresponding resource. Our approach allows the application programmer to define the resources to be tracked by writing simple resource descriptions via source-level annotations. The current results suggest that the proposed analysis can obtain non-trivial bounds on a wide range of interesting resources in reasonable time. Our approach allows using the annotations also for a number of other purposes such as stating the resource usage of external methods, which is instrumental in allowing modular composition and thus scalability. In addition, our annotations allow stating the resource usage of any method for which the automatic analysis infers a value that is not accurate enough to prevent inaccuracies in the automatic inference from propagating. Annotations are also used by the size and resource usage analysis to express their output. Finally, the annotation language can also be used to state specifications related to resource usage, which can then be proved
or disproved based on the results of analysis following, e.g., the scheme of [24,5,22] thus finding resource bugs or verifying the resource usage of the program.

References

