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Abstract. The very nature of smart contracts and blockchain plat-
forms, where program execution and storage are replicated across a
large number of nodes, makes resource consumption analysis highly rele-
vant. This has led to the development of analyzers for specific platforms
and languages. However, blockchain platforms present significant vari-
ability in languages and cost models, as well as over time. Approaches
that facilitate the quick development and adaptation of cost analyses
are thus potentially attractive in this context. We explore the appli-
cation of a generic approach and tool for cost analysis to the prob-
lem of static inference of gas consumption bounds in smart contracts.
The approach is based on Parametric Resource Analysis, a method that
simplifies the implementation of analyzers for inferring safe bounds on
different resources and with different resource consumption models. In
addition, to support different input languages, the approach also makes
use of translation into a Horn clause-based intermediate representation.
To assess practicality we develop an analyzer for the Tezos platform and
its Michelson language. We argue that this approach offers a rapid, flex-
ible, and effective method for the development of cost analyses for smart
contracts.

Keywords: Blockchain · Smart contracts · Parametric Resource
Analysis · Static analysis · Constraint horn clauses · Program
transformation

1 Introduction

Due to the nature of blockchain platforms [6,63], smart contracts [60] and their
storage are replicated in every node running the chain, and any call to a contract
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is executed on every client. This fact has led many smart contract platforms to
include upper bounds on execution time and storage, as well as fees associated
with running a contract or increasing its storage size. More concretely, in order
to limit execution time, smart contract platforms make use of a concept called
“gas,” so that each instruction of the smart contract language usually has an
associated cost in terms of this resource. If a transaction exceeds its allowed gas
consumption, its execution is stopped and its effects reverted. However, even
if a transaction does not succeed because of gas exhaustion, it is included in
the blockchain and the fees are taken. Similarly, there are limitations and costs
related to storage size. The cost of running a contract can then be expressed in
terms of these two resources, gas consumed and storage.

In this context, knowing the cost of running a contract beforehand can be
useful, since it allows users to know how much they will be charged for the
transaction, and whether gas limits will be exceeded or not. However, this is
not straightforward in general. Many smart contract platforms do provide users
with simulators which allow performing dry runs of smart contracts in their own
node before performing actual transactions. But this of course returns cost data
only for specific input values, and provides no hard guarantees on the costs that
may result from processing the arbitrary inputs that the contract may receive
upon deployment. Ideally, one would like to be able to obtain instead guaranteed
bounds on this cost statically, or at least through a combination of static and
dynamic methods.

Thus, formal verification of smart contracts, and in particular analysis and
verification of their resource consumption, is receiving increased attention. At
the same time, many different blockchain platforms now exist, using different
languages and cost models, which often take into account different resources
and count them in different, platform-specific ways. Furthermore, within each
platform, the models can also evolve over time. As a consequence, the few existing
resource analysis tools for smart contracts, such as GASTAP [5], GASOL [4],
or MadMax [22], tend to be quite specific, focusing on just a single platform
or language, or on small variations thereof.1 This makes approaches that would
allow quick development of new cost analyses or easily adapting existing ones
potentially attractive in this context.

Parametric Resource Analysis (also referred to as user-defined resource anal-
ysis) [51,52,59] is an approach that simplifies the implementation of analyzers
that infer safe functional bounds on different related resources and with differ-
ent resource consumption models. Our objective in this paper is to explore the
application of this general approach to the rapid and effective development of
static analyses for gas consumption in smart contracts. To this end, we use the
implementation of the method in the CiaoPP [29] framework, and apply it to the
Tezos platform [6] and its Michelson language [1] as a proof of concept.

In the rest of the paper we start by providing an overview of the general
approach (Sect. 2), and then we illustrate successively the translation process
(Sect. 3), how the cost model is encoded (Sect. 4), and how the analysis is per-

1 We discuss this and other relevant related work further in Sect. 7.
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Fig. 1. Overview of the Parametric Resource Analysis approach.

formed (Sect. 5), first in general and then applied to the Michelson language. We
also provide some experimental results in Sect. 6. Section 7 then discusses other
related work and Sect. 8 presents our conclusions and future work.

2 The Parametric Resource Analysis Approach

We start by providing an overview of the approach (Fig. 1). Before getting
into the resource analysis itself, a basic technique used in the model, in
order to support different input languages, is to translate input programs to
a Horn clause-based intermediate representation [46], that we refer to as the
“CHC IR,” a technique used nowadays in many analysis and verification tools
[13,18,20,21,25,27,35,46,54]. The CHC IR is handled uniformly by the analyz-
ers, and the results are then reflected back to the input language. To perform
the Parametric Resource Analysis, assertions are used to define the resources
of interest, including compound resources, and the consumption that basic ele-
ments of the input language (e.g., commands, instructions, bytecodes, built-ins,
etc.) make of such resources. This constitutes the cost model. This model is
normally generated once for each input language, and is the part modified if
the costs change or different resources need to be inferred. Given an input pro-
gram and the cost model, the parametric analyzer then infers, for each program
point (block, procedure, etc.), safe resource usage bound functions that depend
on data sizes and possibly other parameters. Both the resource consumption
expressions inferred and those appearing in the cost models can include e.g.,
polynomial, summation, exponential, and logarithmic, as well as multi-variable
functions. This overall approach, pioneered and supported by the CiaoPP frame-
work, has been successfully applied to the analysis, verification, and optimization
of resource consumption for languages ranging from source to machine code, and
resources ranging from execution time to energy consumption [39–42,47,50,51].

3 Translating into the CHC IR

As mentioned above, in order to support different programming languages and
program representations at different compilation levels, each input language is
translated into a Horn clause-based intermediate program representation, the
CHC IR [46]. A (Constrained) Horn clause ((C)HC) is a formula of first-order
predicate logic (generalized with constraints) of the form ∀(S1 ∧ . . . ∧ Sn → S0)
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parameter (list int);
storage (list int);
code { CAR; NIL int; SWAP; ITER { CONS }; NIL operation;

PAIR }

Listing 1.1. A Michelson contract that reverses a list.

where all variables in the clause are universally quantified over the whole formula,
and S0, S1, . . . , Sn are atomic formulas, also called literals, or constraints. CHCs
are usually written: S0 : − S1, . . . , Sn, where S0 is referred to as the head and
S1, . . . , Sn as the body. Given a program p in an input language Lp, plus a
definition of the semantics of Lp, the objective is to translate p into a set of
Horn clauses that capture the semantics of p. Two main styles are generally
used for encoding the operational semantics of Lp [18]: small-step (structural
operational semantics) [55], as in [54], or big-step (natural semantics) [34], as in
[46]. We will be concerned herein with the latter, among other reasons because
the big-step approach is very direct for the case of a language that is structured
and defined functionally, such as Michelson.

Typically, a CHC interpreter of Lp, I, in one of the styles above, together
with a term-based representation of p and its store, would suffice to reflect
the program semantics. However, precise analyses often require a tighter cor-
respondence between predicates and body literals in the CHCs and the blocks
(e.g., in a control-flow graph) and statements (e.g., calls and built-ins) for
p. For example, for an imperative program, the CHCs typically encode a
set of connected code blocks, so that each block is represented by a CHC:
〈block id〉(〈params〉) : − S1, . . . , Sn. The head represents the entry point to
the block and its parameters, and the body the sequence of steps in the block.
Each of these Si steps (or literals) is either a call to another (or the same) block
or a call to one of the basic operations implemented by the interpreter I. Thus,
depending on the input language, literals can represent bytecode instructions,
machine instructions, calls to built-ins, constraints, compiler IR instructions, etc.

Techniques such as partial evaluation and program specialization offer pow-
erful methods to obtain such translations. In particular, using the first Futamura
projection [17], I can be specialized for a given input program p, which, with
appropriate simplifications, results in a set of predicates with the desired cor-
respondences. A direct, automatic translator can be obtained by specializing a
CHC partial evaluator for I (second Futamura projection), which can then be
applied to any program p. In general, these transformations may be automatic,
manual, or use a combination of techniques. Also, preliminary transformations
may be required to express the semantics at the right abstraction level, e.g., mak-
ing all variable scoping explicit, using Static Single Assignment (SSA), reducing
control constructs, etc. [46].

The Michelson Language and Its Semantics. Michelson is the “native”
language used by the Tezos platform. It is interpreted, strongly-typed, and stack-
based. Despite being a low-level language, Michelson provides some high-level
data structures such as lists, sets, maps, and arbitrary precision integers.
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Fig. 2. Semantics of some Michelson instructions.

Michelson contracts consist of three sections. The parameter and storage
sections stipulate the types of the input argument and the storage. E.g., in
Listing 1.1 both are described as lists of Michelson integers. The code section
contains the sequence of instructions to be executed by the Michelson interpreter.
This interpreter can be seen as a pure function that receives a stack and returns
a result stack without altering its environment. The input stack contains just a
pair consisting of the parameter and the contract storage. The output stack will
contain just a pair consisting of the list of blockchain operations to be executed
after the contract returns and the updated storage, to be used as storage value
in the following call to the contract. I.e.:

Interpreter : (pair parameter storage) : [] → (pair (list operation) storage) : []
(p, s) : [] �→ (l, s′) : []

The Michelson instructions can also be seen as pure functions receiving an
input stack and returning a result stack. Figure 2 shows the semantics of the
Michelson instructions used in Listing 1.1—overall, there are 116 typed instruc-
tions and 23 macros. Continuing with the example, its purpose is to reverse the
list passed as a parameter and store it. First, CAR discards the storage of the
contract, as only the list passed as parameter is needed for the computation.
Then, the NIL instruction inserts an empty list on top of the stack. The type
of the elements that will fill the resulting list needs to be provided, in this case
integers. SWAP simply exchanges the top two elements of the stack. After running
these instructions, the stack will have the following shape: parameter : ([]) : [].

The interpreter will now iterate over the input list, prepending each of its
elements to the new list and reversing the former in the process. This action is
carried out by the ITER instruction, which traverses the elements of a list, per-
forming the action indicated by its argument: a macro or a sequence of instruc-
tions; in our case, just { CONS }. CONS receives a stack whose top is an element
and a list of the same type, and returns a stack with just the list on top, but where
the list has the element preprended, while the rest of the stack is unchanged.
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Fig. 3. Semantics of the instructions of Fig. 2 in CHC.

Taking into account the semantics of CONS, the semantics of the loop within the
contract can be defined as:

la : lb : S �→ ITER(la : lb : S) =

{
lb : S if la = []
ITER(l′a : (el : lb) : S) if la = el : l′a

There are other instructions which receive code as an argument: the control
structures in the language, e.g., IF or LOOP, are instructions which receive one or
two blocks of code. Likewise, other instructions receive other kinds of arguments,
such as NIL, which as we saw receives the type of the list to build; or PUSH, which
receives the type and value of the element to place on top of the stack. Once
the list has been reversed, the contract inserts a list of operations on top of the
stack, via the NIL instruction, and builds a pair from the two elements left in
the stack, using the PAIR instruction. This way, the result stack will have the
required type, i.e., length and type of its elements:

(pair (list operation) storage) : [], where storage ≡ (list int)

As a concrete example, a call to this contract with the list of numbers from 1 to
3 as parameter would present the following input (S0) and output (S1) stacks:

S0 = ((1 : 2 : 3), ) : [] �→ S1 = ([], (3 : 2 : 1)) : []

Note that, as the first instruction in the contract discards the storage, its value
is irrelevant to obtain the result of the computation.

As mentioned before, in addition to performing operations over terms in the
stack, Michelson instructions can also return external operations (i.e., instruc-
tions that perform actions at the blockchain level) to be added to the list of
operations in the return stack. Lack of space prevents us from going into details,
but these operations can be: transactions (operations to transfer tokens and
parameters to a smart contract), originations (to create new smart contracts
given the required arguments), or delegations (operations that assign a number
of tokens to the stake of another account, without transferring them).

CHC Encoding. We implement the Michelson semantics as a big-step recursive
interpreter, via a direct transliteration of the semantics into CHCs (using the
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Ciao system [28]). Figure 3, shows the CHC encoding of the instructions of Fig. 2.
Data structures are represented in the usual way with Herbrand terms.2 The
interpreter in turn is encoded by the following clauses:3

run([], S0, S) :- S=S0.
run([Ins|Insns], S0, S) :- ins(Ins, S0, S1), run(Insns, S1, S).
% Dispatcher (one clause for each I/n instruction)

ins(<<I>>(A1,...,An), S0, S) :- <<I>>(A1,...,An,S0,S).

Predicate run/3 takes the input program and the initial stack (S0), and reduces
it by executing the sequence of Michelson instructions to obtain the resulting
stack S1. ins/3 is the instruction dispatcher, which connects each instruction
term (e.g., push(X)) with its CHC definition (e.g., push(X,S0,S)) (see Fig. 3).

The Michelson to CHC IR Translation. We derive a simple translator,
based on a specialization of a CHC partial evaluation algorithm for this particu-
lar recursive interpreter. In this process special care is taken to materialize stack
prefixes as actual predicate arguments.

Preliminary Transformations. As preliminary transformations we introduce
labeled blocks for sequences of instructions in the program, to help in later steps
of partial evaluation. For the sake of clarity, we consider them simply as new
predicate definitions (we obviate for conciseness some additional information
needed to trace back blocks to the original program points). We also rely on
a simple implementation within the system of Michelson type checking, which
makes knowing the type of the stack (and thus of the operands) at each program
point a decidable problem. This allows us to specialize polymorphic instructions,
depending on the type of the passed arguments. This is particularly useful to
specify (as we will see later) the semantics and cost of each instruction vari-
ant, which can vary depending on those static types. E.g., the ADD instruction
is translated into one of seven possible primitive operations, depending on the
type of the addends:

ADD[A,B] →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

add intint if int(A), int(B)
add intnat if int(A), nat(B)
add natint if nat(A), int(B)
add natnat if nat(A), nat(B)
add timestamp to seconds if timestamp(A), int(B)
add seconds to timestamp if int(A), timestamp(B)
add tez if mutez(A),mutez(B)

(1)

Translation Using Partial Evaluation. Based on our interpreter, we derive step-
wise a simple translator which combines a hand-written specializer for the run/3

2 We do not include the types in Fig. 3 for brevity; they will be present however in
the cost model assertions of Sect. 4.

3 In the actual code, state variables are made implicit by using Definite Clause Gram-
mar (DCG) syntax. We have left all variables explicit however for clarity.
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parameter (pair int (list int)) ;
storage int ;
code { CAR ;

UNPAIR ;
DUP ;
SUB ;
DIIP { PUSH int 0 } ;
IFNEQ { ITER { ADD } } { DROP } ;
NIL operation ;
PAIR }

Listing 1.2. A Michelson contract suitable for partial evaluation.

predicate, a stack deforestation pass (including each stack element instead of the
stack itself as predicate arguments), and a generic partial evaluation for the prim-
itive instruction definitions (e.g., evaluate conditions, arithmetic instructions,
etc.). Michelson control-flow instructions receive both the control condition and
the code to execute as inputs, e.g.:

if(Bt,Bf,[B|S0],S) :- ’$if’, if_(B,Bt,Bf,S0,S).
if_(true, Bt,_Bf,S0,S) :- run(Bt,S0,S).
if_(false,_Bt,Bf,S0,S) :- run(Bf,S0,S).

By construction, the code arguments are bound, as explained in the prelimi-
nary transformations, to new constants representing code blocks dispatched from
ins/3. For each call, partial evaluation will unfold if(Bt,Bf,S0,S2) as ’$if’,
S0=[B|S1], if 0(B,S1,S2) and generate new instances, e.g.:

if__0(true, S0,S) :- ... % unfolded run(<<Bt>>,S0,S).
if__0(false,S0,S) :- ... % unfolded run(<<Bf>>,S0,S).

The stack deforestation step is specially useful in the output of control-flow
instructions, which receive n+m arguments instead of the lists of variables, where
n is the size of the input stack and m of the output stack. This transformation
is possible thanks to Michelson’s semantics, which forbids changes to the type of
the stack in loops and forces the type of both output stacks in branch instructions
to match. E.g., for the simple branch instruction IF:

if__0(true, I0,I1,...,In,O0,O1,...,Om) :- ...
if__0(false,I0,I1,...,In,O0,O1,...,Om) :- ...

Following the idea of abstracting away the stack, the translation also abstracts
away simple data structures, such as pairs, whenever possible.

Cost-Preserving Encoding. In order to precisely capture the actual cost of
instructions, while allowing aggressive program transformations such as unfold-
ing, partial evaluation, and replacing the stack arguments by actual parameters,
the instruction definitions are extended to introduce cost markers, e.g.:
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:- pred code/5 : int * list(int) * int * var * var.

code(A,B,C,D,E) :-
’$car’, ’$dup’, ’$car’, ’$dip’, ’$cdr’, ’$dup’,
sub_intint(A,A,F),

’$dip ’(2), ’$push ’(0),
neq(F,G),

’$if’,
if__0(G,[B,0],[E]),
nil(D),

’$pair’.

if__0(true,[A,B],[C]) :-
iter__1(A,[B],[C]).

if__0(false,[A,B],[B]) :-
’$drop ’(A).

iter__1([],[A],[A]) :-
’$iter_end ’.

iter__1([A|B],[C],[D]) :-
’$iter’,
add_intint(A,C,E),

iter__1(B,[E],[D]).

Listing 1.3. CHC IR representation of Listing 1.2.

swap([A,B|S],[B,A|S]) :- ’$swap’.
drop([X|S],S) :- ’$drop ’(X).
if(Bt,Bf,[B|S0],S) :- ’$if’, if_(B,Bt,Bf,S0,S).
if(true, Bt,_Bf,S0,S) :- run(Bt,S0,S).
if(false,_Bt,Bf,S0,S) :- run(Bf,S0,S).

Partial evaluation will replace each of the primitive operations (from a very
reduced set) by its CHC definition in the output CHC IR, while the cost makers,
whose main end is to keep a record of the consumed resources at each step, will
be preserved. Note that as as a result of the transformations, some Michelson

:- pred code/5 : int * list(int) * int * var * var.

code(A,B,C,[],0) :-
’$car’, ’$dup’, ’$car’, ’$dip’, ’$cdr’, ’$dup’,
sub_intint(A,A,0),

’$dip ’(2), ’$push ’(0),
neq(0,false),
’$if’, ’$drop ’(B),
nil([]),
’$pair’.

Listing 1.4. CHC IR representation of Listing 1.2 with partial evaluation enabled.
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instructions that simply modify/access the stack will not even be represented in
the output CHC IR, only their cost markers, if relevant.

Translation Example. To illustrate all the steps described in this section, we
show the resulting CHC representation for the contract shown in Listing 1.2.
The direct translation of this contract can be found in Listing 1.3, whereas
Listing 1.4 takes advantage of partial evaluation to perform significant, yet valid
transformations, both in terms of semantics and resource semantics.

Another useful transformation performed by the translation is the inclusion
of explicit arithmetic comparison operations in the contract. This way, Boolean
conditions in control-flow predicates can be replaced by arithmetic tests, which
not only makes the contract more readable for the human eye, but also easier
to analyze. An example of this can be seen in Listing 1.5 and its CHC IR repre-
sentation, Listing 1.6. In this contract one of the comparison operations and the
evaluation of its result are performed in different predicates. This information
can be encoded by attaching information about how they have been generated to
the results of both COMPARE and GT instructions, which will propagate throughout
the translation process inside the stack.

4 Defining Resources and Cost Models

After addressing in the previous section the parametricity of the approach w.r.t.
the programming language, we now address parametricity w.r.t. resources and
cost models. As mentioned before, the role of the cost model in parametric
resource analysis is to provide information about the resource consumption of
the basic elements of the input language, which is then used by the analysis to
infer the resource usage of higher-level entities of programs such as procedures,
functions, loops, blocks, and the whole code. We start by describing a subset of
the assertions proposed in [52] for describing such models, which are part of the
multi-purpose assertion language of the Ciao/CiaoPP framework [9,28,56], used
in our experiments. First, the resources of interest have to be defined and given
a name as follows:

:- resource 〈resname〉.
Then, we can express how each operation of the analyzed language affects the
use of such resource, by means of assertions with trust status:

:- trust pred 〈operation〉 + cost(〈approx〉,〈resname〉,〈arithexpr〉).
where 〈arithexpr〉 expresses the resource usage as a function that depends on
data sizes and possibly other parameters, and which, as mentioned before, can be
polynomial, summation, exponential, or logarithmic, as well as multi-variable.
The 〈approx〉 field states whether 〈arithexpr〉 is providing an upper bound (ub),
a lower bound (lb), a “big O” expression, i.e., with only the order information
(oub), or an Ω asymptotic lower bound (olb). Such assertions can also be used
to describe the resource usage of builtins, libraries, external procedures (e.g.,
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parameter (pair int int) ;
storage int ;
code { UNPPAIIR ;

DIIP { DUP } ;
DUUUP ;
SWAP ;
CMPGT ;
DIP CMPGT ;
IF ASSERT FAIL ;
NIL operation ;
PAIR }

Listing 1.5. A Michelson contract with arithmetic comparisons.

defined in another language), etc. Assertions can also include a calls field, pre-
ceded by :, stating properties that hold at call time. This allows writing several
assertions for the same predicate to deal with polymorphic predicates whose
resource semantics may differ depending on the call states. E.g., for add we
can have assertions with call fields int * int * var and flt * flt * var

with possibly different costs. An optional success field, preceded by =>, can
also be used to state properties that hold for the arguments on success. Addi-
tionally, size metric information can be provided by users if needed using
size metric(Var,〈sz metric〉) properties, although in practice such metrics are
generally derived automatically from the inferred types and shapes. These are the
metrics used to measure data sizes, e.g.: list length, term depth, term size, actual
value of a number, number of steps of the application of a type definition, etc.
(see [52,59] and the use therein of sized types). It is also possible to declare rela-
tionships between the data sizes of the inputs and outputs of procedures, as well
as provide types and actual sizes (size(Var,〈approx〉,〈sz metric〉,〈arithexpr〉)).
In addition to those presented, [52] proposes some additional mechanisms for
defining other aspects of cost models, but they are not required for our presen-
tation.

The Cost Model for the Tezos Platform. We now illustrate how to define
the resources and cost model for our test case, the Tezos platform and its
Michelson language, using the Ciao assertion language. The Tezos/Michelson
cost model varies somewhat with each version of the protocol, which, as men-
tioned before, is one of the motivations for our approach. The model that we
present has been derived from the OCaml source for the Carthage protocol. Gas
is a compound resource that can be defined as a function of other basic resources:
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:- pred code/5 : int * int * int * var * var.

code(A,B,C,[],D) :-
’$dup’, ’$car’, ’$dip’, ’$cdr’, ’$dup’, ’$car’, ’$dip’,
’$cdr’, ’$dip ’(2), ’$dup’, ’$dip ’(2), ’$dup’, ’$dig ’(3),
’$swap’,
compare_int(A,C,E),

gt(E,F),

’$dip’,
compare_int(B,C,G),

gt(G,H),

’$if’,
if__0(A,C,B,C,H,C,D),

nil([]),
’$pair’.

if__0(A,B,C,D,E,F,G) :-
A>B,
’$if’,
if__1(C,D,F,G).

if__0(A,B,C,D,E,F,failed(’()’)) :-
A=<B,
’$push ’(’()’),failwith(’()’).

if__1(A,B,C,C) :-
A>B.

if__1(A,B,C,failed(’()’)) :-
A=<B,
’$push ’(’()’),failwith(’()’).

Listing 1.6. CHC IR representation of Listing 1.5.

gas(allocations, steps, reads, writes, bytes read, bytes written) =

= 2−7 ∗

⎛
⎜⎜⎜⎜⎜⎜⎝

allocations
steps
reads
writes

bytes read
bytes written

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

2
1

100
160
10
15

⎞
⎟⎟⎟⎟⎟⎟⎠

(2)

In our cost model we first name the resources (Listing 1.7), and then define
michelson gas as a compound resource following Eq. 2 (Listing 1.8).

Each Michelson instruction will consume one or more of these basic resources,
so the next step is to declare this consumption. Since in most cases not all
resources will be consumed by every instruction, we include in the model some
default cost assertions establishing, for example, that the consumption of these
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:- resource michelson_allocations.
:- resource michelson_steps

:- resource michelson_reads.
:- resource michelson_writes.
:- resource michelson_bytes_read.
:- resource michelson_bytes_written.

Listing 1.7. Assertions to declare the resources to study.

:- resource michelson_gas.
:- compound_resource(michelson_gas , 2**(-7) * (

michelson_allocations * 2

+ michelson_steps

+ michelson_reads * 100

+ michelson_writes * 160

+ michelson_bytes_read * 10

+ michelson_bytes_written * 15 )).

Listing 1.8. Assertions to declare gas as a compound resource.

basic resources is 0 by default. This avoids having to provide information for all
resources in the cost assertions for every instruction.4

We illustrate the process of declaring specific resource consumptions using
the ADD instruction. Listing 1.9 shows the definition of this basic operation in the
(OCaml) code of the Michelson interpreter, which contains not only the seman-
tics of the instruction, but also its cost semantics. As mentioned before, this is
a polymorphic instruction, so it may be transformed into different predicates
in the translation process. In this case, we will focus on the instance dealing
with integers, which was called add intint in Eq. 1. Comparing Eq. 1 and List-
ing 1.9 we can see that our translation process closely matches the Tezos internal
representation of Michelson instructions.

The corresponding cost expression, as found in the Tezos source code, is
shown in Listing 1.10, which is given in turn in terms of atomic step cost,
Listing 1.11. This function is used to express the cost of a great number of
operations, which, as in this case, can be given as a function of their arguments.
Using this definition and that of int bytes:

int bytes(x) = 1 +
⌊

log2 |x|
8

⌋
(3)

we can simplify add intint’s cost expression:

costadd intint(A,B) = 2 ∗
⎛
⎝51 +

max
(
1 +

⌊
log2 |A|

8

⌋
, 1 +

⌊
log2 |B|

8

⌋)
62

⎞
⎠

= 102 +
1 +

⌊
log2 max (|A|,|B|)

8

⌋
31

(4)
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| (Add_intint , Item (x, Item (y, rest))) ->
consume_gas_binop

descr (Script_int.add, x, y)

Interp_costs.add rest ctxt

| (Add_intnat , Item (x, Item (y, rest))) ->
consume_gas_binop

descr (Script_int.add, x, y)

Interp_costs.add rest ctxt

Listing 1.9. Some of the definitions for ADD.

let add i1 i2 =
atomic_step_cost

(51 +
(Compare.Int.max

(int_bytes i1) (int_bytes i2) / 62) )

Listing 1.10. Cost definition for add intint.

The assertion used to include this cost in our CiaoPP model is shown in List-
ing 1.12. It expresses the exact cost of this instruction in terms of its inputs.
Both an upper and a lower bound are given. Since they are the same, the cost is
exact—this can also be expressed with the exact keyword. Note that these asser-
tions can also include properties of instruction arguments. In this case we state
the types and sizes of the arguments of the add intint predicate on success, as
well as other information such as non-failure, determinacy, or cardinality, which
increase the precision of the resource analysis. In fact, since every Michelson
instruction is a deterministic function defined in all of its domain, they never
fail and they always return one solution. Note the direct correspondence between
the arithmetic expression that defines the cost of the instruction and Eq. 4, which
contributes to the readability of the model.

Fig. 4. Overview of analysis in the Parametric Resource Analysis approach.

4 We do not include examples of default assertions due to space constraints.
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let atomic_step_cost n =
{ allocations = Z.zero;

steps = Z.of_int (2 * n);
reads = Z.zero;
writes = Z.zero;
bytes_read = Z.zero;
bytes_written = Z.zero; }

Listing 1.11. atomic step cost definition.

:- trust pred add_intint(A,B,C)

=> ( int(A), int(B), int(C),
size(ub,C,int(A)+int(B)),
size(lb,C,int(A)+int(B)) )

+ ( not_fails , covered, is_det, cardinality(1,1),
cost(lb,michelson_steps ,102+(1+log2(max(int(A),int(B)))/8)/31),
cost(ub,michelson_steps ,102+(1+log2(max(int(A),int(B)))/8)/31)).

Listing 1.12. Cost assertion for add intint in the cost model.

5 Performing the Resource Analysis

As already mentioned in Sect. 2, the input to the the parametric resource ana-
lyzer is the program in CHC IR form and the resource model (Fig. 1). The core
analyzer is based on an approach in which recursive equations (cost relations),
representing the resource consumption of the program, are extracted from the
program and solved, obtaining upper- and lower-bound cost functions in terms
of the program’s inputs [2,15,16,59,62]. As mentioned before, these functions
can be polynomial, exponential or logarithmic, etc., and they express the cost
for each Horn clause (block) in the CHC IR, which can then be reflected back to
the input language. Space restrictions prevent us from describing the process in
detail; we provide an overview of the tasks performed by the analyzer (Fig. 4):

1. Perform all the required supporting analyses. This includes typically,
among others: a) sized types/shapes analysis for inferring size metrics (for
heap manipulating programs), to simplify the control-flow graph, and to
improve overall precision (e.g., class hierarchy analysis); b) pointer shar-
ing/aliasing analysis for correctness and precision; c) Non-failure (no excep-
tions) analysis, needed for inferring non-trivial lower bounds; d) Determinacy
and mutual exclusion analyses to obtain tighter bounds; e) other instrumental
analyses such as, e.g., polyhedra for handling constraints.

2. Size analysis: a) Set up recurrence equations representing the size of each
(relevant) output argument as a function of input data sizes, based on data
dependency graphs that determine the relative sizes of variable contents at
different program points. The size metrics are derived from the inferred shape
(type) information. Then, b) compute bounds to the solutions of these recur-
rence equations to obtain output argument sizes as functions of input sizes.
We use a hierarchical recurrence solver that classifies the equations and dis-
patches them to an internal solver or interfaces with existing tools like Mathe-
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:- pred code/4 : list(int) * list(int) * var * var.

code(A,B,[],C) :-
’$car’,
nil([]),
’$swap’,
iter__0(A,[],C),
nil([]),
’$pair’.

iter__0([],A,A) :-
’$iter_end ’.

iter__0([A|B],C,D) :-
’$iter’,
cons(A,C,[A|C]),
iter__0(B,[A|C],D).

Listing 1.13. CHC IR representation of contract 1.1.

:- true pred code(A,B,C,D)

: ( list(int,A), list(int,B), var(C), var(D) )

=> ( list(int,A), list(int,B), list(C), list(D),
size(lb,A,length(A)), size(lb,B,length(B)),
size(lb,C,0), size(lb,D,0) )

+ ( cost(lb,michelson_gas ,0.6875*length(A)+1.21875),
cost(lb,michelson_steps ,80*length(A)+140) ).

:- true pred code(A,B,C,D)

: ( list(int,A), list(int,B), var(C), var(D) )

=> ( list(int,A), list(int,B), list(C), list(D),
size(ub,A,length(A)), size(ub,B,length(B)),

size(ub,C,inf), size(ub,D,inf) )

+ ( cost(ub,michelson_gas ,0.6875*length(A)+1.21875),
cost(ub,michelson_steps ,80*length(A)+140) ).

Listing 1.14. Analysis output for contract 1.1.

matica, PURRS, PUBS, Matlab, etc., and also combine with techniques such
as ranking functions.

3. Resource analysis: Use the size information to set up recurrence equa-
tions representing the resource consumptions of each version of each predicate
(block), and again compute bounds to their solutions, as above, to obtain the
output resource usage bound functions.

In the CiaoPP implementation all of these analysis tasks are performed by
the PLAI abstract interpretation framework [30,49] of CiaoPP, using different
abstract domains (Fig. 4). The generic resource analysis is also fully based on
abstract interpretation [12] and defined as a PLAI-style abstract domain of piece-
wise functions and equations [59]. This brings in features such as multivariance,
efficient fixpoints, assertion-based verification and user interaction, etc.
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Michelson Contract Analysis Example. As an example of the analysis pro-
cess, we analyze the contract of Listing 1.1. In the CHC IR representation of
the contract in Listing 1.13, we can observe how the translation has generated a
predicate with two clauses that emulates the semantics of the ITER instruction: it
takes the list over which to iterate as a parameter and performs the CONS action
specified by the body of the ITER instruction. In both clauses the translation tool
includes a cost marker to measure the cost of each iteration step, and of leaving
the loop. The output from CiaoPP, after performing analyses for shapes/mea-
sures, sharing, non-failure, sizes, and resources is shown in Listing 1.14. The cost
in gas of this contract is inferred to be linear w.r.t. the length of the input list.

6 Some Experimental Results

We have constructed a prototype which transforms Michelson contracts to CHC
IR, as well as the cost model that provides CiaoPPwith the required information on
the Michelson instructions. This cost model contains 97 cost assertions, covering
a large percentage of Michelson instructions, and is easy to extend, as shown in
Sect. 4.

Regarding the translator, it is 700 lines long, ofwhich 190 correspond to instruc-
tion definitions, transliterated from the specification, and 175 to instruction meta-
data. The whole system was developed in about two months. In our prototype and
experiments we have concentrated on the gas cost of executing a contract. How-
ever, we believe that the framework can be instantiated to other costs such as type
checking or storage size, using the sized types-based analyses in the system [58,59].

We have tested this prototype on a wide range of contracts, a few self-made
and most of them published, both in Michelson’s “A contract a day” examples
and the Tezos blockchain itself. Results for a selection are listed in Table 1. In this
selection, we have tried to cover a reasonable range of Michelson data structures
and control-flow instructions, as well as different cost functions using different
metrics.5 Column Contract lists the contracts, and Metrics shows the metrics
used to measure the parameter and the storage. The metrics used are: value for
the numeric value of an integer, length for the length of a list, and size which
maps every ground term to the number of constants and functions appearing in
it. Column Resource A(nalysis) shows for brevity just the order of the resource
usage function inferred by the analysis in terms of the sizes of the parameter (α)
and the storage (β) or k if the inferred function is constant. However, the actual
expressions inferred also include the constants. For complex metrics, sub-indices
starting from 1 are used to refer to the size of each argument; e.g., α2 refers to
the size of the second argument of the parameter. Finally, Time shows the time
taken to perform all the analyses using the different abstract domains provided
by CiaoPP, version 1.19 on a medium-loaded 2.3 GHz Dual-Core Intel Core i5,
16 GB of memory, running macOS Catalina 10.15.6. Many optimizations and
improvements are possible, as well as more comprehensive benchmarking, but we
believe that the results shown suggest that relevant bounds can be obtained in
reasonable times, which, given the relative simplicity of development of the tool,
seem to support our expectations regarding the advantages of the approach.
5 The benchmarks themselves are briefly explained in Table 2 in the Appendix.
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Table 1. Results of analysis for selected Michelson contracts.

Contract Metrics Resource A. Time

Parameter (α) Storage (β) gas (ms)

reverse length length α 216

addition value value log α 147

michelson arith value value log (α2 + 2 ∗ β) 208

bytes value length β 229

list inc value length β 273

lambda value value log α 99

lambda apply (value, size) size k 114

inline size value log β 870

cross product (length, length) value α1 + α2 424

lineal value value α 244

assertion map (value, size) length log β ∗ log α1 393

quadratic length length α ∗ β 520

queue size (value, size, length) log β1 ∗ log β3 831

king of tez size (value, value, size) k 635

set management length length α ∗ log β 357

lock size (value, value, size) k 421

max list length size α 473

zipper length (length, length, length) k 989

auction size (value, value, size) k 573

union (length, length) length α1 ∗ log α2 486

append (length, length) length α1 371

subset (length, length) size α1 ∗ log α2 389

7 Related Work

As mentioned in the introduction, the tools that have been proposed to date
for resource analysis of smart contracts are platform- and language-specific.
GASPER [10] and MadMax [22] are both aimed at identifying parts of con-
tracts that have high gas consumption in order to optimize them or to avoid
gas-related vulnerabilities. GASPER is based on recognizing control-flow pat-
terns using symbolic computation while MadMax searches for both control- and
data-flow patterns. Marescotti et al. [44] also use a limited-depth path explo-
ration approach to estimate worst-case gas consumption. These tools are useful
programmer aids for finding bugs, but cannot provide safe cost bounds. GASPER
and MadMax are specific to contracts written for the Ethereum platform [63],
in Solidity, and translated to Ethereum Virtual Machine (EVM) bytecode. The
Solidity compiler can generate gas bounds, but these bounds can only be con-
stant, i.e., they cannot depend on any input parameters, or if they do the bound
generated is infinite. This tool is of course also specific to the Ethereum platform.
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Closer to our work are GASTAP [5] and its extension GASOL [4]. These tools
infer upper bounds for gas consumption, using similar theoretical underpinnings
as those used by CiaoPP, i.e., recurrence relation solving, combined with rank-
ing functions, etc. GASOL is a more evolved version of GASTAP that includes
optimization and allows users to choose between a number of predefined con-
figuration options, such as counting particular types of instructions or storage.
These are powerful tools that have been proven effective at inferring accurate gas
bounds with reasonable analysis times, in a good percentage of cases. However,
they are also specific to Ethereum Solidity contracts and EVM.

Parametric Resource Analysis (also referred to as user-defined resource anal-
ysis) was proposed in [52] and developed further in [51,59]. The approach builds
on Wegbreit’s seminal work [62] and the first full analyzers for upper bounds,
in the context of task granularity control in automatic program parallelization
[14,15]. This in turn evolved to cover other types of approximations (e.g., lower
bounds [16]), and to the idea of supporting resources defined at the user level
[51,52]. This analysis was extended to be fully based on abstract interpretation
[12] and integrated into the PLAI multi-variant framework, leading to context-
sensitive resource analyses [59]. Other extensions include static profiling [43],
static bounding of run-time checking overhead [38], or analysis of parallel pro-
grams [37]. Other applications include the previously mentioned analyses of
platform-dependent properties such as time or energy [39–42,47,50,51].

Resource analysis has received considerable additional attention lately [3,7,
8,11,19,23,24,26,31,31–33,36,45,48,53,57,61]. While these approaches are not
based on the same idea of user-level parametricity that is instrumental in the
approach proposed herein, we believe the parametric approach is also relevant
for these analyses.

8 Conclusions and Future Work

We have explored the application of a generic approach and tool for resource
consumption analysis to the problem of static inference of gas consumption
bounds in smart contracts. The objective has been to provide a quick devel-
opment path for cost analyses for new smart contract platforms and languages,
or easily adapting existing ones to changes. To this end, we have used the tech-
niques of Parametric Resource Analysis and translation to Horn clause-based
intermediate representations, using the Ciao/CiaoPP system as tool and the
Tezos platform and its Michelson language as test cases. The Horn clause trans-
lator together with the cost model and Ciao/CiaoPP constitute a gas consump-
tion analyzer for Tezos smart contracts. We also applied this tool to a series
of smart contracts obtaining relevant bounds with reasonable processing times.
We believe our experience and results are supportive of our hypothesis that this
general approach allows rapid, flexible, and effective development of cost anal-
yses for smart contracts, which can be specially useful in the rapidly changing
environment in blockchain technologies, where new languages arise frequently
and cost models are modified with each platform iteration. In fact, while prepar-
ing the final version of this paper, a new protocol, Delphi, was released and we
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were able to update the cost model in less than a day by modifying just the cost
assertions. As a final remark, we would also like to point out that the approach
and tools that we have used bring in much additional functionality beyond that
discussed herein, which is inherited from the Ciao/CiaoPP framework used, such
as resource usage certification, static debugging of resource consumption, static
profiling, or abstraction-carrying code.

A Brief Description of Selected Michelson Contracts

Table 2. Overview of the selected Michelson contracts.

Contract Overview

reverse Reverses the input list and stores the result

addition Performs a simple Michelson addition

michelson arith Calculates the function: f(x, y) = x2 + 2 ∗ y + 1

bytes Slices the bytes storage according to the provided parameter

list inc Increments list of numbers in the storage by the provided
parameter

lambda Runs a lambda function passing the parameter as argument

lambda apply Specializes the provided lambda function and creates a
Michelson operation

inline Runs a lambda function several times passing different
arguments

cross product Performs the cross product of the lists passed as parameters

linear Loops over a number

assertion map Performs a series of operations on a Michelson map

quadratic Loops over the parameter and storage lists

queue Implements a queue in which calls can push or pop elements

king of tez Stores the identity of the highest bidder

set management Iterates the input list from left to right and removes from the
storage set those elements already in it and inserts those which
are not present yet

lock Implements a lock on a contract

max list Obtains the largest number in a list

zipper Implements a zipper data structure

auction Implements a distributed auction with a time limit

union Calculates the union of two sets

append Appends two input lists

subset States whether an input set is a subset of the other
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