
Towards a Framework for Resource Usage

Verification and Debugging in the CiaoPP System

Pedro Lopez-Garcia Luthfi Darmawan
Francisco Bueno

pedro.lopez@imdea.org bueno@fi.upm.es

January 23, 2010

Abstract

We present a framework for (static) verification of general resource
usage program properties. The framework extends the criteria of cor-
rectness as the conformance of a program to a specification expressing
non-functional global properties (e.g., upper and lower bounds on execu-
tion time, memory, power, or user defined resources). Such bounds are
given as functions on input data sizes. A given specification can include
both, lower and upper bound resource usage functions, i.e., it can express
intervals where the resource usage is supposed to be included in. We
have defined an abstract semantics for resource usage properties and op-
erations to compare the (approximated) intended semantics of a program
(i.e., the specification) with approximated semantics inferred by static
analysis. These operations include the comparison of arithmetic functions
(e.g., polynomial, exponential or logarithmic functions). A novel aspect
of our framework is that the static checking of assertions generate answers
that include conditions under which a given specification can be proved
or disproved. For example, these conditions can express intervals of input
data sizes such that a given specification can be proved for some intervals
but disproved for others. We have implemented our techniques within the
Ciao/CiaoPP system in a natural way, so that the novel resource usage
verification blends in with the CiaoPP framework that unifies static ver-
ification and static debugging (as well as run-time verification and unit
testing).

1 Introduction and Motivation

The conventional understanding of software correctness is absence of errors or
bugs, expressed in terms of conformance of all possible executions of the program
with a functional specification (like type correctness) or behavioral specification
(like termination or possible sequences of actions). However, in an increasing
number of computing applications additional observables play an essential role.

1

For example, embedded systems must control and react to the environment,
which also establishes constraints about the system’s behavior such as resource
usage and reaction times. Therefore, it is necessary for these systems to extend
the criteria for correctness with new aspects which include non-functional global
properties such as maximum execution time, and usage of memory, power, or
other types of resources.

In this paper we propose the extension of debugging and verification tech-
niques based on static analysis [BDD+97, BCC+03, HPBG05] to deal with a
quite general class of properties related to resource usage including upper and
lower bounds on execution time, memory, power, and user-defined resources
(the later in the sense of [NMLGH07]). Such bounds are given as functions on
input data sizes (see [DL93] for the different metrics that can be used to measure
data sizes, such as list-length, term-depth or term-size). The proposed exten-
sion blends in with the CiaoPP framework that unifies static verification and
static debugging (as well as run-time verification and unit testing) [MLGH09].
For example, it can be used by CiaoPP to certify programs with resource con-
sumption assurances and also to efficiently check such certificates [HALGP04].
We have defined an abstract semantics for resource usage properties and op-
erations to compare the (approximated) intended semantics of a program (i.e.,
the specification, given as assertions in the program) with approximated se-
mantics inferred by static analysis. These operations include the comparison
of arithmetic functions (e.g., polynomial, exponential or logarithmic functions).
In traditional static checking, for each property or (part of) an assertion, the
possible outcomes are true (property proved to hold), false (property proved
not to hold), and unknown (the analysis cannot prove true or false). A novel
aspect of the resource verification and debugging approach that we propose is
that, to be useful, the answers of the checking process must go beyond these
classical outcomes and will typically include conditions under which the truth
or falsity of the property can be proved. Such conditions can be parameterized
by attributes of inputs, such as input data size or value ranges. For example,
it may be possible to say that the outcome is true if the input data size is in a
given range.

Our verification framework automatically selects the appropriate analysis
information necessary to check a given resource usage specification, depending
on the kind of information expressed in such specification. This information
could be for example lower and upper bounds, and even asymptotic values
of the resource usage of the computation (given as functions on input data
sizes). Moreover, a given specification can include both, lower and upper bound
resource usage functions, i.e., it can express intervals where the resource usage
is supposed to be included in.

Consider for example the naive reverse program in Figure 1, with the classical
definition of predicate append. Assume that the programmer thinks that the
cost of nrev is given by a linear function on the size (list-length) of its first
argument, maybe because he has not taken into account the cost of the call
to append. Since append is linear, it causes nrev to be quadratic. We will
see how CiaoPP, the preprocessor of the Ciao system, is able to inform the

2

:- module(reverse, [nrev/2], [assertions]).
:- use_module(library(’assertions/native_props’)).
:- entry nrev(A,B) : (ground(A), list(A, term), var(B)).

nrev([],[]).
nrev([H|L],R) :- nrev(L,R1), append(R1,[H],R).

Figure 1: A module for naive reverse.

programmer about this false idea of the cost of nrev. For example, assume that
the programmer adds the following assertion to be checked:

:- check comp nrev(A,B) + steps_ub(length(A)+1).

CiaoPP issues the following error message:

ERROR: false comp assertion:
:- comp nrev(A,B) : true => steps_ub(length(A)+1)

because in the computation the following holds:
steps_lb(0.5*exp(length(A),2)+1.5*length(A)+1)

This message states that nrev will take at least 0.5 (length(A))2+ 1.5 length(A)+
1 resolution steps (which is the resource usage analysis output), while the asser-
tion requires that it take at most length(A) + 1 resolution steps. The resource
usage function in the user-provided assertion is compared with the lower-bound
resource usage information inferred by analysis. This allows detecting the in-
consistency and proving that the program does not satisfy the efficiency require-
ments imposed.

Consider now a pessimistic programmer who over-estimates the cost of pred-
icate nrev and writes:

:- check comp nrev(A,B) + steps_ub(exp(length(A),2)).

Function (length(A))2 (F2 in Fig. 2, where x = length(A)) is hardly comparable
with the upper bound resource usage function obtained by the analysis: 0.5
(length(A))2+ 1.5 length(A)+1 (F1 in Fig. 2, where x = length(A); the same as
the lower bound obtained by it, incidentally). The approach up to now in these
cases was to compare the terms of both functions which have the highest order
to infer whether it can be determined that one is asymptotically greater than
the other. In the example, the term x 2 of F2 is greater than the term 0 · 5 x 2

of F1, so that the assertion holds (asymptotically).
However, a more precise (and useful) approach to the above example would

be to consider the assertion proved only for the interval in which the resource
usage function inferred by the analysis (F1) is lower than the one in the assertion
(F2). Thus, a sensible output of the debugging tool would better be:

:- checked comp nrev(A,B) + steps_ub(exp(length(A),2))
in interval [-inf , -0.561552539563305] for length(A).

3

Figure 2: Functions F1=0.5x 2+1.5x + 1 and F2=x 2

:- check comp nrev(A,B) + steps_ub(exp(length(A),2))
in interval [-0.561552539563305 , 3.56155281280883] for length(A).

:- checked comp nrev(A,B) + steps_ub(exp(length(A),2))
in interval [3.56155281280883 , +inf] for length(A).

showing that the assertion remains to be proved or disproved in the intermediate
interval between the roots of the function F1−F2.

Consider now an assertion with the resource usage function 0.2 x 2 mentioned
before as upper bound, plus another one stating a linear exact resource usage
function, to motivate our proposal, as follows:

:- check comp nrev(A,B) + steps_ub(0.2*exp(length(A),2)).
:- check comp nrev(A,B) + steps_o(length(A)).

For the first one, the tool will now issue an output that shows the relevant
intervals computed for function comparison, in the following form:

:- check comp nrev(A,B) + steps_ub(0.2*exp(length(A),2))
with [steps_ub(0.5*exp(length(A),2)+1.5*length(A)+1),

steps_lb(0.5*exp(length(A),2)+1.5*length(A)+1)]
in intervals

[-5.32469507659596, -4.207825127659933, -0.8749999999999997,
-0.7921748311282393, 1.324695143552614] .

This assertion shows the original one adorned with the results from analysis.
In this case, that analysis has inferred a lower (and upper) bound resource usage
function of 0.5∗length(A)2+1.5∗length(A) + 1. The functions to be compared
are subtracted and the roots of the resulting function computed. If there exist
roots, it means that the two functions have intersection, therefore there are
closed intervals in which the result of their comparison (and, thus, that of the
debugging/verification process) may be different. The intersection of the two
functions in our example is illustrated in Fig. 3 (F1 and F2). In this case the
roots are -4.21 and -0.79, therefore there are three intervals: [∞,-4.21], [-4.21,-
0.79], and [-0.79,∞]. These are shown (with approximate values) in the above

4

Figure 3: Functions F1 =0.5∗x 2+1.5∗x + 1, F2 =0.2∗x 2 and F3 = x

output assertion alternating with sample values of the difference function on
each interval: first value is a sample for interval [∞,-4.21], the third value a
sample for [-4.21,-0.79], and the fifth and last value a sample for [-0.79,∞].

Interval information is only shown when the resource usage assertion is in-
compatible or it can not be decided. In case that the assertion is compatible no
interval information is shown. The information might be shown but be actu-
ally empty, like in the following example for the second resource usage assertion
above:

:- check comp nrev(A,_1) + steps_o(length(A))
with [steps_ub(0.5*exp(length(A),2)+1.5*length(A)+1),

steps_lb(0.5*exp(length(A),2)+1.5*length(A)+1)]
in intervals [] .

In this case, cost complexity function length(A) does not have intersection with
cost lower bound function 0.5∗length(A)2+1.5∗length + 1, so that no interval
information is shown (Fig. 3, F1 and F3).

Upper-bound resource usage assertions can also be proved to hold, i.e., can
be checked, by using upper-bound resource usage analysis rather than lower-
bound resource usage analysis. In such case, if the upper-bound computed
by analysis is lower or equal than the upper-bound stated by the user in the
assertion. The converse holds for lower-bound resource usage assertions.

In the following, in Sect. 2 we first present the CiaoPP verification framework
that we take as starting point. Sect. 3 describes how it is used and extended
for the verification of general resource usage program properties. Sect. 4 then
explain the technique that we have developed for resource usage function com-
parison. Finally, Sect. 5 briefly reports on the implementation of our techniques
within the Ciao/CiaoPP system, and Sect. 6 summarizes our conclusions and
explains some improvements of our framework left for future work.

2 The Framework

We take as starting point an existing framework for static verification and
debugging [PBH00b], which has been implemented and integrated into the

5

Property Definition
P is partially correct w.r.t. I [[P]] ⊆ I
P is complete w.r.t. I I ⊆ [[P]]
P is incorrect w.r.t. I [[P]] 6⊆ I
P is incomplete w.r.t. I I 6⊆ [[P]]

Table 1: Set theoretic formulation of verification problems

CiaoPP system. In this work we extend the framework in order to deal with
resource usage properties. The verification and debugging framework uses ab-
stract interpretation based analysis, which are provably correct and also practi-
cal, in order to statically compute semantic approximations of programs. These
semantic approximations are compared with (partial) specifications, in the form
of assertions that are written by the programmer, in order to detect inconsis-
tencies or to prove such assertions.

Both program verification and debugging compare the actual semantics [[P]]
of a program P with an intended semantics for the same program, which we will
denote by I . This intended semantics embodies the user’s requirements, i.e., it is
an expression of the user’s expectations. In Table 1 we show classical verification
problems in a set-theoretic formulation as simple relations between [[P]] and I .
Using the exact actual or intended semantics for automatic verification and
debugging is in general not realistic, since the exact semantics can be typically
only partially known, infinite, too expensive to compute, etc. On the other hand
the abstract interpretation technique allows computing safe approximations of
the program semantics. The key idea in our approach is to use the abstract
approximation [[P]]α directly in program verification and debugging tasks.

A number of approaches have already been proposed which make use to
some extent of abstract interpretation in verification and/or debugging tasks.
Abstractions were used in the context of algorithmic debugging in [LS88]. Ab-
stract interpretation for debugging of imperative programs has been studied
by Bourdoncle [Bou93], by Comini et al. for the particular case of algorith-
mic debugging of logic programs [CLV95] (making use of partial specifications)
[CLMV99], and by P. Cousot [Cou03]. Additional discussion and more details
about the foundations and implementation issues of our approach can be found
in [BDD+97, HPB99, HPBG05].

2.1 Abstract Verification and Debugging

In our framework the abstract approximation [[P]]α of the concrete semantics
[[P]] of the program is actually computed and compared directly to the (also
approximate) intention (which is given in terms of assertions [PBH00a]), follow-
ing almost directly the scheme of Table 1. We safely assume that the program
specification is given as an abstract value I α ∈ Dα (where Dα is the abstract do-
main of computation). Program verification is then performed by comparing I α

and [[P]]α. Table 2 shows sufficient conditions for correctness and completeness

6

Property Definition Sufficient condition
P is partially correct w.r.t. I α α([[P]]) ⊆ I α [[P]]α+ ⊆ I α

P is complete w.r.t. I α I α ⊆ α([[P]]) I α ⊆ [[P]]α−
P is incorrect w.r.t. I α α([[P]]) 6⊆ I α [[P]]α− 6⊆ I α, or

[[P]]α+ ∩ I α = ∅ ∧ [[P]]α 6= ∅
P is incomplete w.r.t. I α I α 6⊆ α([[P]]) I α 6⊆ [[P]]α+

Table 2: Verification problems using approximations

w.r.t. I α, which can be used when [[P]] is approximated. Several instrumental
conclusions can be drawn from these relations.

Analyses which over-approximate the actual semantics (i.e., those denoted as
[[P]]α+), are specially suited for proving partial correctness and incompleteness
with respect to the abstract specification I α. It will also be sometimes possible
to prove incorrectness in the case in which the semantics inferred for the program
is incompatible with the abstract specification, i.e., when [[P]]α+ ∩ I α = ∅. On
the other hand, we use [[P]]α− to denote the (less frequent) case in which analysis
under-approximates the actual semantics. In such case, it will be possible to
prove completeness and incorrectness.

We are interested in supporting properties that may be defined by means
of user programs and extend beyond the predefined set which may be natively
understandable by the available static analyzers. Also, only a small number of
(even zero) assertions may be present in the program, i.e., the assertions are
optional. In general, since most of the properties being inferred are in general
undecidable at compile-time, the inference technique used, abstract interpre-
tation, is necessarily approximate, i.e., possibly imprecise. Nevertheless, such
approximations are also always guaranteed to be safe, in the sense that they are
never incorrect.

2.2 Combined Static and Dynamic Verification/Debugging

CiaoPP is also capable of combined static and dynamic verification, and de-
bugging, using the ideas outlined so far (see [HPB99] for details).

Program verification and detection of errors is first performed at compile-
time by using the sufficient conditions shown in Table 2, i.e., by inferring prop-
erties of the program via abstract interpretation-based static analysis and com-
paring this information against (partial) specifications Iα written in terms of
assertions. For those assertions neither proved nor disproved the system may
(optionally) instrument the program for checking them at run-time. Both the
static and the dynamic checking are provably safe in the sense that all errors
flagged are definite violations of the specifications.

7

3 Extending the Framework to Resource Usage
Properties

We now define all the elements of the framework for its application to resource
usage properties.

3.1 Resource usage semantics

Given a program p, let Cp be the set of all calls to p. The concrete resource
usage semantics of a program p, for a particular resource of interest, [[P]], is
a set of pairs (p(t̄), r) such that t̄ is a tuple of terms, p(t̄) ∈ Cp is a call to
predicate p with actual parameters t̄ , and r is a number expressing the amount
of resource usage of the computation of the call p(t̄). Such semantic object
can be computed by a suitable operational semantics, such as SLD-resolution,
adorned with the computation of the resource usage. We abstract away such
computation, since it will be in general dependent on the particular resource r
refers to. The concrete resource usage semantics can be defined as a function
[[P]] : Cp → R where R is the set of real numbers (note that depending on
the type of resource we can take other set of numbers, e.g., the set of natural
numbers).

The abstract resource usage semantics is a set of 4-tuples:

(p(v̄) : c(v̄),Φ, inputp , sizep)

The first element of the tuple, p(v̄) : c(v̄), is an abstraction of a set of calls.
v̄ is a tuple of variables and c(v̄) is an abstraction representing a set of tuples
of terms which are instances of v̄ . c(v̄) is an element of some abstract domain
expressing instantiation states. The second argument of the tuple, Φ, is an
abstraction of the resource usage of the calls represented by p(v̄) : c(v̄). We
refer to it as a resource usage interval function for p, defined as follows:

Definition 1 A resource usage interval function for p is an arithmetic func-
tion, Φ : Rk 7→ RI, where R is the set of real numbers, k is the number of
input arguments to predicate p and RI is the set of intervals of real numbers,
such that Φ(n̄) = [Φl(n̄),Φu(n̄)] for all n̄ ∈ Rk , where Φl(n̄) and Φu(n̄) are re-
source usage bound functions (see Definition 2) that denote the lower and upper
endpoints of the interval Φ(n̄) respectively for the tuple of input data sizes n̄.
Although n̄ is typically a tuple of natural numbers, we do not want to restrict
our framework. We require that Φ be well defined so that ∀n̄ (Φl(n̄) ≤ Φu(n̄).

Definition 2 A resource usage bound function for p is a monotonic arithmetic
function, Ψ : Rk 7→ R∞, where R is the set of real numbers, k is the number
of input arguments to predicate p and R∞ is the set of real numbers augmented
with the special symbols ∞ and −∞. We use such functions to express lower
and upper bounds on the resource usage of predicate p depending on input data
sizes.

8

Function inputp takes a tuple of terms t̄ and returns a tuple with the input
arguments to p. This function can be inferred by using existing mode analysis
or can be given by the user by means of assertions. Function sizep(t̄) takes a
tuple of terms t̄ and returns a tuple with the sizes of those terms under a given
metric. The metric used for measuring the size of each argument of p can be
automatically inferred (based on type analysis information) or can be given by
the user by means of assertions [NMLGH07].

In order to make the presentation simpler, we will omit the inputp and sizep

functions in abstract tuples, with the understanding that they are present in all
of such tuples.

Example 1 Assuming that the first argument of nrev and the two first argu-
ments of append are input and that the size measure for all of them is list-length,
we have that:
inputnrev ((x , y)) = (x), inputapp((x , y , z)) = (x , y),
sizenrev ((x)) = (length(x)) and sizeapp((x , y)) = (length(x), length(y)).

Intended meaning The intended approximated meaning I α of a program is
an abstract semantic object with the same kind of tuples: (p(v̄) : c(v̄),Φ, inputp , sizep),
which are given in the form of assertions. The basic form of resource usage as-
sertion1 is:

:- comp Pred [: Precond] + ResUsage.

which expresses that for any call to Pred, if Precond is satisfied in the call-
ing state, then ResUsage should also be satisfied for the computation of Pred.
ResUsage defines in general an interval of numbers for the particular resource
usage of the computation of the call to Pred (i.e., ResUsage is satisfied by the
computation of the call to Pred if the resource usage of such computation is in
the defined interval). For example:

:- comp nrev(A,B): (ground(A), list(A, term), var(B))
+ resource(ub, steps, 1+exp(length(A), 2)).

expresses that for any call to nrev(A,B) with the first argument bound to a
ground list and the second one a free variable, an upper bound (ub) on the
number of resolution steps performed by the computation is 1 + n2, where
n = length(A). In this case, the interval approximating the number of resolution
steps is [0, 1 + n2]. Since the number of resolution steps cannot be negative, the
minimum of the interval is zero. If we assume that the resource usage can be
negative, the interval would be (−∞, 1 + n2]. In we had a lower bound (lb) in
the assertion, the interval would be [1 + n2,∞).

That assertion describes a tuple in I α which is given by
(p(v̄) : c(v̄),Φ, inputp , sizep), where p(v̄) : c(v̄) is defined by Pred and Precond,
and Φ is defined by ResUsage. For simplicity, we assume that Pred is actually

1Assertions might be prefixed with an indicator that it is to be checked, it has been already
checked, detected false of true. We omit such a prefix in the format given [PBH00a].

9

p(v̄) and that there is a syntactic correspondence from Precond to c(v̄), and from
ResUsage to Φ. The information about inputp and sizep is implicit in ResUsage.
The concretization of I α, γ(I α), is the set of all pairs (p(t̄), r) such that t̄ is a
tuple of terms and p(t̄) is an instance of Pred that meets precondition Precond,
and r is a number that meets the condition expressed by ResUsage (i.e., r lies in
the interval defined by ResUsage) for some assertion. For example, the previous
assertion captures the following concrete semantic tuples:

(nrev([a,b,c,d,e,f,g],X), 35) (nrev([],Y), 1)

but it does not capture the following ones:

(nrev([A,B,C,D,E,F,G],X), 35) (nrev(W,Y), 1)
(nrev([a,b,c,d,e,f,g],X), 53) (nrev([],Y), 11)

those in the first line above because they correspond to calls which are outside
of the scope of the assertion (i.e., they do not meet the precondition Precond);
those on the second line (which will never occur on execution) because they
violate the assertion (i.e., they meet the precondition Precond, but do not meet
the condition expressed by ResUsage).

Partial correctness

Definition 3 Given a program p and an intended resource usage semantics I ,
where I : Cp 7→ R, we say that p is partially correct w.r.t. I if for all p(t̄) ∈ Cp
such that r is the amount of resource usage of the computation of the call p(t̄),
we have that I (p(t̄)) = r, i.e., (p(t̄), r) ∈ I . This is equivalent to the condition
[[P]] ⊆ I given in Table 1.

Definition 4 Given an intended abstract resource usage semantics I α expressed
as a set of tuples of the form (p(v̄) : cI (v̄),ΦI) (each tuple is expressed by an
assertion in the program), we say that p is partially correct with respect to
I α if for all p(t̄) ∈ Cp such that r is the amount of resource usage of the
computation of the call p(t̄), there is a tuple (p(v̄) : cI (v̄),ΦI) in I α such that
p(t̄) ∈ γ(p(v̄) : cI (v̄)) and r ∈ ΦI (s̄), where s̄ = sizep(inputp(t̄)).

Definition 5 We say that p is partially correct with respect to a tuple of the
form (p(v̄) : cI (v̄),ΦI) if for all p(t̄) ∈ Cp such that r is the amount of resource
usage of the computation of the call p(t̄), it holds that: if p(t̄) ∈ γ(p(v̄) : cI (v̄))
then r ∈ ΦI (s̄), where s̄ = sizep(inputp(t̄)).

Lemma 1 p is partially correct with respect to I α if:

• The set of all elements p(v̄) : cI (v̄) of all tuples in I α cover all the calls
in Cp.

• p is partially correct with respect to every tuple in I α.

10

Definition 6 Given two resource usage interval functions Φ1 and Φ2, such
that Φ1,Φ2 : Rk 7→ RI, we define the inclusion relation vf and the intersection
operation uf as follows:

• Φ1 vf Φ2 iff for all n̄ ∈ Rk , Φ1(n̄) ⊆ Φ2(n̄).

• Φ1 uf Φ2 = Φ3 iff for all n̄ ∈ Rk , Φ1(n̄) ∩ Φ2(n̄) = Φ3(n̄).

Consider a tuple (p(v̄) : cI (v̄),ΦI) in the intended meaning I α, and a tuple
(p(v̄) : c(v̄),Φ) in the computed abstract semantics [[P]]α+ (for simplicity, we
assume the same tuple of variables v̄ in all abstract objects).

Definition 7 We say that (p(v̄) : c(v̄),Φ) v (p(v̄) : cI (v̄),ΦI) if cI (v̄) v c(v̄)
and Φ vf ΦI .

Note that the condition cI (v̄) v c(v̄) can be checked using the CiaoPP ca-
pabilities for comparing program state properties such as types.

Definition 8 We say that (p(v̄) : c(v̄),Φ) u (p(v̄) : cI (v̄),ΦI) = ∅ if cI (v̄) v
c(v̄) and Φ uf ΦI = Φ∅, where Φ∅ is the empty function defined as follows:
Φ∅(n̄) = ∅ for all n̄ ∈ Rk .

Lemma 2 If (p(v̄) : c(v̄),Φ) v (p(v̄) : cI (v̄),ΦI) then p is partially correct
with respect to (p(v̄) : cI (v̄),ΦI).

Proof If (p(v̄) : c(v̄),Φ) v (p(v̄) : cI (v̄),ΦI) then cI (v̄) v c(v̄) and Φ vf ΦI .
For all p(t̄) ∈ Cp such that r is the amount of resource usage of the computation
of the call p(t̄), it holds that: if p(t̄) ∈ γ(p(v̄) : cI (v̄)) then p(t̄) ∈ γ(p(v̄) : c(v̄))
(because cI (v̄) v c(v̄)), and thus r ∈ Φ(s̄), where s̄ = sizep(inputp(t̄)) (because
of the safety of the analysis). Since Φ vf ΦI , we have that r ∈ ΦI (s̄). ·

Lemma 3 If (p(v̄) : c(v̄),Φ) u (p(v̄) : cI (v̄),ΦI) = ∅ and (p(v̄) : c(v̄),Φ) 6= ∅
then p is incorrect w.r.t. (p(v̄) : cI (v̄),ΦI).

3.2 Comparing Resource Usage Interval Functions

During verification/debugging within the framework described in the previous
section, we will need to compare abstract tuples following Table 2. Thus, when-
ever cI (v̄) v c(v̄) we will have to determine whether Φ vf ΦI or Φuf ΦI = Φ∅.

Definition 9 Given two resource usage bound functions Ψ1 and Ψ2 (as in Defi-
nition 2, Ψ1,Ψ2 : Rk 7→ RI), we define the ≤f relation as follows:

Ψ1 ≤f Ψ2 iff for all n̄ ∈ Rk , Ψ1(n̄) ≤ Ψ2(n̄)

where ≤ represents the standard relation between real numbers augmented with
the special symbols ∞ and −∞. Similarly, we define <f , >f and ≥f .

Lemma 4 Given two resource usage interval functions Φ1 and Φ2, we have
that:

11

• Φ1 vf Φ2 if Φl
2 ≤f Φl

1 and Φu
1 ≤f Φu

2 .

• Φ1 uf Φ2 = Φ∅ if Φu
1 <f Φl

2 or Φu
2 <f Φl

1.

Corollary 1 Let (p(v̄) : c(v̄),Φ) and (p(v̄) : cI (v̄),ΦI) be tuples expressing an
abstract semantics [[P]]α+ inferred by analysis and an intended abstract seman-
ticcs I α (given in a specification) respectively, such that cI (v̄) v c(v̄), and for
all n̄ ∈ Rk , Φ(n̄) = [Φl(n̄),Φu(n̄)] and ΦI (n̄) = [Φl

I (n̄),Φu
I (n̄)]. We have that:

• If for all n̄ ∈ Rk , Φl
I (n̄) ≤ Φl(n̄) and Φu(n̄) ≤ Φu

I (n̄), then p is partially
correct with respect to (p(v̄) : cI (v̄),ΦI).

• If for all n̄ ∈ Rk Φu(n̄) < Φl
I (n̄) or Φu

I (n̄) < Φl(n̄), then p is incorrect
with respect to (p(v̄) : cI (v̄),ΦI).

However, for simplicity, in this paper we assume that one of the endpoints
of the interval is always the maximum (resp., minimum) of the possible values,
i.e., ∀n̄ (Φu

I (n̄) = ∞) (resp., Φl
I (n̄) = −∞ or Φl

I (n̄) = 0, depending on the
resource). Thus, one of the resource usage bound function comparisons in each
of the two cases above is always trivial.

Therefore, we will be faced with only one such comparisons, between two
functions, each denoting either a lower bound (l) or an upper bound (u).

When comparing resource usage bound functions, our approach computes
subsets of Rk for which a function is less, equal, or greater than another. This
allows to give specifications of subsets of input data (sizes) for which a program p
is partially correct (or incorrect) with respect to a given tuple (p(v̄) : cI (v̄),ΦI)
(i.e., representations of subsets of p(v̄) : cI (v̄)). For the particular case where
resource usage bound functions depend on one argument, such subsets can be
represented as intervals of numbers in which the input data sizes lie in. This
is explained in Section 4. It is straightforward to formalize this concept and to
redefine partial correctness (or incorrectness) restricted to a set of input data
sizes, by restricting all the instrumental definitions accordingly. We do not
pursue it in this paper for space reasons.

4 Resource Usage Bound Function Comparison

Fundamental to our approach to verification is the operation that compares
two resource usage bound functions, one of them inferred by the static analysis
and the other one given in an assertion present in the program (i.e. given as
a specification). Given two of such functions, Ψ1(n) and Ψ2(n), n ∈ R, the
objective of this operation is to determine intervals for n in which Ψ1(n) >
Ψ2(n), Ψ1(n) = Ψ2(n), or Ψ1(n) < Ψ2(n).

Our approach consists on defining f (n) = Ψ1(n) − Ψ2(n) and finding the
roots of the equation f (n) = 0. Assume that the equation has m roots,
n1, . . . ,nm . These roots are intersection points of Ψ1(n) and Ψ2(n). We consider
the intervals S1 = [0,n1), S2 = (n1,n2), Sm = . . . (nm−1,nm), Sm+1 = (nm ,∞).

12

For each interval Si , 1 ≤ i ≤ m, we select a value vi in the interval. If f (vi) > 0
(respectively f (vi) < 0), then Ψ1(n) > Ψ2(n) (respectively Ψ1(n) < Ψ2(n)) for
all n ∈ Si .

Since our resource analysis is able to infer different types of functions (e.g.,
polynomial, exponential and logarithmic), it is also desirable to be able to com-
pare all of these functions. For polynomial functions there exist powerful al-
gorithms for obtaining roots. For the other functions, we have to approximate
them using polynomials. In this case, we should guarantee that the error falls in
the safe side when comparing the corresponding resource usage bound functions.

4.1 Comparing Polynomial Functions

There are general methods for finding roots of polynomial equations. Root equa-
tion finding of polynomial functions can be done analytically until polynomial
order four. For higher order polynomial functions, numerical methods must be
used. According to a fundamental theorem of algebra, a polynomial equation
of order m has m roots, whether real or complex numbers. There are numerical
methods that allow to compute all these roots (although the complex numbers
are not needed in our approach).

4.2 Approximation of Non-Polynomial Functions

There are two non-polynomial resource usage function that CiaoPP analysis can
infer: exponential and logarithmic. For approximating these functions we use
Taylor series.

Exponential function approximation using polynomial This approxi-
mation is carried out using these formulae:

ex ≈ Σ∞n=0

xn

n!
= 1 + x +

x 2

2!
+

x 3

3!
+ . . . for all x

ax = ex ln a ≈ 1 + x ln a +
(x ln a)2

2!
+

(x ln a)3

3!
+ . . .

In the implementation these series are limited up to order 8. This decision
has been taken based on experiments that show that higher orders do not give
a significant difference. Also, in the implementation, the computation of the
factorials is done separately and the results are kept in a table in order to reuse
them.

Logarithmic function approximation using polynomial Unfortunately
this approximation can not be done in straightforward way as the approximation
to exponential. Taylor series for this function for whole interval does not exist,
the series only holds for interval −1 < x < 1. One possibility to work within
this restriction is using range reduction [Ylo06].

13

4.3 Safety of the Approximation

Since the roots obtained for the function comparison are in some cases approxi-
mations of the real roots, we must guarantee that their values are safe, i.e., that
they can be used for verification purposes as in table 2, and in particular, for
safely checking the conditions of Corollary 1.

We have equation f (x) = 0 and want to find its roots. In general, we
approximate f (x) using a polynomial P(x), so that f (x) = P(x) + −e, with e
an approximation error. Let the roots of equation f (x) = 0 be x0, · · ·, xn , and
the roots of equation P(x) = 0 be xp0, · · ·, xpn . Using a root finding algorithm
on equation P(x) = 0, we obtain xp0, · · ·, xpn , so that we have P(xpi) = 0,
and therefore f (xpi) ∈ [−e,+e]. The approximation is safe if there is a ε such
that f (xpi − ε) < 0 whenever P(xpi − ε) < 0, and f (xpi + ε) > 0 whenever
P(xpi + ε) > 0. This means that xi ∈ [xpi − ε, xpi + ε]. However, in our case we
will reduce to only one of those values: xpi + ε, and we will approximate it by
iteratively incrementing xpi by some δ.

Consider again Corollary 1. Assume for example that we are going to safely
check whether Φu(x) ≤ Φu

I (x) (where Φu and Φu
I are resource usage bound

functions the first one is a result of program analysis and the second one an
assertion declared in the program). In this case, we define f (x) = Φu

I (x)−Φu(x),
so that we can safely say that if f (x) > 0, then Φu(x) ≤ Φu

I (x). Assume also
that Φl

I is not given in the assertion, meaning that specification do not state
any lower bound for the resource usage (i.e., the lower endpoint of any resource
usage interval is −∞, which means that Φl

I (x) ≤ Φl(x) is always true). Thus,
if f (x) > 0 we can safely state that the assertion is definitely true. In the same
way, if we define f (x) = Φl(x)−Φu

I (x) we can safely assert that Φu
I (n̄) < Φl(n̄) if

f (x) > 0, proving that the assertion is definitely false. We can reason similarly
in the comparisons involving a lower bound in the assertion (Φl

I). Thus, we
focus exclusively on safely checking that f (x) > 0, where f (x) is conveniently
defined in each case.

Then, we have to determine, for each approximated root xpi , 1 ≤ i ≤ n,
a value ε such that f (xpi + ε) > 0 and xi ∈ [xpi − ε, xpi + ε]. We do this by
first determining the relative position of xpi and xi (i.e., whether xpi is “to
the right” or “to the left” of xi) and then starting an iterative process that
increments (or decrements) xpi by some δ until we have that, after m iterations,
f (xpi + m δ) > 0.

Determining the relative position of the exact root To determine the
relative position of the exact root and its approximated value we use the gradient
of f (x) around x = xpi . For determining the gradient we use the values of
e = f (xpi) and e ′ = f (xpi + δ′), with δ′ > 0 a relatively small number. Whether
the approximated root is greater or less than the exact root depends on the
following conditions:

1. if e < 0 and e ′ > e then xi > xpi

2. if e > 0 and e ′ > e then xi < xpi

14

Figure 4: Case 1. xi > xpi (since e ′ > e). A safe approximate root found is
xsafe .

3. if e > 0 and e ′ < e then xi > xpi

4. if e < 0 and e ′ < e then xi < xpi

From Fig. 4 we can see the rationale behind the first case (the other cases
follow an analogous reasoning). If e ′ > e then f (x) is increasing, but, since
e < 0, then f (x) > 0 can only occur for values of x greater than xpi . Therefore,
xi > xpi . In such cases we use a positive value of δ for the iterative process.
When xi < xpi we use a negative value of δ.

Note that this method of guessing approximates to the exact root only works
if the approximated value does not go wrong. We say that an approximated
value for a root x1 goes wrong when there is a local maximum or minimum of
the function in between x1 and its approximation xp1 but there is no such local
maximum or minimum in between the approximation and another root different
from x1 (see Fig. 5). In these cases, the approximated value will be “moved” to
the other root (x2 in Fig. 5). Thus, we will be unable to determine a verification
result for the interval between the root x1 and the next root “to the left” (in
fact, for the interval in between such root and the approximation to x2).

Iterative process for computing the safe root Once we have determined
the relative position of the exact root and its approximated value, we first set
up the appropriate sign for δ, where |δ| is a relatively small number: δ < 0 if
the iteration should go to the left (xi < xpi), or δ > 0 if it should go to the right
(xi > xpi). Then we iterate on the addition xp′i = xpi + δ until f (xp′i) > 0. Such
an iteration is apparent in the following pseudo-code:

1: xsafe ← xpi

2: while f (xsafe) < 0 do xsafe ← xsafe + δ
3: end while

15

Figure 5: A root approximation that goes wrong: xp1 (approximation of x1)
goes to x2.

4: return xsafe

Example 2 Consider an assertion which declares an upper bound on the re-
source usage of the classical fibonacci program given by function Φu

I (x) =
2x − 1000. Let the analysis infer a lower bound given by function Φl(x) = 1.45
× 1.62x−1. Their intersection occurs at x ≈10.22. However, the root obtained
by our root finding algorithm is x ≈ 10.89. By doing an iterative approximation
from 10.89 to the left, we finally obtain a safe approximate root of x ≈10.18.

Note that usually (as in this example), resource usage functions are on vari-
ables which range on natural numbers. Because of this, the iterative approxima-
tion process for safe roots can be substituted by simply taking the closest natural
number to the left or right of the approximated root (depending on the gradient)
to obtain a safe value. In the previous example, we will simply take 10, without
any iteration. Thus, the output of our assertion checking implementation within
the CiaoPP system is:

:- false comp fib(N,F) + steps_ub(exp(2,int(N))-1000)
in interval [0, 10] for int(N).

:- check comp fib(N,F) + steps_ub(exp(2,int(N))-1000)
in interval [11, +inf] for int(N).

Meaning that the system has proved that the assertion is false for values
of the input argument N in the interval [0, 10], but nothing can be (statically)
ensured for the values outside this interval.

5 Implementation

We have implemented a prototype that performs the verification of resource
usage functions and integrated it into the CiaoPP system. For this purpose,
we have used the GNU Scientific Library [GDT+09], which offers a specific

16

polynomial function library that uses analytical methods for finding roots of
polynomials up to order four, and uses numerical methods for higher order
polynomials. Since the functions in the GSL library can not be called directly
from Ciao, some glue code has been written in C so that they can be invoked
through this glue code.

6 Conclusions and Future Work

We have extended an existing framework for verification/debugging (imple-
mented in the CiaoPP system), to deal with specifications about the resource
usage of programs. We have provided a formalization which blends in with
the previous framework for verification of functional or program state proper-
ties. A key aspect of the framework is to be able to compare mathematical
functions. We have instrumented a method for function comparison which is
safe, in the sense that the results of verification/debugging cannot go wrong.
In the case where the resource usage functions being compared depend on one
variable (which represents some input argument size) our method reveals par-
ticular numerical intervals for such variable, if they exist, which might result
in different answers to the verification problem: a given specification might be
proved for some intervals but disproved for others. Our current method accu-
rately computes such intervals for polynomial and exponential resource usage
functions, and in general for functions that can be approximated by polynomi-
als. Moreover, we have proposed an iterative post-process to safely tune up the
interval bounds by taking as starting values the previously computed roots of
the polynomials. The current method allows for several improvements. For
example, a better handling of logarithmic functions. In this sense, we will study
a combined approach: using range reduction [Ylo06] and Taylor approximation
to polynomials. Also, for the case in which the resource usage functions depend
on more than one variable, we plan to extend the method in order to compute
subsets of input data size tuples for which a given specification can be proved
or disproved.

Finally, we also plan to develop a diagnosis scheme for resource usage under-
performance. The diagnoser will heavily exploit analysis information in order
to trace an incorrectness symptom backwards up to a fragment of the program
responsible for it.

References

[BCC+03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A Static Analyzer for Large Safety-Critical
Software. In Proc. of PLDI’03. ACM Press, 2003.

[BDD+97] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo,
J. Maluszynski, and G. Puebla. On the Role of Semantic Approximations
in Validation and Diagnosis of Constraint Logic Programs. In Proc. of

17

the 3rd. Int’l WS on Automated Debugging–AADEBUG, pages 155–170.
U. Linköping Press, May 1997.

[Bou93] F. Bourdoncle. Abstract debugging of higher-order imperative languages.
In Programming Languages Design and Implementation’93, pages 46–55,
1993.

[CLMV99] M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Abstract diagnosis.
Journal of Logic Programming, 39(1–3):43–93, 1999.

[CLV95] M. Comini, G. Levi, and G. Vitiello. Declarative diagnosis revisited.
In 1995 International Logic Programming Symposium, pages 275–287,
Portland, Oregon, December 1995. MIT Press, Cambridge, MA.

[Cou03] P. Cousot. Automatic Verification by Abstract Interpretation, Invited
Tutorial. In Fourth International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI), number 2575 in LNCS,
pages 20–24. Springer, January 2003.

[DL93] S. K. Debray and N. W. Lin. Cost analysis of logic programs. TOPLAS,
15(5), 1993.

[GDT+09] M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken,
M. Booth, and F. Rossi. GNU Scientific Library Reference Manual.
Network Theory Ltd, 2009. Library and Manual also available at http:

//www.gnu.org/software/gsl/.

[HALGP04] M. Hermenegildo, E. Albert, P. López-Garćıa, and G. Puebla. Some
Techniques for Automated, Resource-Aware Distributed and Mobile
Computing in a Multi-Paradigm Programming System. In Proc. of
EURO–PAR 2004, number 3149 in LNCS, pages 21–37. Springer-Verlag,
August 2004.

[HPB99] M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Par-
tial Specifications, and an Extensible Assertion Language for Program
Validation and Debugging. In The Logic Programming Paradigm: a
25–Year Perspective, pages 161–192. Springer-Verlag, 1999.

[HPBG05] M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garćıa. Inte-
grated Program Debugging, Verification, and Optimization Using Ab-
stract Interpretation (and The Ciao System Preprocessor). Science of
Comp. Progr., 58(1–2), 2005.

[LS88] Y. Lichtenstein and E. Y. Shapiro. Abstract algorithmic debugging. In
R. A. Kowalski and K. A. Bowen, editors, Fifth International Confer-
ence and Symposium on Logic Programming, pages 512–531, Seattle,
Washington, August 1988. MIT.

[MLGH09] E. Mera, P. López-Garćıa, and M. Hermenegildo. Integrating Software
Testing and Run-Time Checking in an Assertion Verification Framework.
In International Conference on Logic Programming (ICLP), volume 5649
of LNCS, pages 281–295. Springer-Verlag, July 2009.

[NMLGH07] J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-
Definable Resource Bounds Analysis for Logic Programs. In ICLP,
LNCS, 2007.

18

[PBH00a] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language
for Constraint Logic Programs. In P. Deransart, M. Hermenegildo, and
J. Maluszynski, editors, Analysis and Visualization Tools for Constraint
Programming, number 1870 in LNCS, pages 23–61. Springer-Verlag,
September 2000.

[PBH00b] G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dy-
namic Assertion-Based Debugging of Constraint Logic Programs. In
Logic-based Program Synthesis and Transformation (LOPSTR’99), num-
ber 1817 in LNCS, pages 273–292. Springer-Verlag, March 2000.

[Ylo06] Jyri Ylostalo. Function approximation using polynomials. Signal Pro-
cessing Magazine, 23:99–102, September 2006.

19

