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Abstract. Compile-time program analysis techniques can be applied to Web
service orchestrations to prove or check various properties. In particular, ser-
vice orchestrations can be subjected to resource analysis, in which safe approx-
imations of upper and lower resource usage bounds are deduced. A uniform
analysis can be simultaneously performed for different generalized resources
that can be directly correlated with cost- and performance-related quality at-
tributes, such as invocations of partners, network traffic, number of activities,
iterations, and data accesses. The resulting safe upper and lower bounds do
not depend on probabilistic assumptions, and are expressed as functions of
size or length of data components from an initiating message, using a fine-
grained structured data model that corresponds to the XML-style of informa-
tion structuring. The analysis is performed by transforming a BPEL-like repre-
sentation of an orchestration into an equivalent program in another program-
ming language for which the appropriate analysis tools already exist.
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1 Introduction

Service Oriented Computing (SOC) is a well-established paradigm which aims at
expressing and exploiting the computation possibilities of loosely coupled systems
which remotely interact. In any case, they expose themselves as a service interface
whose description may include operation signatures, behavioral descriptions, se-
curity policies, and other, while the implementation is completely hidden. Several
service interfaces can be put together to accomplish tasks more complex than any
of them in isolation through the so-called service composition. This composition is
usually written in a form of programming language which can be designed ad-hoc
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for SOC compositions [1, 2] or general-purpose languages. These compositions, in
turn, expose themselves as full-fledged services.

Among the key distinguishing features of SOC w.r.t. other classical, conventional
programming paradigms, SOC systems are expected to live and be active during long
periods of time and span different geographical and administrative (also in the sense
of “computer administration”) domains. Moreover, they may need to provide trans-
actional behavior, late binding, undergo evolution without stopping the system, be
able to monitor and adapt themselves to changing environment conditions (includ-
ing decreasing quality of service (QoS) or even malfunctioning in parts of the sys-
tem), (re)assemble automatically different services to meet some functionality re-
quirement, and other characteristics which make SOC an incredibly challenging area
full of open research and development challenges.

One of these challenges is the selection of services given a set of requirements,
which can address what the service is actually required to do, and in which terms
of speed, throughput, reliability, etc. A service description, in turn, asserts what the
service offers in terms of interface, behavior, QoS, etc. Pairing the demands of a ser-
vice composer with the offers of several services is known as matchmaking. While
functional matchmaking is of course necessary, as the number of available services
grows it is expected that equivalent (in the functional sense) services will have to be
decided upon by looking at, e.g., their QoS or other characteristics. Therefore, QoS is
now regarded as an integral part of the composition of services [3–5], and is regarded
as a contract which has to be enforced. Such a contract is commonly implemented
as a Service Level Agreement (SLAs) [6] which specifies the relevant QoS dimensions,
including the level of QoS attributes, and may also include details of QoS assurance,
party responsibilities, and actions to be taken if the actual QoS does not meet the
SLA conditions.

Several QoS characteristics have been under study [7], many of them related to
events that can only be probabilistically predicted or, at most, based on past history
plus, for example, data mining and prediction techniques, such as response time,
availability, reliability, etc.3 Others have a well-defined value at every moment in
time, but which can change nonetheless along history, such as cost of a service per
invocation. Finding techniques to automatically generate the expected QoS for a ser-
vice composition, which presents itself as a service, is a non-trivial, very important
task in order to automate the creation and self-management of SOC systems.

Several challenges stem from this. One is to actually traverse the structure of ev-
ery single service composition, or service composition candidate, so that the QoS
characteristics from each of the invoked services is taken into account. While some-
what abstract formulation based on workflow patterns appear in the relevant liter-
ature [8, 9] (see Table 1, taken from [8] as an easy-to-understand example), they fall
short in at least two points:

– Actual languages for composition, such as BPEL and, of course, any general-
purpose language, have a richer set of control structures, which include stopping
parallel tasks, implementing compensation handlers, and managing exceptions.

3 Note that we are, in principle, not dealing with Qos characteristics such as security policy
which are more difficult to quantify.
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QoS Attr. Sequence Loop Switch Flow
Time (T )

∑n
i=1 T (Ai ) k ∗T (A1)

∑n
i=1 pi ∗T (Ai ) maxn

i=1 T (Ai )

Cost (C )
∑n

i=1 C (Ai ) k ∗C (A1)
∑n

i=1 pi ∗C (Ai )
∑n

i=1 C (Ai )

Availability (V )
∏n

i=1 V (Ai ) V (A1)k ∑n
i=1 pi ∗V (Ai )

∏n
i=1 V (Ai )

Table 1. Derived estimates for QoS attributes of a composite service. The body of a loop con-
tains only one sub-activity denoted A1, and k is the estimated number of iterations. pi is an
estimated probability of switching to branch i .

– The impact of the actual runtime data is often neglected, and is abstracted or
approximated by using a probabilistic measure of the effects of such a data, such
as number of iterations in a loop, probability of taking some branch of an if-then-
else, etc.

Given that the actual message contents can greatly influence the runtime behav-
ior of a system composition (e.g., reserving hotels for one person is, from the point
of view of spent resources, not the same as reserving for one hundred, since more
messages are sent, more bandwidth is spent, etc.), in this paper we will present an ap-
proach to automatically deduce QoS expressions (or, more precisely, functions which
are upper and lower bounds of the possible QoS values) which take into account the
runtime data which is processed by some composition.

The rest of the paper proceeds as follows: Section 2 will give some more overall
details on the approach we propose, Section 3 provides some details on the analyzer
and the analysis on which we technologically base our proposal, Section 4 sketches
how we translate BPEL processes to the input language of the analyzer, Section 5
provides some examples of actual orchestration code and the result of the analysis,
and Section 6 closes the paper with some concluding remarks.

2 Motivation

Taking actual data into account when generating QoS expressions for service com-
positions opens up a series of possibilities which are out of reach for the case of prob-
abilistically determined QoS. We will illustrate this claim with a simple example.

User Booking

Hotel 1

Hotel K

Resv. request N

OK / no OK

Room req.

Cancel

OK / no OK

Room req.
Cancel

OK / no OK

Fig. 1. Simplified hotel reservation system.
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Example 1 Figure 1 shows a simple hotel reservation system. The Client (e.g., a
browser maybe operated by a final user or by a travel agency) gets in touch with a
Booking Agency requesting N hotel rooms. The Booking Agency runs (or accesses) a
composed service which tries a number K of hotels until it finds N rooms for all N
or it replies with a no rooms available answer. Moreover, the service books rooms one
person at a time as they are available, and, if after scanning all the hotels, not enough
rooms are available, it revokes the reservations made so far. Note that is unlikely that
the whole process can be made as a single transaction because the reservation system of
the different hotels may very well be disconnected; therefore it has to be instrumented
at the level of composition. Besides the initial message to initiate the process, we as-
sume a message to query for a room, a message to confirm / reject the room reservation,
and another message to revoke a reservation.

We will assume that we are interested in the number of messages sent / received.
One reason for that is that in a real system connected over the Internet, message
sending takes a sizable amount of the total time, thereby impacting actual time. An-
other reason would be that it is possible that hotel reservation services take a toll on
every message they answer and, presumably, the Booking Services could also charge
some amount of money per message – maybe with discounts for a large number of
messages.

Assuming K ≥ N , the minimum number of messages that can be sent before re-
turning is 2+2N , corresponding to a successful reservation (two messages to/from
the Booking Service plus N successful requests to the same hotel) while the maxi-
mum number of messages is 1+2K +N , corresponding to a unsuccessful reservation
(initial messages plus K −N unsuccessful attempts plus N −1 reservations plus one
last unsuccessful reservation which makes the successful reservations to be undone).

Between these extremes, the maximum for a successful reservation would need
2+2K messages(initial messages plus K −N unsuccessful attempts to reserve plus N
successful reservations) and the minimum for an unsuccessful reservation is 2+2K .

The analysis is not trivial, even for this very simple case, and depends, on one
hand, on the internal logic of the composition and on the other hand, on the values of
N and K , which can be taken as parameters for the composition, as it is more realistic
to think that the hotels are stored in a separate database rather than hardwired in the
composition code.

Compared with the probabilistic approximation which can be generated apply-
ing formulas similar to those in Table 1, the following differences can be pointed out:

– In the dataless formulation, the contribution of loop iterations and conditionals
can at most be estimated based on, for example, historical data. Therefore it can-
not be used to actually give any guarantee, as the value for any QoS characteristic
will be the same regardless of the actual input values for K and N .

– Additionally, safe upper and lower approximations (e.g., bounds) cannot be usu-
ally drawn, as these formulae only return a single number.

– In the case of QoS-aware matchmaking, comparing two different service compo-
sitions ignores the shape data which may depends on the data. The advantage
of having functions available, and using it, is that a more informed decision can
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be made. For example, in Figure 2, the upper and lower bounds for some QoS
measure as function of a single input data are plotted. For same ranges of data
input, one composition is preferable to the other, while the central shared zone
is, in principle, almost equivalent.
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Fig. 2. Upper and lower bounds for two services.

Complexity analysis (ei-
ther automatic or not) has
often geared towards finding
out functions which express
(bounds of) some notion of
time complexity, usually mea-
sured as computation steps
needed to accomplish a task,
where the basic language con-
structs are assumed to have a
constant cost. Differences be-
tween languages are overcome
by using the O(·) notation.

However, time complexity
(and even actual time) are, in
our opinion, not really mean-
ingful for the SOC landscape. Time complexity is too fine grain a measure, and its
actual value is easily blurred by the work different software layers which take part
in a SOC architecture. Likewise, actual execution time depends on so many factors
(network latency, network occupation, different execution platforms, CPU load of
the host where some of the application application may be being) that a theoreti-
cally precise answer is very unlikely to be applicable larger, realistic examples with a
reasonable degree of accuracy.

Therefore, and although the approach we propose can be used to effectively de-
rive time complexity, we primarily aim at applying it to other resource usage mea-
sures using the resource-oriented analysis described in [10] and following the ap-
proach in [11]. In a nutshell, the basis of this user-defined resource analysis is to give
the user the ability to specify how much different sections of a program contribute to
the usage of some resource, and count resource usage by means of that specification.
Note specifying resource usage can take into account the actual data, so no precision
is necessarily lost.

Among the different resource measures which we deem interesting for SOC we
can cite:

– Number of messages sent / received across the network, depending on the input
data (which greatly impacts overall response time and can help to decide among
several composite services).

– Bandwidth used in the network (which takes into account the number of mes-
sages plus the actual size of every message).

– Actual cost, if every message has a different cost, maybe depending on the
sender / receiver of the message, so that multiplying number of messages by a
per-message unit cost may not be accurate.
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Fig. 3. The overall process.

– Number of transactions to a database; this requires marking operations which
accesses the database as a resource, and tallying the number of times this re-
source is used.

– Number of forked processes (obviously interesting in order to limit or predict
the amount of memory some network is going to take, and to detect / prevent
the possibility of some ill-intentioned query will cause a real system crash).

– . . .

While we will not be able to show in detail how we can account for all of these
characteristics (but we will do to some extent with some of them), we hope to con-
vince the reader that we provide the infrastructure enough, both at the conceptual
and implementation level, to actually generate functions which provide safe upper
and lower bounds for them, and for others not cited here.

3 An Overall Description of the Analysis Process

Figure 3 shows the overall picture of the process we have designed and implemented.
The orchestration (which we are assuming is written in BPEL, although in princi-
ple the approach would be valid for other orchestration languages) is translated into
an intermediate language. This language, which syntactically can be seen as Prolog
terms / functors), maps very closely BPEL constructs into terms (Table 2). The advan-
tage is that we can, later on, work directly with this representation in a very concise
and comfortable way instead of having to use XML-traversal libraries which usually
add a burden to the process. The same process is used to obtain an easy-to-handle
intermediate representation of the XML types declared for the BPEL process. We will
not go in details into this part, as it is relevant only to make the whole process easier
to engineer and it adds little extra information.
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Declarations and definitions
Namespace prefix declaration :- prefix( Prefix, NamespaceURI).
Message or complex type definition :- struct( QName, Members).
Port type definition :- port_type( QName, Operations).
External service declaration :- service( PortName, Operation,

{ Trusted properties }).
Service definition service( PortName, Operation, InMsg, OutMsg)

:- Activity .
Activities

Do nothing empty
Assignment to variable / message part VarExpr <- Expr
Service invocation invoke( PortName, Operation, OutMsg, InMsg)
Sequence Activity1, Activity2
Conditional execution if( Cond, Activity1, Activity2)
While loop while( Cond, Activity)
Repeat-until loop repeatUntil( Activity, Cond)
For-each loop forEach( Counter, Start, End, Activity)
Scope scope( VarDeclarations, Activities)
Scope fault handler handler( Activity)

handler( FaultName, Activity)
Parallel flow with dependencies flow( LinkDeclarations, Activities)
Dependent activity in a flow float( Attributes, Activity)

Table 2. Elements of an abstract representation of an orchestration.

This intermediate representation is, in turn, translated into a logic programming
language (Ciao [12]) augmented with assertions [13] to express types and modes (i.e.,
which arguments are input and output). This information is generated from the orig-
inal BPEL process definitions and from the XML schemata, and is meant to help the
analyzer by making it “understand” more exactly what the original program meant
— i.e., not to loose information existing in the original orchestration. Intuitively, the
reason to do this is that Prolog has a very free view of types and a complex control
strategy (including built-in backtracking) and a naïve translation would generate a
program where more things than in the original one could happen, and therefore
the analysis results would very likely loose precision. We currently deal with the BPEL
characteristics shown in Table 2, which, for completeness, also presents the transla-
tion of the BPEL constructs into the intermediate (abstract tree) representation.

Finally, the result of the translation is to be fed into the resource consumption
analyzer of CiaoPP, which is able to infer upper and lower [14, 15] bounds for the a
generalization of cost complexity of logic programs.

It is interesting to note that, in general, we do not need the logic program to be
analyzed to be faithful to the operational semantics of BPEL, in the sense that BPEL
executions can be mimicked by the logic program. It has to reflect just the neces-
sary semantics for the analyzers to infer information without precision loss due to
the translation. This means that in general it may be necessary to tailor this transla-
tion to different cases according to the expected results of the analyzer. In our case,
the translated program, while not operationally equivalent to the BPEL process, is
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executable and does mirror the semantics of the BPEL process the domain under
analysis.

4 An Outline of the Translation from BPEL to Logic Programs

In this section we will briefly describe the translation of BPEL to a logic programming
language in order to analyze it taking advantage of existing tools. A set of BPEL pro-
cesses which form a (small) service network are taken as input of the process and the
result is a single logic programming file, where bpel process (and parts inside them)
are mapped onto predicates which call each other when the actual BPEL process
would invoke another service. In order to have a final code amenable to analysis, we
have at the moment restricted ourselves to a subset of BPEL which notwithstanding
we think is rich enough to actually express many (if not most) interesting real-life
cases.

4.1 Restrictions on the Input Language

We are restricting ourselves to orchestrations that follow a receive...reply inter-
action pattern, where different activities can take place between the reception of the
initiating message and the dispatching of the response. Such abstract orchestrations
answer to an invoke from another service. We of course plan to lift this require-
ment in a future and accept BPEL/WSDL process descriptions, identify fragments
which correspond to the request-response pattern along with the activities which
glue them together, and treat each of these fragments as we are doing now with each
BPEL process (i.e., transforming into intermediate code and analyzing them) in its
entirety.

We currently do not take into account correlation sets and other run-time mech-
anisms for communicating between stateful instances of Web orchestrations, such
as WS-Addressing. On the basis of the above mentioned fragmentation approach,
part of the future work will include an extension of the translation scheme where the
encapsulated state (which we have to carry around nonetheless) will be enriched to
allow correct handling of service callbacks. Similarly, we do not treat compensation
handlers in their BPEL semantics, as they rely on dynamic snapshots of scope vari-
able states, but rather concentrate on modeling faults and fault handling in scopes.

4.2 Type Translation

Services communicate using complex XML data structures whose typing informa-
tion is given by an XML Schema. The state of an executing orchestration consists of
a number of variables that themselves have simple or complex types. For the pur-
pose of simplicity, we abstract the multitude of simple types in XML Schemata into
just three disjoint types: numbers, atoms, representing strings, and booleans, with
values true and false.

XML Schemata are translated into the intermediate representation to make
it easier handling them, and finally into the type / assertion language of Ciao.
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:- regtype ’acme->reservationData’/1.
’acme->reservationData’(’acme->reservationData’(A, B, C)):-

num(A), num(B), list(C, ’acme->personInfo’).

:- regtype ’acme->personInfo’/1.
’acme->personInfo’(’acme->personInfo’(A, B)):-

atm(A), atm(B).

Fig. 4. Translation of types.

These type definitions are used to annotate the translated program and are
eventually used by the analyzer. Figure 4 shows an actual translation, automat-
ically obtained, for the hotel reservation scenario in Example 1. The type name
’acme->reservationData’ is a structure with the same name and with three fields:
two numbers and a list of elements of type ’acme->personInfo’. Each of this ele-
ments is in turn a structure with two fields being an atom each.

We use a subset of XPath as the expression language. To simplify translation of
expressions, we allow node navigation only along the descendant and attribute axes,
to ensure that navigation is statically decidable and based only on structural typing.

4.3 Translation of Control Structures

The basic idea of the the translation is to keep track of the functional dependency
of the resulting, response message on the input message with which a service is in-
voked. For every activity in the BPEL process, located at point i , a Prolog predicate
ai (x̄,ω) which performs a single action (corresponding to the activity) is generated.
Point marker i is a symbolic indicator that is structured as a path from the root po-
sition to a node in the activity tree, which is needed for allow for branching and
looping. Operation on point markers are: the next sibling activity i ′, and the k-th
sub-activity ik . x̄ represents a collection of current values of all variables accessible
at that point, and ω represents the state of the response message resulting from the
execution from that point onwards, assuming it successfully terminates.

Depending on the type of activity it relates to, the predicate performs some con-
dition testing, calculation, assignment or service invocation, and then directs the ex-
ecution to the next activity by calling the predicate which will be in charge of imple-
menting that activity, with an updated set of current variable values. Upon reception
of the initial message, the accessible variables correspond to the input and the out-
put messages, and when the end of the execution of the orchestration is reached the
output message is out together and unified with the Prolog variable which is going
to be returned to the caller. The same mechanism can be used to terminate process
arbitrarily at any point. More formally, a basic activity A in position i is translated
into

ai (x̄,ω) ← JAK(x̄, x̄ ′), ai ′ (x̄ ′,ω) .

where JAK is the translation into Prolog of activity A which transforms the state x̄
into the next state x̄ ′, and ai ′ is the predicate corresponding to the next activity. For
an assignment, JAK are the computation steps necessary to access the data (e.g., by
unfolding or reconstructing data trees) or perform calculations as specified by the
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XPath expression. For an invocation, JAK includes data access steps and the actual
call to the predicate that models the invoked service.

At a some point i , the translation will reach the final of the chunk it is is charge of
and there will not be a next activity in position i ′. Then the translation is given with
a clause of the form:

ai (x̄,Ω(x̄)) .

whereΩ(x̄) denotes the term corresponding to the output message constructed with
the current values of the reachable variables x̄. This message is propagated upwards
until it is returned to the top-level query or to some other translation of a BPEL pro-
cess which calls the service being translated.

Structured activities have a different translation each. An if-then-else activity
if(Cond, Then, Else) which is followed by an activity K is translated into two
clauses:

ai (x̄,ω) ← JCondK, !, ai1 (x̄ ′,ω) .

ai (x̄,ω) ← ai2 (x̄,ω) .

where JCondK succeeds iff Cond is met, predicate ai1 corresponds to the translation
of (Then,K ), and predicate ai2 corresponds to the translation (Else,K ).

A while loop while(Cond, Body), followed by K is translated likewise:

ai (x̄,ω) ← JCondK, !, ai1 (x̄ ′,ω) .

ai (x̄,ω) ← ai2 (x̄,ω) .

where ai1 corresponds to the continuation (Body,α) in which α is translated as a re-
cursive call back to ai (x̄,ω), and point i2 corresponds to K . Other looping constructs
can be derived from the scheme for the while: for instance, repeatUntil(Cond,
Body) is converted into (Body, while(¬Cond, Body)).

A new scope represented as scope(VarDeclarations, Activities) introduces new
variables and may have associated fault handlers. These new variables change the
structure of the environment in which the body of the scope is to be executed. There-
fore, a state representation z̄, different from x̄, is needed. The translation is:

ai (x̄,ω) ← ai1 (z̄,ω), ! .

ai (x̄,ω) ← ai2 (z̄,ω), ! .

...

ai (x̄,ω) ← ain (z̄,ω), .

where point i ′ corresponds to K , i1 corresponds to (Body,β,K ) of the scope, and
points i2..in correspond to fault continuations of the form (Handler,β,K ). In all con-
tinuations, translation of β adapts the output state representation z̄ ′ at the end of
execution of the scope’s body/fault handler to a representation x̄ ′ which is fed to the
translation of K .

Raising an exception, which can eventually be caught by a fault handlers, is trans-
lated into the failure of the corresponding predicate. Since we are not interested in
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exactly emulating the operational semantics of a BPEL process, in the translated code
we do not record the identity of the exception, but rather assume that the correct
fault handler is (non-deterministically) selected. That assumption enables the ana-
lyzer to calculate lower bounds for the computation in the case when no exception
raised, as well as the upper bound taking into account the upper bounds for all han-
dlers. Fault handler generation can be disabled in our translation, which is useful to
analyze both the cases where there is no fault or where there is some exception has
been raised.

Flows are modeled using the usual BPEL semantics, but without operationally
paralleling the execution. Activities declared as floats within a flow have their join
conditions and outgoing links among attributes, and support suppression of join
failure in case when the input condition is not met. Activities are ordered to respect
the dependencies. Links are internally declared as boolean variables visible in the
static scope of the flow.

4.4 Handling Structured Data and State

The translation presented before needs to be made more sophisticated in order to
take into account complex XML documents which are actually used as messages
and as contents of BPEL variables. It is often the case that elements of XML docu-
ments are accessed (using XPath expressions), retrieved, and checked in, for exam-
ple, if-then-else or while constructions. Modeling in Prolog the access primitives
of XPath and including calls to these primitives directly in the translated code is of
course a possibility which has the drawback that it almost certainly will confuse the
analyzers: they will not be able to tell whether two equivalent accesses, performed in
different points in code, actually point to the same field and would retrieve the same
element.

To assist the analyzer in tracking component values and correlating the changes
made to them, we take the approach of statically decomposing XML variables into
the necessary components and carry them around explicitly as predicate arguments
from that point onwards. Then, we no longer need to pass XML variables along with
its components, because it can be reconstructed on demand. That transformation
certainly makes the translated code a more difficult to understand for a human, but
on the other hand it is not designed to be human-readable (although it is to a great
extend), but to be amenable to analysis.

An inverse operation to unfolding a data tree is pruning it, which becomes nec-
essary when a previously unfolded node receives a new value, as a result of an as-
signment or a reception of a response message from an invoked service. In that case,
all of the descendant nodes in the data tree have to be invalidated and re-extracted
from the new data through a process of unfolding. The ultimate reason is to keep
the invariant that the values in the parameter list are always an up-to-date cache of
elements in the XML tree.
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Fig. 5. Unfolding (left) and pruning (right) data tree of a list.

4.5 Analyzing Unavailable Code

One possible drawback of our proposal is the assumption of the availability of the
BPEL code for remote services. There are good reasons for this unavailability: for
example, because some provider does not want to reveal which code is being run in
its servers. However, this turns out not to be a problem if we take into account that
the analysis, while starting with BPEL code, does not actually act on it directly, but
on an abstraction thereof which hides many details. Providers may offer this abstract
code in order for third parties to check the complexity the providers claim. By doing
so they would increment the confidence of their clients without revealing more than
strictly necesssary.

5 An Example of Translation and Analysis

We will illustrate the process of analysis by using a description of an orchestration,
translating it into a logic program, and reasoning on the results of applying to it a
resource usage analysis.

We use a representation of a process that performs hotel booking, along the lines
(but slightly simplified, for space reasons) of the example used in Section 2. For com-
pactness, we present the abstract description of such orchestration in our internal
representation form instead of plain BPEL, as shown on Figure 6. This representa-
tion contains information that is both found in the WSDL document (data types,
interface descriptions) and in the process definition itself (the processing logic).

The orchestration traverses the list of people to book a room and tries to reserve
a room in a hotel by invoking an external hotel service.4 If that is not possible, or if
a failure arises, a failure handler is activated that tries to cancel the reservations that
were already made before signaling failure to the client.

The translation of the orchestration produces an annotated logic program that
would be impractical to present in full in this paper due to its size. Figure 5 provides
some highlights on it. Part (a) shows the translation of the entry point of the service,
along with an entry annotation that helps the analyzer understand what the input
arguments are. The input message is unfolded into the first three arguments (A, B ,
C ), and D plays the role of ω. Part (b) shows translation of the main while loop, and
the second clause finishes the process by constructing the answer from the current

4 This is difference from Example 1: the orchestration does not query different hotels.

12



:- struct( hotres:resRequest, [
part( body): struct( hotres:resData)]).

:- struct( hotres:resResponse, [
part( body): struct( hotres: resData)]).

:- struct( hotres:resData, [
child( hotres:personCount): number,
child( hotres:priceLimit): number,
child( hotres:person):

list( struct( hotres:persInfo)) ]).

:- struct( hotres:persInfo, [
attribute( ’’:firstName): atom,
attribute( ’’:lastName): atom,
child( hotres:hotelName): atom,
child( hotres:roomNo): number ]).

:- port( hotres:agency, [
reserveGroup( struct( hotres:resRequest)):

struct( hotres:resResponse) ]).

:- port( hotres:hotel, [
reserveSingle( struct( hotres:persInfo)):

struct( hotres:persInfo),
cancelReservation( struct( hotres:persInfo)):

struct( hotres:persInfo) ]).

service( hotres:agency, reserveGroup, ’$req’, ’$resp’):-
[

’$resp.body/hotres:personCount’<-0,
’$resp.body/hotres:person’<-’$req.body/hotres:person’,
scope( [i:number],
[ ’$i’ <- 1,

while( ’$req.body/hotres:personCount>0’,
[

scope( [p: struct( hotres:persInfo),
r: struct( hotres:persInfo)],
[ ’$p’<- ’$req.body/hotres:person[$i]’,

invoke( hotres:hotel, reserveSingle, ’$p’, ’$r’),
if( ’$r/hotres:roomNo>0’,

’$resp.body/hotres:person[$i]’<-’$r’,
throw( hotres:unableToReserveGroup) ),

handler(
[ while( ’$i>1’,

[ ’$i’<- ’$i - 1’,
’$p’<- ’$resp.body/hotres:person[$i]’,
invoke( hotres:hotel, cancelReservation,

’$p’,’$r’)]),
throw( hotres:unableToCompleteRequest) ])

]),
’$i’ <- ’$i+1’,
’$req.body/hotres:personCount’ <-

’$req.body/hotres:personCount - 1’ ]) ]) ].

Fig. 6. Abstract representation of a group booking process

value of the response variable. Part (c) shows the translation of service invocation,
with previous unfolding of the outgoing message, and subsequent pruning of the
response variable data tree.

:- entry ’service_hotres->agency->reserveGroup’/4
:{gnd,num}*{gnd,num}*{gnd,’list_of_hotres->persInfo’}*var.

’service_hotres->agency->reserveGroup’(A,B,C,D) :-
act_1( A, B, C, 0, 0, [], D).

(a) Translation of the entry point to the process.

act_4( A, B, C, D, E, F, G, H):-
----(this is act_4:while(’$req.body/hotres:personCount>0’)),
A>0, !, act_5( A, B, C, D, E, F, G, H).

act_4( _, _, _, D, E, F, _, ’hotres->resResponse’( D, E, F)).

(b) Translation of the main while loop.

act_7( A, B, C, D, E, F, G, H, _, _, _, _, M):-
----(this is act_7:invoke( hotres:hotel, reserveSingle, ’$p’, ’$r’)),
H=’hotres->persInfo’(N, O, P, Q),
’service_hotres->hotel->reserveSingle’( N, O, P, Q, R),
act_8( A, B, C, D, E, F, G, N, O, P, Q, R, M).

(c) Translation of an external service invocation.

Fig. 7. Translation into logic program

The resource analysis finds out how many times some specific operations will
be called during the execution of the process. The resources we are interest in in
this example are: the number of all basic activities performed (assignments, external

13



With fault handling Without fault handling
Resource lower bound upper bound lower bound upper bound

Basic activities 2 7×n 5×n +2 5×n +2
Single reservations 0 n n n

Cancellations 0 n −1 0 0

Note: In the above formula, n stands for the value of the input argument
$req.body/hotres:personCount, taken as a non-negative integer.

Table 3. Resource analysis results for the group reservation service

invocations); the number of invocations of individual room reservations (operation
reserveSingle at the hotel service); and the number of invocations of reservation
cancellations (operation cancelReservation at the hotel service). From the num-
ber of invocations it is easy to deduce the number of messages exchanged during the
execution of the process. The results are displayed in Table 3, where the estimated
upper and lower bounds are expressed as the function of the initiating request. We
differentiate explicitly two cases: one which has the possibility of failure, in which the
associated fault handling is executed, which gives wider, more cautious estimates,
and another one in which the execution is successful (i.e. without fault generation
and handling).

6 Conclusions and Future Work

We have presented a resource analysis for BPEL which is based on a translation
to an intermediate programming language (Prolog) for which complexity analyz-
ers are available. These analyzers can be customized to analyze user-defined re-
sources, thereby opening the possibility of generating resource-consumption func-
tions, some of them of more interest for SOC than time complexity.

We sketched the core of the translation process, which approximates the behav-
ior of the original process network in such a way that the analysis results are not
affected. However, the behavior of the translation does not match, in general, that
of the original process. Our translation is partial in the sense that some issues, like
correlation sets, are not yet taken into account. A richer translation which we expect
will take into account this (and other) issues is being worked on.
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