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Abstract

Logic Programming Languages offer an excellent framework for the application

of automatic parallelization techniques. On the other hand, there are theoreti-

cal results that ensure when parallel(ized) programs are correct (i.e. obtain the

same results as their corresponding sequential ones), and when execution of par-

allel(ized) programs do not take longer than that of the sequential ones. However,

such results do not take into account a number of overheads which appear in prac-

tice, such as process creation and scheduling, which can induce a slow-down, or,

at least, limit speedup, if they are not controlled in some way. In this dissertation,

we have developed (an integrated in an advanced system for program analysis,

debugging and optimization) a complete automatic granularity control system for

logic programs whereby the granularity of parallel tasks, i.e. the work needed for

their complete execution, is efficiently estimated and used to limit parallelism so

that the effect of the mentioned overheads is controlled. The system is based on

a program analysis and transformation scheme, where as much work is done at

compile time as possible in order to avoid the introduction of runtime overheads.

For this purpose we have developed some program transformation techniques, so

that transformed programs perform an efficient granularity control at runtime,

and also have developed some program analysis techniques able to infer the in-

formation needed for the program transformation phase, such as (lower bounds

on) cost of procedures, which calls will not fail (non-failure analysis), etc.



The run-time overhead associated with the approach is usually quite small.

Moreover, a static analysis of the overhead associated with the granularity con-

trol process is performed in order to decide its convenience. The performance

improvements resulting from the incorporation of grain size control are shown

to be quite good, specially for systems with medium to large parallel execution

overheads.

The non-failure analysis that we have developed can detect procedures and

goals that can be guaranteed not to fail (i.e., to produce at least one solution or

not terminate), given mode and (upper approximation) type information. The

technique is based on an intuitively very simple notion, that of a (set of) tests

“covering” the type of a set of variables (i.e. for any element that belongs to the

type, at least one test will succeed). We show that the problem of determining a

covering is undecidable in general, and give decidability and complexity results for

the Herbrand and linear arithmetic constraint systems. We give sound algorithms

for determining covering that are precise and efficient in practice. Based on this

information, we show how to identify goals and procedures that can be guaranteed

to not fail at runtime.

Non-failure information is useful not only for estimating lower bounds on the

computational costs of goals (used for granularity control), but also, is useful for

many other applications, such as: avoiding speculative parallelism, programming

error detection, and program transformation.
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Chapter 1

Introduction

Logic Programming has traditionally been used for implementing typical Arti-

ficial Intelligence (AI) applications, and nowadays, it (and its extensions, such

as Constraint Logic Programming) has become a very powerful tool in the AI

field [Kow74, vEK76, Kow80, Col87, RN95]. This is not surprising, since Logic

Programming has some features which make it appropriate for the implemen-

tation of typical applications in this field, such as knowledge based systems,

knowledge bases, etc. Such applications are in general complex, involving com-

plex search processes and with a strong symbolic component. Moreover, logic

constitute a knowledge representation paradigm itself which has the important

feature of separating knowledge representation from the reasoning processes on

this knowledge. In terms of logic programming, we can say that logic is separated

from control. This feature (shared with declarative languages in general) allows

to tackle complex problems in a successful way.

On the other hand, regarding efficiency, most of the interesting applications of

AI require a great deal of computing capabilities, since in general they are large,

complex, with costly search and inference processes and with a mixture of sym-

bolic, numeric and data base processing, that often approximate or exceed the
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limits of computing capabilities of current systems. The use of computers avail-

able nowadays in the marketplace with high computing and storage capabilities

(such as mainframes or supercomputers), is an expensive solution to this efficiency

problem. However, a better solution can be to exploit parallelism in programs,

in order to achieve low-cost parallel architectures with a good performance (i.e.

good performance/prize ratio).

The parallelism existing in a logic program can basically be of two

types[Con83]: and-parallelism and or-parallelism. Or-parallelism consists on the

simultaneous execution, performed in different processors, of different paths of

the resolution tree. That is, is the parallel execution of different clauses whose

head unify with a particular goal. Or-parallelism is typical in non-deterministic

problems, i.e., search problems. Conceptually, this kind of parallelism is very

simple, an thus, its implementation is practically solved [LH85, War87b, Lus88,

Kal87, Sze89, War87a, AK90, CH83, Hau90].

And-parallelism[DeG84, Kal87, BSY88, CDD85, Her86, Lin88, WR87, WW88,

BR86, Con83, Fag87, Hua85, LK88, PK88, Kow79] consists on the parallel ex-

ecution of different body literals of a clause. In contrast with or-parallelism, it

arises in both, deterministic and non-deterministic problems, which broaden its

application field. However, its implementation is a particular complex tasks due

to the possible dependencies/interactions between candidate goals for parallel

execution.

It is possible to exploit the aforementioned types of parallelism in logic pro-

grams [Kal87]. However, parallelization in general is a very complex problem

to be performed manually by programmers. Thus, it is desirable to perform

it automatically. A lot of theoretical work has been done in automatic par-

allelization, and most of the problems to achieve it have been solved (see for

example [CC94, HR95]):
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• correctness: the parallel execution obtains the same results as the sequen-

tial, and

• “theoretic” efficiency: the amount of work performed is not greater or, at

least, there is no slow-down.

However, results on “theoretic” efficiency assume an idealized execution en-

vironment in which a number of practical overheads are ignored, such as those

associated with task creation, possible migration of tasks to remote processors,

the associated communication overheads, etc. Due to these overheads, and if the

granularity of parallel tasks, i.e. the work necessary for their complete execution,

is “too small”, it may happen that the costs are larger than the benefits in their

parallel execution. Of course, the concept of “small granularity” is relative: it

depends on the concrete system where parallel programs are running. We then

have a problem that we have to face: devise a method whereby the granularity of

parallel goals and their number can be controlled. Thus, the aim of granularity

control is to change parallel execution to sequential execution or vice-versa based

on some conditions related to grain size and overheads.

The benefits from controlling parallel task size will obviously be greater for

systems with greater parallel execution overheads. In fact, in many architectures

(e.g. distributed memory multiprocessors, workstation “farms”, etc.) such over-

heads can be very significant and, in them, automatic parallelization cannot in

general be done realistically without granularity control. In some other architec-

tures where the overheads for spawning goals in parallel are small (e.g. in small

shared memory multiprocessors) granularity control is not essential but it can

also achieve important improvements in speedup.
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1.1 State of the Art

Granularity control has been studied in the context of traditional program-

ming [KL88, MG89], functional programming [Hue93, HLA94], and also logic

programming [Kap88, DLH90, ZTD+92, DL93, LGHD94, LGHD96]. Perform-

ing an accurate granularity control at compile-time is difficult since most of the

information needed, as for example, input data size, is only known at run-time.

An useful strategy can be to do as much work as possible at compile-time, and

postpone some final decisions at run-time. This can be achieved by generating at

compile-time cost functions which estimate task costs as a function of input data

size, which are then evaluated at run-time when such size is known. Then, after

comparing costs of parallel and sequential executions, it can be determined which

of these types of executions are performed. This scheme was proposed by [DLH90]

in the context of logic programs and by [RM90] in the context of functional pro-

grams. However, the central topic of the approach proposed in [DLH90] was

really the problem of estimating upper bounds to task execution times, leaving

as future work the determination of how that information was to be used.

One of the challenges of this dissertation is to fill this gap by illustrating

and offering solutions for the many problems involved, for both the cases when

upper and lower bound information regarding task granularity is available, and

for a generic execution model. Such problems include on one hand estimating

the cost of goals, of the overheads associated with their parallel execution, and

of the granularity control technique itself. On the other hand there is also the

problem of devising, given that information, efficient compile-time and run-time

granularity control techniques. In this work we propose solutions to the many

problems previously mentioned.

An alternative approach is to determine only the relative cost of

goals [ZTD+92], which can be specially useful for optimizing an on-demand run-
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time scheduler, but may not be as effective in reducing task creation cost. These

approaches are in contrast with others, such as that of [Sar89] who bases his al-

gorithm on information obtained via runtime profiling rather than compile-time

analysis. [GH85] considers “serial combinators” with reasonable grain sizes, but

does not discuss the compile-time analysis necessary to estimate the amount of

work that may be done by a call. Serial combinators express fairly low-level con-

trol information (e.g. evaluating functions in parallel, waiting for some variables

to get a value, etc.) as pseudo-functions in a functional language. They are not

intended for direct use by programmers, but are intended to be inserted by an

automatically partitioning compiler.

We address the granularity control problem by using the overall approach

originally sketched by [DLH90] of computing complexity functions and perform-

ing program transformations at compile-time based on such functions, so that the

transformed program automatically controls granularity. Taking this approach as

a starting point, we have proposed a general granularity control system model

able to use information on lower/upper bounds on cost of procedures, and have

particularized such model to the case of logic programming and to or/and paral-

lelism [LGHD94, LGHD96].

In the context of logic programming, most of the work on compile-time cost

estimation of logic programs has focused on the estimation of upper bounds

on costs. However, in many applications, such as parallel implementations on

distributed-memory machines, one would prefer to work with lower bounds in-

stead [DLGHL97]. For this reason, we have developed an analysis that obtains

functions which estimate lower bounds on the cost of procedures as a function

of input data size. This work has been developed in the context of the ESPRIT

Project PARFORCE (1.992 – 1.995) and published in [DLGHL97]. Later on,

another work like ours has been developed [KSB97], however, instead of deter-

5



mining cost functions, it aims at determining data size thresholds for which it can

be ensured that the cost of a given procedure will be greater that a given grain

size. Thus, our work is more general and offers a broader application spectrum.

The biggest problem with the inference of lower bounds on the computational

cost of logic programs is the possibility of failure. Any attempt to infer lower

bounds has to contend with the possibility that a goal may fail during head

unification, yielding a trivial lower bound of 0. Thus, we need a non-failure

analysis [DLGH97] if we want non trivial lower bounds. In this dissertation, we

have tackled this challenge by developing a non-failure analysis such that given

mode and (upper approximation) type information, we can detect procedures and

goals that can be guaranteed to not fail [DLGH97]. Our approach to non-failure

analysis is inspired in some developed works on regular types [DZ92], equation and

disequation over the Herbrand Universe domain solving algorithms [CL89, Kun87,

LM87, LMM88, LMM91], and arithmetic constraint solving algorithms [Pug92,

PW93], so that we have achieved an algorithm able to deal with a broad number

of cases, and whose correctness can be proved based on theoretical works already

developed.

There is a related work with non-failure analysis, called cardinality analysis,

that infers lower and upper bounds on the number of solutions produced by

a call [BCMH94]. However, such analysis is more appropriate for determinism

analysis instead of determining which calls will not fail.

On the other hand, a significant shortcoming of the approach to cost esti-

mation presented in [DL93] is its loss in precision in the presence of divide-and-

conquer programs in which the sizes of the output arguments of the “divide”

predicates are dependent. Since this kind of programs are frequently used in

practice, their analysis was another challenge [DLGH95]. For this reason we have

proposed an improvement of the analysis of divide-and-conquer predicates, for
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both cases, lower and upper bound cost analysis [DLGHL97].

Most of the work on granularity control for logic programs has been devoted

to and-parallel systems. Thus, we found the need of extending the approach

based on program analysis and transformation to the or-parallelism case. This is

a problem that we tackled in [LGHD94, LGHD96].

In [AR94, AR97] a distributed parallel system is presented which incorporates

a simple granularity control for or–parallelism. However, it is not based on cost

analysis, but in the “age” of created choice points.

There are some related works on granularity analysis and control of concurrent

logic programs [GT94, GT95, Gal97], which are also based in the approach orig-

inally sketched by [DLH90] of computing cost functions and performing program

transformations at compile-time based on such functions, so that the transformed

program automatically controls granularity. However, such works do not describe

a granularity control system in the generality that we do, instead, they are cen-

tered on concurrent logic languages and shared memory multiprocessor systems.

Consequently, the proposed solutions in these works are quite particular. In con-

trast, we propose a general model for granularity control, and also particularized

it to and/or-logic programs. Thus, although both works are related and have

some common points, they solve very different particular problems, or solve the

same problems in a different way.

Another difference is that we use program transformation techniques to gen-

erate efficient code that performs granularity control at run-time (as for example,

program transformations to perform input data size computations), while the

other works do not perform any of this kind of optimizations (they are mainly

centered in several analysis of concurrent logic programs.)

Moreover, our work, is the only existing one that describe (in the generality

that we present it) and implements a complete and totally automatic granularity
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control system for logic programs. In fact, the first time we describe our complete

granularity control system that we propose is in [LGHD94], and the first version

of our size computation technique is described in [LGH93].

A further work on granularity control is [SCK98], however, it is based in the

use of a metric called “distance” and its objective is to limit the parallelism in

a program by keeping track of the the time distance between program points in

which parallelizations are performed, limiting this way the number of parallel

tasks created in the system.

1.2 Thesis Objectives

This thesis aims at giving answers to the challenges previously mentioned. Thus,

one important objective of the thesis is the development of efficient granular-

ity control techniques in order to justify even more its importance as an addi-

tional method to be considered in the optimization of parallel execution of logic

programs and to extend its scope of applicability to systems for which existing

schemas of granularity control do not mean any optimization.

We pretend to completely develop an automatic granularity control system

for logic programs and evaluate such a system in different parallel systems. We

pursue the objective that the techniques previously mentioned perform an efficient

and more accurate granularity control than the existing ones, and also, that

the run-time overhead associated to the technique be small, since most of the

granularity control will be performed at compile-time, relegating at run-time,

only strictly necessary work.

In order to achieve the mentioned objectives, the thesis develops a granularity

control system based on the program analysis and transformation schema initially

proposed in [DLH90]. In the program transformation phase, we pursue the ob-

jective of minimizing the run-time overhead [LGH95], while in program analysis,
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the objective is inferring all needed information for this program transformation.

It is worth of mentioning that some of the techniques that we have devel-

oped for granularity control, have other important applications. In particular,

non-failure information is very useful for the avoidance of speculative parallelism,

program error detection, and program transformation. For this reason, and also

because once that we had begun to work on non-failure analysis, the results were

very promising, we devoted very much effort on the development of the non-failure

analysis, not only having in mind its application to granularity control, but as an

objective by itself. For this reason, the reader may notice that we have devoted

more effort to non-failure analysis than to other parts that compose the gran-

ularity control system, as for example, the program transformation techniques,

or the determination of conditions for deciding between parallel and sequential

execution.

We also aims at studying the efficiency and accuracy of the developed tech-

niques, and finally, that these techniques be enough general to being applied to

other programming languages.

1.3 Main Contributions

We now enumerate the main contributions of this thesis. Since we have done

some parts of the work in collaboration with other researchers, we also mention

them. Moreover, we comment on the publications resulting from our work (for

brevity we do not mention the many technical reports of the ESPRIT and CICYT

projects, nor other technical reports also resulting of our work):

1. We have proposed a general model for a granularity control system which

is able to use lower and upper bounds on the cost of procedures, and have

particularized such model to the logic programming case in the context
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of to and/or-parallelism. The model is based in a program analysis and

transformation framework. This work has been done in collaboration with

Dr. Saumya Debray from University of Arizona and has been published

at the First International Symposium on Parallel Symbolic Computation

(PASCO) in 1994 [LGHD94], and also in the Journal of Symbolic Compu-

tation in 1966 [LGHD96] (the late is an improved and extended version of

the former).

2. We have completely implemented (and integrated in a real program pre-

compilation/optimization system: ciaopp [HBPLG99, HBC+99]), an au-

tomatic granularity control system for logic programs following the model

above-mentioned.

3. In order to develop the complete granularity control system that we have

proposed, we have solved two fundamental problems: a) Determining tasks

costs and overheads, and b) Controlling parallelism using this information.

We have described the solutions to these problems with enough generality so

that they could be applied to different systems (besides logic programming

systems), and to different execution models.

4. Regarding the problem of determining tasks costs and overheads:

(a) We have completed the upper bound cost estimation performed by the

CASLOG [DL93] system. In order to achieve this, we have integrated

the CASLOG system in the ciaopp system in such a way that the

information on types, modes and data size metrics needed by CASLOG

is automatically supplied by ciaopp analyzers, allowing this way that

the cost analysis be totally automatic.

(b) In order to achieve the aforementioned, we have adapted and inte-

grated in ciaopp (in collaboration with Dr. Francisco Bueno of the
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Technical University of Madrid) an implementation of Gallagher’s reg-

ular types analysis [GdW94]. Moreover, we have added the possibility

of using parametric types and of performing simplifications of type

definitions given both, as predicates or as a set of type rules (it is also

possible to perform a translation of such definitions in both ways).

(c) We have developed an analysis that infers lower bounds on the cost

of procedures as functions of input data size. We have implemented

this cost analysis and integrated it in the ciaopp system. We have

performed experiments that show that the analysis is accurate and

efficient. This work has also been done in collaboration Dr. Saumya

Debray (University of Arizona) and with Dr. Nai-Wei Lin (National

Chung Cheng University of Taiwan), and has been described in two

publications. The first one in the International Static Analysis Sympo-

sium (SAS) in 1994 [DLGHL94], which was also an invited talk given

by Dr. Saumya Debray, and where, besides describing our initial work

on lower bound cost estimation, we also discuss upper bound cost es-

timation and different problems related to the estimation of costs in

general. The second paper in question has been published at the Inter-

national Logic Programming Symposium (ILPS) in 1997 [DLGHL97].

(d) We have proposed an improvement of both types of cost analysis (up-

per and lower bound) in the presence of divide-and-conquer programs.

The work has been published in the above-mentioned paper.

(e) We have developed a non-failure analysis able to infer which (calls

to) predicates will not fail. We have implemented such analysis and

integrated in the ciaopp system. We have shown that the analysis

is fairly accurate and precise (more accurate than the existing ones).

This work has also been done in collaboration Dr. Saumya Debray
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(University of Arizona) and has been published at the International

Conference on Logic Programming (ICLP) in 1.997 [DLGH97].
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5. Regarding the problem of controlling parallelism using cost and overhead

information:

(a) We have proposed (efficient) conditions based on both upper and lower

bounds on task granularity to choose between parallel and sequential

execution and for a general execution model. This work has been

published in the papers mentioned in point 1 [LGHD94, LGHD96].

(b) We have proposed techniques for transforming programs so that they

perform an efficient run-time granularity control, as for example, a

technique for dynamic term size computation “on the fly”. A prelimi-

nary version of this technique has been published at the Second Span-

ish Conference on Declarative Programming (ProDe) in 1993 [LGH93],

and an improved and extended version of this paper has been pub-

lished at the International Conference on Logic Programming (ICLP)

in 1995 [LGH95].

6. We have performed an assessment of the accuracy and efficiency of tech-

niques that we have developed.

1.4 Structure of the Work

The structure of the rest of this work is as follows: in Chapter 2 we describe the

granularity control model that we propose. We comment on the many problems

that arise (some of them more subtle than they appear at first sight) and provide

general solutions to them. Finally, we show experimental results of the granularity

control techniques that we have developed.

In Chapter 3 we describe our lower bound cost analysis and its improvement

to deal with divide-and-conquer programs that we mentioned in the previous
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Section. We also comment on the implementation of such analysis that we have

performed and show experimental results.

In Chapter 4 we describe the non-failure analysis that we have developed

(needed for the lower bound cost analysis above-mentioned), we comment on its

implementation and also show experimental results.

In Chapter 5 we describe in detail one of the techniques for performing an

efficient run-time granularity control: the technique for dynamic input data size

computation “on the fly”. We also show experimental results of the gain achieved

by this optimization.

Finally, main conclusions and directions for future work are given in Chapter 6.
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Chapter 2

A Methodology for Granularity

Control

As mentioned in the introduction, several types of parallelism can be exploited in

logic programs while preserving correctness and efficiency, i.e. ensuring that the

parallel execution obtains the same results as the sequential one and the amount

of work performed is not greater. However, such results do not take into account

a number of overheads which appear in practice, such as process creation and

scheduling, which can induce a slow-down, or, at least, limit speedup, if they

are not controlled in some way. This chapter describes a methodology whereby

the granularity of parallel tasks, i.e. the work available under them, is efficiently

estimated and used to limit parallelism so that the effect of such overheads is

controlled. The run-time overhead associated with the approach is usually quite

small, since as much work is done at compile time as possible. Also, a number of

run-time optimizations are proposed. Moreover, a static analysis of the overhead

associated with the granularity control process is performed in order to decide its

convenience. The performance improvements resulting from the incorporation of

grain size control are shown to be quite good, specially for systems with medium

15



to large parallel execution overheads.

We know of no other work which describes a complete granularity control

system for logic programs, discusses the many problems that arise (some of them

more subtle than they appear at first sight) and provides solutions to them in the

generality that we present our work.

We do not discuss in detail the different types of overheads which may appear

in a parallel execution when comparing it to a sequential execution, which may

include not only execution time-related overheads but also, for example, mem-

ory consumption overheads, for conciseness, and because we are more concerned

with speedups, we concentrate mainly on time-related overheads. However, we

conjecture that a similar treatment to that which we propose can be applied to

the analysis and control of memory-related overheads.

2.1 A General Model

We start by discussing the basic issues to be addressed in our general approach

to granularity control, in terms of a generic execution model. In the following

sections we will particularize to the case of logic programs.

2.1.1 Deriving Sufficient Conditions

We first discuss how conditions for deciding between parallel and sequential exe-

cution can be devised. We consider a generic execution model: let g = g1, . . . , gn

be a task such that subtasks g1, . . . , gn are candidates for parallel execution, Ts

represents the cost (execution time) of the sequential execution of g, and Ti rep-

resents the cost of the execution of subtask gi.

There can be many different ways to execute g in parallel, involving different

choices of scheduling, load balancing, etc., each having its own cost (execution
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time). To simplify the discussion, we will assume that Tp represents in some way

all of the possible costs. More concretely, Tp ≤ Ts should be understood as “Ts

is greater or equal than any possible value for Tp”.

In a first approximation, we assume that the points of parallelization of g

are fixed. We also assume, for simplicity, and without loss of generality, that

no tests — such as, perhaps, “independence” tests [CC94, HR95] — other than

those related to granularity control are necessary.

Thus, the purpose of granularity control will be to determine, based on some

conditions, whether the gi’s are to be executed in parallel or sequentially. In doing

this, the objective is to improve the ratio between the parallel and sequential

execution times. An interesting goal is to ensure that Tp ≤ Ts. In general,

this condition cannot be determined before executing g, while granularity control

should intuitively be carried out ahead of time. Thus, we are forced to use

approximations. At this point one clear alternative is to give up on strictly

ensuring that Tp ≤ Ts and use some heuristics that have good average case

behavior. On the other hand, it is not easy to find such heuristics and, also, it is

of obvious practical importance to be able to ensure that parallel execution will

not take more time than the sequential one. This suggests an alternative solution:

evaluating a simpler condition which nevertheless can be proved to ensure that

Tp ≤ Ts. Such a condition can be based on computing an upper bound for Tp and

a lower bound for Ts. Ensuring Tp ≤ Ts corresponds to the case where the action

taken when the condition does not hold is to run sequentially, i.e. to a philosophy

were tasks are executed sequentially unless parallel execution can be shown to be

faster. This is useful when “parallelizing a sequential program.” This approach is

discussed in the following section. The converse case of “sequentializing a parallel

program”, in which detecting when the opposite condition Ts ≤ Tp holds is the

objective, is considered in Section 2.1.1.
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Parallelizing a Sequential Program

In order to derive a sufficient condition for the inequality Tp ≤ Ts, we derive

upper bounds for its left-hand-side and lower bounds for its right-hand-side, i.e.

a sufficient condition for Tp ≤ Ts is T u
p ≤ T l

s, where T
u
p denotes an upper bound

of Tp and T l
s a lower bound of Ts. We will use the superscripts l and u to denote

lower and upper bounds respectively throughout the discussion.

Assume that there are p free processors in the system at the instant in which

task g is about to be executed. Assume also that p ≥ 2 (if there is only one

processor, then execution is performed sequentially) and let m be the lowest

integer which is greater or equal than n/p, i.e. the ceiling of n
p
, denoted m = dn

p
e.

We have that T u
p = Spawu + Cu, where Spawu is an upper bound on the cost

of creating the n parallel subtasks, and Cu an upper bound on the execution of

g itself. Spawu will be dependent on the particular system in which task g is

going to be executed. It can be a constant, or a function of several parameters,

such as input data size, number of input arguments, number of tasks, etc. and

can be experimentally determined. We now consider how Cu can be computed.

Let Cu
i be an upper bound on the cost of subtask gi, and assume that Cu

1 , . . . , C
u
n

are ordered in descending order of cost. Two possible ways of computing Cu are

the following: Cu =
∑m

i=1C
u
i ; or C

u = m Cu
1 . Each Cu

i can be considered as the

sum of two components: Cu
i = Schedui +T

u
i , Sched

u
i denotes the time taken from

the point in which the parallel subtask gi is created until its execution is started

by a processor (possibly the same processor that created the subtask), i.e. the

cost of task preparation, scheduling, communication overheads, etc.1 T u
i denotes

the time taken by the execution of gi disregarding all the overheads mentioned

1Note that in some parallel systems, such as &-Prolog [HG91], Schedu
i can in some cases

be zero, since there is no overhead associated with the preparation of a parallel task if it is

executed by the same processor as the one which created the task.
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before. We assume that the tasks g1, . . . , gn are guaranteed to not fail. We also

assume that T l
s can be computed as follows: T l

s = T l
s1
+ · · · + T l

sn
, where T l

si
is a

lower bound of the cost of the (sequential) execution of subtask gi.

The following two lemmas summarize the previous discussion:

Lemma 2.1.1 If Spawu +
∑m

i=1C
u
i < T l

s1
+ · · ·+ T l

sn
, then Tp ≤ Ts.

Proof: Trivial.

Lemma 2.1.2 If Spawu +m Cu
1 < T l

s1
+ · · ·+ T l

sn
then Tp ≤ Ts

Proof: Trivial.

As mentioned in the introduction, bounds on execution costs often need to

be evaluated totally or partially at run-time, and thus also the conditions above.

It would be desirable to make this evaluation be as efficient as possible. There

is clearly a tradeoff between the evaluation cost of such a sufficient condition

and its accuracy. A sufficient condition with a simpler evaluation than those in

lemmas 2.1.1 and 2.1.2 is given below, based on a series of reasonable further

assumptions.

Assume that it is ensured that the tasks g1, . . . , gn will not take longer than

they would in a sequential execution, ignoring the time to spawn them and all the

associated parallel execution overheads2 and that Schedu1 , . . . , Sched
u
n are ordered

in descending order of cost. Let Thresu be a threshold computed using either

one of the following expressions: Thresu = Spawu + m Schedu1 ; or Thresu =

Spawu +
∑m

i=1 Sched
u
i .

Theorem 2.1.3 If there exist at least m+1 tasks t1, . . . , tm+1 among g1, . . . , gn,

such that for all i, 1 ≤ i ≤ (m + 1), Thresu ≤ Tslti, where Ts
l
ti
denotes a lower

bound of the cost of the sequential execution of task ti, then Tp ≤ Ts.
2This can be ensured for certain execution platforms, for example if the tasks are “indepen-

dent”. However in some cases, if the tasks are “dependent”, they may take longer than they

would in a sequential execution.
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Proof: Assume that Ts1 , . . . , Tsn
are ordered in descending order of cost, where

Tsi
denotes the cost of the sequential execution of task gi. Consider the following

condition:

T u
p ≤ Ts1 + · · ·+ Tsm

+ Tsm+1
+ · · ·+ Tsn

(2.1)

where T u
p = Thresu + Ts1 + · · ·+ Tsm

. We have that if this condition holds then

Tp ≤ Ts, since its left hand side is an upper bound of Tp. Simplifying condition 2.1

we obtain:

Thresu ≤ Tsm+1
+ · · ·+ Tsn

(2.2)

If there are at least m+1 tasks t1, . . . , tm+1 among g1, . . . , gn, such that for all i,

1 ≤ i ≤ (m+1), Thresu ≤ Tslti , then Thres
u ≤ Tsti (where Tsti denotes the cost

of the sequential execution of task ti), and there is some ti, 1 ≤ i ≤ m+ 1 which

is equal to some gj, m+1 ≤ j ≤ n and condition 2.2 holds because Thresu ≤ Tsj
.

We treat now a slightly more complex case in which we also consider other

costs, including the cost of granularity control itself: assume now that the execu-

tion of gi takes Ti time steps, such that Ti = Tsi
+Wi, where Wi is some “extra”

work due to either parallel execution itself (for example the cost of accessing re-

mote references) or granularity control or both of them. Let l (0 ≤ l ≤ n) be

the tasks for which we know that Wi 6= 0 (equivalently, Ti > Tsi
). Assume that

W u
1 , . . . ,W

u
l are ordered in descending order of cost, and let r = min(l,m). Then,

we can compute a new threshold, Thresuw, by addingW (Thresuw = Thresu+W )

to the previous threshold (Thresu). W can be computed in two possible ways:

W =
∑r

i=1W
u
i ; or W = r W u

1 .

Theorem 2.1.4 If there exist at least m+1 tasks t1, . . . , tm+1 among g1, . . . , gn,

such that for all i, 1 ≤ i ≤ (m + 1), Thresuw ≤ Tslti, where Ts
l
ti
denotes a lower

bound of the cost of the sequential execution of task ti, then Tp ≤ Ts.
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Proof: The proof is similar to that of theorem 2.1.3. Since Thresu +W + Ts1 +

· · ·+ Tsm
, is also an upper bound of Tp, we can follow the same argument in this

proof replacing condition 2.1 by Thresu+W +Ts1 + · · ·+Tsm
≤ Ts1 + · · ·+Tsm

+

Tsm+1
+ · · ·+ Tsn

Suppose now that we cannot ensure that for all i, 1 ≤ i ≤ n, gi is not going

to fail. Assume that gk is the leftmost task for which non-failure is not ensured,

for some 1 ≤ k ≤ n. We can modify the previous lemmas (2.1.1 and 2.1.2) and

theorems ( 2.1.3 and 2.1.4) slightly as follows.

Lemmas 2.1.1 and 2.1.2 can be reformulated as:

Lemma 2.1.5 If Spawu +
∑m

i=1C
u
i < T l

s1
+ · · ·+ T l

sk
, then Tp ≤ Ts.

Proof: Trivial.

Lemma 2.1.6 If Spawu +m Cu
1 < T l

s1
+ · · ·+ T l

sk
then Tp ≤ Ts

Proof: Trivial.

The only difference is that we consider T l
s1
+ · · ·+ T l

sk
on the right hand side

of the respective inequation instead of T l
s1
+ · · ·+ T l

sn
.

Theorems 2.1.3 and 2.1.4 can be reformulated by assuming as hypothesis that

the tasks which have the m greatest costs are among g1, . . . , gk. The proofs are

similar.

Theorem 2.1.7 If there exist at least m+1 tasks t1, . . . , tm+1 among g1, . . . , gk,

such that for all i, 1 ≤ i ≤ (m + 1), Thresu ≤ Tslti, where Ts
l
ti
denotes a lower

bound of the cost of the sequential execution of task ti, and the tasks with the m

greatest costs are among g1, . . . , gk, then Tp ≤ Ts.

Theorem 2.1.8 If there exist at least m+1 tasks t1, . . . , tm+1 among g1, . . . , gk,

such that for all i, 1 ≤ i ≤ (m + 1), Thresuw ≤ Tslti, where Ts
l
ti
denotes a lower

bound of the cost of the sequential execution of task ti, and the tasks with the m

greatest costs are among g1, . . . , gk, then Tp ≤ Ts.
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Sequentializing a Parallel Program

Assume now that we want to detect when Ts ≤ Tp holds, because we have a

parallel program and want to profit from performing some sequentializations. In

this case we can compute T u
s and T l

p. Let T l
i be a lower bound on the execution

time of gi. T
l
p can be determined in several ways:

1. If n ≤ p then: T l
p = Spawl + max(T l

1, . . . , T
l
n) else: T l

p = Spawl +

dn
p
emin(T l

1, . . . , T
l
n).

2. T l
p = Spawl+

∑k
i=1 T

l
i , where k = dn

p
e and T l

1, . . . , T
l
n are ordered in ascend-

ing order.

3. T l
p = Spawl +

T l
s1

+···+T l
sn

p

The determination of T l
i will depend, of course, on the way gi is going to be

executed. If the execution is going to be performed in parallel with no granularity

control, with granularity control, or sequentially, we compute T l
pi
, T l

gi
, or T l

si

respectively. The determination of T l
pi

and T l
gi
is discussed in Section 2.7.

We can choose the maximum of the different possibilities for computing T l
p.

In general, if there are n different choices x1, . . . , xn for computing T l
p (T

u
p , respec-

tively) we will choose T l
p = max(x1, . . . , xn) ( T

u
p = min(x1, . . . , xn), respectively).

2.1.2 Compile-time vs. Run-time Control

The evaluation of the sufficient conditions proposed in the previous sections can

in principle be performed totally at run-time, compile-time or partially at each

of them. For example, it might be possible to determine at compile time if

the condition expressed in Theorem 2.1.3 will always be true when evaluated

at run-time. Let C l be a lower bound of the cost of each gi, 1 ≤ i ≤ n, then if

Thresu ≤ (n−m)C l the condition of the theorem holds, since (n−m)C l is a lower

22



bound on Tsm+1
+ · · ·+Tsn

. Clearly, in this case it is not necessary to perform any

granularity control and tasks can always be executed in parallel. The converse

case is also possible where tasks can be statically determined to be better executed

sequentially. Thus, from the granularity control point of view program parts can

be classified as parallel (all the performed parallelizations are unconditional),

sequential (there are no parallel tasks), and performing granularity control (tests

based on granularity information are performed at run-time in order to decide

between parallel or sequential execution). Whether it is done at compile-time or

at run-time, in order to perform granularity control two basic issues have to be

addressed: how the bounds on the costs and overheads which are the parameters

of the sufficient conditions are computed (cost and overhead analysis) and how the

sufficient conditions are used to control parallelism (granularity control). They

are the subjects of the following sections. Both of these issues imply in general

both compile-time and run-time techniques in our approach.

Task Cost Analysis

Since task cost is not in general computable at compile-time, we are forced to

resort to approximations and, possibly, to performing some work at run-time. In

fact, as pointed out by [DLH90], since the work done by a call to a recursive

procedure often depends on the size of its input, such work cannot in general be

estimated in any reasonable way at compile time and for such calls some run-

time work is necessary. The basic approach used is as follows: given a call p,

an expression Φp(n) is computed that a) it is relatively easy to evaluate, and b)

it approximates Costp(n), where Costp(n) denotes the cost of computing p for

an input of size n. The idea is that Φp(n) is determined at compile time. It

is then evaluated at run-time, when the size of the input is known, yielding an

estimate of the cost of the call. We point out that the evaluation of Φp(n) will be
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simplified as much as possible by the compiler. In many cases it will be possible

to simplify the cost function (or, more precisely, the test to be performed) to

the point of being able to statically derive a threshold size for one of the input

size arguments. In that case, at runtime, such input size is simply compared

against the (precomputed) threshold, and thus the function does not need to be

evaluated. This simplification is discussed in Section 2.5.1. If after simplification,

the resulting expression is costly to evaluate, the compiler may decide to compute

a safe approximation with a smaller evaluation cost. We would also like to point

out that the cost of evaluating tests, and, in general, of performing granularity

control, is also taken into account, as described in Section 2.6. In the following

we will refer to the compile-time computed expressions Φp(n) as cost functions.

As mentioned in Section 2.1 the approximation of the condition used to decide

between parallelization and sequentialization can be based either on some heuris-

tics or on a safe approximation (i.e. an upper or lower bound). For the latter

approach we were able to show sufficient conditions for parallel execution while

preserving efficiency. Because of these results, we will in general require Φp(n) to

be not just an approximation, but also a bound on the actual execution cost. For-

tunately, as mentioned before, much work has been presented on (time) complex-

ity analysis of programs [Met88, Wad88, Ros89, BH89, Sar89, ZZ89, FSZ91]. The

most directly applicable are the methods presented by [DL93] and [DLGHL97]

for statically estimating cost functions for predicates in a logic program. The

two approaches have much in common but they differ in the way the approxi-

mation is done. In the first one upper bounds of task costs are computed, that

is (∀n)Costp(n) ≤ Φp(n), while in the second one, to be discussed later in this

chapter and also in more detail in chapter 3, the converse approximation is done:

(∀n)Costp(n) ≥ Φp(n).

Example 2.1.1 Consider the procedure q/2 defined as follows:
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q([],[]).

q([H|T],[X|Y]):- X is H + 1, q(T,Y).

where the first argument is an input argument. Assume that the cost unit is

the number of resolution steps. In a first approximation, and for simplicity, we

suppose that the cost of a resolution step (i.e., procedure call) is the same as

that of the is/2 builtin. With these assumptions, the cost function of q/2 is

Costq(n) = 2 n+1, where n is the size (length) of the input list (first argument).

2

Parallelization Overhead Analysis

Regarding the determination of the overheads that appear together with the

costs in the sufficient conditions of Section 2.1.1, as mentioned there, this is a

more or less trivial task in systems where such costs can be considered constant.

However, it is often the case that such costs have, in addition to a constant

component, other components which can be a function of several parameters,

such as input data size, number of input arguments, number of tasks, number

of active processors in the system, type of processor, etc., in which case some

run-time evaluation will be needed. For example, in a distributed system, task

spawning cost is often proportional to data size, since in many models a complete

closure (a call plus its arguments) is sent to the remote processor. Thus, the

evaluation of the overheads also implies in general the generation at compile-time

of a cost function, to be evaluated at run-time when parameters (such as data

size in our previous example) are known.

Performing Granularity Control

Let us assume that techniques, such as those described in general terms above,

for determining task costs and overheads are given. Then, the remainder of the
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granularity control task is to devise a way to actually compute such costs and

then control task creation using such information.

We take again the approach of doing as much of the work as possible at

compile-time. We propose performing a transformation of the program in such

a way that the cost computations and spawning decisions are encoded in the

program itself, and in the most efficient way possible. The idea is to postpone the

actual computations and decisions until run-time when the parameters missing

at compile-time, such as data sizes or processor load, are available. In particular,

the transformed programs will perform the following tasks: compute input data

sizes; use those sizes to evaluate the cost functions; estimate the spawning and

scheduling overheads; decide whether to schedule tasks in parallel or sequentially;

decide whether granularity control should be continued or not, etc.

2.2 Cost Analysis in Logic Programming

We now further discuss the cost analysis problem in the context of logic programs.

We distinguish between the cases of and-parallelism and or-parallelism.

2.2.1 Cost Analysis for And-parallelism

In (goal level) and-parallelism the units being parallelized are goals. We have

developed a lower bound goal cost analysis (which also includes a non-failure

analysis) which we briefly sketch — see the work of [DLGHL97] for details. The

problem when estimating lower bounds is that in general it is necessary to ac-

count for the possibility of failure of head unification, leading a naive analysis

to always derive a trivial lower bound of 0. Given (an upper approximation of)

mode and type information, the analysis can detect procedures and goals which

can be guaranteed not to fail. The technique is based on an intuitively very simple
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notion, that of a (set of) tests “covering” the type of a variable. Conceptually, we

can think of a clause as consisting of a set of primitive tests on the actual param-

eters of the call, followed by body goals. The tests at the beginning determine

whether the clause should be executed or not, and in general may involve pattern

matching, arithmetic tests, type tests, etc. A type refers to a set of terms. For

any given clause, we refer to the conjunction of the primitive tests that determine

whether it will be executed as “the tests of the clause”. The disjunction of all the

tests of the clauses that define a particular predicate will be referred to as “the

test of that predicate.” Informally, the test of a predicate covers the type of a

variable if binding this variable to any value in the type, the test of the predicate

succeeds (the extension of this notion to tuples of variables is straightforward).

An upper-bound cost analysis of goals has been described by [DL93]. It is

very similar and simpler than that of lower bounds, since the fact that an upper

bound on the actual run-time cost is being computed allows assuming that each

literal in the body of the clause succeeds and also that all clauses are executed

(independently of whether all solutions are required or not).

2.2.2 Cost analysis for Or-parallelism

The case of or-parallelism is similar to that of and-parallelism except that the

units being parallelized are branches of the computation rather than goals. How-

ever, the cost analyses of the previous sections can be adapted by simply taking

into account the “continuation” of the choice points being considered. As an

example, consider a clause h :− . . . , L, L1, . . . , Ln.. Assume that the predicate

of literal L is p, and the definition of predicate p contains “c” “eligible” clauses

{Cl1, . . . , Clc}, where Cli = hi :− bi. In the or-parallel execution of literal L,

the “c” choices (each one corresponding to a clause of predicate p) and their

continuations (the rest of the Li, 1 ≤ i ≤ n, and the other goals Ln+1 to Lk
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that may appear after them in the resolvent at the time L is leftmost) are ex-

ecuted in parallel. Let Costcli(x) and CostLi
(x) denote the cost of clause Cli

and literal Li respectively, then the cost of the choice corresponding to clause

Cli, denoted by Costchi
can be computed as follows: if we are computing lower

bounds we have that Costlchi
(x) = Costlcli(x) +

m∑
j=1

CostlLj
(x), if non-failure is

ensured for clause Cli and m is the leftmost literal for which non-failure is not

ensured; or, alternatively, Costlchi
(x) = Costlcli(x), if non-failure is not ensured

for clause Cli. On the other hand, when computing upper bounds we have that

Costuchi
(x) = Costucli(x) +

k∑
j=1

CostuLj
(x).

The determination of Ln+1 to Lk, the continuations of the clause under con-

sideration, cannot be obtained directly from the call graph in the presence of

last call optimization. The problem is that while non-tail-calls in the body of a

procedure return to the caller, because of last call optimization, a tail call does

not return to its caller, but rather to the nearest ancestor procedure that made

a non-tail call. Thus, while for non-tail calls the transfer of control from the

caller to the callee and back is evident from the program’s call graph, this is not

the case for tail calls. To address this problem, given a program we construct a

context-free grammar as follows: for each program clause

p(t̄) :− Guard | q1(t̄1), . . . , qn(t̄n)

the grammar contains a production

p −→ q1 L1 q2 L2 . . . Ln−1 qn

, where the Li, which are labels corresponding to procedure continuations, are

the terminal symbols of the grammar. We then compute FOLLOW sets for this

grammar [ASU86]: for any predicate p, FOLLOW(p) gives the set of possible

continuations for p.
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2.3 Granularity Control in Logic Programming:

the And-Parallelism Case

We use an example in this section to explain the basic program transformation

intuitively since a formal presentation would unnecessarily make it more com-

plex.3

Example 2.3.1 Consider the predicate q/2 defined in Example 2.1.1, the pred-

icate r/2 defined as follows:

r([],[]).

r([X|RX],[X2|RX1]) :- X1 is X * 2, X2 is X1 + 7, r(RX,RX1).

and the parallel goal: ..., q(X,Y) & r(X), ..., in which literals q(X,Y) and

r(Z) are executed in parallel, as described by the & (parallel conjunction) con-

nective [HG91].

The cost functions of q/2 and r/2 are Costq(n) = 2 n + 1 and Costr(n) =

3 n + 1 respectively. Assume a number of processors p ≥ 2. According to

Theorem 2.1.3, the previous goal can safely be transformed into the following

one:

..., length(X, LX), Cost_q is LX*2+1, Cost_r is LX*3+1,

(Cost_q > 15, Cost_r > 15 -> q(X,Y) & r(X); q(X,Y), r(X)), ...

where a value for the threshold (Thresu) of 15 units of computation is assumed,

the variables Cost q and Cost r denote the cost of the (sequential) execution of

goal q(X,Y) and r(Z) respectively, and LX denotes the length of the list X. 2

3Although presenting the technique proposed in terms of a source-to-source transformation

is convenient for clarity and also a viable implementation technique, the transformation can also

obviously be implemented at a lower level in order to reduce the run-time overheads involved

even further.
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2.4 Granularity Control in Logic Programming:

the Or-Parallelism Case

Consider the clause body . . . , L, L1, . . . , Ln. in the example in Section 2.2.2. This

body can be transformed in order to perform granularity control as follows:

. . . , (cond → L′ ; L), L1, . . . , Ln. Where L′ is the parallel version of L, and is

created by replacing the predicate name of L (p) by another one, say p′, such

that p′ is the parallel version of p, and is obtained from p by replacing predicate

name p with p′ in all clauses of p. p′ is then declared as “parallel” by means of

the appropriate directive. If cond holds, then the literal L′ (parallel version of L)

is executed otherwise L is executed.

A problem with the use of a predicate level parallelism directive is that either

all or none of its clauses are executed in parallel. Since there can be differences

of costs between clauses, this can lead to worse load-balancing, so a better choice

can be the use of some declaration which allows us to specify clusters of clauses

such that within each cluster clauses are executed sequentially, and the different

clusters are executed in parallel. That way, we can have several parallel versions

of a predicate, each of them executed if a particular condition holds. This is

illustrated in the following example, where a call to p in ...,p, q, r. and

predicate p are transformed as follows:

..., (cond_1 -> p1 ; cond_2 -> p2; p), q, r.

p:- q1, q2, q3. p1:- q1, q2, q3 // p2:- q1, q2, q3 //

p:- r1, r2. p1:- r1, r2 // p2:- r1, r2.

p:- s1, s2. p1:- s1, s2. p2:- s1, s2.

p. p1. p2.

Here, the directive // declares three clusters for the predicate p1: the first and

second ones composed of the first and second clauses respectively, and the third
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cluster composed of the third and fourth clauses (these two clauses are executed

or explored sequentially). Also, for the predicate p2 we have two clusters: the

first one composed of the first clause and the second one composed of the second,

third and fourth clauses.

2.5 Reducing Granularity Control Overhead

The transformations proposed inevitably introduce some new overheads in the

execution. It would be desirable to reduce this run-time overhead as much as

possible. We propose optimizations which include test simplification, improved

term size computation, and stopping granularity control, where if it can be de-

termined that a goal will not produce tasks which are candidates for parallel

execution, then a version which does not perform granularity control is executed.

In order to discuss the optimizations we need to introduce some terms. We

first recall the notion of “size” of a term. Various measures can be used to

determine the “size” of an input, e.g., term-size, term-depth, list-length, integer-

value, etc. [DL93]. The measure(s) appropriate in a given situation can gener-

ally be determined by examining the operations performed in the program. Let

| · |m : H → N⊥ be a function that maps ground terms to their sizes under a spe-

cific measure m, where H is the Herbrand universe, i.e. the set of ground terms of

the language, and N⊥ the set of natural numbers augmented with a special sym-

bol ⊥, denoting “undefined”. Examples of such functions are “list length”, which

maps ground lists to their lengths and all other ground terms to ⊥; “term size”,

which maps every ground term to the number of constants and function symbols

appearing in it; “term depth”, which maps every ground term to the depth of its

tree representation; and so on. Thus, |[a, b]|list length = 2, but |f(a)|list length = ⊥.

We extend the definition of | · |m to tuples of terms in the obvious way, by defining

the function Sizm : Hn 7→ N⊥
n, such that Sizm((t1, . . . , tn)) = (|t1|m, . . . , |tn|m).
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Let I and I ′ denote two tuples of terms, Φ a set of substitutions and θ a substi-

tution. We also define the set of states corresponding to a certain clause point

as those states whose leftmost goal corresponds to the literal after that program

point. We define the set of substitutions at a clause point in a similar way.

Definition 2.5.1 [Comp function] Given a state s1 corresponding to a clause

point p1, the current substitution θ corresponding to that state, and another

clause point p2, we define comp(θ, p2) as the set of substitutions at point p2

which correspond to states that are in the same derivation as s1.

Definition 2.5.2 [Directly computable sizes] Consider a set Φ of substitutions

at a clause point p1 and another clause point p2. Sizm(I
′) is directly computable

at p2 from Sizm(I) with respect to Φ if exists a (computable) function ψ such that

for all θ, θ′, θ ∈ Φ, and θ′ ∈ comp(θ, p2), Sizm(Iθ) is defined and Sizm(I
′θ′) =

ψ(Sizm(Iθ)).

Definition 2.5.3 [Equivalence of expressions] Two expressions E and E ′ are

equivalent with respect to the set of substitutions Φ if for all θ ∈ Φ Eθ yields the

same value as E ′θ when evaluated.

2.5.1 Test Simplification

Informally, we can view test simplification as follows: the starting point is an

expression which is a function of the size of a set of terms. We try to find an

expression which is equivalent to it but which is a function of a smaller set of

terms. Also, we apply standard arithmetic simplifications to this expression.

Since this new expression will have less variables, simplification will be easier and

the corresponding simplified expression will be less costly to compute.

Let us now formally describe the notion of simplification of expressions. Con-

sider the set of substitutions Φ′ at clause point p2, just before execution of goal g.
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Assume that we have an expression E(Sizm(I
′)) to evaluate at p2. The objective

is to find a program point p1 and a tuple of terms I such that Sizm(I
′) is directly

computable at p2 from Sizm(I) with respect to Φ with the function ψ, where Φ

is the set of substitutions at clause point p1 and either p1 = p2 or p1 precedes p2

and E(Sizm(I
′)) appear after p1. We have that E(ψ(Sizm(I)) is equivalent to

E(Sizm(I
′)) with respect to Φ′. Then we can compute an expression E ′ which

is equivalent to E(ψ(Sizm(I)) (by means of simplifications) with respect to Φ′

and its evaluation cost is less than that of E(ψ(Sizm(I)). The following example

illustrates this kind of optimization.

Example 2.5.1 Consider the goal ..., q(X,Y) & r(X), ... in Example 2.3.1.

In this example I = I ′ = (X); Siz(I ′) is directly computable from Siz(I) with

respect to Φ with ψ, where ψ is the identity function. Siz(Iθ) is defined for all

θ in Φ, since X is bound to a ground list. Thus, we have that for all θ ∈ Φ and

for all θ′ ∈ comp(θ, p2), Siz(I
′θ′) = ψ(Siz(Iθ)). E(Siz(I)) ≡ max(2 Siz(X) +

1, 3 Siz(X) + 1) + 15 ≤ 2 Siz(X) + 1 + 3 Siz(X) + 1. Let us now compute E ′.

We have that for all θ ∈ Φ, max(2 Siz(X) + 1, 3 Siz(X) + 1) ≡ 3 Siz(X) + 1,

so we have 3 Siz(X) + 1+ 15 ≤ 2 Siz(X) + 1+ 3 Siz(X) + 1 which is simplified

to 15 ≤ 2 Siz(X) + 1 and then to 7 ≤ Siz(X) which is E ′. Using this expression

we get a more efficient transformed program than in Example 2.3.1:

..., length(X, LX), (LX > 7 -> q(X, Y) & r(X) ; q(X, Y), r(X)), ...

2

In some cases test simplification avoids evaluating cost functions, so that term

sizes are compared directly with some threshold. Assume that we have a test of

the form Costp(n) > G where G is a number and Costp(n) is a monotone cost

function on one variable for some predicate p. In this case, a value k can be

found such that Costp(k) ≤ G and Costp(k + 1) > G, so that the expression

Costp(n) > G can be simplified to n > k.
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2.5.2 Stopping Granularity Control

An important optimization aimed at reducing the cost of granularity control

is based on detecting when an invariant holds recursively on the condition to

perform parallelization/sequentialization and executing in those cases a version

of the predicate which does not perform granularity control and executes in the

appropriate way which corresponds to the invariant.

Example 2.5.2 Consider the predicate qsort/2 defined as follows:

qsort([], []).

qsort([First|L1], L2) :- partition(First, L1, Ls, Lg),

(qsort(Ls, Ls2) & qsort(Lg, Lg2)),

append(Ls2, [First|Lg2], L2).

The following transformation will perform granularity control based on the condi-

tion given in Theorem 2.1.3 and the detection of an invariant (tests have already

been simplified —we omit details— so that the input data sizes are directly com-

pared with a threshold):

g_qsort([], []).

g_qsort([First|L1], L2) :-

partition(First, L1, Ls, Lg),

length(Ls, SLs), length(Lg, SLg),

(SLs > 20 -> (SLg > 20 -> g_qsort(Ls, Ls2) & g_qsort(Lg, Lg2);

g_qsort(Ls, Ls2) , s_qsort(Lg, Lg2))

; (SLg > 20 -> s_qsort(Ls, Ls2) , g_qsort(Lg, Lg2);

s_qsort(Ls, Ls2) , s_qsort(Lg, Lg2))),

append(Ls2, [First|Lg2], L2).

s_qsort([], []).
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s_qsort([First|L1], L2) :-

partition(First, L1, Ls, Lg),

s_qsort(Ls, Ls2), s_qsort(Lg, Lg2),

append(Ls2, [First|Lg2], L2).

Note that if the input size is less than the threshold (20 units of computation

in this case4) then a (sequential) version which does not perform granularity

control is executed. This is based on the detection of a recursive invariant: in

subsequent recursions this goal will not produce tasks with input sizes greater or

equal than the threshold, and thus, for all of them, execution should be performed

sequentially and obviously no granularity control is needed. [GH91] presented

techniques for detecting such invariants. 2

2.5.3 Reducing Term Size Computation Overhead

With regard to term size computation, the standard approach is to explicitly

traverse terms, using builtins such as length/2. However such computation can

also be carried out in other ways which can potentially reduce run-time overhead:

1. In the case where input data sizes to the subgoals in the body that are

candidates for parallel execution are directly computable from those in the

clause head (an example of this is the classical “Fibonacci” benchmark –

see Example 2.7.1) such sizes can be computed by evaluating an arithmetic

operation. Clause heads can supply their input data size through additional

arguments.

2. Otherwise term size computation can be simplified by transforming certain

procedures in such a way that they compute term sizes “on the fly” [LGH95].

4This threshold is determined experimentally, by taking the average value resulting from

several runs.
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3. In the cases where term sizes are compared directly with a threshold it is

not necessary to traverse all the terms involved, but rather only to the point

at which the threshold is reached.

2.6 Taking Into Account the Cost of Granular-

ity Control

As a result of the simplifications proposed in the previous sections three different

types of specialized versions of a predicate can be generated: sequential, parallel

with no granularity control, and parallel with granularity control. In this section

we address the issue of how to select among these versions. We can view this

as a reconsideration of the original problem of deciding between parallel and

sequential execution, addressed in Section 2.1, but where we add the new issue

of deciding whether to perform granularity control or not. Let Ts, Tp, and Tg

denote the execution time of the sequential, parallel, and granularity control

versions for the predicate corresponding to a given call. The original problem

tackled in Section 2.1 can be viewed as determining min(Ts, Tp, Tg). Again, this

is not computable ahead of the execution of the goals and we are once more

forced to compute an approximation based on heuristics or sufficient conditions.

We again take the latter approach, i.e. using sufficient conditions, which we would

in principle try to compute for each of the six possible cases involved: Tg ≤ Ts,

Tp ≤ Ts, Tp ≤ Tg, Ts ≤ Tg, Ts ≤ Tp and Tg ≤ Tp. Since we can only approximate

these conditions an important issue is the decision taken when none of such

conditions can be proved to hold. One solution is to have a pre-determined order

relation which is used unless another relation can be proven to be true. This

corresponds to the two cases of “sequentializing by default” or “parallelizing by

default” studied in Section 2.1, where only one condition was considered. For
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example, a default ordering might be: Tg ≤ Ts ≤ Tp, which essentially expresses

a default assumption that the optimal execution time is achieved when execution

is performed in parallel with granularity control unless the contrary is proven.

Goals are also executed sequentially unless parallel execution is proven to take

less time. If the “no-slowdown” condition is to be enforced, i.e. it is required that

the sequential execution time not be exceeded, then, in all pre-determined order

relations we must have that Ts ≤ Tg and Ts ≤ Tp.

Note that these pre-determined order relations can be partial. In that case at

some point a heuristic has to be applied. The order between two costs T1 and T2

can then be determined as follows: If T1 and T2 are related in the pre-determined

order relation, then compute a sufficient condition to prove the opposite order;

otherwise, if some sufficient condition to prove either of the relations T1 ≤ T2 or

T2 ≤ T1 holds then we choose the corresponding one; otherwise the order can

be determined by means of some heuristics. A good heuristic can be to use the

average of the lower and upper bound which are already computed or take the

average of the computed costs of the different clauses of a predicate.

2.7 Determining Tp and Tg of a call

The determination of a bound for Ts has already been addressed in the previous

sections. There, Tp was simply assumed to be the same as Ts, taking as its

approximation the opposite bound to that used for Ts. We now address the issue

of determining Tp more precisely and also determining Tg. For conciseness, we

present the techniques by means of an example.

Example 2.7.1 Let us consider a transformed version gfib/2 of the fib/2 pred-

icate which performs run-time granularity control:

gfib(0, 0).
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gfib(1, 1).

gfib(N, F):- N1 is N - 1, N2 is N - 2,

(N > 15 -> gfib(N1, F1) & gfib(N2, F2)

; sfib(N1,F1), sfib(N2,F2)),

F is F1 + F2.

sfib(0, 0).

sfib(1, 1).

sfib(N, F):- N > 1, N1 is N - 1, N2 is N - 2,

sfib(N1, F1), sfib(N2, F2),

F is F1+F2.

2

2.7.1 Cost of parallel execution without granularity con-

trol: Tp

Upper bounds

In general it is difficult to give a non-trivial upper bound on the cost of the

parallel execution of a given set of tasks, since it is difficult to predict the number

of free processors that will be available to them at execution time. Note that

a trivial upper bound can be computed in some cases by assuming that all the

potentially parallel goals are created as separate tasks but they are all executed

by one processor.

Consider the predicate fib/2 defined in Example 2.7.1. Let Is denote the

size of the input (first argument) and Tp(Is) the cost of the parallel execution

without granularity control of a call to predicate fib/2 for an input of size Is.

The following difference equation can be set up for the recursive clause of fib/2:

T u
p (Is) = Cu

b (Is) + Spawu(Is) + Schedu(Is) + T u
p (Is− 1) + T u

p (Is− 2) +Cu
a (Is)
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for Is > 1, where Cb(Is) and Ca(Is) represent the costs of the sequential execu-

tion of the literals before and after the parallel call respectively, that is, Cb(Is)

represents the cost of N1 is N-1,N2 is N-2 and Ca(Is) the cost of F is F1+F2.

The solution to this difference equation gives the cost of a call to fib/2 for an

input of size Is. The following boundary conditions for the equation are obtained

from the base cases: T u
p (0) = 1 and T u

p (1) = 1.

Lower bounds

A trivial lower bound — taking non-failure into account, as discussed

by [DLGHL97] — can be computed as follows: T l
p(Is) =

W l
p(Is)

p
, where W l

p repre-

sents the work performed by the parallel execution with no granularity control of

a call to predicate fib/2 for an input of size Is, and can be computed by solving

the following difference equation: W l
p(Is) = C l

b(Is) + Spawl(Is) + Schedl(Is) +

W l
p(Is − 1) + W l

p(Is − 2) + C l
a(Is) for Is > 1, with the boundary conditions:

W l
p(0) = 1 and W l

p(1) = 1.

As an alternative, another value for T l
p(Is) can be obtained by solving the

following difference equation: T l
p(Is) = C l

b(Is)+Spaw
l(Is)+Schedl(Is)+T l

p(Is−

1) + C l
a(Is) for Is > 1, with the boundary conditions: T l

p(0) = 1 and T l
p(1) = 1.

In this case, an infinite number of processors is considered. Since in each “fork”

there are two branches, the longest of them (T u
p (Is− 1)) is chosen.

2.7.2 Cost of the execution with granularity control: Tg

Upper bounds

The following difference equation can be set up for the recursive clause of fib/2:

T u
g (Is) = Cu

b (Is) + Testu(Is) + Spawu(Is) + Schedu(Is) + T u
g (Is− 1) + T u

g (Is−

2) + Cu
a (Is) for Is > 15. We assume that all the potentially parallel goals are

created as separate tasks but they are all executed by one processor, as is done
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in Section 2.7.1.

For a call with Is = 15 there is no overhead associated with parallel execution

since it is performed sequentially, so that the following boundary conditions are

obtained: T u
g (15) = Testu(15)+T u

s (15); and T
u
g (Is) = T u

s (15) for Is ≤ 15, where

T u
s (15) denotes an upper bound on the sequential execution time of a call to

fib/2 with an input of size 15.

Lower bounds

A trivial lower bound (taken non-failure into account) can be computed as fol-

lows: T l
g(Is) =

W l
g(Is)

g
, where W l

g represents the work performed by the ex-

ecution with granularity control of a call to fib/2 for an input of size Is,

which can be computed by solving the following difference equation: W l
g(Is) =

C l
b(Is)+Testl(Is)+Spawl(Is)+Schedl(Is)+W l

g(Is− 1)+W l
g(Is− 2)+C l

a(Is)

for Is > 15, with the boundary conditions: W l
g(15) = Testl(15) + T l

s(15), and

W l
g(Is) = T l

s(15) for Is ≤ 15, where T l
s(15) denotes a lower bound on the sequen-

tial execution time of a call to fib/2 with an input of size 15.

Another value for T l
g(Is) can be obtained by solving the following difference

equation: T l
g(Is) = C l

b(Is) + Testl(Is) + Spawl(Is) + Schedl(Is) + T l
g(Is− 1) +

C l
a(Is) for Is > 15, with the boundary conditions: T l

g(15) = Testl(15) + T l
s(15),

and T l
g(Is) = T l

s(15) for Is ≤ 15.

2.8 Experimental Results

We have developed a prototype of a granularity control system based on the ideas

presented. The current prototype has some shortcomings: it only covers the case

of (independent, goal level) and-parallelism and the builtin type analyzer is com-

paratively simple. Despite this, it can achieve effective fully automatic granularity
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Table 2.1: Experimental results for benchmarks on &-Prolog.

programs seq ngc gc gct gcts gctss

fib(19) 1.839 0.729 1.169 0.819 0.819 0.549

(O=m) 1 -60% -12% -12% +24%

fib(19) 1.839 0.970 1.389 1.009 1.009 0.639

(O=5) 1 -43% -4.0% -4.0% +34%

hanoi(13) 6.309 2.509 2.829 2.419 2.399 2.399

(O=m) 1 -12.8% +3.6% +4.4% +4.4%

hanoi(13) 6.309 2.690 2.839 2.439 2.419 2.419

(O=5) 1 -5.5% +9.3% +10.1% +10.1%

unb matrix 2.099 1.009 1.339 1.259 0.870 0.870

(O=m) 1 -32.71% -24.78% +13.78% +13.78%

unb matrix 2.099 1.039 1.349 1.269 0.870 0.870

(O=5) 1 -29.84% -22.14% +16.27% +16.27%

qsort(1000) 3.670 1.399 1.790 1.759 1.659 1.409

(O=m) 1 -28% -20% -19% -0.0%

qsort(1000) 3.670 1.819 2.009 1.939 1.649 1.429

(O=5) 1 -11% -6.6% +9.3% +21%

control on three out of the four and-parallel benchmarks (fib, hanoi, and qsort).

The results are given in Table 2.1. For the other benchmarks (unb matrix) and

for or-parallelism we have hand-annotated the programs following the algorithms

presented and assuming state of the art type inference technology. The results

are given in Tables 2.1 and 2.2. We believe that by completing the prototype

implementation, and incorporating existing analysis technology, the development

of a fully automatic granularity control system is possible, and that our results

show that such a system can result in substantial benefit in execution time.
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Table 2.2: Experimental results for benchmarks on Muse.

programs seq ngc gctss opt e1 e2

queens(8) 17.019 2.090 1.759 1.702 +15.84 % +86.83 %

domino(12) 37.049 4.459 4.139 3.705 +7.18 % +42.43 %

series 22.429 7.360 4.860 2.243 +33.97 % +48.86 %

farmer 17.929 2.170 2.149 1.793 +0.97 % +5.57 %

We have first tested the granularity control system with &-Prolog [HG91], a

parallel Prolog system, on a Sequent Symmetry multiprocessor using 4 processors.

Table 2.1 presents results of granularity control (showing execution times in sec-

onds) for four representative benchmarks and for two levels of task creation and

spawning overhead (O): minimal (m), representing the default overhead found

in the &-Prolog shared memory implementation (which is very small – a few

microseconds), and an overhead (the &-Prolog system allows adding arbitrary

overheads to task creation via a run-time switch) of 5 milliseconds (5), which

should be representative of a hierarchical shared memory system or of an efficient

implementation on a multicomputer with a very fast interconnect. The program

unb matrix performs the multiplication of 4×2 and 2×1000 matrices. Results are

given for several degrees of optimization of the granularity control process: naive

granularity control (gc), adding test simplification (gct), adding stopping granu-

larity control (gcts), and adding “on-the-fly” computation of data size (gctss).

Results are also given for the sequential execution (seq) and the parallel execu-

tion without granularity control (ngc) for comparison. The obtained speedups

have been computed with respect to ngc. The importance of the optimizations

proposed is underlined by the fact that they result in steadily increasing perfor-

mance as they are added. Also, except in the case of qsort on a very low overhead

42



system, the fully optimized versions show substantial improvements w.r.t. per-

forming no granularity control. Note that the situations studied are on a small

shared memory machine and actually imply very little parallel task overhead, i.e.

the conditions under which granularity control offers the least advantages. Thus

the results can be seen as lower bounds on the potential improvement. Obviously,

on systems with higher overheads, such as distributed systems, the benefits can

be much larger.

Regarding or-parallelism, Table 2.2 presents results of granularity control

(showing execution times in seconds) for some benchmarks on the Muse [AK90]

system using 10 workers, and running on a Sequent Symmetry multiprocessor

with 10 processors. queens(8) computes all the solutions to the 8 queens prob-

lem. domino(12) computes all the legal sequences of 12 dominoes. series

computes a series whose expression is a disjunction of series. farmer is the

“farmer, wolf, goat/goose, cabbage/grain” puzzle from ECRC. Results are given

for the fully optimized versions which perform granularity control (gctss), the

sequential execution (seq) and the parallel execution without granularity control

(ngc) for comparison. opt is a lower bound on the optimal time, i.e. opt = seq

10
.

e1 = ngc−gctss

ngc
× 100, and e2 = ngc−gctss

ngc−opt
× 100 indicate the percentage of the

saved time, with respect to the parallel execution time without granularity con-

trol and the ideal parallel execution time respectively, when granularity control

is performed. Note that some programs do not exhibit the necessary inherent

parallelism to achieve this ideal execution time even if there were no overheads

associated with their parallel executions. The reason for introducing these two

metrics is that the Muse system showed very good performance in the execu-

tion of the selected benchmarks. This is because the Muse scheduler performs

an implicit control of parallelism depending on the load of the system. Thus,

the potential benefits from applying our granularity control techniques to these
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benchmarks were more limited. This metric allows us to conclude that our results

are in fact quite good, since in general they achieve a significant portion of the

potential benefits. Note also that the situations studied are on a small shared

memory machine, and, thus, the results, as in the and-parallelism case, can be

seen as lower bounds on the potential improvement.

2.9 Chapter Conclusions

We have developed (and integrated in the ciaopp system [HBPLG99, HBC+99])

a complete granularity control system for logic programs, which is based on a

program analysis and transformation scheme, where as much work is done at

compile time as possible in order to avoid the introduction of runtime overheads.

We have discussed the many problems that arise (for both the cases when

upper and lower bound information regarding task granularity is available, and

for a generic execution model) and provided solutions to them. We believe that

the results are general enough to be of interest to researchers working on other

parallel languages. We have also assessed the developed granularity control tech-

niques for and-parallelism and or-parallelism on the &-Prolog and Muse systems

respectively, and have obtained what we believe are quite encouraging results.

It appears from the sensitivity of the results that we have observed in our

experiments that it is not essential to be absolutely precise in inferring the best

grain size for a problem: there is a reasonable amount of leeway in how precise

this information has to be. This suggests that granularity control can usefully be

performed automatically by a compiler.

We can conclude that granularity analysis/control is a particularly promising

technique because it has the potential of making feasible to automatically exploit

low-cost parallel architectures, such as workstations on a (possibly high speed)

local area network.
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Chapter 3

Lower Bound Cost Analysis for

Logic Programs

It is generally recognized that information about the runtime cost of compu-

tations can be useful for a variety of applications. For example, it is use-

ful for granularity control, in logic and functional parallel languages [LGHD96,

DLH90, ZTD+92, HLA94, RM90, Kap88], and for query optimization in deduc-

tive databases [DL90]. In the context of logic programming, the work on cost

estimation has generally focused on upper bound cost analyses [DL93]. However,

in many cases one would prefer to work with lower bounds instead. As an exam-

ple, consider a distributed memory implementation of Prolog: suppose that the

work involved in spawning a task on a remote processor takes 1000 instructions,

and that we infer that a particular procedure call in a program will execute no

more than 5000 instructions. This suggests that it may be worth executing this

call on a remote processor, but provides no assurance that doing so will not ac-

tually produce a performance degradation relative to a sequential execution (the

call might terminate after executing only a small number of instructions). On

the other hand, if we know that a call will execute at least 5000 instructions,
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we can be assured that spawning a task on a remote processor to execute this

call is worthwhile. Thus, while upper bound cost information is better than no

information at all, lower bounds may be more useful than upper bounds.

The biggest problem with the inference of lower bounds on the computational

cost of logic programs is the possibility of failure. Any attempt to infer lower

bounds has to contend with the possibility that a goal may fail during head

unification, yielding a trivial lower bound of 0. For this reason, we had to develop

a non-failure able to infer which calls and procedures will not fail. This analysis

is described in detail in Chapter 4.

The main contributions of this Chapter are as follows: (i) we show how non-

failure information can be used to infer non-trivial lower bounds on the compu-

tational costs of goals; (ii) discuss how to bound the chromatic polynomial of a

graph from below, and thereby show how to infer lower bounds on the number

of solutions a predicate can generate (this information is useful, for example, for

estimating communication costs in distributed-memory implementations); (iii)

show how information about the number of solutions computed can be used to

improve lower bound estimates when all solutions to a goal are required; and (iv)

show how to obtain improved lower bound estimates for a simple but common

class of divide-and-conquer programs.

Our ideas have been implemented and the resulting lower bound cost esti-

mates, given in Section 3.6, can be seen to be quite precise, especially for an

automatic analysis tool.
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3.1 Lower-Bound Cost Analysis: The One-

Solution Case

If only one solution is required of any computation, it suffices to know whether

a computation will generate at least one solution, i.e., will not fail. Assuming

that this information is available, for example by using the technique mentioned

in the previous section, cost analysis for a particular predicate can then proceed

as follows:

1. We first determine the relative sizes of variable bindings at different program

points in a clause by computing lower bounds on output argument sizes as

functions of input argument sizes. This is done by solving (or estimating

lower bound solutions to) the resulting difference equations: the approach

is very similar to that discussed in [DL93], the only difference being that

whereas [DL93] estimated upper bounds on argument sizes using the max

function across the output sizes of different clauses in a cluster, we use the

min function across clauses to estimate lower bounds on argument sizes.

2. The (lower bound) computational cost of a clause is then expressed as a

function of the input argument size, in terms of the costs of the body literals

in that clause.

Consider a clause C ≡ ‘H :− B1, . . . , Bm’. Let n be the r–tuple which

represents the sizes of the r input arguments for the head of the clause,

and let (lower bounds on) the input argument sizes for the body literals

B1, . . . , Bm be φ1(n), . . . , φm(n) respectively. Assume that the cost of head

unification and tests for this clause is at least h(n), and let CostBi
(x) denote

a lower bound on the cost of the body literal Bi. Then, if Bk is the rightmost

body literal that is guaranteed to not fail, the following gives a lower bound

on the cost CostC(n) of the clause C on an input of size n:
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h(n) +
k∑

i=1

CostBi
(φi(n)) ≤ CostC(n).

If the clause C corresponds to a non-failing predicate, then we take k = m.

3. A lower bound on the cost Costp(n) of a predicate p on an input of size n

is then given by

min{CostC(n) | C is a clause defining p} ≤ Cost p(n).

As discussed in [DL93], recursion is handled by expressing the cost of recursive

goals symbolically as a function of the input size. From this, we can obtain a set

of difference equations that can be solved (or approximated) to obtain a lower

bound on the cost of a predicate in terms of the input size.

Given a predicate defined by m clauses C1, . . . , Cm, we can improve the pre-

cision of this analysis by noting that clause Ci will be tried only if clauses

C1, . . . , Ci−1 fail to yield a solution. For an input of size n, let δi(n) denote

the least amount of work necessary to determine that clauses C1, . . . , Ci−1 will

not yield a solution and that Ci must be tried: the function δi obviously has to

take into account the type and cost of the indexing scheme being used in the

underlying implementation. In this case, the lower bound for p can be improved

to:

min{CostCi
(n) + δi(n) | 1 ≤ i ≤ m} ≤ Costp(n).

The pruning operator can also be taken into account, so that clauses which

are after the first clause, say Ci, which has a non-failing sequence of literals just

before the cut, are ignored, and the lower bound on the cost of the predicate is

then the minimum of the costs of the clauses preceding the clause Ci and this

clause itself.
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3.2 Lower-Bound Cost Analysis: All Solutions

In many applications, it is reasonable to assume that all solutions are required.

For example, in a distributed memory implementation of a logic programming

system, the cost of sending or receiving a message is likely to be high enough

that it makes sense for a remote computation to compute all the solutions to a

query and return them in a single message instead of sending a large number

of messages, each containing a single solution. For such cases, estimates of the

computational cost of a goal can be improved greatly if we have lower bounds

on the number of solutions—indeed, as the example of a distributed memory

system suggests, in some cases the number of solutions may itself be a reasonable

measure of cost.

If we obtain lower bounds on the number of solutions that can be generated

by the literals in a clause (this problem is addressed in next section), we can

use this information to improve lower bound cost estimates for the case where

all solutions to a predicate are required. Consider a clause ‘p(x̄) :− B1, . . . , Bn’

where Bk is the rightmost literal that is guaranteed to not fail. Let the input

argument size for the head of the clause be n, and let (lower bounds on) the input

argument sizes for the body literals B1, . . . , Bm be φ1(n), . . . , φm(n) respectively.

Assume that the cost of head unification and tests for this clause is at least h(n),

and let CostBi
(x) denote a lower bound on the cost of the body literal Bi. Now

consider a body literal Bj, where 1 ≤ j ≤ k + 1, i.e., all the predecessors of Bj

are guaranteed to not fail. The number of times Bj will be executed is given

by the total number of solutions generated by its predecessors, i.e., the literals

B1, . . . , Bj−1. Let this number be denoted by Nj : we can estimate Nj using

Theorem 3.4.1 (or extensions thereof), e.g., by considering a clause whose body

consists of the literals B1, . . . , Bj−1, and where the output variables in the head

are given by vars(B1, . . . , Bj−1)∩vars(Bj, . . . , Bn). Assume that the cost of head
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unification and tests for this clause is at least h(n), and let CostBi
(x) denote

a lower bound on the cost of the body literal Bj. Then, a lower bound on the

execution cost of the clause to obtain all solutions is given by

h(n) +
k∑

i=1

(Ni × CostBi
(φi(n)) ≤ CostC(n).

3.3 Number of Solutions: The Single-Clause

Case

In this section we address the problem of estimating lower bounds on the number

of solutions which a predicate can generate.

3.3.1 Simple Conditions for Lower Bound Estimation

It is tempting to try and estimate a lower bound on the number of solutions

generated by a clause ‘H :− B1, . . . , Bn’ from lower bounds on the number of

solutions generated by each of the body literals Bi, possibly using techniques

analogous to those used in [DL93] for the estimation of upper bounds on the

number of solutions. Unfortunately, this does not work. For example, given a

clause ‘p(X) :− q(X), r(X)’, where X is an output variable, and assuming that

q and r generate nq and nr bindings, respectively, for X, then min(nq, nr) is not

a lower bound on the number of solutions the clause can generate. To see this,

consider the situation where q can bind X to either a or b, while r can bind X

to either b or c: thus, min(nq, nr) = min(2, 2) = 2, but the number of solutions

for the clause is 1.

The following gives a simple sufficient condition for estimating a lower bound

on the number of solutions generated by a clause.
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Theorem 3.3.1 Let x1, . . . , xm be distinct unaliased output variables in the head

of a clause such that each of the xi occurs at most once in the body of the clause,

and xi and xj do not occur in the same body literal for i 6= j. If ni is a lower

bound on the number of bindings that can be generated for xi by the clause body,

then
∏m
i=1 ni is a lower bound on the number of solutions that can be generated by

the clause.

This result can be generalized in various ways: we do not pursue them here

due to space constraints. The utility of this theorem is shown in Example 3.4.1.

3.3.2 Handling Equality and Disequality Constraints

This section presents a simple algorithm for computing a lower bound on the

number of solutions for predicates which can be “unfolded” into a conjunction of

binary equality and disequality constraints on a set of variables. The constraints

are in the form of X = Y or X 6= Y for any two variables X and Y . The types of

the variables in a predicate are assumed to be the same and to be given as a finite

set of atoms. The problem of computing the number of bindings that satisfy a set

of binary equality and disequality constraints on a set of variables with the same

type can be transformed into the problem of computing the chromatic polynomial

of a graph G, denoted by C(G, k), which is a polynomial in k and represents

the number of different ways G can be colored by using no more than k colors

(see [DL93]).

Unfortunately, the problem of computing the chromatic polynomial of a graph

is NP-hard, because the problem of k-colorability of a graph G is equivalent to the

problem of deciding whether C(G, k) > 0 and the problem of graph k-colorability

is NP-complete [Kar72]. Therefore, we will develop an approximation algorithm

to compute a lower bound on the chromatic polynomial of a graph. The basic

idea is to start with a subgraph that consists of only a single vertex of the graph,
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then repeatedly build larger and larger subgraphs by adding a vertex at a time

into the previous subgraph. When a vertex is added, the edges connecting that

vertex to vertices in the previous subgraph are also added. At each iteration, a

lower bound on the number of ways of coloring the newly added vertex can be

determined by the number of edges accompanied with the vertex. Accordingly,

a lower bound on the chromatic polynomial for the corresponding subgraph can

be determined using the bound on the polynomial for the previous subgraph and

the bound on the number of ways of coloring the newly added vertex.

We now describe the algorithm more formally. The order of a graph G =

(V,E), denoted by |G|, is the number of vertices in V . LetG be a graph of order n.

Suppose ω = v1, . . . , vn is an ordering of V . We define two sequences of subgraphs

of G according to ω. The first is a sequence of subgraphs G1, . . . , Gn, called

accumulating subgraphs, where Gi = (Vi, Ei), Vi = {v1, . . . , vi}, and Ei is the set

of edges of G that join the vertices of Vi, for 1 ≤ i ≤ n, The second is a sequence

of subgraphs G′
2, . . . , G

′
n, called interfacing subgraphs, where G′

i = (V ′
i , E

′
i), V

′
i is

the set of vertices of Gi−1 that are adjacent to vertex vi, and E
′
i is the set of edges

of Gi−1 that join the vertices of V ′
i , for 2 ≤ i ≤ n.

The algorithm for computing the chromatic polynomial of a graph, based on

the construction of accumulating subgraphs and interfacing subgraphs, is shown

in Figure 3.1. This algorithm constructs the accumulating subgraphs according to

an ordering of the set of vertices. At each iteration, the number of ways of coloring

the newly added vertex is computed based on the order of the corresponding

interfacing subgraph.

Theorem 3.3.2 Let G = (V,E) be a graph of order n and ω be an ordering of

V . Suppose the interfacing subgraphs of G corresponding to ω are G′
2, . . . , G

′
n.

Then:

k
∏n
i=2(k − |G

′
i|) ≤ C(G, k).
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Let G = (V,E) be a graph of order n. The algorithm proceeds as follows:

begin

compute the degree for each vertex in V ;

generate an ordering ω = v1, . . . , vn of V by sorting the vertices in

decreasing order on their degrees using the radix sort;

C(G, k) := k;

G1 := ({v1}, ∅);

for i := 2 to n do

compute the order |G′
i| of the interfacing subgraph G′

i;

C(G, k) := C(G, k)× (k − |G′
i|);

construct the accumulating subgraph Gi;

od

end

Figure 3.1: An approximation algorithm for computing the chromatic polynomial

of a graph

The proof of this theorem is given in [Lin93]; we omit it here due to space con-

straints. Since the bound obtained from this may depend on the ordering chosen

for the vertices in the graph, we use a heuristic to find a “good” ordering. The

intuition behind the heuristic is that if the maximum order of the interfacing

subgraphs is smaller, then we can get a nontrivial lower bound (6= 0) on C(G, k)

for more values of k. Therefore, we use the ordering that sorts the vertices in the

decreasing order on the degrees of vertices.

Let the graph under consideration have n vertices and m edges. First, the

computation for the degrees of vertices in the graph can be performed in O(n+m).

Second, since the degrees of vertices in the graph are at most n− 1, we can sort
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the vertices using radix sort in O(n). Third, the total cost for the construction

of accumulating subgraphs Gi, i ≤ i ≤ n, is O(n +m) because each edge in the

graph is examined only twice. Finally, since only the orders of the interfacing

subgraphs are needed to compute the chromatic polynomial, it is not necessary

to construct the interfacing graphs. The orders of the interfacing subgraphs can

be obtained as a by-product of constructing the accumulating graphs. Therefore,

the complexity of the whole algorithm is O(n+m).

3.4 Number of Solutions: Multiple Clauses

The previous section discussed the estimation of lower bounds on the number

of solutions computed by a single clause. In this section we discuss how we can

estimate the number of solutions for a group of clauses.

Theorem 3.4.1 Consider a set of clauses S = {C1, . . . , Cn} that all have the

same head unification and tests. If ni is a lower bound on the number of solutions

generated by Ci, 1 ≤ i ≤ n, then
∑n

i=1 ni is a lower bound on the total number of

(not necessarily distinct) solutions generated by the set of clauses S.

The restrictions in this theorem can be relaxed in various ways: we do not pursue

this here due to space constraints. We can use the result above to estimate a

lower bound on the number of solutions generated by a predicate for an input of

size n as follows: partition the clauses for the predicate into clusters such that the

clauses in each cluster have the same head unification and tests, so that Theorem

3.4.1 is applicable, and compute lower bound estimates of the number of solutions

for each cluster. Then, if a number of different clusters—say, clusters C1, . . . , Ck,

with number of solutions at least n1, . . . , nk respectively, may be applicable to an

input of size n, then the number of solutions overall for an input of size n is given

by min(n1, . . . , nk). The utility of this approach is illustrated by the following
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example.

Example 3.4.1 Consider the following predicate to generate all subsets of a set

represented as a list:

subset([], X) :- X = [].

subset([H|L], X) :- X = [H|X1], subset(L, X1).

subset([H|L], X) :- subset(L, X).

As discussed in Section 3.1, recursion is handled by initially using a symbolic

representation to set up difference equations, and then solving, or estimating

solutions to, these equations. In this case, let (a lower bound on) the number of

solutions computed by subset/2 on an input of size n be symbolically represented

by S(n). The first clause for the predicate yields the equation

S(0) = 1.

From Theorem 3.3.1, on an input of size n, n > 0, the second and third clauses

each yield at least S(n− 1) solutions. Since they have the same head unification

and tests, Theorem 3.4.1 is applicable, and the number of solutions given by these

two clauses taken together is therefore at least S(n− 1) + S(n− 1) = 2S(n− 1).

Thus, we have the equation

S(n) = 2S(n− 1).

These difference equations can be solved to get the lower bound S(n) = 2n on

the number of solutions computed by this predicate on an input of size n. 2

3.5 Cost Estimation for Divide-and-Conquer

Programs

A significant shortcoming of the approach to cost estimation presented is its

loss in precision in the presence of divide-and-conquer programs in which the
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sizes of the output arguments of the “divide” predicates are dependent. In the

familiar quicksort program (see Example 3.5.1), for example, since either of the

outputs of the partition predicate can be the empty list, the straightforward

approach computes lower bounds under the assumption that both output can

simultaneously be the empty list, and thereby significantly underestimates the

cost of the program. In some sense, the reason for this loss of precision is that

the approach outlined so far is essentially an independent attributes analysis

[JM81]. However, even if we came up with a relational attributes analysis that

kept track of relationships between the sizes of different output arguments of a

predicate, it is not at all obvious how we might, systematically and from first

principles, use this information to improve our lower bound cost estimates. For

the quicksort program, for example, if the input list has length n, then the two

output lists of the partition predicate have lengths m and n−m− 1 for some m,

0 ≤ m < n. The resulting cost equation for the recursive clause is of the form

C(n) = C(m) + C(n−m− 1) + . . . (0 ≤ m ≤ n− 1)

In order to determine a worst-case lower bound solution to this equation we need

to determine the value of m that minimizes the function C(n), and doing this

automatically, when we don’t even know what C(n) looks like, seems nontrivial.

As a pragmatic solution, we argue that it may be possible to get quite useful

results simply by identifying and treating common classes of divide-and-conquer

programs specially.

In many of these programs, the sum of the sizes of the input for the “divide”

predicates in the clause body is equal to the size of the input in the clause head

minus some constant. This size relationship can be derived in some cases by the

approach presented in [DL93]. However, this is not possible in other cases, since in

this approach the size of each output argument is treated as a function only of the

input sizes, independently of the sizes of other output arguments, and, as a result,
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relationships between the sizes of different output arguments are lost (consider

for example the partition/4 predicate defined in example 3.5.1). Although the

analysis does not break down for these cases, it can lose precision. A possible

solution to improve precision is to use one of the recently proposed approaches

for inferring size relationships for this class of programs [BK96, GDL95].

Assuming that we have the mentioned size relationship for these programs, in

the cost analysis phase we obtain an expression of the form:

y(0) = C,

y(n) = y(n− 1− k) + y(k) + g(n) for n > 0, where k is an arbitrary

value such that 0 ≤ k ≤ n − 1, C is a constant and g(n) is any

function.

where y(n) denotes the cost of the divide-and-conquer predicate for an input of

size n and g(n) is the cost of the part of a clause body which does not contain

any call to the divide-and-conquer predicate.

For each particular computation, we obtain a succession of values for k. Each

succession of values for k yields a value for y(n).

In the following we discuss how we can compute lower/upper bounds for ex-

pressions such as that for Costqsort(n) in Example 3.5.1. Consider the expression:

y(0) = C,

y(n) = y(n − 1 − k) + y(k) for n > 0, where k is an arbitrary value

such that 0 ≤ k ≤ n− 1 and C is a constant.

A computation tree for such an expression is a tree in which each non-terminal

node is labeled with y(n), n > 0, and has two children y(n − 1 − k) and y(k)

(left- and right-hand-side respectively), where k is an arbitrary value such that

0 ≤ k ≤ n−1. Terminal nodes are labeled with y(0) and have no children. Assume

that we construct a tree for y(n) following a depth-first traversal. In each non-

terminal node, we (arbitrarily) chose a value for k such that 0 ≤ k ≤ n− 1. We
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say that the computation succession of the tree is the succession of values that

have been chosen for k in chronological order, as the tree construction proceeds.

Lemma 3.5.1 Any computation tree corresponding to the expression:

y(0) = C,

y(n) = y(n − 1 − k) + y(k) for n > 0, where k is an arbitrary value

such that 0 ≤ k ≤ n− 1 and C is a constant,

has n+ 1 terminal nodes and n non-terminal nodes.

Proof By induction on n. For n = 0 the theorem holds trivially. Let us assume

that the theorem holds for all m such that 0 ≤ m ≤ n, then, we can prove that

for all m such that 0 ≤ m ≤ n+1 the theorem also holds by reasoning as follows:

we have that y(n+ 1) = y(n− k) + y(k), where k is an arbitrary value such that

0 ≤ k ≤ n. Since 0 ≤ k ≤ n, we also have that 0 ≤ n− k ≤ n, and, by induction

hypothesis, the number of terminal nodes in any computation tree of y(n − k)

(respectively y(k)) is n−k+1 (respectively k+1). The number of terminal nodes

in any computation tree of y(n + 1) is the sum of the number of terminal nodes

in the children of the node labeled with y(n+1), i.e. (n−k+1)+(k+1) = n+2.

Also, the number of non-terminal nodes in any computation tree of y(n − k)

(respectively y(k)) is n− k (respectively k). The number of non-terminal nodes

of any computation tree of y(n + 1) is the sum of the number of non-terminal

nodes of the children of the node labeled with y(n+1) plus one (the node y(n+1)

itself, since it is non-terminal) i.e. 1 + (n− k) + k = n+ 1.

Theorem 3.5.2 For any computation tree corresponding to the expression:

y(0) = C,

y(n) = y(n − 1 − k) + y(k) for n > 0, where k is an arbitrary value

such that 0 ≤ k ≤ n− 1 and C is a constant,
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it holds that y(n) = (n+ 1)× C.

Proof By Lemma 3.5.1, any computation tree has n+ 1 terminal nodes labeled

with y(0) and the evaluation of each of these terminal nodes is C.

Theorem 3.5.3 Given the expression:

y(0) = C,

y(n) = y(n− 1− k) + y(k) + g(k) for n > 0, where k is an arbitrary

value such that 0 ≤ k ≤ n− 1, C is a constant and g(k) a function,

for any computation tree corresponding to it, it holds that y(n) = (n + 1)× C +
∑n

i=1 g(ki), where {ki}
n
i=1 is the computation succession of the tree.

Proof By Lemma 3.5.1, any computation tree has n + 1 terminal nodes and n

non-terminal nodes. The evaluation of each terminal node yields the value C and

each time a non-terminal node i is evaluated, g(ki) is added.

In order to minimize (respectively maximize) y(n) we can find a succession

{ki}
n
i=1 that minimizes (respectively maximizes)

∑n
i=1 g(ki). This is easy when

g(k) is a monotonic function, as the following corollary shows.

Corollary 3.5.1 Given the expression:

y(0) = C,

y(n) = y(n− 1− k) + y(k) + g(k) for n > 0, where k is an arbitrary

value such that 0 ≤ k ≤ n−1, C is a constant and g(k) an increasing

monotonic function,

Then, the succession {ki}
n
i=1, where ki = 0 (respectively ki = n − 1) for all

1 ≤ i ≤ n gives the minimum (respectively maximum) value for y(n) of all

computation trees.
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Proof It follows from Theorem 3.5.3 and from the fact that g(k) is an increasing

monotonic function.

It follows from Corollary 3.5.1 that the solution of the difference equation

(obtained by replacing k by 0):

y(0) = C,

y(n) = y(n− 1) + y(0) + g(0) for n > 0,

i.e. (n + 1) × C + n × g(0) is the minimum of y(n), and the solution of the

difference equation:

y(0) = C,

y(n) = y(0) + y(n− 1) + g(n− 1) for n > 0,

i.e. (n+ 1)× C + n× g(n− 1) is the maximum of y(n).

Note that we can replace g(k) by any lower/upper bound on it to compute a

lower/upper bound on y(n). We can also take any lower/upper bound on each

g(ki). For example, if g(k) is an increasing monotonic function then g(ki) ≤

g(n− 1) and g(ki) ≥ g(0) for 1 ≤ i ≤ n, thus, y(n) ≤ (n+ 1)×C + n× g(n− 1)

and y(n) ≥ (n+ 1)× C + n× g(0).

Let’s now assume that the function g depends on n and k:

Corollary 3.5.2 Given the expression:

y(0) = C,

y(n) = y(n− 1−k)+ y(k)+ g(n, k) for n > 0, where k is an arbitrary

value such that 0 ≤ k ≤ n−1, C is a constant and g(n, k) a function.

Then, the solution of the difference equation:

f(0) = C,

f(n) = f(n− 1) + C + L for n > 0,
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where L is a lower/upper bound on g(n, k), is a lower/upper bound on y(n) for

all n ≥ 0 and for any computation tree corresponding to y(n). In particular,

if g(n, k) is an increasing monotonic function, then L ≡ g(1, 0) (respectively

L ≡ g(n, n− 1)) is a lower (respectively upper) bound on g(n, k).

Example 3.5.1 Let us see how, using the described approach for divide-and-

conquer programs, the lower-bound cost analysis can be improved. We first con-

sider the analysis without the incorporation of the optimization, and then we

compare with the result obtained when the optimization is used.

Consider the predicate qsort/2 defined as follows:

qsort([], []).

qsort([First|L1], L2) :-

partition(L1, First, Ls, Lg),

qsort(Ls, Ls2), qsort(Lg, Lg2),

append(Ls2, [First|Lg2], L2).

partition([], F, [], []).

partition([X|Y], F, [X|Y1], Y2) :-

X =< F,

partition(Y, F, Y1, Y2).

partition([X|Y], F, Y1, [X|Y2]) :-

X > F,

partition(Y, F, Y1, Y2).

append([], L, L).

append([H|L], L1, [H|R]) :- append(L, L1, R).

Let Costp(n) denote the cost (number of resolution steps) of a call to predicate

p with an input of size n (in this example, the size measure used for all predicates
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is list length [DL93]). The estimation of cost functions proceeds in a “bottom-up”

way as follows:

The difference equation obtained for append/3 is:

Costappend(0,m) = 1 (the cost of head unification),

Costappend(n,m) = 1 + Costappend(n− 1,m).

where Costappend(n,m) is the cost of a call to append/3 with input lists of lengths

n and m (first and second argument, respectively). The solution to this equation

is: Costappend(n,m) = n + 1. Since this function depends only on n, we use the

function Costappend(n) instead.

The difference equation for partition/4 is:

Costpartition(0) = 1 (the cost of head unification),

Costpartition(n) = 1 + Costpartition(n− 1).

where Costpartition(n) gives the cost of a call to partition/4 with an input list

(first argument) of length n. The solution to this equation is: Costpartition(n) =

n+ 1.

For qsort/2, we have:

Costqsort(0) = 1 (the cost of head unification),

Costqsort(n) = 1 + Costpartition(n− 1) + 2× Costqsort(0) + Costappend(0)

because the computed lower bound for the size of the input to the calls to qsort

and append is 0. Thus, the cost function for qsort/2 is given by:

Costqsort(0) = 1,

Costqsort(n) = n+ 4, for n > 0.

Now, we use the described approach for divide-and-conquer programs. As-

sume that we use the expression:
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Costqsort(0) = 1,

Costqsort(n) = 1 + Costpartition(n− 1) + Costqsort(k)

+Costqsort(n− 1− k) + Costappend(k), for 0 ≤ k ≤ n− 1 and n > 0.

Replacing values, we obtain:

Costqsort(n) = n+ k + 2 + Costqsort(k) + Costqsort(n− 1− k),

for 0 ≤ k ≤ n− 1.

According to Corollary 3.5.2, by giving to n and k the minimum possible

value, i.e. 1 and 0 respectively, we have that n+ k + 2 ≥ 3, and thus we replace

n+ k + 2 by 3 in order to obtain a lower bound on the former expression, which

yields:

Costqsort(n) = 3 + Costqsort(k) + Costqsort(n− 1− k), for 0 ≤ k ≤ n− 1.

which is equivalent to the difference equation:

Costqsort(n) = 3 + 1 + Costqsort(n− 1), for n > 0.

The solution of this equation is Costqsort(n) = 4n+1, which is an improvement

on the former lower bound. 2

The previous results can be easily generalized to cover multiple recursive

divide-and-conquer programs and programs where the sum of the sizes of the

input for the “divide” predicates in the clause body is equal to the size of the

input in the clause head minus some constant which is not necessarily 1.

3.6 Implementation

We have implemented a prototype of a lower bound size/cost analyzer, by re-

coding the version of CASLOG [DL93] currently integrated in the CiaoPP sys-

tem [HBPLG99, HBC+99]. The analysis is fully automatic, and only requires
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type information for the program entry point. Types, modes and size measures

are automatically inferred by the system. Table 3.1 shows some accuracy and

efficiency results of the lower bound cost analyzer. The second column of the

table shows the cost function (which depends on the size of the input argu-

ments) inferred by the analysis. Ttms is the time required by the type, mode,

and size measure analysis (SPARCstation 10, 55MHz, 64Mbytes of memory), Tnf

the time required by the non-failure analysis, and Ts and Tca are the time re-

quired by the size and cost analysis respectively. Total is the total analysis time

(Total = Ttms + Tnf + Ts + Tca). All times are given in milliseconds.

Program Cost function Ttms Tnf Ts Tca Total

fibonacci λx.1.447 × 1.618x +

0.552×(−0.618)x−1

90 10 20 20 140

hanoi λx.x2x + 2x−1 − 2 430 30 60 60 580

qsort λx.4x+ 1 420 50 70 50 590

nreverse λx.0.5x2 + 1.5x+ 1 220 20 30 30 300

mmatrix λ〈x, y〉.2xy + 2x+ 1 350 90 90 90 620

deriv λx.x 1010 80 170 120 1,380

addpoly λ〈x, y〉x+ 1 220 70 40 30 360

append λx.x+ 1 100 20 10 10 140

partition λx.x+ 1 175 30 30 20 255

substitute λ〈x, y, z〉.x 70 50 110 100 330

intersection λ〈x, y〉.x+ 1 150 130 20 30 260

difference λ〈x, y〉.x+ 1 140 90 20 40 290

Table 3.1: Accuracy and efficiency of the lower bound cost analysis
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3.7 Application to Automatic Parallelization

We have interfaced the cost analysis stage (see Section 3.6) with the granular-

ity control system described in Chapter 2 (which is also integrated in the CIAO

system as another stage, and which includes an annotator which transforms pro-

grams to perform granularity control). The result is a complete program par-

allelizer with (lower bound cost based) granularity control. Since our objective

herein is simply to study the usefulness of the lower bound estimates produced,

only a very simple granularity control strategy has been selected: goals are al-

ways executed in parallel provided their grain sizes are estimated to be greater

than a given fixed threshold, which is a constant for all programs. Also, the ver-

sions of the programs that perform granularity control are simple source-to-source

transformations which add granularity control tests to the original versions. A

discussion of more advanced strategies that include variable thresholds (which

depend on parameters such as data transfer cost, number of processor, system

load, etc.), lower level transformations, and performing goal groupings to increase

granularity can be found in Chapter 2

programs seq ngc gclb(175) gclb(959)

mmatrix(100) 52.389 74.760 (0.70) 29.040 (1.80) 27.981 (1.87)

mmatrix(50) 6.469 5.978 (1.08) 3.378 (1.92) 3.758 (1.72)

fib(19) 0.757 1.458 (0.52) 0.128 (5.93) 0.103 (7.32)

hanoi(13) 1.442 1.464 (0.98) 0.677 (2.13) 0.619 (2.33)

qsort(1000) 0.475 0.414 (1.15) 0.230 (2.06) 0.314 (1.51)

qsort(3000) 4.142 2.423 (1.71) 1.094 (3.79) 1.575 (2.63)

Table 3.2: Granularity control results for benchmarks on ECLiPSe.

We have performed some preliminary experiments in which a series of bench-
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marks have been parallelized automatically, with the compiler option correspond-

ing to inclusion of granularity control both enabled and disabled. The resulting

programs have been executed on the ECLiPSe system using 10 workers, and run-

ning on a SUN SPARC 2000 SERVER with 10 processors. We have chosen this

system, which implements and-parallelism on top of or-parallelism, because it has

considerably greater parallel task execution overhead than systems which imple-

ment and-parallelism natively (such as, for example, the &-Prolog engine used

in the CIAO system). As a result, this system offers an interesting challenge –

it proved very difficult to achieve and-parallel speedups on it automatically with

previous parallelizers.

Table 3.2 presents the results. It shows wall-clock execution times in sec-

onds. Results are given for the sequential execution (seq), the parallel execution

without granularity control (ngc), and the versions which perform granularity

control (gclb(175) and gclb(959)). The two numbers correspond to two differ-

ent choices of threshold, and illustrate the comparatively low sensitivity of the

results to the choice of this parameter that we have observed.

The results of the experiments appear promising, in the sense that the granu-

larity control does improve speedups in practice, in a quite challenging situation.

On systems with higher overheads, such as distributed systems, the benefits can

be much larger, although it may be difficult to achieve actual speedups in some

cases (i.e., given high enough overheads, the result of the granularity analysis

can often be simply a sequential program). In any case, we believe that it is

possible to improve these results significantly by using more sophisticated control

strategies, as mentioned above.

66



3.8 Chapter Conclusions

We have developed an analysis that infers lower bounds on the cost of procedures

as functions of input data size (and that is able to properly deal with divide-and-

conquer programs). We have implemented this cost analysis and integrated it in

the ciaopp system. Finally, we have performed experiments that show that the

analysis is accurate and efficient.

Despite a suggestive similarity in names, our work is quite different from Basin

and Ganzinger’s work on complexity analysis based on ordered resolution [BG96].

They consider resolution based on a well-founded total ordering on ground atoms,

and use this to examine the complexity of determining, given a set of Horn clauses

N and a ground Horn clause C, whether N |= C. Our work, by contrast, is based

on an operational formulation of logic program execution that is not restricted to

ground queries (or, for that matter, to Horn programs, since it is easy to handle

features such as cuts and negation by failure). Because operational aspects of

program execution are modeled more accurately in our approach, the results

obtained are considerably more precise.

Finally, it is worth of mentioning that information about the runtime cost

of computations can be useful for a variety of applications (besides granularity

control, which is the main motivation for which we developed it), such as for

example assisting program transformation systems to find the optimal transfor-

mations, choosing between different algorithms, program efficiency debugging,

and query optimization in deductive databases.
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Chapter 4

Non-failure Analysis

In this Chapter we provide a method whereby, given mode and (upper approxima-

tion) type information, we can detect procedures and goals that can be guaranteed

to not fail (i.e., to produce at least one solution or not terminate). The technique

is based on an intuitively very simple notion, that of a (set of) tests “covering”

the type of a set of variables (i.e. for any element that belongs to the type, at

least one test will succeed). We show that the problem of determining a covering

is undecidable in general, and give decidability and complexity results for the

Herbrand and linear arithmetic constraint systems. We give sound algorithms

for determining covering that are precise and efficient in practice. Based on this

information, we show how to identify goals and procedures that can be guaran-

teed to not fail at runtime. Applications of such non-failure information include

programming error detection, program transformations and parallel execution

optimization, avoiding speculative parallelism and estimating lower bounds on

the computational costs of goals, which can be used for granularity control, and

that is the main motivation for this dissertation. Finally, we report on an im-

plementation of our method and show that better results are obtained than with

previously proposed approaches.
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4.1 Motivation

There are two important motivations for considering compile-time analyses to

identify non-failure in logic programs. The first is that it is usually very useful

to be able to identify badly-behaved programs where possible. For example, in

statically typed languages, the behavior one expects is that program components

will be used in a way consistent with their types, and compile-time type checking

is used to detect departures from this expected behavior. While this does not

rule out programming errors, it makes it a lot simpler to identify and localize

certain kinds of common programming errors. Similarly, in logic programs, the

usual expectation is that a predicate will succeed and produce one or more so-

lutions. In most logic programming systems, however, the only checking that is

done is a rather simplistic—though useful—check about the naming of single-

ton variables. The second reason is that knowledge of non-failure can be used

to aid a number of program transformations and optimizations. For example,

we may want to execute possibly-failing goals ahead of non-failing goals where

possible; and in parallel systems, knowledge of non-failure can be used to avoid

speculative parallelism and to estimate lower bounds on the computational costs

of goals [DLGHL94, DLGHL97], which can be used for granularity control of

parallel tasks [LGHD96], and that is the main motivation for this dissertation.

The problem with naive attempts to infer non-failure is that, in general, it is

always possible for a goal to fail because “bad” argument values cause a failure

during head unification. An obvious solution would be to try and rule out such

argument values by considering the types of predicates. However, most existing

type analyses provide upper approximations, in the sense that the type of a

predicate is a superset of the set of argument values that are actually encountered

at runtime. Unfortunately, straightforward attempts to address this issue, for

example by trying to infer lower approximations to the calling types of predicates,
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fail to yield nontrivial lower bounds for most cases.

4.2 Preliminaries

We assume an acquaintance with the basic notions of logic programming. In

order to reason about non-failure, it is necessary to distinguish between unification

operations that act as tests (and which may fail), and output unifications that act

as assignments (and always succeed). To this end, we assume that programs are

moded, i.e., for each unification operation in each predicate, we know whether the

operation acts as a test or creates an output binding (note that this is weaker than

most conventional notions of moding in that it does not require input arguments

to be ground, and allows an output argument to occur as a subterm of an input

argument). Where it is necessary to emphasize the input tests in a clause, we

write the clause in “guarded” form, as

p(x1, . . . , xn) :− input tests(x1, . . . , xn) [] Body .

Consider a predicate defined by the clauses:

abs(X,Y ) :− X ≥ 0 [] Y = X.

abs(Y, Z) :− Y < 0 [] Z = −Y.

Suppose we know that this predicate will always be called with its first argument

bound to an integer. Obviously, for any particular call, one or the other of the

tests ‘X ≥ 0’ and ‘X < 0’ may fail; however, taken together, one of them will

succeed. This shows that we cannot rely on examining the tests of each clause

separately: it is necessary to collect them together and examine the behavior of

the collection as a whole. When collecting tests together, however, we must be

careful to make sure that we do not get confused by different variable names in

different clauses. For example, in the abs predicate defined above, we need to

make sure that:

71



1. we notice that the variable X in the first clause and the variable Y in the

second clause actually refer to the same component of the arguments to the

predicate; and

2. we do not confuse the variable Y in the first clause with the variable Y in

the second clause.

These pitfalls can be avoided by normalizing clauses so that they use variable

names consistently and according to a predefined convention. We rely on the

usual approach of using sequences of integers to encode paths in ordered trees:

the empty sequence ε corresponds to the root node of the tree, and if a sequence π

corresponds to a node N , then the sequences π1, . . . , πk correspond to its children

N1, . . . , Nk taken in order. We adopt the convention that a variable in a clause is

designated as Xπ, where π is (the sequence encoding) the path from the root of

the clause, labeled :-/2, to the leftmost occurrence of that variable. To enhance

readability, the examples used in this Chapter will not resort to explicitly naming

variables in this way unless necessary, with the understanding that the algorithms

are defined with respect to normalized clauses.

4.3 Types, Tests, and Coverings

A type refers to a set of terms, and can be denoted by using several type rep-

resentations: e.g. type terms and regular term grammars as in [DZ92] (which is

the one we use), or type graphs as in [JB92]). Thus, we assume the existence

of an infinite set of type symbols. The type symbol µ denotes the type of the

entire Herbrand universe, and the symbol φ denotes the empty type. We include

the following five definitions taken from [DZ92], because we think it can help to

better understand the algorithms we present here, and also makes this text more

auto-contained.
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Definition 4.3.1 A type term is defined inductively as follows:

1. A constant symbol is a type term.

2. A variable is a type term.

3. A type symbol is a type term.

4. If f is a n-ary function symbol and each τi is a type terms, f(τ1, . . . , τn) is

a type term.

A pure type term is a variable-free type term. A logical term is a type-symbol-

free type term.

We assume (as in [DZ92]) that type symbols are partitioned into non-empty

subsets, called base types. There are also effective test for membership of a given

term in each base type. Examples of base types we use in our non-failure analysis

are:

1. The set of all constant symbols that represent integer numbers. This base

type is denoted as int.

2. The set of all constant symbols which do not represent numbers (according

to Prolog terminology, the set of all atoms). This base type denoted as atm.

Definition 4.3.2 A type rule is an expression of the form α → Υ, where α is a

type symbol, and Υ is a set of pure type terms.

We denote sets of type rules, that is, regular term grammars, by the letter T

(as in [DZ92]).

Definition 4.3.3 A type symbol α, is defined in, or by, a set of type rules T if

there exists a type rule (α → Υ) ∈ T . A type term τ is defined by a set of type

rules T if each type symbol in τ is defined in T .
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We assume (as in [DZ92]) that each type symbol ocurring in a set of type

rules T is eiher µ, φ, a base type symbol, or a type symbol defined in T , and that

each type symbol defined in T has exactly one defining type rule in T .

Definition 4.3.4 A type rule α → Υ is deterministic if no element of Υ is a

type symbol and there is no pair of pure type terms τ1, τ2 ∈ Υ, such that τ1 6= τ2,

τ1 = f(τ 1
1 , . . . , τ

1
n), and τ2 = f(τ 2

1 , . . . , τ
2
n).

The class of types that can be described by deterministic type rules is the

same as the class of tuple-distributive regular types [DZ92].

More detailed an interesting information on type related issues, may be found

in papers such as [DZ92, JB92]. Thus, we do not pursue them further here for

the sake of brevity.

The non-failure analysis we describe here is based on regular types [DZ92],

specified by regular term grammars that meet the assumptions above. We show

soundness and completeness results for both, the case when the regular types are

tuple-distributive, and when they are not.

In the rest of this section we define some concepts which are useful for de-

scribing the algorithms we propose.

Definition 4.3.5 An infinite function symbol type Ψ is an infinite set of terms,

such that the set {f | f(t1, . . . , tn) ∈ Ψ}, tah is the set of main function symbols

of all the terms in Ψ, is infinite.

Let type[p] denote the type of each predicate p in a given program. In this

Chapter, we are concerned exclusively with “calling types” for predicates—in

other words, when we say “a predicate p in a program P has type type[p]”, we

mean that in any execution of the program P starting from some class of queries

of interest, whenever there is a call p(t̄) to the predicate p, the argument tuple t̄

in the call will be an element of the set denoted by type[p].
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We denote the Herbrand Universe (i.e., the set of all ground terms) as H, and

the set of n–tuples of elements of H as Hn.

Given a (finite) set of variables V , a type assignment over V is a mapping

from V to a set of types. A type assignment ρ over a set of variables {x1, . . . , xn}

is written as (x1 : a1, . . . , xn : an), where ρ(xi) = ai, for 1 ≤ i ≤ n, and ai is

a type representation. Alternatively, we also use the notation x̄ : T̄ , where x̄ is

the tuple of variables (x1, . . . , xn), and T̄ is the tuple of types (a1, . . . , an). Given

a term t and a type representation T , we abuse of terminology and say t ∈ T ,

meaning that t belongs to the set of terms denoted by T .

A primitive test is an “atom” whose predicate is a built-in such as the unifi-

cation or some arithmetic predicate (<,>,≤,≥, 6=, etc.) which acts as a “test”.

Define a test to be either a primitive test, or a conjunction τ1∧τ2 or a disjunction

τ1 ∨ τ2, or a negation ¬τ1, where τ1 and τ2 are tests.

Fundamental to our approach to detecting non-failure is the notion of a test

“covering” a type assignment:

Definition 4.3.6 A test S(x̄) covers a type assignment x̄ : T̄ , where x̄ and T̄

are a tuple of variables and a tuple of nonempty types respectively, if for every

t̄ ∈ T̄ it is the case that x̄ = t̄ |= S(x̄).

Consider a predicate p defined by n clauses, with input tests τ1, . . . , τn:

p(x̄) :− τ1(x̄) [] Body1.

. . .

p(x̄) :− τn(x̄) [] Bodyn.

We refer to the test τ(x̄) ≡ τ1(x̄)∨· · ·∨ τn(x̄) as the input test of p. Suppose that

the predicate p has type type[p]: in the interest of simplicity, we sometimes abuse

terminology and say that the predicate p covers the type type[p] if the input test

τ(x̄) of p covers the type assignment x̄ : type[p].
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Define the “calls” relation between predicates in a program as follows: p calls

q, written p ; q, if and only if a literal with predicate symbol q appears in the

body of a clause defining p, and let ;? denote the reflexive transitive closure of

;. The importance of the notion of covering is expressed by the following result:

Theorem 4.3.1 A predicate p in the program is non-failing if, for each predicate

q such that p ;? q, q covers type[q].

Proof Suppose that p can fail, i.e., there is a goal p(t̄), with t̄ ∈ type[p], that

fails. We show, by induction on the number of resolution steps n, that in any

failed execution sequence for this goal, there is some predicate q such that p ;? q

and q does not cover its type. The base case is for n = 0, i.e., where failure

occurs because head unification and tests failed for each clause defining the called

procedure. From the definition of a covering, this can happen only if the tests

of the called procedure did not cover the type of the actual parameters. For the

inductive case, assume that the theorem holds for all predicates that have a goal

that fails in less than k resolution steps, and consider an execution that fails in

k resolution steps. It must be that for each clause of the called procedure p for

which head unification and tests succeed, some body literal L, with predicate

symbol q, fails. Now the failure of L must involve fewer than k resolution steps,

and so from the induction hypothesis, there is a predicate r such that q ;? r and

r does not cover type[r]. Since L is a body literal in a clause defining p, we have

p ; q, which means that p ;? r as well. This establishes that p can fail only if

there is some predicate q such that p ;? q and q does not cover its type. The

theorem follows.

Assume that p can fail, i.e., there is a goal p(t̄), with t̄ ∈ type[p], that fails.

It is a straightforward induction on the number of resolution steps to show that

there is a q such that p ;? q and q does not cover its type.
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Note that non-failure does not imply success: a predicate that is non-failing

may nevertheless not produce an answer because it does not terminate. This is

illustrated by the predicate, defined by the single clause given below, which is

non-failing and—on most existing Prolog systems—non-terminating:

p(X) :− p(X).

Ideally, we would like to have a decision procedure to determine whether a test

covers a given type assignment. Unfortunately, this is impossible in general, as

the following result shows:

Theorem 4.3.2 Given an arbitrary test and type assignment, it is in general

undecidable whether the test covers the type assignment.

Proof The proof is straightforward from a result, due to Matijasevic̆, that shows

that determining the existence of (integer) solutions for arbitrary Diophantine

equations is undecidable [Mat70]. Given an arbitrary polynomial φ(x1, . . . , xn),

consider the test φ(x1, . . . , xn) 6= 0. This test covers the type assignment (x1 :

integer, . . . , xn : integer) if and only if every possible assignment of integers

to the variables x1, . . . , xn causes the polynomial φ to take on a non-zero value,

i.e., if and only if the Diophantine equation φ(x1, . . . , xn) = 0 has no integer

solutions. But since the problem of determining the existence of integer roots for

an arbitrary Diophantine equation is undecidable, it follows that the problem of

determining whether an arbitrary test covers an arbitrary type assignment is also

undecidable.

We are therefore forced to resort to sound (but, necessarily, incomplete) al-

gorithms to determine coverings. In the remainder of this section we show that

covering problems are decidable for most cases arising in practice—in particular,

for equality and disequality tests over the Herbrand domain and for linear arith-

metic tests—and give algorithms for deciding covering for these cases. Given a
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test and a type assignment that we want to check for covering, our approach is

to:

1. first partition the test such that tests in different resulting partitions involve

different constraint systems, and

2. then apply to each partition a covering algorithm particular to the corre-

sponding constraint system.

In this Chapter we consider two commonly encountered constraint systems:

• first order terms with equality and disequality tests, on variables with tuple-

distributive regular types [DZ92] (types which are specified by regular term

grammars in which each type symbol has exactly one defining type rule and

each type rule is deterministic); and

• linear arithmetic tests on integer variables.

The following example illustrates the partitioning process:

Example 4.3.1 Consider the test:

X1 = [ ] ∨ (X1 = [H|L] ∧ H > H1) ∨ (X1 = [H|L] ∧ H ≤ H1),

together with the type assignment (X1 : intlist, H1 : integer), where:

intlist→ {[ ], [integer | intlist]}.

This is partitioned into two components:

• the Herbrand test X1 = [ ] ∨ X1 = [H|L] together with the type assignment

(X1 : intlist); and

• the linear arithmetic test H > H1 ∨ H ≤ H1 together with the type assign-

ment (H : integer, H1 : integer).

2
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4.3.1 Covering in the Herbrand Domain

Decidability and Complexity

While covering is undecidable in the presence of arbitrary arithmetic operations,

it turns out to be decidable if we restrict ourselves to equations and disequations

over Herbrand terms. Before discussing the algorithm for this, we give a result

on the complexity of the covering problem for Herbrand:

Theorem 4.3.3 The covering problem for the Herbrand domain is co-NP-hard.

It remains co-NP-hard even if we restrict ourselves to equality tests.

Proof By reduction from the problem of determining whether a propositional

formula in disjunctive normal form, containing at most 3 literals per disjunct, is a

tautology ([GJ79], problem LO8). This problem is known to be co-NP-complete

(see [GJ79], problem LO8). Given a DNF formula C ≡ C1 ∨ · · · ∨ Cn over a set

of variables {x1, . . . , xm}, where each Ci is a conjunction of at most 3 literals,

we generate a test S ≡ S1 ∨ · · · ∨ Sn. Si is generated from Ci as follows: let

Ci ≡ Li1 ∧ Li2 ∧ Li3, where the Lij are literals, then Si ≡ L̂i1 ∧ L̂i2 ∧ L̂i3, with

L̂ij defined as follows, 1 ≤ j ≤ 3: if Lij = x for some variable x, then L̂ij is the

test x = true; if Lij = ¬x for some variable x, then L̂ij is the test x = false.

Let Bool denote the type {true, false}, then we consider the type assignment

(x1 : Bool, . . . , xm : Bool). It is not difficult to see that the test S covers this

type assignment if and only if every truth assignment to the variables of C makes

it evaluate to true, i.e., if and only if C is a tautology. The theorem follows.

A Decision Procedure

The decision procedure presented here is inspired by a result, due to

Kunen [Kun87], that the emptiness problem is decidable for Boolean combina-

tions of (notations for) certain “basic” subsets of the Herbrand universe of a
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program. It also uses straightforward adaptations of some operations described

by Dart and Zobel [DZ92].

The reason the covering algorithm for Herbrand is as complex as it is is that

we want a complete algorithm for equality and disequality tests. It is possible

to simplify this considerably if we are interested in equality tests only. Before

describing the algorithm, we introduce some definitions and notation.

We use the notions (to be defined in the following) of type-annotated term,

and in general elementary set, as representations which denote some subsets of

Hn (for some n ≥ 1). Given a representation S (elementary set or type-annotated

term), Den(S) refers to the subset of Hn denoted by S.

Definition 4.3.7 [type-annotated term] A type-annotated term is a pair M =

(t̄, ρ), where t̄ is a tuple of terms, and ρ is a type assignment (x1 : T1, . . . , xk : Tk).

To enhance readability, the type of xi in M , i.e., ρ(xi), will sometimes be written

as type(xi,M) or as type(xi, ρ). Also, given a type-annotated term M , we denote

its tuple of terms and its type assignment as t̄M and ρM respectively. A type-

annotated term (t̄, ρ) denotes the set of all the ground terms t̄θ such that xθ ∈

type(x, ρ) for each variable in t̄.

Given a type-annotated term (t̄, ρ), the tuple of terms t̄ can be regarded as a

logical term (i.e. a type-symbol-free type term) and ρ can be considered to be a

type substitution, so that, if we apply this type substitution to t̄, we get a pure

type term (a variable-free type term). This is useful for defining the “intersection”

and “inclusion” operations over of type-annotated terms (that we define later),

using the algorithms described by Dart and Zobel [DZ92] for performing these

operations over pure type terms. When we have a type-annotated term (t̄, ρ)

such that ρ(x) = µ for each variable x in t̄, we omit the type assignment ρ for

brevity and use the tuple of terms t̄ (recall that µ denotes the type of the entire
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Herbrand universe). Thus, a tuple of terms t̄ with no associated type assignment

can be regarded as a type-annotated term which denotes the set of all ground

instances of t̄.

Definition 4.3.8 [elementary set] An elementary set is defined as follows:

• Λ is an elementary set, and denotes the empty set (i.e., Den(Λ) = ∅);

• a type-annotated term (t̄, ρ) is an elementary set; and

• if A and B are elementary sets, then A ⊗ B, A ⊕ B and comp(A) are

elementary sets that denote, respectively, the sets of (tuples of) terms

Den(A) ∩ Den(B), Den(A) ∪Den(B), and Hn \ Den(A).

We define the following relations between elementary sets:

• A v B iff Den(A) ⊆ Den(B).

• A < B iff Den(A) ⊂ Den(B).

• A ' B iff Den(A) = Den(B).

Definition 4.3.9 [cobasic set] A cobasic set is an elementary set of the form

comp(t̄), where t̄ is a tuple of terms (recall that t̄, is in fact a type-annotated

term (t̄, ρ) such that ρ(x) = µ for each variable x in t̄).

Definition 4.3.10 [minset] A minset is either Λ or an elementary set of the form

A ⊗ comp(B1) ⊗ · · · ⊗ comp(Bp), for some p ≥ 0, where A is a tuple of terms,

comp(B1), . . . , comp(Bp) are cobasic sets, and for all 1 ≤ i ≤ p, Bi = Aθi and

A 6v Bi for some substitution θi (i.e. Bi < A).

For brevity, we write a minset of the form A ⊗ comp(B1) ⊗ · · · ⊗ comp(Bp) as

A/C, where C = {comp(B1), . . . , comp(Bp)}. We also denote the tuple of terms

of a cobasic set Cob ≡ comp(B) as t̄Cob, i.e. t̄Cob ≡ B.
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Example 4.3.2 Here are some examples of type-annotated terms (M , N , and

S). Let M be the type-annotated term ((x, y), (x : γ1, y : γ2)), where γ1 ::= f(µ),

and γ2 ::= g(µ) | h(µ). In this case, ρM denotes the type assignment (x : γ1, y :

γ2), and t̄M denotes the tuple of terms (x, y). Let S be a type-annotated term,

such that t̄S ≡ (f(z), w) and ρS ≡ (z : µ,w : γ2). We have thatM and S describe

the same subset of Hn, i.e., Den(M) = Den(S). Let N be a type-annotated term,

where t̄N ≡ (f(v1), g(v2), v3, v4, f(a), f(v5), v6), ρN ≡ (v1 : µ, v2 : list, v3 : γ2, v4 :

γ3, v5 : γ3, v6 : list), and γ3 ::= a | b and list ::= [ ] | [µ|list]. We have that

ρ(v1) = µ, and ρ(v3) = γ2. 2

Definition 4.3.11 [type-annotated term instance] Let α and β be two type-

annotated terms. We say that α is an instance of β if α < β and there is a

substitution θ such that t̄α = t̄βθ.

Consider a predicate p defined by n clauses, with input tests τ1(x̄), . . . , τn(x̄):

p(x̄) :− τ1(x̄) [] Body1.

. . .

p(x̄) :− τn(x̄) [] Bodyn.

Suppose that the predicate p has type type[p]. Testing whether the input test of

p, τ(x̄), covers the type assignment x̄ : type[p] can be reduced to test whether:

M v S1 ⊕ · · · ⊕ Sn (4.1)

where M is a type-annotated term which is a representation of x̄ : type[p],

and each Si is a minset, which is the representation of τi(x̄). The test τi(x̄) can

be transformed into the minset Si as follows:

1. Assume that the test τi(x̄) is of the form Ei ∧D
1
i ∧ · · · ∧D

m
i , where Ei is

the conjunction of all unification tests of τi(x̄) (i.e., a system of equations)

and each Dj
i a disunification test (i.e., a disequation).
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2. Let θi be the substitution associated with the solved form of Ei (this can

be computed by using the techniques of Lassez et al. [LMM88]).

3. Let θji , for 1 ≤ j ≤ m, be the substitution associated with the solved form

of Ei ∧N
j
i , where N

j
i is the negation of Dj

i .

4. Si = A ⊗ comp(B1
i ) ⊗ · · · ⊗ comp(B

m
i ), where A = (x̄)θi and B

j
i = (x̄)θji ,

for 1 ≤ j ≤ m.

Taking into account condition 4.1, we have that:

M v S1 ⊕ · · · ⊕ Sm iff M ⊗ comp(S1)⊗ · · · ⊗ comp(Sm) ' Λ

We then can write comp(S1) ⊗ · · · ⊗ comp(Sm) into disjunctive normal form

as M1 ⊕ · · · ⊕Mu, where each Mi is a minset. 1 Since

M ⊗ (M1 ⊕ · · · ⊕Mu) 'M ⊗M1 ⊕ · · · ⊕M ⊗Mu,

we have that

M v S1 ⊕ · · · ⊕ Sm iff M ⊗Mi ' Λ for all 1 ≤ i ≤ u.

Thus, the fundamental problem is to devise an algorithm to test whetherM⊗

S ' Λ, where M is a type-annotated term and S a minset. The algorithm that

we propose is given by the boolean function empty(M,S), defined in Figure 4.1.2

We do some definitions before describing the algorithm.

Definition 4.3.12 [intersection] Let M and A be a type-annotated term and

a tuple of terms respectively. Let unify(τ1, τ2, T,Θ) be the function described

1Note that ⊕, ⊗, and comp constitute a Boolean algebra, and the operation ⊗ is computable

for type-annotated terms.
2We use the type representation of [DZ92], and assume that there is a common set of rules

where type symbols are described. For brevity, we omit such set of rules in the description of

the algorithms.
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in [DZ92], where τ1 and τ2, are type terms, Θ a type substitution for the variables

in τ1 and τ2, and T a set of deterministic type rules defining τ1, τ2, and Θ.

We define the function intersection as follows:

intersection(M,A) is the type annotaded term form of the pair (τf , Tf ,Θf ) (this

translation is trivial, so that details are omitted), where:

• (τf , Tf ,Θf ) = unify(t̄M , A, T, σ), where T is the set of rules defining the

type symbols appearing in ρM (note that t̄M and A are in fact type terms),

and σ is a type substitution constructed as follows:

xσ =




t if x ∈ vars(M) and type(x,M) = t

x otherwise.

Theorem 4.3.4 The following holds for the function intersection:

• intersection(R,B) terminates,

• intersection(R,B) = I iff R⊗B ' I, and

• intersection(R,B) = Λ iff R⊗B ' Λ.

Proof It follows from Theorem 5.60 of [DZ92].

Definition 4.3.13 [aliased ] Let R and t̄ be a type-annotated term and a tuple

of terms respectively, such that for all x ∈ vars(R), xθ is a variable, where

θ = mgu(t̄R, t̄), or type(x,R) is an infinite function symbol type. We define the

function aliased as follows:

aliased(R, t̄) = {v ∈ vars(R) | vθ is a variable, and exists v′ ∈ vars(R),

v 6= v′, such that vθ = v′θ}.
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Definition 4.3.14 [expansion] Let R be a type-annotated term, and Cob a coba-

sic set. Let mgu(A,B) be the most general unifier of the tuples of terms A and

B. We define the function expansion as follows:

expansion(R,Cob) = (R′, Rest), where:

• R′ is a type-annotated term;

• Rest is a set of type-annotated terms;

• for all x ∈ vars(R′), it holds that type(x,R′) is an infinite function symbol

type, or xθ is a variable, where θ = mgu(t̄R′ , t̄Cob);

• (∪X∈RestDen(X)) ∪ Den(R′) = Den(R); and

• for all X ∈ Rest, X ⊗ t̄Cob ' Λ.

(R′, Rest) is a pair which is a “partition” of R.

empty(M,S) :

Input: a type-annotated term M and a minset S (S = A/C, where A is a tuple of

terms, and C a set of cobasic sets).

Output: a boolean value denoting whether M ⊗ S ' Λ.

Process:

1. if S = Λ then return(true), otherwise, let R = intersection(M,A);

2. if R = Λ then return(true);

3. otherwise, if included(A,R) then return(false) else

return(empty1 (C,R, ∅)).

Figure 4.1: Definition of the function empty.
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First, it performs the “intersection” ofM and the tuple of terms of the minset

S (we assume that S = A/C). This intersection is implemented by the function

intersection(R,A), which returns R ⊗ A (recall that a tuple of terms is a type-

annotated term). Then, if the mentioned intersection (which we call R) is not

empty, nor A (recall that S = A/C) is “included” in R, it calls empty1 (C,R, ∅),

defined in figure 4.2, which checks whether R/C ' Λ. This is done by checking

if R is “included” in some tuple of terms of some cobasic set in C (in which case

R/C ' Λ). For this purpose, it uses the function included(R, t̄Cob), where t̄Cob is

the tuple of terms of some cobasic set Cob that belongs to C. This function is

a straightforward adaptation of the function subsetT (τ1, τ2) described in [DZ92],

that determines whether the type denoted by a pure type term (a variable-free

type term) is a subset of the type denoted by another (i.e., included(R, t̄) returns

true if and only if R v t̄).

Note that R/C can be seen as a system of one equation (corresponding to

R) and zero or more disequations (each of them corresponding to a cobasic set

in C). Thus the problem can be seen as determining whether such system has

no solutions. We say that a cobasic set Cob is “useless” (for determining the

unsatisfiability of the system) whenever if R/(C − {Cob}) 6' Λ, then R/C 6' Λ.

Any useless cobasic set Cob can be removed from C, since R/(C − {Cob}) ' Λ

if and only if R/C ' Λ (note that if R/(C − {Cob}) ' Λ, then obviously

R/C ' Λ). This is done in step 1 of function empty1. If the tuple of terms

of a cobasic set Cob in C is “disjoint” with R, then it is useless (however, there

can be useless cobasic sets in C whose tuples of terms are not disjoint with

R). Once we have removed useless cobasic sets, if the remaining set of coba-

sic sets is not empty then we go to step 3. In this step, if R is not “included”

in none of the tuples of terms of the cobasic sets in C, this means that R is

“too big”, and thus, it is “expanded” to a set of “smaller” type-annotated terms
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(with the hope that each of them be “included” in the tuple of terms of some

cobasic set in C). This is done in step 4, where a cobasic set Cob of C ′′ is

selected, and R is “expanded” by using the function expansion. We have that

expansion(R,Cob) = (R′, Rest), where R′ is an instance of R obtained by expand-

ing R to some “decision depth.” This depth allows us to detect if the cobasic set

Cob is useless. For example, assume that R = ((X,Y ), (X : list, Y : list))

and C = {C1, C2}, where C1 = comp(([H|L], Z)) and C2 = comp(([ ], Z)).

R is not included in none of the tuples of terms of the cobasic sets in C,

but if we expands R using C1, i.e., (R1, {R2}) = expansion(R,C1), where

R1 = (([H1|L1], Y 1), (H1 : µ, L1 : list, Y 1 : list)) and R2 = (([], Y 2), (Y 2 : list)),

we have that R1 and R2 are included in t̄C1
and t̄C2

respectively (and thus,

R/C ' Λ). However, in other situations, the problem cannot be solved by ex-

panding R: assume, for example, that now C = {comp((Z,Z))}, in this case, R

is not included in (Z,Z) because this tuple of terms introduces an equality con-

straint in Den(R) (note that here R is already expanded to the “decision depth,”

in which the equality constraints are given by the “aliased variables”). These

aliased variables are computed in step 6 by using the function aliased(R, t̄Cob).

Also in step 6 (after computing aliased variables), if for some x ∈ vars(R′), it

holds that type(x,R′) = µ and either x ∈ AV ars, or xθ′ is not a variable, then we

can say that Cob useless. This can be proved by using the variable x to construct

an instance S of R such that: assuming that there exists an instance I of R, such

that I ⊗ t̄C1
' Λ for all C1 ∈ Cset, where Cset = C ′ ∪ {CS | (B,A,CS) ∈ AL},

then, S can be constructed from I so that S⊗ t̄C2
' Λ for all C2 ∈ {Cob}∪Cset.

The function empty1 (C,R,AL), defined in figure 4.2, performs a “first round”

over the cobasic sets in C. After this round (whose end is detected in step 2 by the

condition C ′′ = ∅), cobasic sets which have been detected to be useless are ignored

(removed) and the rest are stored in AL, which is an accumulation parameter.
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In step 7, R′ and AV ars (besides Cob) are recorded in this parameter, because

aliased variables whose type is infinite (or which after having been expanded

get bounded to a term containing variables whose type is infinite) allow us to

detect useless cobasic sets (which are removed before empty2 (AL′, R) — defined

in figure 4.3 — is called in step 2).

The function empty2 (AL,R), defined in figure 4.3, selects a cobasic set Cob in

AL, and, if R is not included in t̄Cob, then R is expanded as a set of type-annotated

terms R1, . . . , Rn by expanding only “decision variables”. This ensures that every

Ri is either “included” in t̄Cob or “disjoint” with it. It also ensures that R is not

infinitely expanded (note that the type of such variables is finite).

Example 4.3.3 Consider the predicate reverse/2:

reverse(X,Y) :− X = [] [] Y = [].

reverse(X,Y) :− X = [X1|X2] [] reverse(X2,Y2), append(Y2,[X1],Y).

and the type assignment ρ ≡ (X : list), where list→ {[ ], [µ|list]}. Let τ be the

input test of the predicate reverse/2, i.e., τ ≡ X = []∨X = [X1|X2]. LetM be

the type-annotated term which is a representation of ρ, i.e.,M = ((X), (X : list)).

The minset representations of X = [ ] and X = [X1|X2] are ([ ]) and ([X1|X2])

respectively (in this example we deal with unary tuples).

We have that τ covers ρ iff ((X), (X : list)) v ([ ]) ⊕ ([X1|X2]) iff

((X), (X : list)) ⊗ comp(([ ]) ⊕ ([X1|X2])) ' Λ iff ((X), (X : list)) ⊗

comp(([ ]))⊗ comp(([X1|X2])) ' Λ. The disjunctive normal form of comp(([ ]))⊗

comp(([X1|X2])) is (X3) ⊗ comp(([ ])) ⊗ comp(([X1|X2])), which has only one

minset. Now, we have to prove that ((X), (X : list)) ⊗ (X3) ⊗ comp(([ ])) ⊗

comp(([X1|X2])) ' Λ, i.e., whether the call empty(M,S), where M = (t̄M , ρM),

t̄M ≡ (X), ρM ≡ (X : list), and S ≡ (X3)/{comp([ ]), comp([X1|X2])} returns

true. This call proceeds as follows (and in fact returns true):
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1. intersection(M, (X3)) returns the type-annotated term ((X4), (X4 : list)).

2. Since this intersection is not “empty” and (X3)—which represents the type-

annotated term ((X3), (X3 : µ)) —is not “included” in ((X4), (X4 : list)),

the call

empty1 ({comp([ ]), comp([X1|X2])}, ((X4), (X4 : list)), ∅)

is performed. This call returns true and the computation is as follows:

(a) We have that ((X4), (X4 : list)) is not “included” in none of tuples

of terms of the cobasic sets in {comp([ ]), comp([X1|X2])}. Thus, a

cobasic set is selected from this set. Assume that comp([X1|X2]) is

the selected cobasic set;

(b) (R′, Rest) = expansion(((X4), (X4 : list)), comp([X1|X2])), where

R′ = (([X5|X6]), (X5 : µ,X6 : list)), and Rest = {(([]), ∅)} (∅ denotes

an empty type assignment, since ([ ]) has no variables).

(c) The call included(R′, ([X1|X2])) returns true, and thus the call

empty1 ({comp([ ])}, (([ ]), ∅), ∅) is performed. This call also returns

true, because (([ ]), ∅) v ([ ]). Thus, the initial call returns true. 2

The covering algorithm we present is complete for tuple-distributive regular types:

Theorem 4.3.5 Let M be a type-annotated term in which all types are tuple-

distributive regular types, and S a minset. Then empty(M,S) terminates, and

returns true iff M ⊗ S ' Λ.

While sound, the algorithm is not complete for regular types in general

(though we believe it is fairly accurate in practice):

Theorem 4.3.6 Let M be a type-annotated term where all types are regular

types, and S a minset. Then empty(M,S) terminates, and if it returns true

then M ⊗ S ' Λ.
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One reason for imprecision in the case of non tuple-distributive regular types

is that the function intersection(M,A), computes a superset of the exact inter-

section when we deal with general regular types (this result can be derived from

the work of Dart and Zobel [DZ92]). Another reason comes from the use of

the function expansion(R,Cob) to partition the type-annotated term R in the

boolean function empty1 (C,R, ∅). Given a pair (R′, Rest) where R′ is a type-

annotated term, and Rest is a set of type-annotated terms, we assume that all

type-annotated terms in Rest are disjoint with the tuple of terms of the cobasic

set Cob, but this is not true for general regular types, and, consequently, precision

may be lost. A possible solution in order to obtain a complete algorithm for gen-

eral regular types would be to rewrite the type annotated term which represents

the input type of a predicate as a union of type annotated terms containing only

tuple-distributive types, and then apply the above described covering algorithm

for each of the elements of the union.

4.3.2 Covering in Linear Arithmetic over Integers

In this section, we consider linear arithmetic tests over integers (the ideas ex-

tend directly to linear tests over the reals, which turn out to be computationally

somewhat simpler). Without loss of generality, assume that the tests are in dis-

junctive normal form, i.e., they are of the form Φ(x̄) =
∨n
i=1

∧m
j=1 φij(x̄) where

each of the tests φij(x̄) is of the form φij(x̄) ≡ a0 + a1x1 + · · ·+ akxk ©? 0, with

©? ∈ {=, 6=, <,≤, >,≥}. Determining whether Φ(x̄) covers the type assignment

of integer to each variable in x̄ amounts to determining whether |= (∀x̄)Φ(x̄).

This is true if and only if (∃x̄)¬Φ(x̄) is unsatisfiable. In other words, we need to

determine the unsatisfiability of

¬Φ(x̄) =
n∧

i=1

m∨

j=1

¬φij(x̄) =
n∧

i=1

m∨

j=1

ψij(x̄),
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where ψij(x̄) is derived from ¬φij(x̄) as follows: let φij(x̄) =
∑k

i=0 aixi ©? 0. If©?

is a comparison operator other than ‘=’, ψij(x̄) is simply
∑k

i=0 aixi ©? 0, where

©? is the complementary operator to ©? , e.g., if ©? ≡ ‘>’ then ©? ≡ ‘≤’. If ©? ≡

‘=’, the corresponding complementary operator is ‘6=’, but this can be written in

terms of two tests involving the operators ‘>’ and ‘<’:

ψij(x̄) = (
∑k

i=0 aixi > 0) ∨ (
∑k

i=0 aixi < 0).

The resulting system, transformed to disjunctive normal form, defines of a set of

integer programming problems: the answer to the original covering problem is

“yes” if and only if none of these integer programming programs has a solution.

Since a test can give rise to at most finitely many integer programs in this way,

it follows that the covering problem for linear integer tests is decidable.

Since determining whether an integer programming problem is solvable is NP-

complete [GJ79], the following complexity result is immediate:

Theorem 4.3.7 The covering problem for linear arithmetic tests over the inte-

gers is co-NP-hard.

It should be noted, however, that the vast majority of arithmetic tests encoun-

tered in practice tend to be fairly simple: our experience has been that tests

involving more than two variables are rare. The solvability of integer programs in

the case where each inequality involves at most two variables, i.e., is of the form

ax+ by ≤ c, can be decided efficiently in polynomial time by examining the loops

in a graph constructed from the inequalities [AS79]. The integer programming

problems that arise in practice, in the context of covering analysis, are therefore

efficiently decidable.
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4.3.3 Covering Analysis: Putting it Together

Let τ be the input test of predicate p and ρ a type assignment. Consider the type

assignment ρ written as a type-annotated term M , and τ written in disjunctive

normal form, i.e., τ = τ1 ∨ · · · ∨ τn, where each τi is a conjunction of primitive

tests (recall that primitive tests are unification, disunification, etc.). Consider

the test τi written as τHi ∧ τ
A
i , where τ

H
i and τAi are a conjunction of primitive

unification and arithmetic tests respectively (i.e., we write arithmetic tests after

unification tests). Consider also τHi written as a minset Di (recall that Di is the

intersection (conjunction) of a tuple of terms, and zero or more cobasic sets). Let

D be the union (disjunction) of the these minsets.

Example 4.3.4 Let p be the predicate partition/4 from the familiar quicksort

program. Let τ be X = [ ] ∨ (X = [H|L] ∧ H > Y ) ∨ (X = [H|L] ∧ H ≤ Y )

and let ρ be (X : intlist, Y : integer), where intlist→ {[ ], [integer|intlist]}. In

this case, we have that M is ((X,Y ), (X : intlist, Y : integer)). τ1 ≡ X = [ ],

τ2 ≡ X = [H|L], H > Y , and τ3 = X = [H|L], H ≤ Y . τ1 can be written as

τH1 ∧ τ
A
1 , where τH1 ≡ X = [ ] and τA1 ≡ true. Similarly, τH2 ≡ X = [H|L] and

τA2 ≡ H > Y , and τH3 ≡ X = [H|L] and τA3 ≡ H ≤ Y . D = D1⊕D2⊕D3, where

D1 ≡ ([ ], Y ), D2 ≡ ([H|L], Y ) and D3 ≡ ([H|L], Y ). 2

To test whether τ covers ρ, we first test that D covers M , ignoring the arith-

metic tests. If D does not cover M , then obviously, the (whole) input test of p,

τ , does not cover M , and we report failure. Otherwise, we create (zero or more)

covering subproblems, each of them containing only arithmetic tests, as follows:

1. Let A be the set of all the tuples of terms and negations of cobasic sets

appearing in D (note that the negation of a cobasic set is a tuple of terms,

thus A is a set of tuples of terms), and let A′ = {b ∈ A |M ⊗ b 6' Λ}.

2. For each tuple of terms b in A′:
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(a) Let I =M ⊗ b and θ = mgu(t̄M , t̄I);

(b) Let τb =
∨m
j=1 rj, where {r1, . . . , rm} = {ti | b v Di for some 1 ≤ i ≤ n

and ti is the result of applying θ to τAi (this is done to take into

account possible variable aliasing)}. Note that there is an algorithm

to test whether b v Di in [Kun87].

(c) Test whether τb covers ρI (recall that ρI refers to the type assignment

of I):

i. Assume that τb = s1 ∨ · · · ∨ sn and each si is a conjunction of

primitive arithmetic tests. If τb ≡ true then report success;

ii. otherwise, if for some variable x appearing in all si, 1 ≤ i ≤ n, it

holds that type(x, ρI) is not a numeric type, then report failure;

iii. otherwise, use the algorithm described in section 4.3.2 to test

whether τb covers ρI .

Note: another way to create the subproblems is: τb =
∨m
j=1 rj, where

{r1, . . . , rm} = {ti | I v Di for some 1 ≤ i ≤ n and ti is the result of

applying θ to τAi }. This algorithm is more precise than the former, but is

more complex because I is a type-annotated term and thus we have to use

the covering algorithm described in Section 4.3.1 to test that I v Di.

Theorem 4.3.8 If D covers M and for each b ∈ A′, τb covers I, then the input

test of p, τ , covers M .

Proof It is clear that if D covers M , then the disjunction of all the tuples of

terms in A′ also covers M . Thus, for any tuple of terms x̄ which is an instance

of M , there is at least a b ∈ A′, such that x̄ is an instance of b, and all the tests

τHi such that b v Di, will succeed for x̄. If τb covers I, then at least one of the

tests ti in τb will succeed for x̄. Thus, by the construction of τb, at least one τi

will succeed for x̄, and we conclude that τ covers M .
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Example 4.3.5 Consider Example 4.3.4. It is clear that D covers M , thus we

proceed as follows:

1. A = {([ ], Y ), ([H|L], Y )}, and A′ = A.

2. Let b1 = ([], Y ) and b2 = ([H|L]). Then τb1 ≡ true and τb2 ≡ H > Y ∨H ≤

Y .

3. We have that true covers (([], Y ), (Y : integer)), and also thatH > Y ∨H ≤

Y covers (L : intlist,H : integer, Y : integer), thus τ covers M . 2

Note that the former approach can be also used to partition a problem into a

Herbrand covering subproblem (unification/disunification tests) and zero or more

subproblems of any type. In this case, we would use the appropriate algorithm

to solve each of the resulting covering subproblems.

4.4 Non-Failure Analysis

4.4.1 The Analysis Algorithm

Once we have determined which predicates cover their types, determining non-

failure is straightforward: from Theorem 4.3.1, analysis of non-failure reduces to

the determination of reachability in the call graph of the program. In other words,

a predicate p is non-failing if there is no path in the call graph of the program

from p to any predicate q that does not cover its type. It is straightforward to

propagate this reachability information in a single traversal of the call graph in

reverse topological order. The idea can be illustrated by the following example.

Example 4.4.1 Consider the following predicate taken from a quicksort pro-

gram:
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qs(X1,X2) :− X1 = [] [] X2 = [].

qs(X1,X2) :− X1 = [H|L] [] part(H,L,Sm,Lg),

qs(Sm,Sm1), qs(Lg,Lg1), app(Sm1,[H|Lg1],X2).

Suppose that qs/2 has mode (in, out) and type (intlist, -), and suppose we

have already shown that part/4 and app/3 cover the types (int, intlist, -,

-) and (intlist, intlist, -) induced for their body literals in the recursive

clause above. The input test for qs/2 is X1 = [] ∨ X1 = [H|L], and this covers

the type intlist, which means that head unification will not fail for qs/2. It

follows that a call to qs/2 with the first argument bound to a list of integers will

not fail. 2

The accuracy of the described algorithm can be improved by detecting situa-

tions as illustraded in example 4.4.2.

Example 4.4.2 Consider the following partition program, and suppose that

partition/4, less/2 and greatereq/2 have mode partition(in, in, out,

out), less(in, in) and greatereq(in, in), and type partition(intlist,

integer,

-, -), less(integer, integer) and greatereq(integer, integer) respec-

tively.

partition([E|R],C,[E|Left1],Right) :−

less(E, C),

partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]) :−

greatereq(E, C),

partition(R,C,Left,Right1).

less(X, Y) :− X < Y.

greatereq(X, Y) :− X >= Y.
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Since user defined predicates less/2 and greatereq/2 do not cover their

types, they are marked as possibly failing. This information is propagated through

the call graph of the program, so that predicate partition/4 is also marked as

possibly failing. However, partition/4 does not fail for the modes and types de-

scribed. This drawback in accuracy is due to the fact that the tests of less/2 and

greatereq/2 are “hidden” when the covering problem for predicate partition/4

is set up. In order to avoid this situation, we can, make “visible” the tests of

less/2 and greatereq/2 when the covering problem is set up.

2

4.4.2 A Prototype Implementation

In order to evaluate the effectiveness and efficiency of our approach to non-

failure analysis we have constructed a relatively complete prototype which per-

forms such analysis in an automatic way. This prototype has been integrated

in CiaoPP [HBPLG99, HBC+99]. The system takes Prolog programs as input,

which include a module definition in the standard way. In addition, the types and

modes of the arguments of exported predicates are given, as well as the required

type definitions. The system uses the PLAI analyzer (also integrated in CiaoPP)

to derive mode information, using the Sharing+Freeness domain [MH91], and

an adaptation of Gallagher’s analysis to derive the types of predicates [GdW94],

and also to deal with parametric types. The resulting type- and mode-annotated

programs are analyzed using the algorithms presented for Herbrand and linear

arithmetic tests.

Herbrand covering is checked by a naive direct implementation of the analyses

presented. Testing of covering for linear arithmetic tests is implemented directly

using the Omega test [Pug92]. This test determines whether there is an integer

solution to an arbitrary set of linear equalities and inequalities, referred to as a
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problem.

We have tested the prototype first on a number of simple standard bench-

marks, and then on more complex ones. The latter are taken from those used

in the cardinality analysis of Braem et al. [BCMH94], which is the closest re-

lated previous work that we are aware of. Some relevant results of these tests

are presented in Table 4.1. Program lists the program names, N the number of

predicates in the program, F the number of predicates detected by the analysis

as non-failing, Cov the number of predicates detected to cover their type, C the

number of non-failing predicates detected in [BCMH94], TF the time required

by the non-failure analysis (SPARCstation 10, 55MHz, 64Mbytes of memory),

TM the time required to derive the modes and types, and TT the total analysis

time (all times are given in milliseconds). Averages (per predicate in the case of

analysis time) are also provided in the last row of the table.

The results are quite encouraging showing that the developed analysis is fairly

accurate. The analysis is significantly more powerful than those previously re-

ported in non-failure detection (the experimental results presented in [BCMH94]

suggest that it is more appropriate for detecting determinacy than for non-

failure). It is pointed out in [BCMH94] that the sure success information can

be improved by using a more sophisticated type domain. However, this is also

applicable to our analysis, and the types inferred by our system are similar to

those used in [BCMH94]. Much of the power of our algorithm comes from the

use of the notion of covering, which allows detecting when at least one of the

clauses (not necessarily the same) defining a predicate will not fail for all possible

calls. The cardinality analysis detects non-failure only when at least one of the

clauses (always the same) defining a predicate will not fail for all the possible

calls. The non-failure analysis times are quite good, despite the currently naive

implementation of the system (for example, the call to the omega test is done
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by calling an external process). The overall analysis times are quite acceptable,

even when including the type and mode analysis times, which are in any case

very useful in other parts of the compilation process.

The Mercury system [HSC96] allows the programmer to declare that a predi-

cate will produce at least one solution, and attempts to verify this with respect

to the Herbrand terms with equality tests. As far as we know, the Mercury com-

piler does not handle disequality constraints on the Herbrand domain. Nor does

it handle arithmetic tests, except in the context of the if-then-else construct. As

such, it is considerably weaker than the approach described here.

4.5 Applications

There are several applications of this analysis. The first application is implement-

ing granularity control in parallelizing compilers, which is the main motivation

for our non-failure analysis. We refer the reader to Chapter 2 where this kind of

application is described in detail, and also to Chapter 3, where an analysis for

estimating lower bounds to the cost of goals and procedures is described.

The second application has to do again with (and-)parallelism, in particular

with the avoidance of speculative computation. Consider a number of goals in

a resolvent which are determined to be independent. As shown in [HR95], and

ignoring parallelization overheads (which can be dealt with as illustrated above),

the time involved in their parallel execution can be guaranteed to be smaller or

equal to that of the corresponding sequential execution. However, it is impossible

to guarantee that no more work will be performed. This is due to the possibility

of failure of one of the goals. Consider two goals p and q so that q is executed after

p in the sequential execution. Assume also that p fails (both in the sequential

and, correspondingly, in the parallel execution). If p and q are scheduled for

execution in parallel, a part of q may be executed until the point in which p fails
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Program N F (%) Cov (%) C TF TM TT

Hanoi 2 2 (100) 2 (100) N/A 60 860 920

Deriv 1 1 (100) 1 (100) N/A 80 940 1,020

Fib 1 1 (100) 1 (100) N/A 20 90 110

Mmatrix 3 3 (100) 3 (100) N/A 90 350 440

Tak 1 1 (100) 1 (100) N/A 10 110 120

Subs 1 1 (100) 1 (100) N/A 50 90 140

Reverse 2 2 (100) 2 (100) N/A 10 100 110

Qsort 3 3 (100) 3 (100) 0 (0) 80 440 520

Qsort2 5 3 (60) 3 (60) 0 (0) 100 390 490

Queens 5 2 (40) 2 (40) 0 (0) 120 360 480

Gabriel 20 3 (15) 10 (50) 0 (0) 420 1,860 2,280

Read 38 8 (21) 19 (50) 8 (21) 540 12,240 12,780

Kalah 44 18 (40) 29 (65) 6 (13) 1,500 14,570 16,070

Plan 16 4 (25) 11 (68) 0 (0) 810 7,000 7,810

Credit 25 10 (40) 18 (72) 0 (0) 4,720 1,470 6,190

Pg 10 2 (20) 6 (60) 0 (0) 540 1,600 2,140

Mean – 36% 63% 3% 51 (/p) 239 (/p) 291 (/p)

Table 4.1: Accuracy and efficiency of the non-failure analysis (times in mS).

(the execution of q will normally be killed at this point). Although not producing

a slow-down, this constitutes unnecessary computation which steals computing

resources from any useful work that may exist in the system (and therefore does

reduce speedup). Determining that goals in a conjunction will not fail (at least all

but the rightmost one – note that failure of q in the example above does not have

these ill-effects) thus allows guaranteeing avoidance of speculative computation.
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A third application is in the general area of program transformation, where

information about non-failure can be used in determining the order of execution

of literals in a clause. Consider a clause

H :− B1, p(X), B2, q(X), B3

where B1, B2, B3 are sequences of literals, p(X) produces bindings for X, and

q(X) is the left-most body goal that has X as an input argument. If p is known

to be non-failing, it may be possible to transform this clause to

H :− B1, B2, p(X), q(X), B3.

The resulting code may be more efficient than the original if a goal in B2 can fail.

Finally, among the most important applications of non-failure we envision

is in speeding up program development by assisting programmers by reporting

predicates that are not guaranteed to not fail. This can help in detecting pro-

gramming errors at compile time, in much the same way as type checking does

in statically typed languages, since in logic programs the usual expectation is

that a predicate will succeed and produce one or more solutions. In most logic

programming systems, however, little compile-time checking is performed. The

system is currently integrated in the CiaoPP system and used for these purposes

(as well as for optimization).

4.6 Chapter Conclusions

We have provided a method whereby, given mode and (upper approximation)

type information, we can detect procedures and goals that can be guaranteed not

to fail (i.e., to produce at least one solution or not terminate). The technique is

based on an intuitively very simple notion, that of a (set of) tests “covering” the

type of a set of variables. We have given sound and complete algorithms for deter-

mining covering that are precise and efficient in practice. We have commented on
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applications of non-failure analysis, such as for example, estimating lower bounds

on the computational costs of goals (used for granularity control); avoiding spec-

ulative parallelism; programming error detection, and program transformation.

We have implemented (and integrated in the CiaoPP system) our non-failure

analysis and shown that better results are obtained than with previously pro-

posed approaches.
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empty1 (C,R,AL) :

Input: a type-annotated term R, a set of cobasic sets C, and, a set AL of triples of

the form (B,AV,CS) where:

• B is a type-annotated term,

• CS is a cobasic set,

• vars(B) ∩ vars(CS) = ∅,

• For all x ∈ vars(B), xθ is a variable, where θ = mgu(t̄B, t̄CS), and,

• v ∈ AV iff v ∈ vars(B) and exists v′ ∈ vars(B), v 6= v′, such that vθ = v′θ

(i.e., AV is the set of variables in vars(B) which are aliased with some other

variable in vars(B) by θ).

Output: the boolean value true if R/C1 ' Λ, where C1 = C ∪ {Cob | (B,A,Cob) ∈

AL, for some B and A}. Otherwise, returns false.

Process:

1. Let C ′′ = {Cob ∈ C | intersection(R, t̄Cob) 6' Λ};

2. If C ′′ = ∅ then return(empty2 (AL′, R)), where AL′ = {(S,AV ars, Cob) |

(S,AV ars, Cob) ∈ AL, intersection(R, t̄Cob) 6' Λ, θ = mgu(t̄S , t̄R), and for

all x, y such that x ∈ AV ars and y ∈ vars(xθ), type(y,R) is finite (there

are straightforward algorithms to test whether a type expression denotes

an infinite or finite set of terms) }.

3. Otherwise, if included(R, t̄Co) for some cobasic set Co in C ′′ then re-

turn(true);

4. Otherwise, take a cobasic set Cob of C ′′, and let C ′ = C ′′ − {Cob} and

(R′, Rest) = expansion(R,Cob);

5. If included(R′, t̄Cob) then return(
∧
X∈Rest empty1 (C ′, X,AL));

6. Otherwise, let AV ars = aliased(R′, t̄Cob). If for some x ∈ vars(R′), it holds

that type(x,R′) is an infinite function symbol type, and x ∈ AV ars or xθ′ is

not a variable, where θ′ = mgu(t̄R′ , t̄Cob), then return(empty1 (C ′, R,AL));

7. Otherwise, let AL′ = AL ∪ {(R′, AV ars, Cob)};

8. return(empty1 (C ′, R′, AL′) ∧ (
∧
X∈Rest empty1 (C ′, X,AL)));

Figure 4.2: Definition of the function empty1.
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empty2 (AL,R):

Input:

• a type-annotated term R,

• a set AL of triples of the form (B,AV,CS) where:

– B is a type-annotated term,

– CS is a cobasic set,

– vars(B) ∩ vars(CS) = ∅,

– for all x ∈ vars(B), xθ is a variable, where θ = mgu(t̄B, t̄CS)

(type(x,B) can be any type, including an infinite function symbol

type),

– v ∈ AV iff v ∈ vars(B) and exists v′ ∈ vars(B), v 6= v′, such that

vθ = v′θ (i.e., AV is the set of variables in vars(B) which are aliased

with some other variable in vars(B) by θ), and

– for all v ∈ AV , type(v, ρB) is finite.

Output: a boolean value, true if R/C ' Λ, where C = {CS | (B,AV,CS) ∈

AL for some B and AV } (i.e., C is the set of cobasic sets in AL), false otherwise.

1. If AL = ∅ then return(false); otherwise, take an item A ∈ AL. Assume

that A ≡ (B,AV,Cob), and let AL′ = AL− {A} and θ = mgu(t̄B, t̄R);

2. if included(R, t̄Cob) then return(true);

3. otherwise, for all variables y ∈ AV , expand all variables x such that x ∈

vars(yθ) (necessarily x ∈ vars(R) and type(x,R) is finite). Let RS be the

set of type-annotated terms resulting from these expansions.

4. Let RS′ = {r ∈ RS | intersection(r, t̄Cob) ' Λ} (necessarily for all s ∈ RS

and s /∈ RS′, it holds that s v t̄Cob);

5. if RS′ = ∅ then return(true);

6. otherwise return(
∧
X∈RS′ empty2 (AL′, X)).

Figure 4.3: Definition of the function empty2.
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Chapter 5

Efficient Term Size Computation

As mentioned in Chapter 2, the amount of work done by a recursive call depends

on the depth of recursion, which in turn depends on the size of the input. Reason-

able estimates for the granularity of recursive predicates can thus be made only

with some knowledge of the size of the input. By term size we refer to measures

such as list length, term depth, number of nodes in a term, etc.

The postponement of accurate term size computation to run-time appears in-

evitable in general. This based on the fact that even sophisticated compile-time

techniques such as abstract interpretation are based on computing approxima-

tions of variable substitutions for generic executions corresponding to general

classes of inputs. In contrast, size is clearly a quite specific characteristic of an

input. Although the approximation approach can be useful in some cases we

would like to tackle the more general case in which actual sizes have to be com-

puted dynamically at run-time. Of course computing term sizes at run-time is

quite simple but at the same time it can involve a significant amount of overhead.

This overhead includes both having to traverse significant parts of the term (often

the entire term) and the counting process done during this traversal.

Our objective is to propose a novel and more efficient way of computing such
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sizes. The essential idea is based on the observation that terms are often already

traversed by procedures which are called in the program before those in which

knowledge regarding term sizes is needed, and thus that such sizes can often be

computed “on the fly” by the former procedures after performing some trans-

formations to them. While the counting overhead is not eliminated, overhead is

reduced because additional traversals of terms are not needed. In this Chapter we

present a systematic way of determining whether a given program can be trans-

formed in order to compute a given term size at a given program point without

additional term traversal. Also, if several such transformations are possible our

approach allows finding minimal transformations under certain criteria. We have

omitted proofs for the sake of conciseness. They can be found in [HLG94]. We

also discuss the advantages and applications of our technique (specifically in the

task of granularity control) and present some performance results.

5.1 Overview of the Approach

As mentioned at the beginning of this chapter, we are interested in transforming

some predicates in such a way that they will compute some of their argument

data sizes at run-time, in addition to performing their normal computation. It

is often the case that because of previous transformations or other reasons, the

size of certain terms is already known and it can be used as a starting point in

the dynamic computation of those that we need to determine at a given point.

Thus, we will be interested in the general problem of transforming programs to

determine the sizes of one set of terms given that the sizes of the terms in another

(disjoint) set are known. For example, consider the predicate append/3, defined

as:

append([], L, L).
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append([H|L], L1, [H|R]) :− append(L, L1, R).2

Suppose that we want to transform this predicate in such a way that it com-

putes the length of its third argument. Observing the base case we can infer that

the length of the term appearing in the third argument of the head is equal to

that of the term appearing in the second argument after any successful compu-

tation. We can express this size relation as follows: head[3] = head[2], where

head[i] denotes the size of the term appearing at the ith argument position in

the head. Thus, a transformation of this base case can be performed by adding

two additional arguments, which stand for the size of the term appearing in the

second and third arguments, respectively: append3i2([], L, L, S, S).

In this way, if we call the base case supplying the size of the second argument,

we will obtain that of the third one. Observing the recursive clause, we can see

that the size of the third argument of the head is equal to the size of the third

argument of the first body literal plus one. We express this size relation as follows:

head[3] = body1[3] + 1, where bodyj[i] denotes the size of the term appearing at

ith argument position in the jth literal of the body (literals are numbered from

left to right, starting by assigning “1” to the literal just after the head). Then we

can think of using a transformed version of this body literal in order to compute

body1[3]. But to do this it is necessary that the size of the second argument

of this body literal (body1[2]) be supplied at the call (so that body1[3] can be

computed when recursion finishes). Since we already have the body1[2] = head[2]

size relation, we can conclude that it is possible to compute the size of the third

argument of append/3 if the size of the second one is supplied at the call.

The recursive clause can be trivially transformed as follows with the knowledge

of the previous size relations:1

1For clarity, this class of transformations is used in the examples even if they are not ideal,

given that they destroy tail recursion optimization. However it is quite straightforward to
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G2

G1 head[3]head[2]

body1[2] body1[3]body1 head[2]

head[3]

+
1

Figure 5.1: Size dependency graphs for predicate append/3.

append3i2([],L,L,S,S).

append3i2([H|L],L1,[H|R],S2,S3) :− append3i2(L,L1,R,S2,Sb3),

S3 is Sb3 + 1.

We can see that the problem can be reduced to finding what we will call a “size

dependency graph” for each clause of the predicate to be transformed. Figure 5.1

shows the size dependency graphs corresponding to the previous example. In this

figure, the graphs G2 and G1 correspond to the base case and recursive clause of

append/3 respectively.

Informally, the set of size dependency graphs contains the information needed

to transform a predicate, and is represented by means of what we call a trans-

formation node. In general it is necessary to transform more than one predicate

to perform a particular size computation. In this case, transformation nodes are

viewed as nodes in a search tree which will have to be explored with the objective

perform the equivalent transformation which preserves tail recursion optimization by using

an accumulating parameter. These are the transformations performed in practice. Note also

that although presenting the technique proposed in terms of source-to-source transformations

is useful both didactically and as a viable implementation technique, the transformation can

also be implemented at a lower level in order to reduce the run-time overheads involved even

further.
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of finding a set of such nodes leading to a program transformation which correctly

computes the desired term sizes.

In essence, the proposed approach involves first inferring all possible size re-

lations between arguments of the program clauses which can be involved in the

desired size computation,2 constructing all possible transformation nodes from

these size relations, and, finally, finding the set of transformation nodes leading

to correct size computations.

The static inference of argument size relations have been widely stud-

ied [UV88, VS92, DLH90]. In particular, we refer to the size relations described

in [DL93]. Consider the function |·|m : H → N⊥ (as defined in [DL93]), that maps

ground terms to their sizes under a specific measure m (various measures can be

used, e.g., term-size, term-depth, list-length, integer-value, etc.), where H is the

Herbrand universe, i.e. the set of ground terms of the language, and N⊥ the set of

natural numbers augmented with a special symbol ⊥, denoting “undefined”. For

example, |[a, b]|list length = 2, but |f(a)|list length = ⊥. In [DLH90], argument size

relations are classified as either “intra-literal” or “inter-literal”. The former refer

to size relations between the argument positions of a single literal. They hold

between the sizes of arguments of all atoms in the success set for the predicate

corresponding to the literal and are similar to those described in [VS92]. The lat-

ter refer to relations between argument positions of different literals in a clause or

the clause head. For example size3 = size1 + size2 is an intra-literal size relation

for the predicate append/3 which states that the length of its third argument is

the sum of the lengths of its two first arguments. However head[3] = body1[3] + 1

is an inter-literal size relation corresponding to the recursive clause of append/3

, and states that for every substitution that makes the terms appearing at po-

sitions head[3] and body1[3] ground, the size of the term appearing at position

2We can consider only predicates in the strongly connected component of the call graph

corresponding to the predicate which is the entry point of the transformation.
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head[3] is equal to the size of the term appearing at position body1[3] plus one,

i.e. | [H|R] |list length = | R |list length + 1 holds for every substitution that makes

H and R ground.

5.2 Transforming Procedures

A size dependency graph is a directed, acyclic graph whose nodes can be of the

following types: a) A position in a clause: head[i] or bodyj[i], as described in

Section 5.1; b) A binary arithmetic operator (+, −, etc.); or c) A non-negative

integer number.

We distinguish two classes of edges:

• Intra-literal edges are those from a position in a body literal to another

position in the same body literal, more formally, from bodyi[k] to bodyj[n]

where i = j and k 6= n. Their meaning is the following: the size of the

term appearing at the kth argument position in the ith literal of the body is

computed by a transformed version of the predicate of this literal. In order

to perform such size computation this version requires that the size of the

term appearing at its nth argument position be supplied at the call.

• Inter-literal edges are those which are not intra-literal.

There is an inter-literal edge from a position x to another position y, if the

size of the term appearing at position x is equal to the size of the term appearing

at position y. Arithmetic operator nodes and number nodes are used to express

arithmetic relations between the size of argument positions, as illustrated in Fig-

ure 5.1. Regarding the number and type of outgoing and incoming edges allowed,

we establish a classification of nodes as follows:

• Only two cases are allowed for head positions nodes, namely:
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– Input size nodes, which have one or more inter-literal incoming edges

and no outgoing edges.

– Output size nodes, which have exactly one outgoing inter-literal edge

and no incoming edges.

• For body positions, also only two cases are allowed, namely:

– Supplied size nodes, which have one outgoing inter-literal edge and

one or more incoming intra-literal edges. They correspond to those

arguments whose size is supplied at the call of a transformed body

literal.

– Computed size nodes, which have one or more incoming inter-literal

edges and zero or more outgoing intra-literal edges. They correspond

to those arguments whose size is computed by transformed body lit-

erals.

• A binary arithmetic operator node has two outgoing inter-literal edges and

one incoming inter-literal edge.

• A non-negative integer number node has only one inter-literal incoming

edge and no outgoing edges.

Consider the size dependency graph G1 in Figure 5.1. head[2] is an input

size node, head[3] is an output size node, body1[2] is a supplied size node and

body1[3] is a computed size node. A transformation node for a predicate Pred is

a pair (Label, Graphs), where Graphs is a set of size dependency graphs. There

is exactly one graph for each clause defining the predicate. Suppose that there

are n clauses in the definition of predicate Pred. Let Gi be the size dependency

graph for clause i, and Ii and Oi the set of input and output size arguments

of Gi respectively. Let I =
⋃n
i=1 Ii and O =

⋃n
i=1Oi. Then Label, the label of

the transformation node, is a tuple (Pred, Is, Os), where Is = {i | head[i] ∈ I}
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and Os = {i | head[i] ∈ O}. With the above defined label we can express

which predicate Pred is transformed and which argument sizes will be computed

as a function of which others. The transformed version of Pred will have an

additional argument for each item i ∈ Is (which will be bound to the size of the

term appearing at the ith argument position in the head at the predicate call) and

j ∈ Os (which will be bound to the size of the term appearing at the j th argument

position in the head once the call succeeds). For example, (append/3, {2}, {3}) is

a label which states that the predicate append/3 will be transformed to compute

the size of its third argument, provided that the size of the second one is supplied

at the procedure call. This means that it is necessary to add two extra arguments

to the transformed predicate which will stand for the sizes of the second and third

arguments of append/3.

Example 5.2.1 Figure 5.1 represents the transformation node composed by the

size dependency graphs G1 and G2, namely ((append/3, {2}, {3}), {G1, G2}). 2

2

We require that the size dependency graphs meet the following condition: if

there is an inter-literal edge from a supplied size node bodyi[k] to a computed

size node bodyj[n] then j < i. This condition ensures that the sizes supplied to

a transformed literal are computed only by previous literals of the body. This

requirement is due to the fact that the sizes supplied have to be “ground” at the

call, because we are interested in using built-ins similar to “is/2” (in fact, more

efficient and specialized versions) to perform the arithmetic operations needed to

compute sizes and these built-ins require all but one of their arguments to be

ground. It is important to note that this condition may be relaxed if the target

language is for example a Constraint Logic Programming language [JL87] which

can solve linear equations. However actual equation solving would probably incur

in significant overhead. Thus we enforce the condition both for efficiency reasons
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Figure 5.2: Size dependency graphs for predicate qsort/2.

and for allowing the transformed programs to be executed without requiring any

constraint solving capabilities in the target language.

In a size dependency graph the set of all the nodes corresponding to a literal

with number i (i.e. those of the form bodyi[j]) is referred to as the literal node

bodyi. As an example, consider the size dependency graph G1 in Figure 5.1.

There, the set {body1[2], body1[3]} is the literal node body1. We also group the

supplied size nodes and computed size nodes corresponding to a particular literal

node into the sets S and C respectively (in the example S = {body1[2]} and C =

{body1[3]}). We associate with the literal node the label (Pred, Is, Os), where

Pred is the predicate name and arity of the literal and Is = {j | bodyi[j] ∈ S}

and Os = {j | bodyi[j] ∈ C} (in the example, the label associated with literal

node body1 is (append/3, {2}, {3})). The label of the literal node indicates which

transformed version of the predicate of the literal corresponds to such literal. This

is the version which performs the size computation that is also expressed by such

label. Then, when the clause where the literal appears is transformed, the literal

will be replaced by a call to the predicate that performs the size computation.
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5.3 Transforming Sets of Procedures

In this section we address the problem of transforming a set of procedures which

are part of a call-graph, in order that they perform a size computation. To this

end, it is necessary to have at least a transformation node for some of those

procedures and these nodes have to meet some conditions that are explained

below.

Definition 5.3.1 [Transformation] Is a graph composed by a set N of transfor-

mation nodes and a set of edges. There is a distinguished transformation node

E ∈ N which is called the entry point of the transformation and:

1. LetG be any size dependency graph of T1, where T1 is a transformation node

T1 ∈ N , and let l be any literal node of G, then l has exactly one outgoing

edge and no incoming edges. This edge goes from l to some transformation

node T2 ∈ N such that the label of T2 is equal to the label associated with

the literal node l (note that T1 and T2 can be the same transformation

node). The intuition behind this edge is the following: suppose that L1 is

the literal corresponding to l in the source clause corresponding to G, and

L2 is the transformed version of L1 which perform the size computation

indicated by the label associated with l. The edge states that the predicate

of L1 can be transformed according to the information represented in T2

yielding the predicate of L2.

2. There is an edge from transformation node T1 ∈ N to a transformation node

T2 ∈ N if and only if there is an edge from some literal node l of T1 to T2.

Intuitively, this edge states that the transformed predicate corresponding

to T1 calls the transformed predicate corresponding to T2.

3. All the transformation nodes T ∈ N are reachable from E. 2
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Definition 5.3.2 [Size Computation Specification] We define a size computa-

tion specification as a pair (Pred,Os), where Pred is the name and arity of the

predicate to be transformed, and Os is a set of argument numbers whose sizes

are computed by the transformed predicate at run-time. 2

Definition 5.3.3 [Transformation for a size computation specification] A Trans-

formation for a size computation specification (Pred,Os) is a transformation T

such that the label of the entry point of T is of the form (Pred, Is, Os). 2

Theorem 5.3.1 If there is a Transformation T for a size computation specifi-

cation (Pred,Os) such that the label of the entry point of T is (Pred, Is, Os)

then it is possible to transform the clauses of Pred to obtain a transformed Pred-

icate Pred′, such that Pred′ computes the sizes of the arguments indicated in Os,

provided that the sizes of arguments indicated in Is are supplied (while still also

performing the same computations originally performed by Pred).2

5.4 Irreducible/Optimal Transformations

Since there may be many possible transformations for a given size computation

specification, we are interested in those involving the least amount of overhead

at run-time. Such overhead is dependent on the system, since it depends on

the cost of argument passing and that of arithmetic operations. Reducing this

overhead suggests considering transformations having the minimum number of

transformation nodes and each of them having the minimum number of items in

Is, where (Pred, Is, Os) is the label of any node in the transformation. That is,

to transform a predicate to make it compute the sizes of some of its arguments

we would like to know which are the arguments whose sizes are strictly necessary
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to perform this computation (in order to add only the absolutely necessary ad-

ditional arguments and operations to the transformed predicates) and also what

is the minimum number of predicates which have to be transformed. We first

introduce the concept of irreducible transformation and show that in order to de-

termine whether it is possible to transform a predicate we only need to consider

irreducible transformations. Then we present some ideas regarding the generation

of optimal irreducible transformations.

Definition 5.4.1 [Ordering between labels] Given two labels, X =

(Pred, Isx, Os) and Y = (Pred, Isy, Os), we say that X <l Y if and only if

Isx ⊂ Isy. 2

For example: (append/3, {2}, {3}) <l (append/3, {1, 2}, {3}), but

(append/3, {2}, {3}) 6<l (append/3, {1}, {3})

Definition 5.4.2 [Irreducible Transformation] A transformation T is irreducible

iff:

1. The labels of transformation nodes in T are unique.

2. There are no two transformation nodes in T , labeled with the labels X and

Y respectively, such that X <l Y . 2

We represent an irreducible transformation as a pair (L, T ), where T is a set

of transformation nodes and L is the label of the transformation node that is the

entry point of the transformation (recall that the labels of the transformation

nodes in T are unique). The entry point belongs to the set T . Since the labels of

the transformation nodes are unique, it is not necessary to explicitly represent any

edges in the irreducible transformation (they can be determined from conditions

in Definition 5.3.3 without ambiguity). Thus, all edges are omitted.
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Figure 5.3: An irreducible transformation.

Example 5.4.1 Consider the predicate qsort/2 defined as follows:

C1: qsort([],[]).

C2: qsort([First|L1],L2) :-

partition(First,L1,Ls,Lg),

qsort(Ls,Ls2),qsort(Lg,Lg2),

append(Ls2,[First|Lg2],L2).

and suppose we want to transform it to compute the length of its second argu-

ment. Figure 5.2 shows size dependency graphs corresponding to the clauses of

predicate qsort/2. In this figure, the size dependency graph G3 corresponds to the

base case (C1) of this predicate, and G4 and G5 correspond to its recursive clause

(C2). Let N1 be the transformation node N1 = ((qsort/2, ∅, {2}), {G3, G5}).

Let N2 be the transformation node from Example 5.2.1. Then, the pair

((qsort/2, ∅, {2}), {N1, N2}) is an irreducible transformation, with entry point

the node N1. This irreducible transformation is represented in Figure 5.3. The

pair ((append/3, {2}, {3}), {N2}) is also an irreducible transformation. 2 2

A note on the generation and nature of transformation nodes: this gener-

ation is performed through a mode analysis to determine data flow patterns
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[Deb89, MH92, Bru91] and an argument size analysis [DLH90]. It is impor-

tant to note that this combined analysis can in some cases infer intra-literal

size relations between arguments of a predicate. This information can be used

to generate transformation nodes which can be part of a transformation, but

which need to traverse less data because a size computation can be performed

directly in one operation, rather than by counting during the execution of the

predicate. For example, suppose that the analysis infers the intra-literal size

relation size3 = size1 + size2 for append/3 (which states that the length of

its third argument is the sum of the lengths of its two first arguments), and

the intra-literal size relation size2 = size1 for predicate qsort/2. Consider

the clause C2 in Example 5.4.1. Using size3 = size1 + size2 for append/3

we have that |L2|list length = |Ls2|list length + |[First|Lg2]|list length holds for ev-

ery substitution that makes all the terms appearing in it ground, and also

|L2|list length = |Ls2|list length+|Lg2|list length+1 holds. Thus we can infer the follow-

ing inter-literal size relation head[2] = body2[2]+ body3[2]+1 which doesn’t imply

any transformation of predicate append/3 but of the predicate qsort/2. More-

over, using size2 = size1 for qsort/2 we have that |Ls2|list length = |Ls|list length

and |Lg2|list length = |Lg|list length also holds. Thus, we can infer another inter-

literal size relation head[2] = body1[3] + body1[4] + 1 (which implies the transfor-

mation of predicate partition/4)).

Theorem 5.4.1 If there is a transformation T for a size computation specifica-

tion X then there is an irreducible transformation T ′ for X.2

Theorem 5.4.1 implies that we only need to find irreducible transformations

to determine whether a procedure is transformable to compute sizes. Obviously,

irreducible transformations will result in transformed procedures with potentially

less overhead at run-time than the transformations they have been obtained from,

but now the problem is to decide which irreducible transformation will have less
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overhead, or, in other words, which of them will be optimal. The problem of

finding such optimal irreducible transformations lies in the fact that we need to

use two parameters (number of transformation nodes and number of arguments

needed) in the comparison and some transformations may be incomparable, in the

sense that one is smaller than the other one on one criteria but the converse is true

on the other criteria. In practice we can always assign costs or weights to both

argument passing steps and arithmetic operations so that for each transformation

we can obtain a function which gives its cost or overhead as a function of the input

data sizes. In this case we can compare the cost of irreducible transformations

and decide which of them is optimal. In the same way, we can compare the

cost of irreducible transformations with the cost of performing the standard size

computation, i.e. the one using predefined predicates such as length/2, in order

to see how convenient performing the transformation to compute sizes is.

5.5 Searching for Irreducible Transformations

Since the number of transformation nodes for a given size computation specifi-

cation is finite, a possible algorithm to find transformations may be to simply

generate all possible sets of transformation nodes and test which of them are irre-

ducible transformations. Note that the number of transformation nodes is in any

case restricted by the number of size relations that can be inferred by size analysis

[DLH90] (in fact, if the algorithm does not find any transformation it does not

mean that a transformation does not exist, but rather that it is impossible to find

a transformation with the inferred information by size analysis). However, some

other more efficient approaches are possible.

In Figure 5.4 we propose a simple, goal directed algorithm (for which we

will later propose some optimizations) which performs a top-down search start-

ing from a given size computation specification (a bottom-up algorithm is also
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possible). The search space is described by the find trans/3 predicate. Note

that the irreducible transformations generated still have to be checked in order to

determine which of them has the least overhead in the size computation process.

Example 5.5.1 Consider the predicate qsort/2 as defined in Example 5.4.1,

and suppose we want to transform it to compute the length of its second argu-

ment, that is, we want to find a transformation for the size computation spec-

ification (qsort/2, {2}). We assume a depth-first search (as obtained when the

find trans/3 predicate is executed in Prolog).

1. The search starts by calling find trans(SCS, S, Trans), where SCS =

(qsort/2, {2}) and S is the information about size relations for the predicates

in the quick-sort program (i.e. qsort/2, partition/4, and append/3).

2. Suppose that generate label(SCS, L) generates the label L =

(qsort/2, ∅, {2}).

3. Then search([L], S, nil, T) is called. Suppose that generate node(L,

S, [L], nil, Node, LL) succeeds generating the transformation node

Node = N1, where N1 = ((qsort/2, ∅, {2}), {G3, G4}), where G3 and G4 are

the size dependency graphs in Figure 5.2, and making LL = [L1], where

L1= (append/3, ∅, {3}).

4. A recursive call search([L1], S, [N1], OutTrans) is made. This call

fails because of the failure of generate node(L1, S, [L1], [N1], Node2,

LL2). Thus, backtracking occurs and generate node(L, S, [L], nil,

Node, LL) is retried. Suppose that this call succeeds generating the trans-

formation node Node = N2, where N2 = ((qsort/2, ∅, {2}), {G3, G5}), and

G3 and G5 are the size dependency graphs in Figure 5.2, and making LL =

[L2], where L2= (append/3, {2}, {3}).
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5. A recursive call search([L2], S, [N2], OutTrans) is made. Suppose

that generate node(L2, S, [L2], [N2], Node3, LL3) succeeds gener-

ating the node Node3 = N3, where N3 = ((append/3, {2}, {3}), {G1, G2}),

where G1 and G2 are the size dependency graphs in Figure 5.1, and making

LL3 = nil.

6. Finally a recursive call search(nil, nil, [N3, N2], OutTrans) is made.

This call succeeds making OutTrans = [N3, N2]. Thus Trans = (L, [N3,

N2]). 2

2

The efficiency of the previous top-down algorithm can be improved if certain

information is used during the generation of transformation nodes performed by

generate node/3. In particular, knowledge regarding which of the labels associ-

ated with literal nodes in the generated transformation node are likely to make

the generate node/3 predicate fail further on while trying to find transforma-

tion nodes for such labels. This can prune the search space considerably. It is

sometimes possible to detect such labels by examining facts in the program. For

example, it is possible to detect that generate node/3 will not find any trans-

formation node for (append/3, ∅, {3}), since, examining the fact which appears

in the definition of append/3, we can infer that at least it is necessary to supply

the size of the second argument of append/3 at the call. Thus, no transformation

node will be generated having the label (append/3, ∅, {3}) associated with some

literal node. We have built a prototype implementation in Prolog along these

lines which makes use of the built-in search capabilities of Prolog to perform such

a top-down search.

It should be noted that our transformation algorithm can be classified as a

“rules + strategies” approach – see [PP94] and its references– and thus, can be

described in terms of applying certain folding and unfolding rules in a particular
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order. In fact, what our algorithm expresses is a particular “strategy” tailored

to finding optimal transformations, in the sense that, if several possible transfor-

mations are suitable, it constructs those which have the least runtime overhead,

based on the criteria of choosing those which traverse less data and perform less

arithmetic operations. This is useful for implementation reasons since it avoids

having to implement a full partial evaluator which would be an overkill for the

task in hand.

In some simple cases similar transformations to the ones we propose can be

obtained by adding to the original program some code that would perform the size

computation in a naive way, and then applying a general purpose transformation

strategy (e.g. partially evaluating a “length/2” predicate into a previous recursive

loop). However, the need for our algorithm comes from the fact that the general

purpose strategies used in program transformation systems are less powerful in

this particular application than our algorithm, in the sense that a general strategy

would not ensure obtaining transformations for some cases that our algorithm

does, and, also, it would not ensure the optimality of the transformations if they

are found. Note, for example, that there are certain transformations which are

based on detecting that some term sizes need to be known and used as a starting

point for other size computations. This can only be done by reasoning at the

“strategy” level.

5.6 Experimental Results and Advantages

We have run a series of experiments using SICStus PROLOG running on a SUN

IPC workstation to measure the gain obtained with our predicate transformation

technique with respect to what we will call the “standard approach” to com-

puting term sizes, that is, by introducing new calls to predicates that explicitly

compute them. An example is by using the Prolog length/2 built-in to compute
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bench Twsc Tst Tpt Tst −Twsc Tpt −Twsc gain

c/2 202.90 405.69 277.99 202.79 75.09 63.0 %

qsort/2 1218.00 1495.00 1343.90 277.00 125.90 55.3 %

q/2 52.59 90.20 61.69 37.61 9.10 76.7 %

deriv/2 119.00 3349.00 239.00 3110.00 120.00 92.9 %

Table 5.1: Execution times (ms) for benchmarks.

lengths of lists. Theoretically this gain can be up to 100%. To measure this in

practice we have chosen a few benchmarks which we feel represent either worst or

typical cases and which we argue allow getting some feeling for the performance

gain which can be obtained in practice. Table 5.1 shows execution times for

the experiments performed with these benchmarks. Twsc is the execution time

without size computation. Tst is the execution time with size computation using

the standard approach. Tpt is the execution time of the predicate transforma-

tion approach. Tst − Twsc and Tpt − Twsc are then the overheads due to size

computation with the standard and predicate transformation approach, respec-

tively. The last column shows the gain achieved by the predicate transformation

approach with respect to the standard one. This gain is computed according

to the following expression: gain = (Tst−Twsc)−(T2−Twsc)
Tst−Twsc

100 For brevity only a

brief description of the benchmarks is provided. A more complete description

(including the program text) can be found in [HLG94]. The first benchmark that

we have chosen contains only the predicate c/2 followed by a call to length/2.

c/2 performs the standard, simplest possible form of list traversal, performing

no work during the iterations. Thus, the transformation approach will incur in

maximum overhead.

The second benchmark is the predicate qsort/2, in which the lengths of the

two output lists of partition/4 are computed. This size computation is useful
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when transforming the predicate qsort/2 in order to perform granularity control.

The third benchmark is the predicate q/2 defined as follows:

q([], []).

q([X|Y], [X,X|Y1]) :- X > 7, !, q(Y, Y1).

q([X|Y], [X,X,X|Y1]) :- X =< 7, q(Y, Y1).

Execution times have been measured for different lengths of the input list for

these three benchmarks, and the observed gain is approximately constant in each

case.

Finally, the fourth benchmark is the predicate deriv/2, also performing size

computation. Note that in this case the size measure is not list length, but rather

term size (we do not include the corresponding transformation for the sake of

brevity).

The observed gain arise from two factors: avoiding additional term traversal

and performing less arithmetic operations. In both deriv/2 and q/2 the “stan-

dard approach” has to traverse more data and thus the number of arithmetic

operations is greater than in the predicate transformation approach.

Note that another advantage of our approach is that it can take profit of

previous size computations so that no recomputation is performed. On the other

hand, there are also certain cases in which the predicate transformation approach

can be more expensive than the standard one. Such cases may appear in con-

nection with backtracking – if there is frequent failure and backtracking within a

predicate which has been transformed to perform term size computation it may

be better to compute term sizes once and for all using the standard approach

upon success. Also, one can construct predicate transformations which perform

redundant size computations.
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5.7 Chapter Conclusions

We have developed a technique for transforming predicates so that they com-

pute some of their argument data sizes at run-time, in addition to performing

their normal computation. We have presented a systematic way of determining

whether a given program can be transformed in order to compute a given term

size at a given program point without additional term traversal. Also, if several

such transformations are possible our approach allows finding minimal transfor-

mations under certain criteria. We have developed and integrated in the ciaopp

system an algorithm for finding irreducible transformations. We also have dis-

cussed the advantages and applications of our technique (specifically in the task

of granularity control) and presented some performance results, which we believe

are quite encouraging. The observed gain (with respect to to what we will call

the “standard approach” to computing term sizes) arise from two factors: avoid-

ing additional term traversal and performing less arithmetic operations. Another

advantage of our approach is that it can take profit of previous size computations

so that no recomputation is performed. Among the applications for which our

technique for dynamic term size computation is useful, we can mention applica-

tions related to program optimization which includes recursion elimination, and

selection among different algorithms or control rules whose performance may be

dependent on such size.
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Predicate: find trans(SCS, S, Trans)

Input: a size computation specification SCS and the information S about size

relations between arguments in the different clauses of a program for the

predicate in SCS, derived through size analysis.

Output: an irreducible transformation Trans for SCS.

Definition: find trans(SCS, S, Trans) ←

generate label(SCS, L), search([L], S, nil, T), Trans=(L, T).

Predicate: generate label(SCS, L)

Description: generates a label L for SCS. Fails when all possible labels have been

generated via backtracking.

Predicate: search(LabelList, SizeRel, InTrans, OutTrans)

Definition: search(nil, SizeRel, Trans, Trans).

search([Label|LabList], SizeRel, InTrans, OutTrans) ←

generate node(Label,SizeRel,[Label|LabList],InTrans,Node,LL),

append(LL, LabList, NewLabList), Trans = [Node|InTrans],

search(NewLabList, SizeRel, Trans, OutTrans).

Predicate: generate node(Label, SizeRel, LabList, InTrans, Node,

LL)

Description: Generates a transformation node Node with label Label, using the

information about size relations SizeRel in such a way that the following

condition is met: Let St be the set of labels of the transformation nodes in

the current transformation InTrans. Let Sl be the set of labels in LabList.

Let Sn be the set of labels associated with literal nodes in Node. Then,

there are no two labels l1 and l2, l1 ∈ Sn and l2 ∈ (St ∪ Sl ∪ Sn), such that

l2 <l l1.

If it is not possible, or all possible transformation nodes have been generated

previously via backtracking, then it fails. Otherwise, it creates a list LL

containing the labels in the set Sn − (St ∪ Sl) and succeeds. We omit the

detailed description of the generation of Node for the sake of brevity.

Figure 5.4: A top-down algorithm for finding irreducible transformations.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have developed (an integrated in the ciaopp system [HBPLG99, HBC+99])

a complete automatic granularity control system for logic programs based on a

program analysis and transformation schema, where as much work is done at

compile time. For this purpose we have developed some program transformation

techniques, so that transformed programs perform an efficient granularity control

at runtime, and also have developed some program analysis techniques able to

infer the information needed for the program transformation phase, such as (lower

bounds on) cost of procedures, which calls will not fail (non-failure analysis), etc.

We have discussed the many problems that arise (for both the cases when

upper and lower bound information regarding task granularity is available, and

for a generic execution model) and provided solutions to them. We believe that

the results are general enough to be of interest to researchers working on other

parallel languages.

We know of no other work which describes (and implements) a complete and

fully automatic granularity control system for logic programs, discusses the many
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problems that arise and provides solutions to them in the generality that we

present our work.

We have also assessed the developed granularity control techniques for and-

parallelism and or-parallelism on the &-Prolog and Muse systems respectively,

and have obtained what we believe are quite encouraging results.

It appears from the sensitivity of the results that we have observed in our

experiments that it is not essential to be absolutely precise in inferring the best

grain size for a problem: there is a reasonable amount of leeway in how precise

this information has to be. This suggests that granularity control can usefully be

performed automatically by a compiler.

We can conclude that granularity analysis/control is a particularly promising

technique because it has the potential of making feasible to automatically exploit

low-cost parallel architectures, such as workstations on a (possibly high speed)

local area network.

Finaly, it is worth of mentioning that some of the techniques that we have de-

veloped for granularity control, have other important applications. In particular,

non-failure information is very useful for the avoidance of speculative parallelism,

program error detection, and program transformation. The technique for dynamic

term size computation “on the fly” is useful for applications related to program

optimization which includes recursion elimination, and selection among different

algorithms or control rules whose performance may be dependent on such size.

Information about the computational cost of a program is potentially useful for

a variety of purposes. Programmers can use such information to choose between

different algorithmic solutions to a problem. Program transformation systems can

use cost information to choose between alternative transformations. Information

about message sizes and relative frequency of communication between different

processes can be used to improve task mapping decisions on distributed memory
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systems. Information about the number of solutions in deductive database sys-

tems can be used for query optimization purposes. Apart from these applications

of cost information, the problem of cost analysis may be of some independent

interest to researchers on static analysis of logic programs because (i) it uses a

great deal of information from other kinds of analyses, such as mode and type

analysis, inference of size norms, etc., so that any improvements in these analyses

potentially yield improvements in cost analysis; and (ii) because of the rich va-

riety of algorithms for combinatorial analysis that arise, especially when dealing

with constraints.

6.2 Future Work

There are many directions in which the work described in this thesis can be ex-

tended. We intend to study task assignment techniques based on the combination

of granularity information and scheduling techniques such as those used in data

parallelism. We can also combine our techniques with Partial Evaluation Tech-

niques in order to create coarse granularity tasks (e.g. by means of unfolding

operations, loop unrolling, etc.). We also have in mind extending the techniques

we have developed to concurrent constraint languages.

Another interesting area of investigation is average case analysis. For most

of the applications identified in this thesis, the average cost of a program is

far more interesting, and appropriate, than the worst case. Obviously, giving

an acceptable definition of “average” requires defining a probability distribution

on the possible inputs, and this seems nontrivial. However, one can imagine

that profiling techniques might be usable for estimating input distributions, so

techniques for average case analysis that assume that the input distributions are

given are worth investigating.

Finally, we also are planning to perform an assesment of our granularity con-
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trol system with lager and more real programs, and apply the developed tools to

the version of parallel ECLiPSe running on a network of workstations and the

distributed version of Ciao–Prolog.
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