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R E S U M E N

Detectar comportamientos incorrectos en los programas es una parte
importante en el ciclo de desarrollo de software. Es una tarea com-
pleja y tediosa, especialmente en el contexto de los lenguajes dinámi-
cos. Se han propuesto numerosas técnicas que ayudan en el proceso,
entre las cuales nos hemos centrado en el uso de construcciones
a nivel de lenguaje para describir el comportamiento esperado del
programa, y en las herramientas necesarias para comparar el com-
portamiento real del programa en contraposición con el esperado,
como, por ejemplo, analizadores/verificadores estáticos de código y
entornos de verificación en tiempo de ejecución.

En la práctica, sin embargo, el alto coste durante la ejecución hace
que el uso de estas herramientas sea poco viable, especialmente para
propiedades complejas. Esto reduce el interés en hacer comproba-
ciones en tiempo de ejecución desde el punto de vista de los pro-
gramadores y programadoras, quienes esporádicamente permitirán
comprobaciones de condiciones muy sencillas pero tenderán a de-
sactivarlas para propiedades complejas. Algunos trabajos optan por
limitar la expresividad del lenguaje de aserciones para reducir este
coste.

Con esta motivación, el objetivo de esta tésis es doble:

• primero, pretendemos mejorar la expresividad del lenguaje de
aserciones para reflejar todas las características relacionadas con
el lenguaje de programación, incluyendo, por ejemplo, construc-
ciones de orden superior, haciéndolo de forma que el/la pro-
gramador/a pueda escribir especificaciones sin necesidad de
aprender o programar para ello;

• al mismo tiempo, nuestra meta es comprobar de forma eficiente
dichas especificaciones, reduciendo el coste asociado en tiempo
de ejecución en la medida de lo posible y sin comprometer
las garantías de seguridad que proporcionan dichas comproba-
ciones.

Esta tésis presenta varias mejoras para la comprobación de especi-
ficaciones en tiempo de ejecución entre las que se encuentran:

• un mecanismo discreto de memorización de resultados interme-
dios de comprobación, de forma que pueden ser reutilizados en
el proceso de comprobación en lugar de recalcularlos;

• un técnica que combina comprobación en tiempo de compi-
lación y en tiempo de ejecución, que usa las propiedades de esta



última como información adicional en tiempo de compilación,
lo que implica que más propiedades se puedan comprobar es-
táticamente, aligerando el trabajo en tiempo de ejecución;

• y otra técnica para mejorar la inferencia de estructuras durante
el análisis estático de programas, que aprovecha las reglas de
visibilidad de términos del entorno modular subyacente, lo que
permite simplificar las comprobaciones de propiedades del pro-
grama consiguiendo un sobrecoste constante en casos relevantes.

Finalmente, para atacar el problema de la expresividad limitada
de los lenguajes de especificaciones, esta tésis se enfoca en el caso
concreto de aportar especificaciones detalladas para rutinas de orden
superior.

Las técnicas y herramientas estudiadas en esta tésis se presentan,
por concreción, en el entorno de comprobación en tiempo de ejecu-
ción Ciao. No obstante, los resultados son generales e independi-
entes del sistema, y creemos que pueden trasladarse de forma sen-
cilla a otros lenguajes de programación declarativos. Además, dados
los avances en verificación en gran parte de los lenguajes de progra-
mación, incluyendo los imperativos, mediante la traducción a cláusu-
las de Horn y probando propiedades a este nivel, y el hecho de que
este enfoque está totalmente soportado en el sistema Ciao, argumen-
tamos que nuestros resultados se pueden adaptar fácilmente a un
espectro mucho mas amplio de lenguajes.



A B S T R A C T

Detecting incorrect program behaviors is an important part of the
software development life cycle. It is also a complex and tedious one,
in which dynamic languages bring special challenges. A number of
techniques have been proposed to aid in the process, among which
we center our attention on the use of language-level constructs to de-
scribe expected program behavior, and of associated tools to compare
actual program behavior against expectations, such as static code an-
alyzers/verifiers and run-time verification frameworks.

In practice, however, the run-time overhead associated with these
tools often remains impractically high, specially for non-trivial prop-
erties, or complex data structure tests. This reduces the attractiveness
of run-time checking to programmers, who may allow sporadic check-
ing of very simple conditions, but will tend to turn off run-time check-
ing for more complex properties in favor of faster execution. Some
approaches even opt for limiting the expressiveness of the assertion
language in order to reduce the overhead.

Our research objective in this thesis is twofold:

• first, we aim to enhance the expressiveness of the assertion lan-
guage to reflect all the features of the related programming lan-
guage, including, e.g., higher-order constructs, and to do so in
a way that allows the programmer to write precise program
specifications while not imposing a learning or programming
burden on them;

• at the same time, our goal is to efficiently check specifications,
mitigating the associated run-time overhead as much as possi-
ble without compromising the safety guarantees that the checks
provide.

With respect to checking specifications efficiently this dissertation
presents several improvements for run-time specification checking,
including:

• a mechanism for unobtrusive caching of intermediate run-time
checking results so that they can be re-used in the checking pro-
cess instead of being re-evaluated, contributing to undesirable
(and unnecessary) run-time overhead;

• a technique of combining compile- and run-time checking in
a way that uses the properties from the program specification
as an additional information source during static specification
checking, which results in more properties checked statically
and fewer of them turned into run-time checks;



• and another technique for improving term shape inference dur-
ing static program analysis, exploiting term visibility rules of
the underlying module system, which allows to simplify prop-
erty checks in a program in a way that constant run-time over-
head is achievable in relevant cases.

Finally, to address the limited expressiveness of the specification
languages, this dissertation targets the concrete case of providing de-
tailed specifications for higher-order program routines.

The techniques and tools discussed in this thesis are presented for
concreteness in the context of the Ciao run-time checking framework.
Nevertheless, these results are general and system-independent, and
we believe they can be straightforwardly transferred to the contexts
of other declarative languages. In addition, given the recent advances
in verification of a wide class of programming languages, including
imperative ones, by translation into Horn clauses and proving prop-
erties at this level, and the fact that this approach is fully supported
in the Ciao system, we argue that our results can easily be adapted to
a much broader spectrum of languages.
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1
I N T R O D U C T I O N

One of the things that distinguishes human intelligence is our abil-
ity for abstract thought and rational reasoning. During the most part
of the history of our species these tasks were only performed by hu-
mans — philosophers, scholars, engineers. This started to change in
the XVII century with the idea that computations can be performed
semi-automatically with devices such as logarithmic rulers and me-
chanical calculators. Fast-forward to XXI century and computations
are performed fully automatically by what we call nowadays comput-
ers. Not to be confused

with human
computers, a
profession that
existed in the
XVII-XX centuries.

The Digital Revolution of the last decades has changed the role of
computers from military and scientific equation solvers to being an
integral part of our lives. Yet, while the changes in the physical or-
ganization, the hardware, are drastic, it is the software, the programs
being executed, that have made computers our inseparable compan-
ions. As of writing, software is everywhere: in watches, smartphones,
cars, planes, self check-out cashiers at the supermarkets, it is regulat-
ing traffic flow in the streets, it issues speed limit violation tickets for
drivers, and the list goes on and on.

There is no doubt that modern software-based technological solu-
tions offer benefits and comfort both for the engineers and for the
end users. This comfort, however, highly depends on the quality of
the software. While factors like efficiency or convenience of the user
interaction mostly affect the competition between similar products,
errors in software might have severe real-life consequences. In 1999

NASA lost a $125 million Mars orbiter because a software component
written by an engineering company performed computations in Im-
perial units while the rest of the software used the more conventional
metric system. In 2012 a “software glitch” after an update of the trad-
ing software of the Knight Capital company caused a $440 million
loss in about 30 minutes. Yet another example is known nowadays
as the “Northeast blackout of 2003,” when widespread power out-
age occurred throughout parts of the United States and the Canadian
province of Ontario due to a “bug” in the alarm system of the electric-
ity grid controllers, resulting in almost 100 human fatalities. It is no
wonder then that companies and service providers that rely on soft-
ware in their critical operations, such as NASA and Airbus, to name
a few, invest in software validation and verification.



2 introduction

1.1 approaches to assertion-based debugging and veri-
fication and the ciao model

For the reasons mentioned above, detecting and avoiding incorrect
program behaviors is an important part of the software development
life cycle. It is also a complex and tedious one (in which dynamic
languages bring special challenges), and thus a number of techniquesBy dynamic

(programming)
language we mean

an untyped
programming
language with

run-time checking of
various properties

(types, modes, etc.).

have been proposed to aid in this process. Among these techniques,
we center our attention on the use of programming language-level con-
structs to describe expected program behavior (i.e., to express specifi-
cations), and of associated tools to compare actual program behavior
against such expectations. This language-based approach has the ad-
vantage that the specifications can also be used to clarify interfaces
and meanings and facilitate “programming in the large” by making
large programs more maintainable and better documented.

A classical approach in this context is the use of theorem provers
and proof assistants, such as, e.g., HOL, ACL2, Isabelle, Coq, etc., to
construct proofs of the validity (or not) of assertions (the language-
level constructs) about the program. The advantage of this approach
is that it can deal with arbitrary properties, but at the price of man-
ual intervention from the programmer, which is also required to have
significant expertise in the tools and their underlying theory. While
this approach is of clear value when complex properties need to be
proved and the required expertise is available, our interest herein is
in automated approaches, i.e., approaches that can be made an intrin-
sic part of the development process such as, e.g., by being called at
each compilation iteration or even being embedded in the compiler,
essentially without programmer involvement.

The classical example of the latter is that of traditional strongly-typed
systems, such as those used, for example, in some functional and logic
languages (e.g., Haskell [45], Gödel [44] or Mercury [97]). Here the
language-level constructs are the type declarations and the verifica-
tion process the type checking/inference. An advantage of this ap-
proach is that it meets the automation objective in that the check-
ing/inference process is mechanical and done routinely by the com-
piler at every cycle. It has also been shown to scale well for industrial
applications. As a result, many languages across different program-
ming paradigms adopt strong typing as a mechanism for ensuring
data manipulation correctness. The disadvantage is that for the same
reasons traditional type systems are required to be decidable, i.e., to
always be able to prove in finite (and, in fact, short) time whether
an assertion (i.e., a type declaration) holds or not. Traditionally, this
has meant limiting in practice the properties that can be captured by
the types and/or limiting the programming language, and imposing
additional requirements such as that all types (and, when relevant,
modes) have to be defined explicitly or that all procedures have to be



1.2 related work 3

“well-typed” and/or “well-moded,” absence of subtyping, etc. In this
approach programs that are untypable or do not conform to these
rules are rejected.

An alternative approach that lies between the two extremes above
is to make a best effort to infer and check the required properties
through automatic, rigorous analysis tools. The fundamental tech-
nique in this context is abstract interpretation [26], which allows in-
ferring provably safe approximations of program semantics in an auto-
matic way. The use of approximations implies accepting up front the
fact that complete verification or validation may not always be possi-
ble. But in return automation can be achieved without imposing too
many limitations in the properties or the programming language.

A canonical example of this approach, which it pioneered, is the
Ciao programming language, and its associated analyzer and asser-
tion handling model [65, 66, 68, 10, 82, 12, 84, 42, 85, 43, 61, 79]. This
model combines a language of (optional) assertions with a method-
ology for dealing with such assertions, based on abstract interpre-
tation, that is automatic, in contrast to theorem provers and proof
assistants, while at the same time allowing a much richer class of
properties than traditional type systems. This includes, e.g., modes,
moded types, determinacy, non-failure, sharing/aliasing, term linear-
ity, intervals, constraints, cost, etc. The price is not always being able
to discharge all the assertions statically, but then, rather than always
rejecting the program, run-time checks are introduced (optionally) to
detect at run-time any violations of the assertions. The model also
allows verifiable program certification [2]. The Ciao model and its im-
plementation will be used as the conceptual reference framework for
our work in this dissertation.

1.2 related work

The Ciao model draws many synergies from combining various com-
ponents, such as an assertion language, abstract-interpretation-based
static analysis, run-time checking, and testing, to name a few. The
combination of compile-time and run-time checking is related to the
NU–Prolog debugger [72], which performed compile-time checking
of decidable (regular) types and also allowed calling Prolog predi-
cates at run time as a form of dynamic type checks, and to the soft
typing approach of Cartwright [18], which introduces run-time checks
for untyped parts of programs. However, as mentioned before, the
Ciao model is not restricted to types, nor requires properties to be
decidable. The later proposal of [51] for Prolog IV that combined
compile- and run-time checking was inspired by Ciao.

A number of other approaches have been proposed which make
use to some extent of abstract interpretation in verification and/or
debugging tasks. Abstractions were used in the context of algorithmic
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debugging in [54]. Abstract interpretation for debugging in imperative
programs was studied by Bourdoncle [7] and in logic programs by
Comini et al., for the particular case of algorithmic debugging and
diagnosis for declarative properties [23, 22]. Both of these approaches
focused on some specific semantics: context-insensitive and bottom-
up (i.e., non query-driven), respectively. The Ciao model is designed
to support context sensitivity/multi-variance and standard program
control-flow semantics, so that both declarative and procedural prop-
erties can be checked, for multiple procedure contexts and with multi-
ple corresponding assertions (pre-/post-condition pairs) for the same
procedure or program point. Safe approximations have also been
used to reduce the burden posed on programmers by declarative de-
buggers [21], also addressed by Boye et al. [8]. The general topic has
also been summarized by Cousot in [25].

The ideas of allowing properties that cannot always be decided
statically, using safe approximation inference by abstract interpreta-
tion as proof method, introducing run-time checks for properties not
verified statically, etc., are gradually having impact in many contexts.

For example, gradual typing has also become a hot research topic in
the functional programming community, a notable example of a lan-
guage incorporating it being Scheme [96, 111], which has also served
as a model language for alternative approaches of occurrence typ-
ing [110] and contract-based extensions [32, 30]. Similar work has been
carried out for the Racket [77, 76, 78] programming language (an evo-
lution of Scheme), with particular focus on efficiency and practicality
of this typing discipline reviewed in [107, 108]. A discussion on intro-
ducing gradual typing to Prolog and the implementation challenges
is proposed in [93]. Moreover, gradual typing has been successfully in-
troduced in the imperative programming paradigm (TypeScript [89]).

More recently, refinement types have gained attention in program
verification, adding greater flexibility to the program properties, as
well as extending verification approach. Notable examples of lan-
guages for which systems implementing this typing approach have
been developed include Haskell (Liquid Haskell [113]) and Ruby [47].

In object-oriented programming a similar evolution of tools has
been followed [52], with program contracts being added to verifica-
tion frameworks for .NET (Code Contracts [57, 64, 31]) and Java (JML
/Spec# [53]).

1.3 run-time checking overhead

As mentioned before, the Ciao model, as well as most of the later
approaches discussed above, typically involves a certain degree of
run-time testing. A practical limitation is that these checks can incur
significant run-time performance overhead, even in the simple case
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of performing just type checks between typed and untyped parts of
programs [89, 108].

In [61] overhead reductions are obtained by limiting the points at
which the tests are performed and the instrumentation, as well as
by inlining, but some types of tests still incur significant costs. Other
approaches opt for limiting the expressiveness of the assertion lan-
guage in order to reduce the overhead (see [91] for some recent case
studies). Some proposals have been made for reducing the run-time
overhead of assertion checking based on optimizing the run-time
checking mechanisms themselves, at the expense of increased mem-
ory consumption [50, 101]: the time overhead of repeated checks on
immutable recursive data structures is traded for increased memory
use via caching and/or tabling techniques.

As also mentioned before, in the Ciao model static analysis is used
to minimize the number and cost of the run-time checks that need
to be placed in the program. A number of (abstract interpretation-
based) static analyses are combined in order to verify assertions to the
largest extent possible at compile time. Recent work in the context of
run-time monitoring frameworks for imperative programs uses sim-
ilar ideas to exploit static analyses in order to reduce the run-time
overhead of the monitors as, e.g., proposed in [6] for Java programs.

Despite all these advances, run-time overhead often remains im-
practically high, for example for properties which require deep data
structure tests. This reduces the attractiveness of run-time checking to
programmers, which may activate sporadic checking of very simple
conditions, but tend to turn off run-time checking for more complex
properties.

Reducing this run-time checking overhead is one of the main objec-
tives of this dissertation.

1.4 language independence

We develop the discussion throughout the thesis in the context of
(Horn Clause) Logic Programs, which allows us to take advantage of
the availability of mature program analysis and transformation tools,
and a well developed assertion language and assertion processing
framework (in particular, that of the Ciao system). However, we ar-
gue that the results are applicable to other programming paradigms,
either directly (e.g., to other forms of declarative programming), or to
imperative programs, via semantic transformation into Horn clauses.
The use of Horn clauses in the Ciao system as an intermediate lan-
guage to support programs in other languages was described in [60].
Some concrete examples of the application of this approach that we
have explored within Ciao include cost analysis of Java bytecode pro-
grams [74, 75] and energy bound inference in binaries stemming from
C-style programs [56, 55]. Recently [34] proposed an approach for us-
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ing Horn clauses as an intermediate language which is quite similar
to Ciao’s [60].

The Horn clause-based transformational approach is currently re-
ceiving considerable interest (see, e.g., [36, 37, 58]), and is even the
subject of the “Horn clause-based Verification and Synthesis” work-
shop series [5]. In [28] encouraging results are reported for the direct
inference of the verification conditions of safety properties for C pro-
grams based on their (C)LP representation. Similar approaches have
been used to translate to other formalisms, such as term rewrite sys-
tems [35].

1.5 the ciao static/dynamic debugging and verification

framework

In this section we provide a tutorial overview of a subset of the Ciao
assertion language, relevant for this dissertation, and of the verifica-
tion framework, following the presentation of [40]. This will provide
the context for introducing the different contributions made by the
thesis.

ciao assertions Assertions in Ciao are linguistic constructs which
allow expressing properties of programs. Syntactically they appear as
declarations, and semantically they allow talking about preconditions,
(conditional-) postconditions, whole executions, program points, etc.
Herein we will focus on the most commonly-used subset of the Ciao as-
sertion language: pred assertions. A detailed description of the full
language can be found in [84, 11].

Such pred assertions are used to describe predicates by stating sets
of preconditions and postconditions on the state of the computation
before and after calls to predicates, as well as global properties of
such computations (such as, e.g., the number of execution steps, de-
terminacy, or the usage of some other resource). Figure 1.1 includes
a number of pred assertions. The assertion in line 4 expresses that
calls to predicate nrev/2 with the first argument instantiated to a list
are admissible, and that if such calls succeed then the second argu-
ment should also be instantiated to a list. list/1 is an example of a
(state) property: a predicate which expresses constraints on the values
of a variable or a set of variables. Note that A in list(A) above refers
to the first argument of nrev/2. Properties can also involve several
variables and/or be parametric. As an example of the latter, the as-
sertion in line 5 of Figure 1.1 uses list_of/2 to express that for any
call to predicate nrev/2 with the first argument instantiated to a list of
colors, if the call succeeds, then the second argument is also instanti-
ated to a list of colors. Properties are defined by the user and export-
ed/imported as normal predicates. In Figure 1.1 properties list/1,
list_of/2, and color/1 are imported from the user module someprops
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�
1 :- module(_, [nrev/2], [assertions]).
2 :- use_module(someprops ,[list/1,list_of/2,color/1]).
3

4 :- pred nrev(A, B) : list(A) => list(B).
5 :- pred nrev(A, B) : list_of(color , A) => list_of(color , B).
6 :- pred nrev(A, _) : list(A) + (not_fails , is_det , terminates).
7

8 nrev([],[]).
9 nrev([H|L],R) :- nrev(L,R0), conc(R0,[H],R).

10

11 conc([],L,L).
12 conc([H|L], K, [H|T]) :- conc(L,K,T).

Figure 1.1: Naive reverse with some assertions.

in line 2. In any case properties need to meet some restrictions, e.g.,
their execution should terminate for any possible call since, as dis-
cussed later, properties will not only be checked at compile time, but
may also be involved in run-time checks. Types are a particular case
(further restriction) of state properties and different type systems are
implemented as libraries. Most properties are “runnable” (useful for
run-time checking), and can be interacted with, i.e., the answers to a
query: ?- use_package(someprops), list(X).
are: X = [], X = [_], X = [_,_], X = [_,_,_], etc. Finally, not_fails/1
is an example of a computational property: a predicate which expresses
constraints on the execution of calls, not failing in this case. How-
ever, this thesis concentrates mostly on state properties. As Figure 1.1
shows, there can be several pred assertions for the same predicate.

Assertion status: Each assertion has a verification status, marked by
prefixing the assertion with the keywords check, trust, true, checked,
and false. This specifies respectively whether the assertion is pro-
vided by the programmer and is to be checked or to be trusted, or
is the output of static analysis and thus correct (safely approximated)
information, or the result of processing an input assertion and prov-
ing it correct or false. The check status is assumed by default when
no explicit status keyword is present.

Uses of assertions: assertions find many uses in Ciao, ranging
from testing to verification and documentation (for the latter, see
lpdoc [39]). In addition to describing the properties of the module
in which they appear, assertions also allow programmers to describe
properties of modules / classes which are not yet written or are writ-
ten in other languages.1 This makes it possible to run checkers / ver-
ifiers / documenters against partially developed code.

the ciao verification framework We now describe the Ciao
verification framework [12, 42, 84], implemented in the Ciao prepro-
cessor, CiaoPP. Figure 1.2 depicts the overall architecture. Hexagons

1 This is also done in other languages but, in contrast with Ciao, different kinds of
assertions for each purpose are often used.
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represent tools and arrows indicate the communication paths among
them. It is a design objective of the framework that most of this com-
munication be performed also in terms of assertions. This has the
advantage that at any point in the process the information is easily
readable by the user. The input to the process is the user program,
optionally including a set of assertions; this set always includes any
assertion present for predicates exported by any libraries used (left
part of Figure 1.2).

Assertions
(in user code,
builtins,
libraries)

:- check
:- trust

Code
(user code,
builtins,
libraries)

Assertion
Normalizer
& Library
Interface

Static
Analysis
(Fixpoint)

Analysis Info

:- true

Static
Com-
parator

Run-time
Check

Annotator

:- check

:- false

:- checked

Compile-time
error

Verification
warning(s)

Verified as-
sertion(s)

Code with
Run-time
Checks

Run-time
error

Preprocessor
Program

Figure 1.2: The Ciao Verification Framework.

Run-time checking of assertions: after (assertion) normalization in
the Assertion Normalizer component (which, e.g., takes away syntactic
sugar) the RT-check module transforms the program by adding run-
time checks to it that encode the meaning of the assertions (assume
for now that the Comparator simply passes the assertions through).
Note that the fact that properties are written in the source language
and runnable is very useful in this process. Failure of these checks
raises run-time errors referring to the corresponding assertion. Cor-
rectness of the transformation requires that the transformed program
only produce an error if the assertion is in fact violated.
Compile-time checking of assertions: even though run-time check-
ing can detect violations of specifications, it cannot guarantee that
an assertion holds. Also, it introduces run-time overhead. The frame-
work performs compile-time checking of assertions by comparing the
results of Static Analysis (Figure 1.2) with the assertions [12, 42]. This
analysis is typically performed by abstract interpretation [26] or any
other mechanism that provides safe upper or lower approximations
of relevant properties, so that comparison with assertions is meaning-
ful despite precision losses in the analysis. The type of analysis may
be selected by the user or determined automatically based on the
properties appearing in the assertions. Analysis results are given us-
ing also the assertion language, to ensure interoperability and make
them understandable by the programmer. As a possible result of the
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Assertions
(in user code,
builtins,
libraries)

:- check
:- trust

Static
Analysis
(Fixpoint)

Run-time
Check

Annotator

Code with
Run-time
Checks

Code
(user code,
builtins,
libraries)

Assertion
Normalizer
& Library
Interface

Analysis Info

:- true

Static
Com-
parator

:- check

:- false

:- checked

Compile-time
error

Verification
warning(s)

Verified as-
sertion(s)

Run-time
error

Preprocessor
Program

Specification
expressiveness
(Chapter 6)

Analysis pre-
cision and
effectiveness
(Chapter 4, 5)

Run-time
checking
efficiency
(Chapter 3)

Figure 1.3: Overview of the Contributions (orange boxes) w.r.t. the Ciao Ver-
ification Framework Components.

comparison, assertions may be proved to hold, in which case they
get checked status –Figure 1.2. As another possible result, assertions
can be proved not to hold, in which case they get false status and a
compile-time error is reported. Even if a program contains no assertions,
it can be checked against the assertions contained in the libraries used
by the program, potentially catching bugs at compile time. Finally,
and most importantly, if it is not possible to prove nor to disprove
(part of) an assertion, then such assertion (or part) is left as a check
assertion, for which optionally run-time checks can be generated as
described above. This can optionally produce a verification warning.

1.6 objectives and contributions per chapter

The overall objective of the dissertation is to push the state of the art
in several aspects of the assertion-based, combined static/dynamic
debugging and verification approach represented by the Ciao model,
with the intention that the results will be applicable in the many
related systems currently gaining popularity within functional, con-
straint, and imperative programming. More precisely, the concrete
objectives and contributions of the dissertation are depicted in Fig-
ure 1.3, which shows the relation between each dissertation chapter
and the aspects of the overall approach addressed in that chapter. The
actual contents and contributions of the chapters are presented below.

organization of the text The chapters are mostly self-cont-
ained. However, Chapters 3 to 6 rely on the definitions and notation
introduced in Chapter 2. It is also advisable to read Chapter 4 before
Chapter 5 as the latter uses a similar experimental evaluation frame-
work.
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chapter 3 (Figure 1.3: Improving run-time checking efficiency) This
chapter presents an approach for reducing run-time checking over-
head that is based on the use of memoization to cache intermediate
results of check evaluation, avoiding repeated checking of previously
verified properties. Compared to approaches that reduce checking fre-
quency, our proposal has the advantage of being exhaustive (i.e., all
tests are checked at all points) while still being much more efficient
than standard run-time checking. Compared to the limited previous
work on memoization, it performs the task without requiring modi-
fications to data structure representation or checking code. We also
report on a prototype implementation and provide some experimen-
tal results that support that using a relatively small cache leads to
significant decreases in run-time checking overhead.

chapter 4 (Figure 1.3: Improving analysis precision and effectiveness
via the run-time checking semantics) In this chapter we explore the ef-
fectiveness of abstract interpretation in detecting parts of program
specifications that can be statically simplified to true or false, as well
as the impact of such analyses in reducing the cost of the run-time
checks required for the remaining parts of these specifications. Start-
ing with a semantics for programs with assertion checking, and for
assertion simplification based on static analysis information obtained
via abstract interpretation, we propose and study a number of prac-
tical assertion checking “modes,” each of which represents a trade-
off between code annotation depth, execution time slowdown, and
program safety. We then explore these modes in two typical, library-
oriented scenarios. We also propose program transformation-based
methods for taking advantage of the run-time checking semantics to
improve the precision of the analysis. Finally, we study experimen-
tally the performance of these techniques. Our experiments illustrate
the benefits and costs of each of the assertion checking modes pro-
posed, as well as the benefits obtained from analysis and the pro-
posed transformations in these scenarios.

chapter 5 (Figure 1.3: Improving analysis precision and effectiveness via
term hiding) While static analysis can greatly reduce run-time check-
ing overheads, the gains depend strongly on the quality of the infor-
mation inferred. Reusable libraries, i.e., library modules that are pre-
compiled independently of the client, pose special challenges in this
context. We propose a technique which takes advantage of module
systems which can hide a selected set of functor symbols to signifi-
cantly enrich the shape information that can be inferred for reusable
libraries, as well as an improved run-time checking approach that
leverages the proposed mechanisms to achieve large reductions in
overhead, closer to those of static languages, even in the reusable-
library context. Our method maintains the full expressiveness of the
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assertion language in this context. In contrast to other approaches it
does not introduce the need to switch the language to a (static) type
system, which is known to change the semantics in languages like
Prolog. We also study the approach experimentally and evaluate the
overhead reduction achieved in the run-time checks.

chapter 6 (Figure 1.3: Improving specification expressiveness) Higher-
order constructs extend the expressiveness of first-order (Constraint)
Logic Programming ((C)LP) both syntactically and semantically. At
the same time assertions have been in use for some time in (C)LP
systems helping programmers detect errors and validate programs.
However, assertion-based extensions to (C)LP have not been inte-
grated well with higher-order to date. This chapter contributes to
filling this gap by extending the assertion-based approach to error
detection and program verification to the higher-order context within
(C)LP. We propose an extension of properties and assertions as used
in (C)LP in order to be able to fully describe arguments that are pred-
icates. The extension makes the full power of the assertion language
available when describing higher-order arguments. We provide syn-
tax and semantics for (higher-order) properties and assertions, as well
as for programs which contain such assertions, including the notions
of error and partial correctness. We also discuss several alternatives
for performing run-time checking of such programs.

1.7 list of publications

The following list indicates publications corresponding to the chap-
ters of the dissertation:
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September 2014.
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negildo. Towards Assertion-based Debugging of Higher-
Order (C)LP Programs. 30th International Conference
on Logic Programming (ICLP’14), Theory and Prac-
tice of Logic Programming Special Issue, On-line Sup-
plement, Vol. 14, Num. 4-5, pages 209-210, Cambridge
University Press, July 2014.



12 introduction

chapter 3 is based on the following paper [101]:

Nataliia Stulova, José F. Morales, and Manuel V. Her-
menegildo. Practical Run-time Checking via Unobtrusive
Property Caching. Theory and Practice of Logic Pro-
gramming, 31st International Conference on Logic Pro-
gramming (ICLP’15) Special Issue, 15(04-05):726–741,
September 2015.

chapter 4 is based on the following paper [105]:

Nataliia Stulova, José F. Morales, and Manuel V. Her-
menegildo. Some Trade-offs in Reducing the Overhead of
Assertion Run-time Checks via Static Analysis. Science
of Computer Programming, Vol. 155, pages 3-26, El-
sevier North-Holland, April 2018. Selected and Ex-
tended papers from the 18th International Symposium
on Principles and Practice of Declarative Programming
(PPDP’16).

which is an extended journal version of a conference paper [102]:

Nataliia Stulova, José F. Morales, and Manuel V. Her-
menegildo. Reducing the Overhead of Assertion Run-time
Checks via Static Analysis. 18th International ACM SIG-
PLAN Symposium on Principles and Practice of Declar-
ative Programming (PPDP’16), pages 90-103, ACM Press,
September 2016.

chapter 5 is based on the following paper [104]:

Nataliia Stulova, José F. Morales, and Manuel V. Her-
menegildo. Exploiting Term Hiding to Reduce Run-time
Checking Overhead. In Francesco Calimeri, Kevin Hamlen,
and Nicola Leone, editors, 20th International Sympo-
sium on Practical Aspects of Declarative Languages
(PADL 2018), LNCS Vol. 10702, pp. 99–115, Springer-
Verlag, January 2018.

An extended abstract of this paper has been also presented as
the following informal publication [103]:

Nataliia Stulova, José F. Morales, Manuel V. Hermene-
gildo. Towards Run-time Checks Simplification via Term
Hiding. Technical Communications of the 33rd Inter-
national Conference on Logic Programming (ICLP 2017),
OpenAccess Series in Informatics (OASIcs), Vol. 58,
pages 1-3, Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2017.



2
A S E M A N T I C S O F ( C O N S T R A I N T ) L O G I C
P R O G R A M S W I T H A S S E RT I O N S

This chapter introduces the reader to the formal notation of (Con-
straint) Logic Programming ((C)LP) and the Ciao system, establishing
the technical language for the following chapters. First, the standard
concepts and notation from (C)LP theory, that are used throughout
this dissertation are recalled. Then the Ciao assertions are introduced
in a formal way.

2.1 (c)lp notation and semantics

Sets of variable, function, and predicate symbols, are denoted by VS,
FS, and PS respectively. Variables start with a capital letter. An anony-
mous variable, denoted _ , represents a variable that is distinct from
any other variable appearing in the same scope. Each p ∈ PS and
f ∈ FS is associated to a natural number called its arity, written
ar(p) or ar( f ). The set of terms TS is inductively defined as follows:
VS ⊂ TS, if f ∈ FS and t1, . . . , tn ∈ TS then f (t1, . . . , tn) ∈ TS where
ar( f ) = n. An atom has the form p(t1, ..., tn) where p ∈ PS, ar(p) = n,
and t1, ..., tn ∈ TS. A constraint is essentially a conjunction of expres-
sions built from predefined predicates (such as term equations or
inequalities over the reals) whose arguments are constructed using
predefined functions (such as real addition). A literal is either an atom
or a constraint. Constants are introduced as 0-ary symbols. A goal is a
finite sequence of literals. A clause is of the form H ← B where H, the
head, is an atom and B, the body, is a possibly empty finite sequence of
literals. A constraint logic program, or program, is a finite set of clauses.

The σ symbol represents a variable renaming and σ(X) represents
the result of applying the renaming σ to some syntactic object X (a
term, atom, literal, goal, etc.). The definition of an atom A in a pro-
gram, cls(A), is the set of program clauses whose head has the same
predicate symbol and arity as A, renamed-apart (i.e., all variables are
renamed into distinct new variables). In the following it is assumed
that all clause heads and clause body literals are normalized, i.e., any
literal L in a program clause is of the form p(X1, ..., Xn) where the
X1, ..., Xn are distinct free variables. This is not restrictive since pro- However, for

conciseness in the
examples
non-normalized
programs are used
sometimes.

grams can always be normalized, and it facilitates the presentation.
Restricting the constraint θ to the variables of the syntactic object L is
denoted as ∃Lθ. Constraint entailment is denoted by |=, so that θ1 |= θ2

denotes that θ1 entails θ2. In such case we say θ2 is weaker than θ1. In
the rest of the dissertation it is assumed that there is a single program,
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so that all sets of clauses, etc. refer to that implicit program and it is
not necessary to refer to it explicitly in the notation.

Very often, the properties of a program which we are interested
in expressing by means of assertions are related to the run-time be-
havior of the program. For this, we need to consider the operational
semantics of the program. The operational semantics of a program is
given in terms of its derivations, which are sequences of reductions be-
tween states. A state 〈G | θ〉 consists of a goal G and a constraint store
(or store for short) θ. We use :: to denote concatenation of sequences
and we assume for simplicity that the underlying constraint solver is
complete. We use S  S′ to indicate that a reduction can be applied
to state S to obtain state S′. Also, S  ∗ S′ indicates that there is a
sequence of reduction steps from state S to state S′. As a basis of the
reductions used in the rest of the dissertation, we define reduction
steps as follows:

Definition 2.1 (Reductions). A state S = 〈L :: G | θ〉 where L is a literal
can be reduced to a state S′ as follows:

1. 〈L :: G | θ〉 〈G | θ ∧ L〉 if L is a constraint and θ ∧ L is satisfiable.

2. 〈L :: G | θ〉  〈B :: G | θ〉 if L is an atom of the form p(t1, . . . , tn),
for some clause (L← B) ∈ cls(L).

We denote by D[i] the i-th state of the derivation. As a shorthand,
given a non-empty derivation D, D[−1] denotes the last state. We use
S S′ to indicate that a reduction can be applied to state S to obtain
state S′. Also, S  ∗ S′ indicates that there is a sequence of reduction
steps from state S to state S′.

A query is a pair (L, θ), where L is a literal and θ a store, for which
the (C)LP system starts a computation from state 〈L | θ〉. The set of all
derivations from the query Q is denoted derivs(Q). The observational
behavior of a program is given by its “answers” to queries. A finite
derivation from a query (L, θ) is finished if the last state in the deriva-
tion cannot be reduced. A finished derivation from a query (L, θ) isNote that derivs(Q)

contains not only
finished derivations

but also all
intermediate

derivations from a
query.

successful if the last state is of the form 〈� | θ′〉, where � denotes the
empty goal sequence. In that case, the constraint ∃̄Lθ′ (denoting the
projection of θ onto the variables of L) is an answer to (L, θ). We denote
by answers(Q) the set of answers to a query Q. A finished derivation
is failed if the last state is not of the form 〈� | θ〉. A query Q finitely
fails if derivs(Q) is finite and contains no successful derivation.

2.2 assertion language

properties Conditions on the constraint store are assumed to be
expressed with properties. Properties and the other predicates com-
posing the program are written in the same language. This approach
is motivated by the direct correspondence between the declarative
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and the operational semantics of constraint logic programs. In what
follows property literals are referred to as prop literals.

Example 2.1. The following property describes a sorted list:
sorted([]).
sorted([_]).
sorted([X,Y|L]) :- X =< Y, sorted([Y|L]).

Definition 2.2. The meaning of a prop literal L denoted |L|, is the set of
constraints given by answers((L, true)).

Intuitively, the meaning of a prop literal is the set of “weakest”
constraints for which the literal holds:

Example 2.2. Prop literal list/1 can be defined by:
list([]).
list([_|L]) :- list(L).

The meaning of list/1 and of sorted/1 from Example 2.1 is given by:

|list(A)| = {A = [], A = [B|C] ∧ list(C)}
|sorted(A)| = {A = [], A = [B],

A = [B, C|D] ∧ B ≤ C ∧ E = [C|D] ∧ sorted(E)}.

An important observation is that in constraint logic programming
it seems natural to define the meaning of prop literals as (C)LP pro-
grams rather than as (recursive) sets. Thus, the admissible prop lit-
erals are restricted to those literals Lp for which a definition of the
corresponding predicate p exists such that answers((Lp, true)) = |Lp|.
This is not too strong a restriction given the high expressive power of
(C)LP languages.1 Note that the approach also implies that the pro-
gram must contain the definitions of all the predicates p for literals Lp

used in conditions of assertions. We believe that this choice of a lan-
guage for writing conditions is in fact of practical interest because it
facilitates the job of programmers, which do not need to learn a spec-
ification language in addition to the (C)LP language they are already
familiar with.

The following definition from [85] defines when the condition rep-
resented by a prop literal holds2 for a given store:

Definition 2.3 (Succeeds Trivially). A prop literal L succeeds trivially
for θ, denoted θ Z⇒ L, iff ∃θ′ ∈ answers((L, θ)) such that θ |= θ′. A DNF
formula of prop literals succeeds trivially for θ if all of the prop literals of at
least one conjunct of the formula succeed trivially.

1 Note that the scheme of [84, 83] allows approximate definitions of such predicates
and sufficient conditions for proving and disproving them.

2 Lemma 1 in [85] establishes that the notions of “Holding Trivially” and “Succeeding
Trivially” are equivalent, which allows us to simplify and base our semantics on the
latter notion.
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Intuitively, a prop literal L succeeds trivially if L succeeds for θ

without adding new “relevant” constraints to θ.

Example 2.3. Consider prop literals list(A) and sorted(B) and the pred-
icate definitions of Example 2.2

• Assume that θ = (A = f ). Since ∀θ′ ∈ |list(A)| : θ 6|= θ′, as we
would expect, θ 6 Z⇒ list(A).

• Assume now that θ = (A = [ |Xs]). Though A is compatible with
a list, it is not actually a (nil terminated) list. Again in this case
∀θ′ ∈ |list(A)| : θ 6|= θ′ and thus again θ 6 Z⇒ list(A) The intuition
behind this is that we cannot guarantee that A is actually a list given
θ, since a possible instance of A in θ is A = [ | f ], which is clearly
not a list.

• Finally, assume that θ = (A = [B] ∧ B = 1). In such case ∃θ′ =

(A = [B|C] ∧ C = []) such that θ |= θ′ and ∃c = (B = 1) such that
(c ∧ θ′ 6|= f alse) ∧ (θ′ ∧ c |= θ). Thus, in this last case θ Z⇒ list(A).

Another class of the
property checks of

interest to a
programmer are

compatibility
properties, which are

not considered in
this dissertation. A

discussion of the two
can be found in [42]
and Section 2.9.2 of

[84].

This means that prop literals are considered as instantiation checks:
they are true iff the variables they check for are at least as constrained
as their predicate definition requires.

Definition 2.4 (Test Literal). A prop literal L is a test iff ∀θ either θ Z⇒ L
or (L, θ) finitely fails.

assertions Assertions are linguistic constructions for expressing
properties of programs and are one of the ways of providing program
specifications. They are used for detecting deviations of the program
behavior (symptoms) with respect to such assertions, or to ensure that
no such deviations exist (correctness). This thesis concentrates on use
of the pred assertions of the Ciao assertion language [42, 85, 40], fol-
lowing the formalization of [99, 105], given that such assertions are
the most frequently used in practice, and they subsume the other as-
sertion schemas in that language. In the following the term assertion
is used to refer to a pred assertion.

Assertions allow specifying certain conditions on the constraint
store that must hold at certain points of program derivations. The
main intent behind the construction of a specification for a predicate
using pred assertions is to define the set of all admissible precondi-
tions for this predicate, and for each such precondition in turn specify
the respective postcondition. I.e., pred assertions allow stating sets of
related preconditions and conditional postconditions for a given predi-
cate. These pre- and postconditions are formulas containing prop lit-
erals introduced earlier. This provides a direct link between the prop-
erties used in assertions and the corresponding run-time tests, which
constitute (instrumented) calls to the predicates defining the prop-
erties. This also allows defining specifications that are more general
than, e.g., classical types.
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More formally, the set of assertions for a given predicate repre-
sented by a Head atom is composed of the (possibly empty) set of all
statements of the form:

:- pred Head : Pre1 => Post1.

. . .

:- pred Head : Pren => Postn.

where Head is the same normalized atom, that denotes the predicate
that the assertions apply to, and the Prei and Posti are assumed to
be DNF formulas of prop literals that refer to the variables of Head.
It is assumed that variables in assertions are renamed such that the
Head atom is identical for all assertions for a given predicate. A set
of assertions as above states that in any execution state 〈Head :: G |
θ〉 at least one of the Prei conditions should hold, and that, given
the (Prei, Posti) pair(s) where Prei holds, then, if Head succeeds, the
corresponding Posti should hold upon success.

Example 2.4. The procedure qsort(A,B) is the usual one that relates lists
A and their sorted versions B. The following assertions:
:- pred qsort(A,B) : list(A) => (sorted(B), list(B)).
:- pred qsort(A,B) : list(B) => (permutation(B,A),list(A)).

state that (restrict the meaning of qsort/2 to):

• qsort(A,B) should be called either with A constrained to a list or with
B constrained to a list;

• if qsort(A,B) succeeds when called with A constrained to a list then
on success B should be a sorted list; and

• if qsort(A,B) succeeds when called with B constrained to a list then
on success A should be a list which is a permutation of B.

From this point on the set of assertions for a predicate represented
by Head is denoted by A〈Head〉, and the set of all assertions in a
program by A.

assertion conditions The different checks on the constraint
store imposed by a set of assertions are normalized into a set of cor-
responding assertion conditions as follows:

Definition 2.5 (Assertion Conditions for a Predicate). Given a predicate
represented by a normalized atom Head, if the corresponding set of assertions
isA〈Head〉 = {A1 . . . An}, with Ai = “:- pred Head : Prei => Posti.”
the set of assertion conditions for Head is AC〈Head〉 = {C0, C1, . . . , Cn},
where:

Ci =

{
calls(Head,

∨n
j=1 Prej) i = 0

success(Head, Prei, Posti) i = 1..n
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The following assumptions are implicitly made:

• If there are no assertions associated with Head then the corre-
sponding set of assertion conditions AC〈Head〉 is empty.

• The set of assertion conditions for a program, denoted AC, is
the union of the assertion conditions for each of the predicates
in the program.

• Also, given a single assertion Ai its corresponding set of asser-
tion conditions is defined as {C0, Ci}.

The calls(Head,
∨n

i=1 Prei) conditions encode the checks that ensure
that the calls to the predicate represented by Head are within those
admissible by the set of assertions, and we thus call them the calls as-
sertion conditions. The conditions success(Head, Prei, Posti) encode the
checks for compliance of the successes for particular sets of calls, and
we thus call them the success assertion conditions. Informally, such a
set of assertions states that in any execution state 〈Head :: G | θ〉
at least one of the Prei conditions should hold, and that, given the
(Prei, Posti) pair(s) where Prei holds, then, if the predicate succeeds,
the corresponding Posti should hold upon success.

Example 2.5. The assertion conditions corresponding to the predicate asser-
tions for qsort/2 are as follows:

calls(qsort(A, B), (list(A) ∨ list(B)))

success(qsort(A, B), list(A), (sorted(B) ∧ list(B)))

success(qsort(A, B), list(B), (permutation(B, A) ∧ list(A)))

In order to define the semantics of assertion conditions, the auxil-
iary partial functions prestep and step are introduced as follows:

prestep(La, D) = (θ, σ) , D[−1] = 〈L :: G | θ〉 ∧ ∃σ L = σ(La)

step(La, D) = (θ, σ, θ′) , D[−1] = 〈G | θ′〉 ∧ ∃σ L = σ(La)

∧ ∃i D[i] = 〈L :: G | θ〉

Given a derivation whose current state is a call to L (normalized
atom), the prestep function returns the substitution σ for L, and the
constraint store θ at the predicate call (i.e., just before the literal is
reduced). Given a derivation whose current state corresponds exactly
to the return from a call to L, the step function returns the substitution
σ for L, the constraint store θ at the call to L, and the constraint store
θ′ at L’s success (i.e., just after all literals introduced from the body
of L have been fully reduced). Using these functions, the semantics
of calls and success assertion conditions are given by the following
definition:
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Definition 2.6 (Valuation of an Assertion Condition on a Derivation).
Given a calls or success assertion condition C, the valuation of C on a
derivation D, denoted solve(C, D) is defined as follows:

solve(calls(L, Pre), D) , (prestep(L, D) = (θ, σ))

⇒ (θ Z⇒ σ(Pre))

solve(success(L, Pre, Post), D) , (step(L, D) = (θ, σ, θ′))

⇒ ((θ Z⇒ σ(Pre))⇒ (θ′ Z⇒ σ(Post)))

where L is a normalized atom.

assertion status As the intended use of assertions is to per-
form error detection and verification with respect to partial correct-
ness, i.e., to ensure that the program does not produce unexpected
results for valid (“expected”) queries.3 the notion of program is ex-
tended to include assertions and valid queries.

Definition 2.7 (Annotated Program). An annotated program is a tuple
(P,Q,A) where P is a constraint logic program Q is a set of valid queries,
and A is a set of assertions. As before, AC denotes the set of calls and
success assertion conditions derived from A.

In the context of annotated programs we extend derivations to oper-
ate on the set of valid queries as follows: derivs(Q) = ⋃

Q∈Q derivs(Q).

Definition 2.8 (Assertion Condition Status). Given the set of queries Q,
the assertion condition C can be either checked or false, as follows:

checked(C) , ∀D ∈ derivs(Q) . solve(C, D)

false(C) , ∃D ∈ derivs(Q) . ¬solve(C, D)

Definition 2.9 (Assertion Status). In an annotated program (P,Q,A)
an assertion A ∈ A is checked (false) if all (any) of the corresponding
assertion conditions are checked (false).

Definition 2.10 (Partial Correctness). An annotated program (P,Q,A)
is partially correct w.r.t. the set of assertions A and the set of queries Q iff
∀A ∈ A, A is checked for Q.

Note that it follows immediately that a program is partially correct
if all its assertion conditions are checked. The goal of assertion check-
ing is thus to determine whether each assertion A is false or checked
for Q. Again, for this it is sufficient to prove the corresponding asser-
tions conditions false or checked. There are two kinds of approaches
to doing this (which can also be combined). While it is in general not

3 In practice, this set of expected queries is determined from module interfaces that
define the set of exported predicates.
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possible to try all derivations stemming from Q, an alternative is to
explore a hopefully representative set of them [61]. Though this does
not allow fully validating the program in general, it makes it possi-
ble to detect many incorrectness problems. An alternative approach
is to use global analysis techniques and is based on computing safe
approximations of the program behavior statically [12, 43].

Finally, in addition to checked and false assertions, true assertions
will be considered. True assertions differ from checked assertions in
that true assertions hold in the program for any set of queries Q.

Definition 2.11 (True Assertion). An assertion A is true iff for its cor-
responding assertion conditions Ci it holds that ∀Q, ∀D ∈ derivs(Q) :
solve(Ci, D).

Clearly, any assertion which is true in the program is also checked
for any Q, but not vice-versa. Since true assertions hold for any pos-
sible query they can be regarded as query-independent properties of
the program. Thus, true assertions can be used to express analysis
information, as already done, for example, in [10]. This information
can then be reused when analyzing the program for different queries.

2.3 semantics with assertions

An operational semantics which checks whether assertion conditions
hold or not while computing the derivations from a query is provided
below. Every assertion condition C is related to a unique identifier c
via a mapping id(C) = c, and the identifiers are used to keep track of
any violated assertion conditions. The err(c) literal denotes a special
goal that marks a derivation finished because of the violation of the
assertion condition with identifier c. A finished derivation from a
query (L, θ) is now successful if the last state is of the form 〈� | θ′〉,
erroneous if the last state is of the form 〈err(c) | θ′〉, or failed otherwise.
The set of literals is extended with check literals, syntactic objects of the
form check(c) where c is an identifier for an assertion condition.Thus,
a literal is now a constraint, an atom, or a check literal.4

Note that this
operational

semantics assumes
that program

execution terminates
as soon as any one
assertion condition

is violated. An
alternative one that

collects violated
assertion condition

identifiers is
discussed in

Chapter 6.

Definition 2.12 (Operational Semantics for Programs with Assertions).
A state S = 〈L :: G | θ〉 can be reduced to a state S′, denoted S A S′, as
follows:

1. If L is a constraint then S′= 〈G | θ ∧ L〉 if θ ∧ L is satisfiable.

4 While check literals are simply instrumental here, note that they are also directly
useful for supporting program point assertions (which are basically check literals
that appear in the body of clauses) [84].
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2. If L is an atom and ∃(L← B) ∈ cls(L), then the new state is obtained
as

S′ =


〈err(c) | θ〉 if ∃ C = calls(L, Pre) ∈ AC〈L〉

∧id(C) = c ∧ θ 6 Z⇒ Pre

〈B :: G′ | θ〉 otherwise

and G′ = check(c1) :: . . . :: check(cn) :: G such that
Ci = success(L, Prei, Posti) ∈ AC〈L〉 ∧ id(Ci) = ci ∧ θ Z⇒ Prei.

3. If L is a check literal check(c), then S′ is obtained as

S′ =


〈err(c) | θ〉 if ∃ C = success(L′, _, Post) ∈ AC〈L′〉

∧ id(C) = c ∧ θ 6 Z⇒ Post

〈G | θ〉 otherwise

The set of derivations for a program from its set of queries Q using
the semantics with assertions is denoted derivsA(Q).

run-time checking of assertions The main idea behind run-
time checking of assertions is, given a set of queries Q, and a set of
assertions A, to directly apply Definition 2.8 in order to determine
whether the respective assertion conditions inAC are checked or false,
i.e., obtaining (a subset of) the derivations by running the program
and determining whether they belong to the error set of the asser-
tions. It is not to be expected that Definition 2.12 can be used to de-
termine that an assertion is checked, as this would require checking
the derivations from all valid queries, which is in general an infinite
set and thus checking would not terminate.

In this situation, and as mentioned before, an alternative is to per-
form run-time checking for a hopefully representative set of queries.
Though this does not allow fully validating the program in general,
it allows detecting many incorrectness problems. Theorem 2.1 below
guarantees that the behavior of a partially correct program is the same
under the operational semantics of the Definition 2.1 and under the
semantics with assertions of the Definition 2.12.

Definition 2.13 (Error-erased Derivation). The set of error-erased deriva-
tions from A is obtained by a syntactic rewriting (−)◦ that removes states
that begin by a check literal, and check literals from goals. It is recursively
defined as follows:
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{D1, . . . , Dn}◦ = {D◦1 , . . . , D◦n}

(S1, . . . , Sm, Sm+1)
◦ =


(S1, . . . , Sm)◦

if Sm+1 = 〈check(_) :: _ | _〉
(S1, . . . , Sm)◦ ‖ ((Sm+1)

◦)

otherwise

〈G | θ〉◦ = 〈G◦ | θ〉

(L :: G)◦ =

{
G◦ if L = check(_)

L :: (G◦) otherwise

�◦ = �

where ‖ stands for sequence concatenation.

Theorem 2.1 (Correctness and Completeness Under Assertion Check-
ing). For any annotated program (P,Q,A), given D = derivs(Q) and
D′ = derivsA(Q), D = (D′)◦.

In other words, for any annotated program the error-erased deriva-
tions obtained from  A and the derivations obtained from  are
equivalent after filtering out check literals.

Proof. We will prove D = (D′)◦ by showing that D ⊆ (D′)◦ and
D ⊇ (D′)◦:

• (⊆) For all D ∈ D exists D′ ∈ D′ so that D = (D′)◦.

• (⊇) For all D′ ∈ D′, D = (D′)◦ ∈ D.

We will prove each case:

• (⊆) Let D = (S1, . . . , Sn), Si = 〈Li | θi〉, for some Q = (L1, θ1) ∈
Q and Si  Si+1. Proof by induction on the length n of D:

– Base case (n = 1). Let S′1 = 〈L1 | θ1〉. It holds that (S′1)
◦ =

〈L1 | θ1〉)◦ = 〈L◦1 | θ1〉 = 〈L1 | θ1〉 = S1 (since L1 does
not contain any check literal). Thus, (D′)◦ = ((S′1))

◦ =

((S′1)
◦) = (S1) = D.

– Inductive case (show n + 1 assuming n holds). For each
D2 = (S1, . . . , Sn, Sn+1) there exists D′2 = (S′1, . . . , S′m, S′m+1)

such that (D′2)
◦ = D2. Given the induction hypothesis it

is enough to show that for each Sn  Sn+1 there exists
S′m  A S′m+1, such that (S′m+1)

◦ = Sn+1. According to A
(see Def. 2.12), L′m+1 and θ′m+1 are obtained in the same
way than in (see Def. 2.1), except for the introduction of
check literals. Since all check literals are removed in error-
erased states, it follows that (S′m+1)

◦ = Sn+1.
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• (⊇) Let D′ = (S′1, . . . , S′m), S′i = 〈L′i | θ′i〉, for some Q = (L′1, θ′1) ∈
Q and S′i  A S′i+1. Proof by induction on the length m of D′:

– Base case (m = 1). It holds that (S′1)
◦ = S1 (showed in base

case for ⊆). Then (D′)◦ = D ∈ D.

– Inductive case (show m+ 1 assuming m holds). We want to
show that given D′2 = (S′1, . . . , S′m, S′m+1), (D′2)

◦ = D2 ∈ D.
Given the induction hypothesis it is enough to show that
for each S′m  A S′m+1 there exists Sn  Sn+1 such that
Sn+1 = (S′m+1)

◦ (so that (S1, . . . , Sn, Sn+1) ∈ D) or Sn =

(S′m+1)
◦ (D2 = D ∈ D). According to cases of Def. 2.12:

* If L′m begins with a check literal then (L′m+1)
◦ = (L′m)◦.

Thus (S′m+1)
◦ = (S′m)◦ = Sn.

* Otherwise, it holds that (S′m+1)
◦ = Sn+1 using the

same reasoning than in the inductive case for ⊆.

This result implies that the semantics with assertions can also be
used to obtain all answers to the original query. Furthermore, the fol-
lowing theorem guarantees that the proposed operational semantics
for annotated programs can be used in order to detect (all) violations
of assertions:

Definition 2.14 (Run-time Valuations of an Assertion Condition on
a Derivation). The run-time valuation of an assertion condition C on a
derivation D is given by:

rtsolve(C, D) , ∀C′, σ, L (C′ ∈ AC〈L〉 ∧ σ(C) = C′ ∧ id(C′) = c)

⇒ D[−1] 6= 〈err(c) | _〉

I.e., condition rtsolve(C, D) is valid if none of the identifiers c of
assertion conditions C in the program appear inside the error goal in
the final state of the derivation D.

Theorem 2.2 (Run-time Error Detection). For any annotated program
(P,Q,A), C ∈ AC is false iff ∃ D ∈ derivsA(Q) s.t. ¬rtsolve(C, D).

Proof. Let us assume assertion condition A ∈ AC is false
⇔ from Def. 2.9 and Def. 2.5 ∃{Cc, Cs} assertion conditions s.t. false(Cc)∨
false(Cs), where Cc = calls(L, Pre) and Cs = success(L, Pre, Post) cor-
respond to A. Let us first prove the ¬rtsolve(Cc, D) case and then the
¬rtsolve(Cs, D) one:

• false(Cc)

⇔ from Def. 2.8 ∃D ∈ derivs(Q) s.t. ¬solve(Cc, D)

⇔ from Def. 2.6 (prestep(L, D) = (θ, σ) ∧ θ 6 Z⇒ σ(Pre))
⇔ from Def. 2.12 ∃ S A S′ where:

S = 〈L :: G | θ〉 s.t. ∃ C = calls(L, Pre) ∈ AC〈L〉 ∧ id(C) = c

S′ = 〈err(c) | θ〉
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⇔ from Def. 2.14 ¬rtsolve(Cc, D)

• false(Cs)

⇔ from Def. 2.8 ∃D ∈ derivs(Q) s.t. ¬solve(Cs, D)

⇔ from Def. 2.6 (step(L, D) = (θ, σ, θ′) ∧ θ Z⇒ σ(Pre) ∧
θ′ 6 Z⇒ σ(Post))
⇔ from Def. 2.12 ∃ S ∗A S′  A S′′ where

S =〈L :: G | θ〉
∃ C = success(L, Pre, Post)∈AC〈L〉
∧ id(C) = c ∧ θ Z⇒ Pre

S′ =〈check(c) :: G | θ′〉 ∧ θ′ 6 Z⇒ Post

S′′ =〈err(c) | _〉

⇔ from Def. 2.14 ¬rtsolve(Cs, D)

Theorem 2.2 states that assertion condition C is false iff there is a
derivation D in which the run-time valuation of the assertion condi-
tion of C in D is false (i.e., if at least one instance of the assertion
condition A is in the error set for such derivation D). Given a set of
f alse assertion conditions we can easily derive the set of f alse asser-
tions using Def. 2.5. In order to prove that any assertion is checked
this has to be done for all possible derivations for all possible queries,
which is often not possible in practice. This is why analysis based on
abstractions is often used in practice for this purpose.
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R U N - T I M E C H E C K I N G W I T H P R O P E RT Y C A C H I N G

Run-time checking frameworks, either as components of an IDE or
as separate tools, are usually responsible for instrumenting programs
with checks from the program annotations. However, run-time test-
ing in these frameworks can generally incur high penalty in execu-
tion time and/or space over the standard program execution without
tests.

The standard operational semantics with run-time checking revis-
ited in Chapter 2 (see Def. 2.12) has the same potential problems
as other approaches which perform exhaustive tests: it can be pro-
hibitively expensive, both in terms of time and memory overhead.

Example 3.1 (Complexity Jump). Consider the usual length/2 predicate
that returns the length of its list input argument:
:- pred length(L,N) : list(L) => num(N).

length([] ,0).
length([H|T],N) :- length(T,M), N is M + 1.

Checking that the first argument of the length/2 predicate is a list at each
recursive step turns the standard O(n) algorithm into O(n2).

Our objective in this chapter is to develop an approach to run-time
testing that is efficient while being minimally obtrusive and remain-
ing exhaustive. We present an approach based on the use of mem-
oization to cache intermediate results of check evaluation in order
to avoid repeated checking of previously verified properties over the
same data structure. Memoization has of course a long tradition in
(C)LP in uses such as tabling resolution [109, 29, 114], including also
sharing and memoizing tabled sub-goals [119], for improving termi-
nation. Memoization has also been used in program analysis [117, 68],
where tabling resolution is performed using abstract values. However,
in tabling and analysis what is tabled are call-success patterns and in
our case the aim is to cache the results of test execution.

Using the Ciao assertion model [42, 85, 43] as a basis allows us
to provide an operational semantics of programs with checks and
caching, as well as a concrete implementation from which we derive
experimental results. We also present a program transformation for
implementing the run-time checks that is more efficient than previous
proposals [85, 61, 62]. Our experimental results provide evidence that
using a relatively small cache leads to significant decreases in run-
time checking overhead.
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3.1 operational semantics with caching

We base our approach on an operational semantics which modifies
the run- time checking to maintain and use a cache store:

Definition 3.1 (Cache Store). The cache store M is a special constraint
store which temporarily holds results from the evaluation of prop literals
w.r.t. the standard constraint store θ.

We introduce an extended program state of the form 〈G | θ | M〉
and a cached version of “succeeds trivially”from the Definition 2.3:

Definition 3.2 (Succeeds Trivially with Cache). Given a prop literal L, it

succeeds trivially for θ and M in program P, denoted θ
MZ⇒ L, iff L′ = σ(L)

and either L′ ∈M or θ Z⇒ L′.

Also, the cache store is updated based on the results of the prop
checks, formalized in the following definitions:

Definition 3.3 (Updates on the Cache Store). Let us consider a DNF
formula Props =

∨n
i=1(

∧m(i)
j=0 Lij), where each Lij is a prop literal. By

lits(Props) = {Lij|i ∈ [1 : n], j ∈ [0 : m(i)]} we denote the set of all
literals which appear in Props. The cache update operation is defined as a
function upd(θ, M, Props) such that:

upd(θ, M, Props) ⊆M∪ {L|(θ Z⇒ L) ∧ (L 6∈M) ∧ (L ∈ lits(Props)}

Note that a precise definition of cache update is left open in this
semantics. Contrary to θ, updates to the cache store M are not mono-
tonic since we allow the cache to “forget” information as it fills up,
i.e., we assume from the start that M is of limited capacity. However,
that information can always be recovered via recomputation of prop-
erty checks. In practice the exact cache behavior depends on parts
of the low-level abstract machine state that are not available at this
abstraction level.

Definition 3.4 (Reductions with Assertions and Cache Store). A state
S = 〈L :: G | θ |M〉, where L is a literal, can be reduced to a state S′, as
follows:

1. If L is a constraint then S′= 〈G | θ ∧ L |M〉 if θ ∧ L is satisfiable.

2. If L is an atom and ∃(L← B) ∈ cls(L), then

S′ =


{〈err(c) | _ | _〉} if ∃ C = calls(L, Pre) ∈ AC〈L〉

∧id(C) = c ∧ θ
M

6 Z⇒ Pre

〈B :: G′ | θ |M′〉 otherwise

where

M′ = upd(θ, M, Pre)

G′ = check(c1) :: . . . :: check(cn) :: G
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such that Ci = success(L, Prei, Posti) ∈ AC〈L〉∧ id(Ci) = ci∧
θ

MZ⇒ Prei.

3. If L is a check literal check(c), then S′ is obtained as

S′ =


〈err(c) | θ | _〉 if ∃ C = success(L′, _, Post) ∈ AC〈L′〉

∧id(C) = c ∧ θ
M

6 Z⇒ Post

〈G | θ |M′〉 otherwise

and M′ = upd(θ, M, Post).

Again, the order in which the check(c) literals are selected is irrelevant.

3.2 implementation of run-time checking with caching

We use the traditional definitional transformation [85] as a basis of
our implementation of the operational semantics with cached checks.
This consists of a program transformation that introduces wrapper
predicates that check calls and success assertion conditions while run-
ning on a standard (C)LP system. However, we propose a novel trans-
formation that, in contrast to previous approaches, groups all asser-
tion conditions for the same predicate together to produce optimized
non-repetitive checks.

For every predicate p the transformation replaces all program clauses
p(x̄) ← body by p′(x̄) ← body, where p′ is a new predicate symbol,
and inserts the wrapper clauses given by wrap(p(x̄), p′). The wrapper
generator is defined as follows:

wrap(p(x̄), p′) =


p(x̄)← pC(x̄, r̄), p′(x̄), pS(x̄, r̄).

pC(x̄, r̄)← ChecksC.

pS(x̄, r̄)← ChecksS.


where ChecksC and ChecksS are the optimized compilation of pre-
and postconditions

∨n
i=1 Prei and

∧n
i=1(Prei → Posti) respectively, for

C0 = calls(p(x̄),
∨n

i=1 Prei), Ci = success(p(x̄), Prei, Posti) ∈ AC〈p(x̄)〉,
and the additional status variables r̄ are used to communicate the
results of each Prei evaluation to the corresponding (Prei → Posti)

check. This way, without any modifications to the literals calling p in
the bodies of clauses in the program (and in any other modules that
contain calls to p), after the transformation run-time checks will be
performed for all these calls to p since p (now p′) will be accessed via
the wrapper predicate.

The compilation of checks for assertion conditions emits a series of
calls to a reify_check(P,R) predicate,

:- pred reify_check(P,Res) : prop(P) => bool(Res).
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which accepts as the first argument a property and unifies its sec-
ond argument with 1 or 0, depending on whether the property check
succeeded or not. The results of those reified checks are then com-
bined and evaluated as boolean algebra expressions using bitwise
operations and the Prolog is/2 predicate. That is, the logical opera-
tors (A ∨ B), (A ∧ B), and (A → B) used in encoding assertion con-
ditions are replaced by their bitwise logic counterparts R is A \/ B,
R is A /\ B, R is (A # 1) \/ B, respectively.

The purpose of reification and this compilation scheme is to make
it possible to optimize the logic formulae containing properties that
result from the combination of several pred assertions (i.e., the as-
sertion conditions). The optimization consists in reusing the reified
status R when possible, which happens in two ways. First, the prop
literals which appear in Pre or Post formulas are only checked once
(via reify_check/2) and then their reified status R is reused when
needed. Second, the reified status of each Pre conjunction is reused
both in ChecksC and ChecksS, where checks of prop literals are substi-
tuted by reify_check/2 evaluation results.

In practice the wrap(p(x̄),p′) clause generator shares the minimum
number of status variables and omits trivial assertion conditions, i.e.,
those with true conditions in one of their parts. For instance, exclud-
ing pS(x̄, r̄) preserves low-level optimizations such as last call opti-
mization.1

The translation procedure for assertion conditions has three princi-
pal phases. During the first phase two routines occur:

1. All assertion conditions in the program are collected and grouped
by their respective predicate.

2. From each such set two smaller sets are derived:

a) a set of unique pairs (variable,property);

b) a set of unique property combinations.

This is illustrated in more detail in the example 3.2 below.

Example 3.2 (Program transformation). Consider the following anno-
tated program:
:- pred p(X,Y) : (int(X) , var(Y)) => (int(X), int(Y)). % A1
:- pred p(X,Y) : (int(X) , var(Y)) => (int(X), atm(Y)). % A2
:- pred p(X,Y) : (atm(X) , var(Y)) => (atm(X), atm(Y)). % A3

p(1 ,42).
p(2,gamma).
p(a,alpha).

1 Even though in this work the pC(x̄, r̄) and pS(x̄, r̄) predicates follow the usual
bytecode-based compilation path, note that they have a concrete structure that is
amenable to further optimizations (like specialized WAM-level instructions or a ded-
icated interpreter).
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From the set of assertions {A1, A2, A3} the following assertion condi-
tions are constructed:

C0 = calls(p(X, Y), (int(X) ∧ var(Y)) ∨ ((atm(X) ∧ var(Y))))

C1 = success(p(X, Y), (int(X) ∧ var(Y)), (int(X) ∧ int(Y)))

C2 = success(p(X, Y), (int(X) ∧ var(Y)), (int(X) ∧ atm(Y)))

C3 = success(p(X, Y), (atm(X) ∧ var(Y)), (atm(X) ∧ atm(Y)))

The resulting optimized program transformation is:

p(X,Y) :-
p_c(X,Y,R3,R4),
p’(X,Y),
p_s(X,Y,R3,R4).

p_c(X,Y,R3,R4) :-
reify_check(atm(X),R0),
reify_check(int(X),R1),
reify_check(var(Y),R2),
R3 is R1/\R2,
R4 is R0/\R2,
Rc is R3\/R4,
error_if_false(Rc).

p_s(X,Y,R3,R4) :-
reify_check(atm(X),R5),
reify_check(int(X),R6),
reify_check(atm(Y),R7),
reify_check(int(Y),R8),
Rs is (R3#1\/( R6/\R8))

/\ (R3#1\/( R6/\R7))
/\ (R4#1\/( R5/\R7)),

error_if_false(Rs).

p’(1,42).
p’(2,gamma).
p’(a,alpha).

Note that A1 and A2 have identical preconditions, and this is reflected in
having only one property combination, R3, for both of them. The same works
for individual properties: in C0 literal int(X) appears twice, literal var(Y)
three times, but all such occurrences correspond to only one check in the code
respectively.

The error-reporting predicates error_if_false/1 in the instrumented
code implement the final state transition in the operational semantics
of the Definition 3.4. These predicates abstract away the details of
whether errors produce exceptions, are reported to the user, or are
simply recorded.

The cache itself is accessed fundamentally within the reify_check/2
predicate. Although the concrete details for a particular use case (and
a corresponding set of experiments) will be described later, we dis-
cuss the main issues and trade-offs involved in cache implementation
in this context. First, although the cache will in general be software-
defined and dynamically allocated, in any case the aim is to keep it
small with a bounded limit (typically a fraction of the stacks), so that
it does not have a significant impact on the memory consumption of
the program.

Also, in order to ensure efficient lookups and insertions of the cache
elements, it may be advantageous not to store the property calls liter-
ally but rather their memory representation. This means however that,
e.g., for structure-copying term representation, a property may appear
more than once in the cache for the same term if its representation
appears several times in memory.
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Furthermore, insertion and removal (eviction) of entries can be op-
timized using heuristics based on the cost of checks (e.g., not caching
simple checks like integer/1), the entry index number (such as direct-
mapped), the history of entry accesses (such as Least Recently Used
(LRU)), or caching contexts (such as caching depth limits during term
traversal in regular type checks).

Finally, failure and some of the stack maintenance operations such
as reallocations for stack overflows, garbage collection, or backtrack-
ing need updates on the cache entries (due to invalidation or pointer
reallocation). Whether it is more optimal to evict some or all entries,
or update them is a nontrivial decision that defines another dimen-
sion in heuristics.

3.3 application to regular type checking

As concrete properties to be used in our experiments we select a sim-
ple yet useful subset of the properties than can be used in assertions:
the regular types [27] often used in (C)LP systems. Regular types are
properties whose definitions are regular programs, defined by a set of
clauses, each of the form:

p(x, v1, . . . , vn) ← B1, . . . , Bk

1. x is a linear term (whose variables, which are called term vari-
ables, are unique)

2. In all clauses defining p/(n+ 1) the terms x do not unify except
maybe for one single clause in which x is a variable.

3. v1, . . ., vn are unique variables, which are called parametric vari-
ables.

4. Each Bi is of the form:

a) t(z) where z is one of the term variables and t is a regular
type expression;

b) q(y, t1, . . . , tm) where q/(m + 1) is a regular type, t1, . . . , tm

are regular type expressions, and y is a term variable.

5. Each term variable occurs at most once in the clause body (and
should be as the first argument of a literal).

A regular type expression is either a parametric variable or a para-
metric type functor applied to some of the parametric variables. A
parametric type functor is a regular type, defined by a regular pro-
gram.
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instantiation checks A standard technique to check member-
ship on regular types is based on tree automata. In particular, the reg-
ular types defined above are recognizable by top-down deterministic
automata. This also includes parametric regtypes, provided their pa-
rameters are instantiated with concrete types during checking, since
then they can be reduced to non-parametric regtypes. 2

Let us recall some basics on deterministic tree automata, as they
will be the basis of our regtype checking algorithm. A tree automaton
is a tuple A = 〈Σ, Q, ∆, Q f 〉 where Σ, Q, ∆, Q f are finite sets such that:
Σ is a signature, Q is a finite set of states, ∆ is the set of transitions of
the form f (q1, . . . , qn)→ q where f ∈ Σ, q, q1, . . . , qn ∈ Q with n being
the arity of f , and Q f ⊆ Q is the set of final states. The automaton is
top-down deterministic if |Q f | = 1 and for all f ∈ Σ and all q ∈ Q there
exists at most one sequence q1, . . . , qn such that f (q1, . . . , qn)→ q ∈ ∆.

Translation of regular types (or instances of parametric regular
types for particular types) from Prolog clauses into deterministic top-
down tree automata rules is straightforward. This representation is
suitable for low-level encoding (e.g., using integers for qi states and a
map between each qi state and its definition).

Example 3.3. The following bintree/2 regular type describes a binary tree
of elements of type T. The corresponding translation into tree automata rules
for the bintree(int) instance with Q f = {qb} is shown to its right.

:- regtype bintree /2.
bintree(empty ,T).
bintree(tree(LC,X,RC),T) :-

bintree(LC ,T),
T(X),
bintree(RC ,T).

∆ = { empty → qb

tree(qb, qint, qb) → qb }

algorithm for checking regular types with caches We
describe the RegCheck algorithm for regtype checking using caches
in Algorithm 3.1. The reify_check/2 predicate acts as the interface
between RegCheck and the runtime checking framework. The algo-
rithm is derived from the standard definition of run on tree automata.
A run of a tree automaton A = 〈Σ, Q, ∆, Q f 〉 on a tree x ∈ TΣ (terms
over Σ) is a mapping ρ assigning a state to each occurrence (subterm)
of f (x1, . . . , xn) of x such that:

f (ρ(x1), . . . , ρ(xn))→ ρ( f (x1, . . . , xn)) ∈ ∆

A term x is recognized by A if ρ(x) ∈ Q f . For deterministic top-
down recognition, the algorithm starts with the single state in Q f

2 Note that checks are performed via entailment checks w.r.t. primitive (Herbrand)
constraints. That means that term(X) (which is always true) and ground(X) (denot-
ing all possible ground terms), despite having the same minimal Herbrand models
as predicates, do not have the same s-model and are not interchangeable as regtype
instantiation checks.
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Algorithm 3.1 Check that the regular type of the term stored at x is t,
at cache depth d.

function RegCheck(x, t, d)
Find C ∈ Constructors(t) so that Functor(C) = Functor(x),
otherwise return False
if Arity(x) = 0 then . Atomic value, not cached

return True
else if CacheLookup(x, t) then . Already in cache

return True
else if ∀i ∈ [1, Arity(x)].RegCheck(Arg(i, x), Arg(i, C), d + 1)

then
if d < depthLimit then . Insert in cache

CacheInsert(x, t)
return True . In regtype

else
return False . Not in regtype

(which for simplicity, we will use to identify each regtype and its
corresponding automata) and follows the rules backwards. The tree
automata transition rules for a regtype are consulted with the func-
tions Constructors(t) = {C|C → t ∈ ∆}, Arg(i, u) (the i-th argument
of a constructor or term u), and Functor(u) (the functor symbol, in-
cluding arity, of a constructor or term u). Once there is a functor
match, the regtypes of the arguments are checked recursively. To
speed up checks, the cache is consulted (CacheLookup(x, t) searches
for (x, t)) before performing costly recursion, and valid checks in-
serted (CacheInsert(x, t) inserts (x, t)) if needed (e.g., using heuris-
tics, explained below). The cache for storing results of regular type
checking is implemented as a set data structure that can efficiently
insert and look up (x, t) pairs, where x is a term address3 and t a
regular type identifier. The specific implementation depends on the
cache heuristics, as described below.

complexity It is easy to show that complexity has O(1) best case
(if x was cached) and O(n) worst case, with n being the number of
tree nodes (or term size). In practice, the caching heuristics can dras-
tically affect performance. For example, assume a full binary tree of n
nodes. Caching all nodes at levels multiple of c will need n/(2c+1− 1)
entries, with a constant cost for the worst case check (at most 2c+1− 1
will be checked, independently of the size of the term).

3 Since regtype checks are monotonic, this is safe as long as cache entries are prop-
erly invalidated on backtracking, stack movements, and garbage collection. Using
addresses is a pragmatic decision to minimize the overheads of caching.
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cache implementation and heuristics In order to decide
what entries are added and what entries are evicted to make room for
new entries on cache misses, we have implemented several caching
heuristics and their corresponding data structures. Entry eviction is
controlled by replacement policies:

• Least-recently used (LRU) replacement and fully associative. Im-
plemented as a hash table whose entries are nodes of a doubly
linked list. The most recently accessed element is moved to the
head and new elements are also added to the head. If cache size
exceeds the maximal size allowed, the cache is pruned.

• Direct-mapped cache with collision replacement, with a simple
hash function based on modular arithmetic on the term address.
This is simpler but less predictable.

The insertion of new entries is controlled by the caching contexts,
which include the regular type being checked and the location of the
check:

• We do not cache simple properties (like primitive type tests,
e.g., integer/1, etc), where caching is more expensive than re-
computing.

• We use the check depth level in the cache interface for recursive
regular types. Checks beyond this threshold depth limit are not
cached. This gives priority to roots of data structures over inter-
nal subterms which may pollute the cache.

low-level c implementation. In our prototype, this algorithm
is implemented in C with some specialized cases (as required for our
WAM-based representation of terms, e.g., to deal with atomic terms,
list constructors, etc.).4 The regtype definition is encoded as a map
between functors (name and arity) and an array of q states for each
argument. For a small number of functors, the map is implemented
as an array. Efficient lookup for many functors is achieved using hash
maps. Additionally, a number of implicit transition rules exist for
primitive types (any term to qany, integers to qint, etc.) that are han-
dled as special cases.

3.4 experimental evaluation

To study the impact of caching on run-time overhead, we have eval-
uated the run-time checking framework on a set of 7 benchmarks,

4 Even though the algorithm can be easily implemented as a deterministic Prolog
program, we chose in this work a specialized, lower-level implementation that can
interact more directly with the optimized cache data structures.
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for regular types. We consider benchmarks where we perform a se-
ries of element insertions in a data structure. Benchmarks amqueue,
set, B-tree, and (binary) tree were adapted from the Ciao libraries;
benchmarks AVl-tree, RB-tree and heap were adapted from the YAP
libraries. These benchmarks can be divided into 4 groups:

a. simple list-based data structures: amqueue, set;

b. balanced tree-based structures that do not change the structural
properties of their nodes on balancing: AVl-tree, heap;

c. balanced tree-based structures that change node properties: B-tree
(changes the number of node children), RB-tree (changes node
color);

d. unbalanced tree structures (tree).

A following example of regular types that we use in assertions is
taken from the red-black trees and is provided below:

:- regtype node/1.
node('').
node(red(L,K,V,R)) :- node(L), term(K), term(V), node(R).
node(black(L,K,V,R)) :- node(L), term(K), term(V), node(R).

:- regtype rb_tree /1.
rb_tree(t(L,R)) :- node(L), node(R).

For each run of the benchmark suite the following parameters were
varied: cache replacement policy (LRU, direct mapping), cache size (1
to 256 cells), and check depth threshold (1 to 5, and “infinite” thresh-
old for unlimited check depth). Table 3.1 summarizes the results of
the experiments. For each combination of the parameters it reports
the optimal caching policy, LRU (L) or direct mapping (D). Also, for
each of the benchmarks it reports an interval within which the worst
case check depth varies.

The experiments show that the overhead of checks with depth
threshold 2 (storing the regtype of the check argument and the reg-
types of its arguments) is smaller than or equal to the one obtained
with unlimited depth limit (Fig 3.1). A depth limit of 1 does not al-
low checks to store enough useful information about terms of most of
the data structures (compare the overhead increase for amqueue with
this and bigger limits), while unlimited checks tend to overwrite this
information multiple times, so that it cannot be reused.

At the same time, for data structures represented by large nested
terms (e.g., nodes of B-trees), deeper limits (3 or 4) for small inputs
seem more beneficial for capturing such term structure. It can also
be observed that the lower cost of element insert/lookup operations
with the DM cache replacement policy results in having lower total
overhead than with the LRU policy.
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Table 3.1: Benchmarksbenchmark

assertions

regtypes

depth lim
cache size max depth

256 128 64 32 DM LRU

amqueue 4 1

2 D D D D
2 2

∞ D D D D

set 4 1

2 D D D D
1 1

∞ D D D D

AVL-tree 8 1

2 L L L D
[7:11] [3:11]

∞ L L L D

heap 7 2

2 L L L D
[5:11] [1:11]

∞ L L L D

B-tree 9 5

2 L D D D
[13:21] [4:21]

∞ L D D D

RB-tree 15 2

2 L L L D
[13:21] [4:21]

∞ L D D D

tree 2 1

2 D D D D
[9:20] [6:20]

∞ L D D D

While even with caching the cost of the run-time checks still re-
mains significant,5 caching does reduce overhead by 1-2 orders of
magnitude with respect to the cost of run-time checking without
caching (Fig. 3.2). Also, the slowdown ratio of programs with run-
time checks using caching is almost constant, in contrast with the
linear (or worse) growth in the case where caching is not used.

An important issue that has to be taken into account here is that
most of the benchmarks are rather simple, and that performing insert
operations is much less costly that performing run-time checks on the
arguments of this operation. This explains the observation that check-
ing overhead is the highest for the set benchmark (Fig 3.1), while it
is one of the simplest used in the experiments.

Another factor that affects the overhead ratio is cache size. For
smaller caches cell rewritings occur more often, and thus the optimal
cache replacement policy in such cases is the one with the cheapest
operations.

For instance, for cache size 32 the optimal policy for all benchmark
groups is DM, while for other cache sizes LRU is in some cases bet-
ter as it allows optimizing cell rewritings. This observation is also
confirmed by the maximal check depth in the worst case, which is

5 Note that in general run-time checking is a technique for which non-trivial overhead
can be expected for all but the most trivial properties. It can be conceptually asso-
ciated with running the program in the debugger, which typically also introduces
significant cost.
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Figure 3.1: Run-time check overhead ratios for all benchmarks with check
depth thresholds of 1, 2, ∞, and DM (left column) and LRU (right
column) replacement policies in cache of 256 elements.

almost half on average for the benchmarks for which LRU is the opti-
mal policy (Fig 3.3).

In the simple data structures of group (a) the experiments show
that it is beneficial to have cheaper cache operations (like those of
caches with DM caching policy), since such structures do not suffer
from cache cell rewritings as much as more complex structures. The
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Figure 3.2: Absolute and relative running times of the heap benchmark with
different rtchecks configurations, LRU caching policy.
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(b) DM

Figure 3.3: Worst case regtype check depth for benchmarks from groups (b)
and (c), with LRU and DM cache replacement policies respec-
tively.

same observation is still true for group (d), where for some inputs
the binary tree might grow high and regtype checks of leaves will
pollute the cache with results of checks for those inner nodes on the
path, that are not in the cache, overwriting cache entries with regtypes
of previously checked nodes.

The DM policy also happens to show better results for group (c) for
a similar reason. Since data structures in this group change essential
node properties during the tree insertion operation, this in practice
means that sub- terms that represent inner tree nodes are (re-)created
more often. As a result, with the LRU caching policy the cache would
become populated by check results for these recently created nodes,
while the DM caching policy would allow preserving (and reusing)
some of the previously obtained results. The only group that benefits
from LRU is (b), where this policy helps preserving check results
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for the tree nodes that are closer to the root (and are more frequently
accessed) and most of the overwrites happen to cells that store leaves.

More plots are available in the Appendix B.1.

3.5 conclusions

We have presented an approach to reducing the overhead implied
by run-time checking of properties based on the use of memoization
to cache intermediate results of check evaluation, avoiding repeated
checking of previously verified properties. We have provided an op-
erational semantics with assertion checks and caching and an imple-
mentation approach, including a more efficient program transforma-
tion than in previous proposals. We have also reported on a prototype
implementation and provided experimental results that support that
using a relatively small cache leads to very significant decreases in
run-time checking overhead.

The idea of using memoization techniques to speed up checks has
attracted some attention recently [50]. Their work (developed inde-
pendently from ours) is based on adding fields to data structures to
store the properties that have been checked already for such struc-
tures. In contrast, our approach has the advantage of not requiring
any modifications to data structure representation, or to the checking
code, program, or core run-time system.

Compared to the approaches that reduce checking frequency our
proposal has the advantage of being exhaustive (i.e., all tests are
checked at all points) while still being much more efficient than stan-
dard run-time checking. Our approach greatly reduces the overhead
when tests are being performed, while allowing the parts for which
testing is turned off to execute at full speed without requiring recom-
pilation. While presented for concreteness in the context of the Ciao
run-time checking framework, we argue that the approach is general,
and the results should carry over to other programming paradigms.



4
C O M B I N I N G S TAT I C A N D D Y N A M I C C H E C K I N G

Despite various advances in run-time checking overhead reduction, it
often remains impractically high, for example for properties which re-
quire deep data structure tests. This reduces the attractiveness of run-
time checking to programmers, which may activate sporadic checking
of very simple conditions, but tend to turn off run-time checking for
more complex properties.

Motivated by this problem, assertion-based frameworks have been
proposed where static analysis is used to minimize the number and
cost of the run-time checks that need to be placed in the program to
detect incorrect program behaviors. Intuitively, this model can offer a
more appealing trade-off of performance vs. safety guarantees. How-
ever, while there has been evidence supporting this hypothesis from
the regular use of the Ciao system, there has been little systematic
experimental work presented to date verifying this, i.e., measuring
the actual impact of analysis on reducing run-time checking over-
head. Some results were reported in [62] in the context of computa-
tional properties, such as resource consumption. Supporting evidence
also comes from studies of the effectiveness of abstract interpretation
(combined with abstract specialization [87]) in the reduction of run-
time checking of sufficient conditions for independence in automatic
parallelization [13].

In this chapter we explore the effectiveness of abstract interpretation-
based compile-time analysis in detecting parts of program specifi-
cations that can be simplified before they are turned into run-time
checks. Again, the objective of such simplification is to achieve a sys-
tem that can detect the same (or a larger) set of incorrect behaviors
in a program, but with a significant reduction in the impact on the
running time of the program.

Starting with a semantics for programs with assertion checking
and for assertion simplification based on analysis information ob-
tained via abstract interpretation, we propose and study a number of
practical assertion checking modes, each of which represents a trade-off
between code annotation depth, execution time slowdown, and pro-
gram behavior safety guarantees. The proposed modes are specially
tailored to the scenario of annotating and pre-processing libraries to
ensure their correctness prior to their use by client programs (i.e., sce-
nario 1 of [88]). We also define a transformation-based approach in
order to implement each one of these modes.

We then concentrate on the reduction of the number of run-time
tests via (abstract interpretation-based) program analysis. To this end
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we propose a technique that enhances analysis precision by taking
into account that any assertions that cannot be proved statically will
be the subject of run-time testing. We then report on an implemen-
tation of the proposed techniques (within the CiaoPP system) and
study their impact in practice, by measuring the reduction in run-
time checking overhead achieved.

4.1 assertion checking modes

As mentioned before, a typical motivation for introducing run-time
checks into the source code of a program is to detect and report erro-
neous program behaviors. Such checks may range from simple vari-
able instantiation checks to describing complex program invariants
and behavioral contracts.

When a program is being instrumented with run-time checks, the
choice of instrumentation strategy is determined by several factors
and considerations. Most of these factors can typically be generalized
to a compromise between thoroughness of the code annotation (com-
plexity of the properties, annotation depth) and the resulting perfor-
mance penalties (increases in execution time, code size, and memory
use).

We propose a view on this compromise that differentiates among
various levels of behavioral safety guarantees embodied in different
assertion checking modes. We consider for concreteness the context of
developing a standalone library that provides an open interface to its
clients. By this we mean that at the time of analyzing and instrument-
ing the library the clients are not known and can be expected to call
the library in both correct and incorrect ways, i.e., we do not require
the clients to verify that the calls to the library adhere to the interface.
Also, we do not expect the library to be recompiled (or reanalyzed)
depending on the needs of each client.1 Thus, the library has to be
analyzed and checked independently of the clients. We define three
scenarios in this context, depending on the level of guarantees that
the library provides to the clients that use it.

unsafe checking mode This checking mode corresponds to a
scenario where no execution time slowdown is tolerated at run time,
even at the cost of providing no safety guarantees to the clients. I.e.,
no run-time checks are generated from the assertions of the library.
Formally, this corresponds to using the standard semantics of the
Definition 2.1 of Chapter 2, and thus ignoring all the assertions in the
code. This of course eliminates any overhead but at the cost of not
being able to ensure correctness. However, we still consider it, first

1 This is all in contrast with the scenario in which the whole set of modules involved
is available and can be processed as a whole, monolithically or modularly [86, 24].
Similarly, we also do not address directly in this work link-time optimizations.
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�
1 :- module(_, [p]). % export p
2

3 :- check pred p : Pre => Post .
4

5

6 p :- body . % no calls to p
7 % for simplicity
8

9

10 q :- p.

(a) Initial program fragment.

�
1 :- module(_, [p]).
2

3 % C0 = calls(p, Pre) ∧ status(c0, check)
4 % C1 = success(p, Pre, Post) ∧ status(c1, check)
5

6 p :- p_inner. % the link clause
7

8 p_inner :- body .
9

10 q :- p_inner.

(b) The same program fragment after
the transformation.

Figure 4.1: Client-safe program transformation.

because it represents a baseline to compare to, and also because of
the frequent –even if not recommendable– practice of turning off run-
time checks for production code, in order to avoid overhead, which is
typically done if it is perceived that sufficient testing was carried on
the code out prior to delivery.

client-safe checking mode In this checking mode the library
provides the client with behavior guarantees on its interface, but does
not check any of the assertions for the internal procedures. Run-time
checks are thus generated only for the assertion conditions for the
exported predicates of the library. More formally, assuming that the
set of (atoms of) exported predicates is given by Exp, the run-time
semantics under such mode is:

1. If L is a constraint then 〈L :: G | θ〉  〈G | θ ∧ L〉 if θ ∧ L is
satisfiable.

2. If L is an atom such that L /∈ Exp, and ∃(L ← B) ∈ cls(L), then
〈L :: G | θ〉 〈B :: G′ | θ〉.

3. If L is an atom such that L ∈ Exp, and ∃(L ← B) ∈ cls(L), then
from the initial state S = 〈L :: G | θ〉 the new state S′ is obtained
as:

S′ =


〈err(c) | θ〉 if ∃ C = calls(L, Pre) ∈ AC〈L〉 ∧ id(C) = c

∧ θ 6 Z⇒ Pre

〈B :: G′ | θ〉 otherwise

and G′ = check(c1) :: . . . :: check(cn) :: G such that
Ci = success(L, Prei, Posti) ∈ AC〈L〉 ∧ id(Ci) = ci ∧ θ Z⇒ Prei.

4. If L is a check literal check(c), then from the initial state
S = 〈L :: G | θ〉 the new state S′ is obtained as:

S′ =


〈err(c) | θ〉 if C = success(L′, _, Post) ∈ AC〈L′〉 ∧ id(C) = c

∧ θ 6 Z⇒ Post

〈G | θ〉 otherwise
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The modified semantics above ensures that checks are performed
only for the predicates in the library interface. However, all calls
within the library to the exported predicates, including recursive calls,
would also be checked, which is not required by the definition of the
scenario, which only establishes the checking of the calls that cross
the interface. In order to avoid this, and to ensure that the checks are
performed only on the external calls, we assume that the program
transformation given in Fig. 4.1 is applied to all exported predicates.
This transformation introduces intermediate link predicates for the
exported predicates so that the module interface is preserved but all
the internal calls are replaced by calls to the wrapper predicates, for
which no checks are performed. This way the checks for the exported
predicates are not repeated in the internal library calls, allowing for
execution time reduction for the checks. This combination of program
transformation and run-time checking policy allows obtaining safety
guarantees at the library boundaries with minimal run-time checking
execution time overhead.

safe-rt execution mode In this mode the library provides be-
havior guarantees both on its interface and its internals. Run-time
checks are thus generated for all assertions of the library. This corre-
sponds to using the semantics with assertions of the Definition 2.12

of the Chapter 2. The performance penalty here is the largest.

source code transformations The checking modes described
above require different source transformations to be performed on a
program during compile time (see Fig. 4.2). Before any such transfor-
mations take place, the assertions are normalized and expanded into
assertion conditions. This allows ensuring that no syntactic errors are
present in the assertion conditions and that no undefined properties
(i.e., properties that are not defined in the program or imported from
libraries) appear in such conditions.

In the Unsafe mode nothing is done and the assertion conditions are
simply ignored during compilation. In the Safe-RT mode the source
transformation is quite straightforward: all the assertion conditions
for all assertions in the program are turned into run-time checks
directly. In the Client-safe mode, as mentioned before, the program
transformation of Figure 4.1 is first performed for all the exported
predicates, and then run-time checks are generated only for the asser-
tion conditions of those exported predicates.

To this end, we introduce a variation on one the previous run-time
checking modes, namely the Safe-CT-RT Checking Mode, where static
verification is performed in order to eliminate as many of the proper-
ties in the program assertions to be checked at run time as possible.
Run-time checks are still generated for all program assertions but in
contrast to the Safe-RT case the assertions are simplified before the
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Figure 4.2: Source transformation differences per checking mode.

checks are generated from them. In this mode the run-time checks
for the calls assertion conditions of the exported predicates are left
untouched in any case, in order to ensure the safety of calls in our
open-library context.

4.2 optimizing run-time checks via static analysis

abstract interpretation-based analysis For analysis we
use the technique of abstract interpretation [26], which safely approx-
imates the execution of a program on an abstract domain (Dα) which
is simpler than the actual, concrete domain2 (D). Abstract values and
sets of concrete values are related via a pair of monotonic mappings
〈α, γ〉: abstraction α : 2D → Dα, and concretization γ : Dα → 2D.3 The
operations of least upper bound (t) and greatest lower bound (u) over
abstract values λ mimic those of 2D in a precise sense:

∀λ, λ′ ∈ Dα : λ v λ′ ⇔ γ(λ) ⊆ γ(λ′)

∀λ1, λ2, λ′ ∈ Dα : λ1 t λ2 = λ′ ⇔ γ(λ1) ∪ γ(λ2) = γ(λ′)

∀λ1, λ2, λ′ ∈ Dα : λ1 u λ2 = λ′ ⇔ γ(λ1) ∩ γ(λ2) = γ(λ′)

2 In what follows we assume the concrete domains to have a powerset structure, but
the framework is not limited to such domains and can be applied to domains of
arbitrary structure.

3 Strictly, only the concretization function is required.
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compile-time analysis.

As usual in abstract interpretation, ⊥ denotes the abstract constraint
such that γ(⊥) = ∅ (and represents unreachable code), whereas >
denotes the most general abstract constraint, i.e., γ(>) = D.

The concrete framework that we will use in the static analysis com-
ponent is the Ciao PLAI abstract interpretation system [65, 66, 68].
Below we adapt some definitions and notation from [85] to illustrate
the analysis process implemented by PLAI.

The goal-dependent abstract interpretation performed by PLAI takes
as input a program P, an abstract domain Dα,4 and a description
Qα of the possible initial queries to the program, given as a set of
abstract queries. Each such abstract query is a pair (L, λ), where L
is an atom (for one of the exported predicates) and λ ∈ Dα an ab-
straction of a set of concrete initial program states (e.g., substitutions
or constraints). Thus, a set of abstract queries Qα represents a set
of concrete queries, denoted γ(Qα), which is defined as γ(Qα) =

{(L, θ) | (L, λ) ∈ Qα ∧ θ ∈ γ(λ)}. The PLAI abstract interpretation
process computes a set of (connected) triples Analysis(P,Qα, Dα) =

{〈Lp, λc, λs〉 | p is a predicate of P}, where λc and λs are abstract con-
straints that describe sets of calls (entry) and success (exit) states for p
such that λc safely approximates a set of call states at p and λs safely

4 In fact, the analysis supports analysis using a number of different abstract domains,
but, for simplicity, and without loss of generality –a set of abstract domains can
always be encoded as a single domain– we use only one domain in the presentation.
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approximates the set of success states at p for all calls contained in
λc. In what follows we will refer to such triplets also as memo table
entries.5

The analysis (as the assertion language, to be introduced later) is
designed to discern among the various usages of a predicate. Thus,
multiple usages (contexts) of a procedure can result in multiple de-
scriptions in the analysis output, i.e., for a given predicate p multi-
ple 〈Lp, λc, λs〉 triples may be inferred. More precisely, the analysis
is said to be multivariant on calls if more than one triple 〈Lp, λc

1, λs
1〉,

. . . , 〈Lp, λc
n, λs

n〉 n ≥ 0 with λc
i 6= λc

j for some i, j may be computed
for the same predicate. Independently of the number of triples com-
puted, the set of all λc

i together (i.e., the union of the concretizations
of all the λc

i ) safely approximates the set of possible concrete calls
made to p during any program execution. In any case, for simplicity
of presentation, we assume that the analysis computes exactly one
tuple 〈Lp, λc, λs〉 for each (reachable) predicate p.

assertion processing by static analysis We now return to
the issue of optimizing run-time checks via (abstract interpretation-
based) static program analysis, in order to reduce the number of run-
time tests and thus the overhead from run-time testing, following the
Ciao model. To this end, we recall the basic abstract interpretation-
based analysis approach used and the memo table representation of
the analysis results and describe how run-time tests are optimized
using the information in the analysis memo table. Based on this in the
following section we will present our approach for taking advantage
of the run-time checking semantics to improve the precision of the
analysis.

The steps of the verification process are represented by associating
a notion of “status” to each assertion:

:- [Status] pred Head : Pre1 => Post1.

. . .

:- [Status] pred Head : Pren => Postn.

This optional Status flag indicates whether the assertion refers to in-
tended or actual properties, and possibly some additional informa-
tion, as shown in the top part of Table 4.1 (see also Figure 1.2).

The reasoning about the statuses of assertion conditions is per-
formed in the following terms. Given a literal L and a program P,
the trivial success set of L in P is TS(L, P) = {∃̄Lθ |θ Z⇒ L}.

An abstract constraint λ−TS(L,P) is an abstract trivial success subset of L
in P iff γ(λ−TS(L,P)) ⊆ TS(L, P). An abstract constraint λ+

TS(L,P) is an ab-
stract trivial success superset of L in P iff γ(λ+

TS(L,P)) ⊇ TS(L, P). Given

5 The analysis also provides information at body literals (also referred to as “program
points”).

6 We will use only true assertions in the rest of the dissertation for simplicity.
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Table 4.1: Assertion status.

Status Source Description

check user The assertion expresses part of the intended
semantics. It may or may not hold in the cur-
rent version of the program. It is the default
status that is assumed for assertions written
without an explicit status.

checked static
checking

The assertion was a check assertion which
has been proved to actually hold in the cur-
rent version of the program for any valid
initial call (for the given Qα).

false static
checking

Similarly, a check assertion is rewritten with
the status false when it is proved not to
hold for some valid initial query (for the
given Qα).

true static
analyses

Such an assertion expresses (a part of)
the actual semantics of the program, nor-
mally automatically inferred by analysis.
In particular, each triple (memo table en-
try) 〈Lp, λc, λs〉 computed by the analy-
sis is presented to the user by includ-
ing a corresponding assertion of the form
“:- true pred P : λc => λs.” in the pro-
gram.

trust user Provided by the user (or other tools) in or-
der to guide analysis (increase precision).6

the program P, the concrete and abstract sets of queries Q and Qα
7

respectively, where γ(Qα) ⊇ Q, and 〈L, λc, λs〉 ∈ Analysis(P,Qα, Dα),
the status of an assertion condition C, associated with it by the map-
ping status(c, Status) where c is the corresponding identifier, is deter-
mined as follows:

• If C = calls(L, Pre) s.t. id(C) = c then:

– status(c, checked) if λc v λ−TS(Pre,P).

– status(c, false) if ∃D ∈ derivs(Q) s.t. prestep(L, D) = (θ, σ)

∧∃Lθ 6= ∅ and λc u λ+
TS(Pre,P) = ⊥.

• If C = success(L, Pre, Post) s.t. id(C) = c then:

7 In the implementation of PLAI, Qα is obtained from the calls conditions of the
assertions of exported predicates (or, if no such assertions are present, a “topmost”
abstract state is assumed), or from specific “entry” assertions.
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– status(c, checked) if (1) λc u λ+
TS(Pre,P) = ⊥ or

(2) λs v λ−TS(Post,P);

– status(c, false) if λc u λ−TS(Pre,P) 6= ⊥ and
λs u λ+

TS(Post,P) = ⊥ and ∃ θ ∈ γ(λc u λ−TS(Pre,P)) : ∃D ∈
derivs(Q) s.t. step(L, D) = (θ, σ, θ′) ∧∃Lθ′ 6= ∅.

Putting it more informally, the compile-time checking process can
be seen as a revision of the assertion statuses where for each predicate
literal L its annotation composed from the respective assertion condi-
tions AC〈L〉usr = {C | C ∈ AC〈L〉 ∧ id(C) = c ∧ status(c, S) ∧ S ∈
{check, true}} given the analysis output of the form AC〈L〉ana =

id(C) = c ∧ status(c, true)} is rewritten into {C | C ∈ AC〈L〉usr ∧
id(C) = c ∧ status(c, S) ∧ S ∈ {check, checked, false}}.

4.3 taking advantage of the run-time checking seman-
tics during analysis

The standard analysis introduced in Section 1.5 of the Chapter 2

safely approximates the traditional semantics (i.e., the semantics with-
out assertions or run-time checks of the Definition 2.1).8 However, if
we know that run-time checks will be performed for sure for a certain
set of (check) assertions (as, e.g., for all assertions in the Safe-RT exe-
cution mode, or the ones corresponding to interface predicates in the
Client-safe mode), it is possible to use this information during analysis
to improve precision:

• It is possible to assume that the calls assertion conditions hold
after the predicate has entered the predicate definition (since,
according to the semantics of Section 2.3 either the checks for
these calls assertion conditions have already succeeded or the
program has exited with error).

• It is also possible to assume the relevant success assertion condi-
tions after the predicate has exited (since, again, at this point ei-
ther these success assertion conditions have already succeeded
or the program has exited with error).

As an example, consider the Ciao Prolog program of Figure 4.4.9

There, p/2 is an exported predicate, q/2 and r/2 are local predicates,

8 Assertions with true and trust status (Table 4.1) are in fact read and applied by
the traditional analysis during its fixpoint calculation. However, in this discussion we
refer to incorporating into the analysis the information present in check assertions,
i.e., from the assertions being checked at compile time or run time. These assertions
are not normally taken into account by the analysis since they may or may not hold
and, in general, run-time tests may or may not be included in the compiled program.

9 In the examples we use just simple regular types (and in some cases constraints) as
properties for simplicity of presentation, but even in this case please note that their
use is moded, i.e., the assertions here express states of instantiation.
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�
1 :- module(_,[p/2]). % p/2 is exported
2 :- use_module(lib ,[e/2]). % e/2 is imported
3

4 p(X,Y) :- q(X,Y).
5

6

7 :- pred q(X,Y) : (int(X), X>3) => (int(Y), Y>0).
8

9 q(X,Y) :- r(X,Y).
10

11

12 :- pred r(X,Y) : (int(X), X>0) => (int(Y), Y>16).
13

14 r(X,Y) :- e(X,Y).

Figure 4.4: Example for analysis improvement.

and e/2 is imported. We allow both p/2 and e/2 to be called without
any restriction, and we do not specify any constraints either regard-
ing their successes. However, we want to enforce (through the two
assertions) that q/2 and r/2 will always be called with their first ar-
gument X bound to an integer greater than 3, and that their second
argument Y be bound to a positive integer upon success. Since any
type of call is allowed to p/2, without information on the presence
of run-time checks the analysis cannot infer anything about the calls
conditions for q/2 and r/2, or for the success conditions of these two
predicates, and will report warnings for unchecked conditions for all
of them (and the two assertions will remain in check status).

However, note that, if we know that we will be generating run-time
checks for those assertion conditions, the call to r/2 in the body of
q/2 can only be reached if the calls condition for q/2 holds, i.e., if X
is bound to an integer, and greater than 3 (since otherwise execution
would have been aborted by the failing run-time check). Thus, this
information can be incorporated into the analysis and propagated to
the call to r/2, and it can be determined that the calls condition for
r/2 (i.e., that its first argument will be bound to a positive integer)
always holds. Consequently, this calls condition for r/2 gets status
checked and no run-time test needs to be generated for it.

Similarly, the run-time test for the success condition for r/2 ensures
that if the call to r/2 in the body of q/2 returns, then its second ar-
gument is guaranteed to be bound to an integer and greater than 16.
Therefore, the success condition for q/2 will also get status checked
and no run-time test needs to be generated for it either.

transformation A straightforward method to incorporate the in-
formation from successful checks into the analysis, so that it takes
the semantics with run-time checking into account, would be to an-
alyze the transformed program (i.e., the program including the code
that performs the run-time tests) instead of the original one. This is
the approach implied by the original transformational definitions of
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the assertion language. On the other hand, programs transformed for
run-time testing contain numerous optimizations and instrumenta-
tion that make their analysis less efficient and can potentially affect
precision. An alternative would be to use a very simple (even if ineffi-
cient) run-time checking transformation just for analysis. Inspired by
this idea, we propose herein a different, even more direct approach,
based on introducing additional assertions and link predicates in the
program that together capture the run-time checking semantics and
provide the additional information source for the analysis, in order to
increase precision. This is performed as a program transformation T
that precedes the analysis and is applied to every annotated predicate
in a program:

T(L) = 〈{L← Linner} ∪ cls(Linner),Alink
C ∪Ainner

C 〉

where L = p(~X), and the literal Linner = pinner(~X) is obtained with a
new predicate symbol pinner, and:

cls(Linner) = {Linner ← B | L← B ∈ cls(L)}
C = {C ∈ AC〈L〉 | id(C) = c ∧ status(c, check)}

Alink
C = {Cl | Cl = C ∧ C ∈ C ∧ id(Cl) = cl}

and ∀Cl ∈ Alink
C we extend

the status relation s.t. status(cl , Sl), s.t.:

Sl =

{
check if C = calls(_, _)

true if C = success(_, _, _)

Ainner
C = {Ci | Ci = C ∧ C ∈ C ∧ id(Ci) = ci}

and ∀Ci ∈ Ainner
C we extend

the status relation s.t. status(ci, Si), s.t.:

Si =

{
true if C = calls(_, _)

check if C = success(_, _, _)

The objective of the transformation is to improve the precision
and reduce the cost of the analysis, while preserving program behav-
ior when the check assertion conditions are expanded into run-time
checks. The transformation modifies all predicates with check asser-
tions for which it is known that run-time checks will be generated.
For each such predicate p, the original predicate symbol is renamed
into pinner and a single-clause wrapper predicate for p (which we will
refer to as a link clause), is introduced which calls the pinner predicate.

The set of assertion conditions for the initial predicate p is du-
plicated for the pinner counterpart, including their original statuses.
However, the statuses of the success assertion conditions for p in the
link clause and the calls assertion conditions of pinner are set to true.
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�
1 :- check calls q(X,Y) : (int(X), X>3).
2 :- true success q(X,Y) : (int(X), X>3) => (int(Y), Y>0).
3

4 q(X,Y) :- q_inner(X,Y).
5

6

7 :- true calls q_inner(X,Y) : (int(X), X>3).
8 :- check success q_inner(X,Y) : (int(X), X>3) => (int(Y), Y>0).
9

10 q_inner(X,Y) :- r(X,Y).

Figure 4.5: CTRT program transformation example (output).

As a result, the calls assertion conditions for p (i.e., Cl = calls(L, _)
with id(Cl) = cl and status(cl , check)) will still be checked in the ver-
sion with run-time checks, but they will be assumed in pinner (i.e.,
Ci = calls(Linner, _) with id(Ci) = ci and status(ci, true)).

For the success part the assertion conditions will still be checked
for the inner predicate (i.e., Ci = success(Linner, _, _) with id(Ci) = ci

and status(ci, check)) and the information will be assumed upon exit-
ing p (i.e., Ci = success(L, _, _) with id(Ci) = ci and status(ci, true)).
The transformation guarantees that the same run-time tests will be
performed, that no duplication of checks will occur (since there are
no intermediate states between the calls to p and pinner and exits from
pinner to p), and that the analysis will gather the right information.

An example of the CTRT transformation for the q/2 predicate from
the program in Fig. 4.4 is shown in Fig. 4.5. The true assertions here
correspond to the additional information that can be safely used in
the analysis. Since all predicates with assertions undergo this trans-
formation, a number of inner calls coming from the link clauses are
added to the program. Yet such calls are relatively inexpensive and
the resulting runtime overhead is negligible. Even more, should the
analysis verify the calls assertion condition of the link clause or the
success assertion condition of the inner clause, the link clause then
becomes unnecessary and can be completely removed.

Lemma 4.1 (Correctness of the CTRT Transformation). Let P be a pro-
gram andQ = (L, θ) a query to P. Then ∀ D ∈ derivs(Q) that are finished
the final state D[−1] is the same in the versions of P with and without the
CTRT transformation (modulo variable renaming).

Proof. First, let us prove the correctness of the transformation for the
calls assertion conditions.

LetAC〈L〉 = {C}where C = calls(L, Pre) s.t. id(C) = c∧ status(c, check)
and ∃(L ← B) ∈ cls(L). The possible reduction sequences from the
S0 = 〈L :: G | θ〉 state:

S0  A 〈B :: G | θ〉 = Ssucc if θ Z⇒ Pre

S0  A 〈err(c) | θ〉 = Serr if θ 6 Z⇒ Pre
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Now let us add the link clause for L and rename its other clauses
s.t. cls(L) = {L ← Linner} and ∃Linner ← B ∈ cls(Linner), and let’s
add an assertion condition for Linner: Cinner = calls(Linner, Pre) with
id(Cinner) = ci and status(ci, check). The possible reduction sequences
from the S0 state now are:
S0  A 〈Linner :: G | θ〉 A Ssucc if θ Z⇒ Pre

S0  A Serr if θ 6 Z⇒ Pre
The S0  A 〈Linner :: G | θ〉  A 〈err(ci) | θ〉 reduction sequence is im-
possible since it would require θ Z⇒ Pre to hold in the first reduction
step and θ 6 Z⇒ Pre to hold in the second reduction step.

This way in both assertion checking modes D[−1] ∈ {Ssucc, Serr} and
run-time checks for the calls assertion condition Cinner (namely, checks
for θ Z⇒ Pre after the checks for θ Z⇒ Pre) could be safely removed by
setting status(ci, true).

Next, let’s consider the case of success assertion conditions.
Let AC〈L〉 = {C} where C = success(L, Pre, Post) s.t. id(C) =

c ∧ status(c, check) and ∃(L ← B) ∈ cls(L). The possible reduction
sequences from the S0 = 〈L :: G | θ〉 state are:

S0  A 〈B :: check(c) :: G | θ〉 ∗A 〈G | θ〉 = Ssucc if θ Z⇒ Post

S0  A 〈B :: check(c) :: G | θ〉 ∗A 〈err(c) | θ〉 = Serr if θ 6 Z⇒ Post
Now let us add the link clause for Land rename its other clauses

s.t. cls(L) = {L ← Linner} and ∃Linner ← B ∈ cls(Linner), and let’s
add an assertion condition for Linner: Cinner = success(Linner, Pre, Post)
with id(Cinner) = ci and status(ci, check). We also now consider C as
Clink with its identifier cl . The possible reduction sequences from the
S0 state now are:
S0  A 〈B :: check(ci) :: check(cl) :: G | θ〉 ∗A 〈G | θ〉 = Ssucc

if θ Z⇒ Post

S0  A 〈B :: check(ci) :: check(cl) :: G | θ〉 ∗A
〈err(cl) | θ〉 = Serr

if θ 6 Z⇒ Post
Although the assertion condition identifiers for the two Serr are

different, the checks performed in these states are equal (θ 6 Z⇒ Post).
This way the run-time checks for the cl assertion condition are du-

plicating the checks for ci and could be safely removed by setting
status(cl , true).

4.4 optimizing checks at the client-library boundaries

We now consider another aspect of our library scenario: optimizing
the checks at the client-library boundaries. We will remain within the
case in which the library provides an open interface to its clients, i.e.,
the clients are not known when analyzing and compiling the library,
these clients can be expected to call the library in arbitrary ways, and
we do not want the library to be reanalyzed or recompiled for each
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particular client. As seen in Section 4.1, in this scenario the reusabil-
ity of the library forces us at least in principle to keep the run-time
checks for the assertions at the library interface to ensure correctness.
However, on the client side it may be possible to detect places where
there is a call in the client module to a library predicate, such that
the checks or analysis performed in the client module guarantee that
the calls conditions of the library predicate will be satisfied. Detecting
this could allow us to optimize away the checks at the client- library
boundaries, and thus reduce run-time checking overhead.

Again, while inter-modular analysis could be used to this end, the
advantage of fixing the library boundaries is that the library modules,
once analyzed and compiled, can be reused without repeating the
analysis or re-analyzing for new abstract call states. This reanalysis
may not be really practical in the case of pre-compiled libraries, and
also implies in any case additional cost, which may be prohibitive for
some applications. Also, in inter-modular analysis and optimization
the module boundaries change dynamically during analysis and this
can happen after a change in any module. Another advantage of fix-
ing the library boundaries is thus that it avoids having to recompile
the client if there are changes in the library source code (and vice-
versa), provided that the interface of the library itself is not changed.
I.e., there are advantages to being able to fix the interface at certain
boundaries.

The alternative that we propose is to provide a fixed interface, but
one that provides two entry points for each predicate exported by
the library: the standard one, that performs the run-time checks for
the assertions in the library interface, and another one that provides
direct access to the exported predicates bypassing the boundary asser-
tion checks (in particular, the _inner versions produced by the CTRT
transformation). We also propose a matching transformation for the
client module that allows selecting, for each literal in the client that
calls a library predicate, which of the two versions of that predicate
exported by the library interface can safely be used.10

On the client side, we assume that the source code of the library
predicates that are being imported by the client module is in gen-
eral not accessible from the client during the analysis in the client.
However, we assume that the interface of the library includes also the
assertions of its exported predicates (as is the case in Ciao/CiaoPP).
Thus, analysis on the client side has to rely solely on the information
available in the interface of the library. This is not an issue however, if
the library is compiled with the CTRT transformation, as in this case
the transformation includes the assertions for the exported predicates
(more specifically, the link clause assertions) in the library interface.

10 This can obviously be generalized to providing several entry points under several
conditions [88], but we will keep the discussion limited to two entry points per
predicate for simplicity.
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�
1 :- module(mod ,[p/2]).
2 :- use_module(lib ,[e/2]).
3

4 :- pred p(X,Y) : int(X)
5 => int(Y).
6

7 p(X,Y) :- e(X,Y).
8

9 :- pred q(X,Y) => int(Y).
10

11 q(X,Y) :- e(X,Y).

�
1 :- module(lib ,[e/2]).
2

3 :- pred e(X,Y) : int(X)
4 => int(Y).
5

6 e(X,Y) :- ...
7

Figure 4.6: A client-library program.

As an example, consider the client-library program in Figure 4.6
(using just moded types for brevity). There, in the client module mod,
p/2 is an exported predicate and q/2 is a local predicate, and e/2
is imported from the library lib. We want to enforce through the
assertions that p/2 always be called with its first argument X bound
to an integer, and that its second argument Y be bound to an integer
upon success (i.e., returning a free variable is not allowed). At the
same time, we do not enforce any call-specific way to invoke q/2, and
we enforce that its second argument Y should be bound to an integer
upon success.

Both p/2 and q/2 call predicate e/2, imported from the library. Since
e/2 is an exported predicate in the lib module, the check for its calls
condition (that its first argument X is bound to an integer) will always
be performed. But notice that at the point where e/2 is called from
p/2 the check for its first argument being an integer at run time has
already taken place, as the same check was required by the calls con-
ditions for the p/2 predicate. This check duplication can be avoided
if we replace at compile-time the call to e/2 in the body of p/2 with a
call to e_inner/2, which is visible from mod during the pre-compilation
analysis time. In principle this inner predicate would have to be ex-
ported but in practice it is done through the internal visibility mecha-
nism in the compiler, which the user cannot bypass. At the same time
we would like to keep the check for the calls condition of e/2 when it
is called from the body of q/2, as in that case nothing ensures that its
first argument will be bound to an integer.

The optimization that we seek requires us to be able to reason about
individual call sites in the bodies of the clauses in the program pred-
icates, also referred to as “program points.” For this, we need the
analysis information (abstract states) to be available not just at the
whole predicate level (call and success) but also at the level of the
clause literals. This information is indeed provided by the PLAI anal-
ysis that we are using as reference (Chapter 1.5). We also need the
interface of the transformed library to be extended by making acces-
sible the link predicates generated for all its annotated exported pred-
icates, together with their respective assertions. As mentioned before,
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such interface extension will provide us with (at least) two different
versions of the library exported predicates, that can be called at dif-
ferent program points in the client. For this kind of reasoning we also
require the static analysis performed to be in effect multivariant on
calls.11�

1 :- module(mod ,[p/2, q/2]).
2 :- use_module(lib ,[e/2,e_inner /2]).
3

4 :- check calls p(X,Y) : int(X).
5 :- true success p(X,Y) : int(X) => int(Y).
6

7 p(X,Y) :- p_inner(X,Y).
8

9 :- true calls p_inner(X,Y) : int(X).
10 :- check success p_inner(X,Y) : int(X) => int(Y).
11

12 p_inner(X,Y) :- e_inner(X,Y).
13

14 :- check calls q(X,Y) : term(X).
15 :- true success q(X,Y) : term(X) => num(Y).
16

17 q(X,Y) :- q_inner(X,Y).
18

19 :- true calls q_inner(X,Y) : term(X).
20 :- check success q_inner(X,Y) : term(X) => num(Y).
21

22 q_inner(X,Y) :- e(X,Y).�
1 :- module(lib ,[e/2, e_inner /2]).
2

3 :- check calls e(X,Y) : int(X).
4 :- true success e(X,Y) : int(X) => int(Y).
5

6 e(X,Y) :- e_inner(X,Y).
7

8 :- true calls e_inner(X,Y) : int(X).
9 :- check success e_inner(X,Y) : int(X) => int(Y).

10

11 e_inner(X,Y) :- ...
12

Figure 4.7: A two-module program after the transformations.

Let ppt denote a program point identifier, which refers to a partic-
ular literal position in the body of a particular clause in the program.
Let Lppt denote the literal L that is located at program point ppt. We
assume thus that the analysis provides the following information:

• The 〈Lp, λc
i , λs

i 〉 triples for the predicates in the program, as be-
fore.

• In addition, triples 〈Lppt
p , λc, λs〉 that provide, for each literal Lp,

the abstract state before and after the calls to such literal at each
program point ppt in which Lp occurs in the body of a clause.

11 In the experiments we used explicit materialization of versions. Note however that
this can also be obtained via modular partial evaluation.
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We further adapt our notation to program point-level reasoning as fol-
lows:

• Let statusppt(c, S) denote the status of some assertion condition
C = calls(L, _) or C = success(, L, _)_ s.t. id(C) = c for the literal
L at program point ppt.

Now with the information from the multivariant analysis and the
statuses of assertions after the checking phase it is straightforward
to apply a program-point literal substitution. Since we are consider-
ing programs that undergo the CTRT transformation by the time the
static analysis and assertion checking are performed, Lppt should be
either L or Linner, depending on the abstract state at the program point
and the result of the program point assertion checks:

Lppt =


Linner if ∀C ∈ AC〈L〉 s.t. C = calls(L, _) ∧ id(C) = c

statusppt(c, checked) holds

L otherwise

A result of such program transformation can be seen in Figure 4.7
for the program in Figure 4.6.

4.5 experimental evaluation

As stated throughout the chapter, our objective is to explore the ef-
fectiveness of abstract interpretation in detecting parts of program
specifications that can be statically simplified to true or false, and to
quantify the impact of this application of analysis towards reducing
the cost of the run-time checks. In particular, we have studied these is-
sues for the different assertion checking modes that we have defined
and for the two scenarios.

experimental setup We have built an experimental harness by
extending the Ciao preprocessor, CiaoPP, which implements our base-
line assertion verification framework (see [40], Section 4). The archi-
tecture of this framework is shown in Figure 4.8. We provide below
high-level descriptions of the verification process and internal func-
tionality of the principal components.

The input to the verification process, as mentioned before in the
Section 1.5, is the user program, optionally including a set of asser-
tions; this set always includes any assertions present for predicates
exported by any libraries used. Any check, trust, or true assertions
are normalized and the program is expanded to kernel form (simple
Horn clauses), and the result is given as input to the static analysis.

We have introduced new front-end passes implementing the new
transformations (marked in Figure 4.8) which thus support the de-
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Figure 4.8: Adding the transformations to the Ciao Preprocessor.

fined scenarios, as well as some other minor adaptations and exten-
sions to the interface to select these different scenarios.

In particular, the program transformations used in our experiments
for introducing the run-time checks are those of [101], with no caching.

properties and analysis domains In our experiments we
consider several classes of properties, that are typically of interest
to describe the intended semantics of (logic) programs:

• The first one is the state of variable instantiation, i.e., which vari-
ables are bound to ground terms, or unbound, and, if they
are unbound, the sharing (“pointer aliasing”) patterns in order
to be able to determine independence and transfer accurately
grounding information (“strong update”). These properties are
approximated safely and quite accurately using the CiaoPP shar-
ing and freeness abstract domain [67].

• The second class of properties we will be using refers to the
shapes of the data structures constructed by the program in
memory. To this end we use the CiaoPP eterms [112] abstract
domain which infers safe approximations of these shapes as
regular trees.

• The third class of properties that we consider refers to the nu-
merical relations among program variables (constraints), in par-
ticular linear inequalities over real (floating point) numbers, which
are useful to describe properties of numerical parts of programs.
To this end we apply CiaoPP’s polyhedra abstract domain, using
the Parma Polyhedra Library (PPL) [3] as back-end solver.

Note that both the Ciao language of assertions and the analyzers
in the system support a wide class of additional properties, includ-
ing sized types, determinacy, non-failure, cardinality, constraints, size
relations between variables, consumption of a variety of resources,
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etc. [43, 95]. However, we consider the three classes above a suitable
study set for our experiments.

Table 4.2: Benchmarks

boyer a theorem prover implementation based on Lisp
by R. Boyer (nqthm system), performs symbolic
evaluation of a given formula;

boyerx a variant of boyer (using generic term manipula-
tion predicates for formula rewrites);

crypt cryptomultiplication puzzles solver;

deriv a program that performs symbolic differentiation
of a given formula;

exp exponential calculation;

factorial recursive factorial calculation;

fft fast Fourier transformation calculation;

fib a program that finds N-th Fibonacci number;

guardians prison guards game;

hamming a program that generates the sequence of Ham-
ming numbers;

hanoi hanoi towers puzzle solver for N disks that are
moved over three rods;

jugs the water jugs problem;

knights N knights chess problem;

mmatrix matrix multiplication for two matrices with di-
mensions n× n;

nreverse naive list reversal;

poly a program that raises a polynomial (1+ x + y + z)
to the 10th power symbolically;

primes a program that computes N first prime numbers;

progeom a program that constructs a perfect difference set
of order N;

queens the N queens program, the number of the queens
being the input;

qsort the quicksort program;

serialize a palindrome program;

tak a program that computes the tak function;

witt the WITT clustering system implementation;
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Table 4.3: Benchmarks set 2, for the polyhedra abstract domain.

ackerman Ackermann function computation;

array a generic array API implementation;

factA factorial with multiplication as addition;

factM factorial with direct multiplication;

incr variable increment;

mc McCarthy91 program;

symstairs synchronous increment/decrement for two
variables;

benchmarks To study the differences in the run-time overhead
levels observed in different assertion checking modes we have se-
lected a set of benchmarks, listed in Tables 4.2 and 4.3.12

Given a concrete program, the CiaoPP assertion checking system
checks the properties appearing in the assertions in the program and
automatically chooses the appropriate abstract domains that have to
be used during analysis on order to prove those properties [43]. In
our experiments, however, in order to be able to study separately the
impact on our proposals for different kinds of properties/domains,
we have done the domain selection manually for each benchmark, as
follows.

The benchmarks in the first set are symbolic and the properties of
their predicates are more naturally expressed using the eterms and
sharing and freeness abstract domains.

The benchmarks in the second set are classical numerical bench-
marks, and their properties are more naturally expressed using the
polyhedra abstract domain (as well as sharing and freeness for describ-
ing inputs/outputs and absence of sharing/pointer aliasing).

These benchmarks are relatively simple yet diverse programs that
represent frequently-occurring programming patterns such as per-
forming symbolic or arithmetic computations, problem solving in
fixed domains, processing stream data, etc. In general, they include
recursion, search, irregular/dynamic data structures, etc. The rela-
tive internal complexity despite their generally small size make them
good candidates to answer our main questions, allowing us to con-
centrate on the properties of interest in each case.

All the benchmarks have been carefully annotated with reasonable
program assertions that describe the expected behavior. In the nu-
meric benchmarks the properties contained in the assertions are lin-
ear inequalities that should hold for the calls and successes of the
predicates involved (see Figure 4.9 for an example). The assertions in
the symbolic benchmarks contain shape and sharing/freeness prop-

12 Source available at https://cliplab.org/papers/optchk-scp2017/

https://cliplab.org/papers/optchk-scp2017/
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�
1 :- pred mc(A,B) : constraint([A >= 0])
2 => constraint([B >= 90, A =< B + 10]).
3

4 mc(N,R) :- N > 100, R is N - 10.
5 mc(N,R) :-
6 T1 is N + 11,
7 mc(T1 ,T2),
8 mc(T2 ,R).

Figure 4.9: Assertion with numeric properties (example from mc).

erties (Figure 4.10 shows a fragment of the fft code as an example).

�
1 :- regtype complex /1. % A complex number
2

3 complex ((A,B)) :- num(A), num(B).
4

5 :- pred complex_mul(A, B, C) : (complex(A), complex(B), term(C))
6 => (complex(A), complex(B), complex(C)).
7

8 complex_mul ((Ra,Ia), (Rb ,Ib), (Rc,Ic)) :-
9 Rc is Ra*Rb-Ia*Ib ,

10 Ic is Ra*Ib+Rb*Ia.

Figure 4.10: Complex number operations (fragment).

Tables 4.4 and 4.5 present some quantitative characteristics of the
benchmarks, such as lines of code (LOC), excluding empty and com-
mented lines, size metrics of the benchmark object file after the com-
pilation, and also the total number of program pred assertions. Re-
garding the sizes after the transformations, note that these transfor-
mations only add binary wrapper predicates that incur very little
run-time overhead (since arguments do not change order the wrap-
per predicates translate to a single call instruction, with no argument
overhead), so they do not significantly alter the benchmark metrics.

In order to measure the run-time overhead reduction in the client-
library interaction scenario (i.e., measuring the gains from eliminat-
ing the redundant run-time checks on calls to the library predicates
for the Safe-CTRT assertion–Section 4.4) we have adapted several of
our benchmarks, splitting them into client and library parts. We have
selected primarily those benchmarks where such separation is mean-
ingful, i.e., where it is straightforward to identify a part of the bench-
mark module with a library-like structure that can be placed naturally
in a separate module. As an example, we separated the fft bench-
mark into a library for arithmetic operations on complex numbers
and the FFT calculations themselves as the client.

We have also concentrated on benchmarks in which there are dif-
ferent call sites to the (now) library predicates, and where some of
them required keeping the checks on the calls in the imported predi-
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Table 4.4: Benchmarks set 1 metrics (eterms and sharing and freeness abstract
domains).

Code Assertions

Name LOC Size (KB) total

boyer 853 70 13

boyerx 853 50 12

crypt 76 10 8

deriv 29 9 2

exp 28 6 3

factorial 13 4 2

fft 104 13 10

fib 11 5 3

guardians 78 9 7

hamming 71 9 10

hanoi 44 6 3

jugs 132 10 5

knights 49 9 7

mmatrix 48 6 4

nreverse 14 5 3

poly 81 12 7

primes 33 6 5

progeom 71 8 9

qsort 46 6 6

queens 47 6 7

serialize 81 10 6

tak 18 5 2

witt 651 50 43

cates and others did not, presenting thus good opportunity for study.
Table 4.6 lists these benchmarks and the boundary at which the client-
library split of each individual benchmark was performed. Note that
the lists library is listed as used in every benchmark of this client-
library interaction study subset. This is because this library provides
some of the regular types that are used in the assertions of the client
parts of the benchmarks.

experimental results (base scenario) Tables 4.7 and 4.8
show the compilation time for the benchmarks under the different as-
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Table 4.5: Benchmark set 2 metrics (polyhedra abstract domain).

Code Assertions

Name LOC Size (KB) total

ackerman 16 4 1

array 24 6 1

factA 15 4 1

factM 9 4 1

incr 9 4 2

mc 8 4 1

symstairs 15 4 1

Table 4.6: Benchmarks used for the client-library interaction use case.

fft fast Fourier transformation lists, complex numbers

hamming Hamming numbers lists, queues

hanoi hanoi towers puzzle encoding lists

nreverse naive list reversal lists

qsort the quicksort algorithm lists

witt the WITT clustering algorithm lists, sets

sertion checking modes that we have defined.13 Note that the compila-
tion time for the benchmarks under the Safe-CT-RT mode includes the
total static analysis and assertion checking times. In all cases the com-
pilation times include the cost of the proposed transformations, ex-
cept in the unsafe mode, in which no transformations are performed
and thus serves also as baseline. The experiments were run on a Mac-
Book Pro with 2.6 GHz Intel Core i5 processor, 8GB RAM, and under
the Mac OS X 10.12.5 operating system.

Tables 4.9 and 4.10 show more detail on the analysis and asser-
tion checking times for the Safe-CT-RT mode for the different bench-
marks. The load and prep columns indicate the time needed to load the
source files and prepare the analyses, and the shfr, eterms, and poly-
hedra columns the time to perform sharing+freeness, shape (regular
types), and numerical analyses, respectively.

13 Times for compilation and analysis assume that the compiler and analyzer are al-
ready loaded in memory and ready to execute. Thus, we removed the compiler and
CiaoPP start-up time. In the current implementation, the engine needs around 1.4
seconds to load all the necessary bytecode but can then process different programs
(e.g., interactively, from within the development environment) without having to be
restarted. There exist in any case many solutions to significantly reduce this startup
time (keeping code in memory, optimizing the bytecode reader, reduced versions of
CiaoPP that contain only the necessary domains, lazy load, etc.).



62 combining static and dynamic checking

Table 4.7: Benchmarks: full compilation time (including eterms and sharing
and freeness analysis, assertion checking, and transformations).

Compilation time, ms

Benchmark
Unsafe

Safe

Client RT CT+RT

boyer 242 1,271 1,444 469,807

boyerx 221 1,070 1,244 31,426

crypt 174 638 629 2,286

deriv 193 797 765 1,031

exp 167 741 734 1,075

factorial 148 686 1,006 865

fft 181 901 808 3,429

fib 157 608 722 933

guardians 169 673 736 1,580

hamming 187 852 1,085 1,987

hanoi 164 638 635 1,142

jugs 179 827 855 1,590

knights 162 852 974 1,751

mmatrix 174 825 722 1,085

nreverse 163 799 690 989

poly 181 941 909 2,156

primes 173 676 651 1,536

progeom 173 934 845 1,974

qsort 167 770 909 1,341

queens 169 821 1,037 1,405

serialize 167 849 822 1,636

tak 161 959 686 1,035

witt 281 1,866 1,938 180,353

The analyses are actually relatively inexpensive compared to the
rest of the compilation passes for most of the benchmarks. The regu-
lar type analysis is expensive in boyer and boyerx. The analysis of the
formula rewrite predicates generates many large types whose ma-
nipulation is expensive. The witt benchmark, despite having more
regular data structures (tables of sets and matrices), is also expensive
to analyze due to a large number of operations. Note that the eterms
abstract domain can be controlled in several ways within CiaoPP but
we left the analyzer use the automatic, default settings for these ex-
periments. Also note that more efficient –but less precise– domains
are available to control analysis cost, many within CiaoPP, such as,
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Table 4.8: Benchmarks: full compilation time (including polyhedra analysis,
assertion checking, and transformations).

Compilation time, ms

Benchmark
Unsafe

Safe

Client RT CT+RT

ackerman 183 651 460 523

array 159 580 568 730

factA 146 518 448 649

factM 162 505 525 601

incr 152 485 480 617

mc 149 505 643 632

symstairs 153 583 481 661

for example, several widenings for sharing [73, 59], pair sharing do-
mains [98, 94], or other type inference domains [33, 9].

Tables 4.11, 4.12, 4.13, and 4.14 report on the actual execution times
for each benchmark using the different assertion checking modes, to-
gether with data on the results of assertion checking. For some of
the benchmarks, measurements were taken for calls with several in-
put values and this is expressed using the notation Name(Input). The
‘Checked Assertion Conditions’ column reports the ratios of statically
checked calls and success assertion conditions in the Safe-CT-RT check-
ing mode to the total number of respective assertion conditions in the
Safe-RT checking mode for each benchmark (i.e., N/M means that N
out of the M assertion conditions are checked).

In the worst case the overhead in the Safe-RT checking mode is
three orders of magnitude higher than in Client-safe, but Safe-CT-RT re-
moves one order of magnitude (boyerx, fft, knights, witt). This is ex-
pected since run-time checks of complex properties like data shapes
cannot be performed in constant time. The run-time checking process
changes the complexity of the programs and the overhead increases
as the size of the input grows. Note that the Client-safe mode also
represents the theoretically lowest overhead that we could obtain (as-
suming a fixed implementation of the instrumentation), by removing
all the internal checks, but keeping the library interface checks.

We can observe performance variations due to secondary effects
(code layout, cache alignment), due to which sometimes the time
in Safe-CT-RT mode can be slightly smaller than in Client-safe mode
(crypt). To reduce the measurement noise (also influenced by the com-
putations performed by other processes) we execute each benchmark
several times and report the minimal time.14

14 The current measurements depend on the C getrusage() function, that on Mac
OS has microsecond resolution.
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Table 4.9: Static analysis time for benchmarks using the Safe-CT-RT checking
mode with eterms and sharing and freeness analyses (part of total
compilation time).

Benchmark load
Analysis time, ms Assertion

checkingprep shfr prep eterms

boyer 757.43 9.21 62.59 9.36 737.73 614.33

boyerx 686.38 6.40 53.63 6.68 556.77 408.75

crypt 528.04 1.43 8.46 1.41 39.37 138.05

deriv 478.51 1.04 4.32 1.46 17.36 32.74

exp 460.00 0.49 2.12 0.45 15.17 54.11

factorial 493.96 0.29 1.61 0.25 11.21 16.75

fft 515.95 1.84 9.54 1.91 43.05 162.43

fib 477.50 0.41 2.71 0.90 13.06 17.47

guardians 481.39 1.08 9.24 1.22 28.86 63.74

hamming 536.77 1.22 9.10 1.22 27.85 81.34

hanoi 477.13 0.59 2.91 0.47 15.65 21.79

jugs 494.40 1.02 5.08 1.19 26.75 126.10

knights 527.57 0.90 4.19 1.37 32.31 58.59

mmatrix 482.28 1.28 3.85 0.80 15.12 27.86

nreverse 524.33 0.50 3.23 0.30 3.50 9.01

poly 494.44 1.67 50.94 1.49 52.26 103.17

primes 527.36 0.80 2.64 0.55 17.34 33.09

progeom 481.82 1.30 7.18 1.00 27.66 59.31

qsort 496.13 1.00 5.77 0.64 8.23 22.18

queens 512.68 0.71 4.77 1.32 22.13 48.62

serialize 496.34 1.33 15.28 1.41 24.30 52.89

tak 519.57 0.44 1.75 0.43 13.76 26.67

witt 580.95 15.52 124,284.60 15.88 847.20 1,250.04

In practice, in many programs Safe-CT-RT is able to remove most
of the checks, except of course those corresponding to the external
predicates. We included in the benchmarks two versions of boyer. The
original translation (which we call here boyerx) uses functor/3 and
arg/3 to implement rewrites of arbitrary terms representing formulas.
This makes the domains lose precision. The boyer version uses instead
a larger predicate that explicitly enumerates possible formula terms.

The benefits of applying the CTRT transformation are not so promi-
nent in the case of numerical analysis, mainly due to the fact that the
numerical checks are usually much less costly than the data shape
checks. However, in programs that include arithmetic operations that
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Table 4.10: Static analysis time for benchmarks using the Safe-CT-RT check-
ing mode with polyhedra numerical analysis (part of total compi-
lation time).

Benchmark load
Analysis time, ms Assertion

checkingprep polyhedra

ackerman 476.19 1.02 11.99 13.21

array 460.07 0.86 38.55 21.37

factA 451.58 1.01 33.67 13.43

factM 459.06 0.72 4.01 9.07

incr 448.13 0.79 5.19 6.96

mc 493.90 0.70 5.41 6.75

symstairs 460.86 0.79 7.34 10.12

are not captured well by the polyhedra abstract domain the overhead
reduction is still noticeable (e.g., compare the running times of the
factA and factM benchmarks, which differ only in the way they per-
form multiplication). Another challenge for the domain are complex
benchmarks like ackerman (double recursion) and mc.

experimental results (client-library scenario) Table 4.15

shows the compilation time for the client-library scenario benchmarks
from Table 4.6. As mentioned before, each of the benchmarks was
split into client and library modules, and then two versions were gen-
erated of the client module: one without any optimization of the calls
to the library and the other applying the program-point calls opti-
mization (‘Unoptimized’ and ‘Optimized’ columns, respectively). All
files were compiled in the Safe-CT-RT checking mode. One can notice
that sum of the compilation times of client and libraries is propor-
tional to the compilation time of the ‘monolithic’ version.

Table 4.16 provides the details for the analysis times of the client-
library scenario benchmarks. The ‘Part=C-u’ rows report the analysis
times for the client modules without optimizations of the calls to the
library modules and the ‘Part=C-o’ ones report the times for the client
modules with the optimized calls. The ‘Part=L’ rows provide the anal-
ysis times for the library modules. The sum of the analysis times of
this client-library separated benchmark versions is comparable to the
analysis time of the ‘monolithic’ benchmark versions reported above.
The slight increase in the analysis time is expected, since processing
a module and the modules at its interface takes some time.

The fact that the analysis times in the two-module scenario do not
differ much from the analysis times of the ’monolithic’ version of our
benchmarks provides evidence supporting the scalability of the trans-
formations that we have proposed, in the sense that, since changes in
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Table 4.11: Benchmark execution times under the different modes (all bench-
marks).

Execution time, ms

Benchmark
Unsafe

Safe

Client RT CT+RT

boyer 11.665 11.350 3,215.894 14.010

boyerx 17.541 17.755 2,621.203 1,254.041

crypt 0.106 0.118 6.601 0.114

deriv 0.013 0.062 4.629 0.071

exp 4.359 4.363 73.321 4.427

factorial 0.008 0.014 0.803 0.015

fft 28.419 32.702 32,112.845 254.773

fib 0.080 0.086 16.052 0.094

guardians 3.637 3.255 6,521.171 3.866

hamming 17.793 18.288 9,860.070 20.197

hanoi (8) 0.057 0.070 122.730 0.086

jugs 0.017 0.026 1.529 0.026

knights 232.922 232.940 18,842.485 250.993

mmatrix (4) 0.005 0.016 0.742 0.017

nreverse 2.438 2.699 10,596.668 3.640

poly 1.172 1.371 428.480 1.404

primes 0.033 0.044 11.066 0.040

progeom (8) 5.702 5.694 2,222.974 6.378

qsort (32) 0.022 0.030 7.382 0.035

queens (8) 2.522 2.527 545.413 2.846

serialize (25) 0.012 0.025 4.998 0.029

tak 2.980 2.991 980.910 3.457

witt 24.027 17.488 1,853.552 389.750

the client code do not affect the library part any more, only that part
of the program will have to be recompiled should some changes be
made. Even if the largest part of the cost is in the client (e.g., witt),
note that the observation before is also true with respect to changes in
the library, i.e., the client will not have to be reanalyzed for changes
in the library.

The actual execution times for the benchmarks in the client-server
scenario are given in Table 4.17. Here we are of course interested
in the effect of the optimization of the checks at the module bound-
aries, i.e., in comparing the ’Unoptimized’ and ’Optimized’ results.
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Table 4.12: Checked vs. total assertions (all benchmarks).

Checked Assertion

Benchmark Conditions

calls success

boyer 13/13 12/12

boyerx 11/12 10/11

crypt 7/8 8/8

deriv 1/2 1/1

exp 2/3 2/2

factorial 1/2 1/1

fft 9/10 8/9

fib 2/3 2/2

guardians 6/7 6/6

hamming 9/10 9/9

hanoi (8) 1/2 2/2

jugs 4/5 4/4

knights 6/7 6/6

mmatrix (4) 2/3 3/3

nreverse 2/3 2/2

poly 6/7 7/7

primes 3/4 4/4

progeom (8) 7/8 8/8

qsort (32) 4/5 3/3

queens (8) 5/6 4/4

serialize (25) 4/5 4/4

tak 1/2 1/1

witt 31/43 38/40

The results show that in the optimized case the execution times are
reduced and comparable to those in the previous ’monolithic’ setup
(i.e., to the times in Tables 4.11, 4.13). The minor deviations from that
case are due to the noise in the measurements and the use of addi-
tional predicate wrappers in the interface of the library (that was not
present in the ‘monolithic’ versions). These wrappers are necessary
to distinguish internal from external calls within the library. This ef-
fect can be observed in the execution times of the hamming benchmark:
the current compilation mechanism introduces these wrapper predi-
cates that add some overhead, and since in hamming the operations are
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Table 4.13: Benchmark execution times under the different modes (bench-
marks subset, varied output).

Execution time, ms

Benchmark
Unsafe

Safe

Client RT CT+RT

hanoi (2) 0.000 0.012 0.161 0.013

hanoi (4) 0.002 0.014 1.517 0.015

hanoi (8) 0.057 0.070 122.730 0.086

mmatrix (2) 0.001 0.010 0.148 0.010

mmatrix (3) 0.002 0.011 0.358 0.013

mmatrix (4) 0.005 0.016 0.742 0.017

progeom (2) 0.002 0.005 0.615 0.005

progeom (4) 0.096 0.098 28.118 0.111

progeom (8) 5.702 5.694 2,222.974 6.378

qsort (8) 0.002 0.008 0.839 0.008

qsort (16) 0.008 0.014 2.664 0.016

qsort (32) 0.022 0.030 7.382 0.035

queens (4) 0.007 0.009 1.248 0.011

queens (6) 0.133 0.136 29.527 0.153

queens (8) 2.522 2.527 545.413 2.846

serialize (9) 0.004 0.008 0.881 0.011

serialize (16) 0.006 0.013 2.343 0.014

serialize (25) 0.012 0.025 4.998 0.029

Table 4.14: Benchmark (polyhedra) execution times under the different
modes and checked vs. total assertions.

Execution time, ms Checked Assertion

Benchmark
Unsafe

Safe Conditions

Client RT CT+RT calls success

ackerman 0.042 0.043 4.049 0.045 1/1 1/1

array 0.004 0.003 0.043 0.003 1/1 1/1

factA 0.002 0.008 0.032 0.018 0/1 1/1

factM 0.001 0.008 0.031 0.043 0/1 0/1

incr 0.001 0.007 0.128 0.032 1/2 2/2

mc 0.007 0.015 0.737 0.312 0/1 1/1

symstairs 0.006 0.012 0.601 0.309 0/1 1/1
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Table 4.15: Benchmarks: full compilation time (client-library scenario).

Benchmark
Compilation time, ms

Client
Library

Unoptimized Optimized

fft 3,253 3,385 1,674

hamming 1,565 1,542 1,463

hanoi 1,219 1,297 1,035

nreverse 1,040 1,203 1,089

qsort 1,377 1,223 1,105

witt 169,944 164,121 2,617

Table 4.16: Static analysis time for benchmarks (B) (client-library scenario,
part of total compilation time).

B Part load
Analysis time, ms Assertion

checkingprep shfr prep eterms

ff
t

C-u 486.76 1.39 8.38 1.49 40.45 125.55

C-o 518.09 1.33 8.24 1.31 38.07 121.75

L 484.69 0.75 5.45 0.64 25.72 82.77

ha
mm

in
g C-u 483.03 0.92 4.50 0.87 19.09 87.67

C-o 512.81 1.08 5.11 0.89 19.86 53.74

L 451.23 0.61 7.28 0.64 8.68 22.41

ha
no

i C-u 470.81 0.45 2.36 0.34 11.66 23.17

C-o 509.23 0.42 2.39 0.32 12.10 15.29

L 454.93 0.37 2.00 0.31 3.30 11.86

nr
ev

er
se C-u 456.46 0.33 2.04 0.26 2.23 10.32

C-o 492.82 0.50 2.88 0.32 3.25 7.27

L 447.63 0.26 2.03 0.21 1.87 5.33

qs
or

t C-u 480.46 0.73 3.87 0.68 7.33 21.92

C-o 498.62 0.52 3.61 0.51 7.11 16.74

L 485.56 0.61 3.40 0.39 3.48 8.06

wi
tt

C-u 505.32 12.32 118,807.15 14.41 722.83 1,491.66

C-o 605.32 14.77 117,395.04 12.43 663.12 1,128.95

L 488.70 2.08 64.39 2.21 41.74 88.74

very simple this overhead becomes noticeable. However, this over-
head does not have a big impact in other benchmarks.

In the case where we have not optimized the checks at the bound-
aries of the module (the ‘Unoptimized’ column) execution times are
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Table 4.17: Benchmark execution times in the client-library scenario.

Benchmark
Execution time, ms

Unoptimized Optimized

fft 2,199.29 271.78

hamming 146.85 60.47

hanoi (2) 0.03 0.01

hanoi (4) 0.16 0.02

hanoi (8) 3.21 0.10

nreverse 22.13 3.39

qsort (8) 0.08 0.01

qsort (16) 0.16 0.02

qsort (32) 0.32 0.04

witt 466.34 426.21

higher than in the ‘monolithic’ setup and are only superseded by
the times with all run-time checks enabled (the Safe-CT-RT mode).
These experiments clearly demonstrate the positive effect of elimi-
nating run-time checks at module boundaries. It is quite interesting
that we are able to achieve these performance gains without generat-
ing more versions or specializing the program (which is important in
some contexts).

4.6 conclusions

Our overall objective is to construct automatic verification and debug-
ging systems for non-trivial properties, that can be used routinely as
part of the development process for both prototyping and production
code. Our concrete approach is the use of frameworks that combine
static and dynamic verification, i.e., systems that combine compile-
time and run-time checking of user-provided assertions. In this chap-
ter we have addressed the study of how run-time overhead can be
reduced in different scenarios and, specially, via static analysis.

We have defined four practical assertion checking modes, and stud-
ied the corresponding trade-offs between the level of guarantees pro-
vided by each one and the corresponding execution time slowdown.
For these checking modes we have explored the effectiveness of ab-
stract interpretation in detecting the parts of the program’s (partial)
specifications that can be statically simplified to true or false, concen-
trating on the practical impact of such analysis in reducing the cost
of the run-time checks required for the remaining parts of the spec-
ifications. We have also addressed the application of our approach
when optimizing run-time checks for the calls across client-library
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boundaries. We have described a typical client-library use case and
discussed the possibilities for optimizing the run-time checks in this
context using an illustrative example. Also, we have proposes a new
program point source transformation for avoiding the duplication of
run-time checks.

We have also proposed program transformations that allow incor-
porating the run-time checking semantics into the analysis phase and
demonstrated that this approach can increase analysis precision and
allow for better and more fine-grained (program-point) check elimi-
nation.

Our experiments have shown that there is indeed a significant
advantage in using analysis to reduce the overhead implied by the
run-time tests. We argue that the results are encouraging, supporting
the hypothesis that the combination of run-time checking with analy-
sis can reduce checking overhead sufficiently to allow providing full
safety in production code, for non-trivial properties.

While evaluating the effectiveness of our assertion-based approach
in finding errors in programs was not directly the objective of this
chapter (we concentrated here on measuring the reduction in run-
time overhead due to analysis and the enhancements proposed), dur-
ing our experiments a good number of program errors were flagged
by the system. In particular, it is worth mentioning that the analysis of
one of the more complex programs, boyer, allowed us to spot bugs in
the original translation from LISP that had been around for 30 years!





5
S H A L L O W R U N - T I M E C H E C K I N G

Modular programming has become widely adopted due to the bene-
fits it provides in code reuse and structuring data flow between pro-
gram components. A tightly related concept is the principle of in-
formation hiding that allows concealing the concrete implementation
details behind a well-defined interface and thus allows for cleaner
abstractions. Different programming languages implement these con-
cepts in different ways, some examples being the encapsulation mech-
anism of classes in object-oriented programming and opaque data
types. In the (C)LP context, most mature language implementations
incorporate module systems, some of which allow programmers to re-
strict the visibility of some functor symbols to the module where they
are defined, thus both hiding the concrete implementation details of
terms from other modules and providing guarantees that only the
predicates of that particular module can use those functor symbols as
term constructors or matchers.

One of the most attractive features of untyped languages for pro-
grammers is the flexibility they offer in term creation and manipula-
tion. However, with such power comes the responsibility of ensuring
correctness in the manipulation of data, and this is specially relevant
when data can come from unknown clients. A popular solution for en-
suring safety is to enhance the language with optional assertions that
allow specifying correctness conditions both at the module bound-
aries and internally to modules. These assertions can be checked dy-
namically by adding run-time checks to the program, but this can
introduce overheads that are in many cases impractical. Such over-
heads can be greatly reduced with static analysis, but the gains then
depend strongly on the quality of the analysis information inferred.
Unfortunately, there are some common scenarios where shape/type
analyses are necessarily imprecise. A motivational example is the case
of reusable libraries, i.e., the case of analyzing, verifying, and compil-
ing a library for general use, without access to the client code or
analysis information on it. This includes for example the important
case of servers accessed via remote procedure calls. Static analysis
faces challenges in this context, since the unknown clients can fake
data that is really intended to be internal to the library. Ensuring
safety then requires sanitizing input data with potentially expensive
run-time checks.

In order to alleviate this problem, in this chapter we present tech-
niques that, by exploiting term hiding and the strict visibility rules
of the module system, can greatly improve the quality of the shape
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information inferred by static analysis and reduce the run-time over-
head for the calls across module boundaries by several orders of mag-
nitude. These techniques can result in improvements in the number
and size of checks that allow bringing guarantees and overheads to
levels close to those of statically-typed approaches, but without im-
posing on programs the restriction of being well-typed. In particular,
we present a semantics for modular logic programs where the map-
ping of module symbols is abstract and implementation-agnostic, i.e.,
independent of the visibility rules of particular module systems.

5.1 an abstract approach to modular logic programs

There have been several proposals to date for supporting modular-
ity in logic programs, all of which are based on performing a par-
tition of the set of program symbols into modules. The two most
widely adopted approaches are referred to as predicate-based and atom-
based module systems. In predicate-based module systems all sym-
bols involved in terms are global, i.e., they belong to a single global
user module –a special module from which all modules import the
symbols and to which all modules can add symbols. In atom-based
module systems [106] only constants and explicitly exported symbols
are global, while the rest of the symbols are local to their modules.
Ciao [15] adopts a hybrid approach which is as in predicate-based
systems but with the possibility of marking a selected set of symbols
as local (we will use this model in the examples in Sec. 5.3). Despite
the differences among these module systems, by performing module
resolution applying the appropriate visibility rules, programs are re-
ducible in all systems to a form that can be interpreted using the
same Prolog-style semantics. We will use this property in order to
abstract our results away from particular module systems and their
symbol visibility rules. To this end we present a formalization of the
“flattened” version of a modular program, where visibility is explicit
and is thus independent of the visibility conventions of specific mod-
ule systems. Let MS denote the set of all module symbols. The flattened
form of a modular definite program is defined as follows:

Definition 5.1 (Modular Program). A modular program is a pair of
(P,mod(·)), where P is a definite program and mod(·) is a mapping that
assigns for each symbol f ∈ FS a unique module symbol m ∈ MS. Let C beIn this chapter the

FS set also includes
predicate symbols.

a clause H ← B in P, mod(C) , mod(H). Let A be an atom1 or a term of
the form f (. . .). Then mod(A) , mod( f ).

The mod(·) mapping creates a partition of the clauses in the definite
program P. We refer to each resulting equivalence class as a module,
and represent it with the module symbol shared by all clauses in

1 In practice constraints are also located in modules. It is trivial to extend the formal-
ization to include this, we do not write it explicitly for simplicity.
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that class. The set of all symbols defined by a module m is def(m) =

{ f | f ∈ FS,mod( f ) = m, m ∈ MS}.

Definition 5.2 (Interface of a Module). The interface of a module m is
given by the disjoint sets exp(m) and imp(m), s.t. exp(m) ⊆ def(m) is the
subset of the symbols defined in m that can appear in other modules, referred
to as the export list of m, and imp(m) = { f | f ∈FS, f is in symbols of cls(p),
p∈def(m)} \ def(m) is a superset of symbols in the bodies of the predicates
of m, that are not defined in m, referred to as the import list of m.

To track calls across module boundaries we introduce the notion of
clause end literal, a marker of the form ret(H), where H stands for the
head of the parent clause, as given in the following definition:

Definition 5.3 (Operational Semantics of Modular Programs). We re-
define the basic derivation semantics of the Definition 2.1, such that goal
sequences are of the form (L, m) :: G where L is a literal, and m is the mod-
ule from which L was introduced, as shown below.
Then, a state S = 〈(L, m) :: G | θ〉 can be reduced to a state S′ as follows:

1. 〈(L, m) :: G | θ〉  〈G | θ ∧ L〉 if L is a constraint and θ ∧ L is
satisfiable.

2. 〈(L, m) :: G | θ〉  〈(B1, n) :: . . . :: (Bk, n) :: (ret(L), n) :: G | θ〉
if L is an atom and ∃(L ← B1, . . . , Bk) ∈ cls(L) where mod(L) = n
and it holds that (L∈def(n)∧ n=m)

∨
(L∈exp(n)∧ L∈ imp(m)∧

n 6=m).

3. 〈(L, m) :: G | θ〉 〈G | θ〉 if L is a clause return literal ret(_).

Basically, for reduction step 2 to succeed, the L literal should either
be defined in module m (and then n = m) or it should belong to the
export list of module n and be in the import list of module m.

5.2 run-time checking of modular programs

semantics with run-time checking of assertions and mod-
ules We now present the operational semantics with assertions for
modular programs, which checks whether assertion conditions hold
or not while computing the derivations from a query in a modular
program. The set of derivations for a modular program from its set of
queries Q using the semantics with run-time checking of assertions
is denoted by rtc-derivs(Q). We also extend the clause return literal to
the form ret(H, C), where C is the set of identifiers ci of the assertion
conditions that should be checked at that derivation point.

Definition 5.4 (Operational Semantics for Modular Programs with
Run-time Checking). A state S = 〈(L, m) :: G | θ〉 can be reduced to a
state S′, denoted S rtc S′, as follows:

1. If L is a constraint then S′= 〈G | θ ∧ L〉 if θ ∧ L is satisfiable.
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2. If L is an atom and ∃(L ← B1, . . . , Bk) ∈ cls(L), then the new state
S′ is obtained as

S′ =


〈err(c) | θ〉 if ∃ C = calls(L, Pre) ∈ AC〈L〉

∧ id(C) = c ∧ θ 6 Z⇒ Pre

〈(B1, n) :: . . . :: (Bk, n) :: (ret(L, C), n) :: G | θ〉 otherwise

s.t. C = {ci | Ci = success(L, Prei, Posti) ∈ AC〈L〉 ∧ id(Ci) =

ci ∧ θ Z⇒ Prei} where mod(L) = n and it holds that
(L∈def(n) ∧ n=m)

∨
(L∈exp(n) ∧ L∈ imp(m) ∧ n 6=m)

3. If L is a clause return literal ret(_, C), then

S′ =


〈err(c) | θ〉 if ∃ c ∈ C s.t. C = success(L′, _, Post) ∈ AC〈L′〉

∧id(C) = c ∧ θ 6 Z⇒ Post

〈G | θ〉 otherwise

Theorem 5.1 below on the correctness of the operational semantics
with run-time checking can be straightforwardly adapted from [99].
The completeness of this operational semantics as presented in Theo-
rem 5.2 below can only be proved for partial program derivations, as
the new semantics introduces the err(_) literal that directly replaces
the goal sequence of a state in which a violation of an assertion con-
dition occurs. Below we adapt the Definition 2.13 from the Chapter 2,
as it will be instrumental for the Theorem 5.1 proof.

Definition 5.5 (Error-erased Program Derivations). The set of error-
erased partial derivations from  rtc is obtained by a syntactic rewriting
(−)◦ that removes the error states and sets of assertion condition identifiers
from the clause end literals. It is recursively defined as follows:

(S1, . . . , Sm, Sm+1)
◦ =

{
(S1, . . . , Sm)◦ if Sm+1 = 〈err(c) | _〉
(S1, . . . , Sm)◦ ‖ ((Sm+1)

◦) otherwise

〈G | θ〉◦ = 〈G◦ | θ〉

(L :: G)◦ =

{
(ret(L′), m) :: (G◦) if L = ret(L′, _)

L :: (G◦) otherwise

�◦ = �

where ‖ stands for sequence concatenation.

Theorem 5.1 (Correctness Under Assertion Checking). For any tuple
(P,Q,A) it holds that ∀D′∈ rtc-derivs(Q) ∃D∈derivs(Q) s.t. D′ is equiv-
alent to D (including partial derivations).

We define that D′ is equivalent to D iff (D′)◦ = D.

Proof. Let D′ = (S′1, . . . , S′k), Si = 〈(L′i, mi) | θ′i〉, for Q = ((L′1, m1), θ′1) ∈
Q and S′i  rtc S′i+1. Proof by induction on the length k of D′:
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• Base case (k = 1). (S′1)
◦ = 〈(L′1, m1)

◦ | θ′1〉 = 〈(L′1, m1) | θ′1〉 = S1

since L′1 can be neither the ret(_, _) nor err(_) literal, as they
require at least one rtc state reduction to be reached.

• Inductive case (show k + 1 assuming k holds). In the inductive
step it is enough to consider the cases that are different in the
 and rtc reductions:

– If D′ = (S′1, . . . , S′k, S′k+1) and S′k+1 = 〈err(_) | θ′k+1〉 then
from Def. 5.5 it immediately follows ∃D ∈ derivs(Q) s.t.
(D′)◦ = (S′1, . . . , S′k, S′k+1)

◦ = (S′1, . . . , S′k) = D

– If D′ = (S′1, . . . , S′k, S′k+1) and S′k+1 = 〈ret(L, _) | θ′k+1〉
then from Def. 5.5 it immediately follows ∃D ∈ derivs(Q)
s.t. (D′)◦ = (S′1, . . . , S′k)

◦‖(S′k+1)
◦ = (S′1, . . . , S′k)‖〈ret(L) |

θ′k+1〉 = D

Theorem 5.2 (Partial Completeness Under Assertion Checking). For
any tuple (P,Q,A) it holds that ∀D = (S1, . . . , Sk, Sk+1, . . . , Sn)∈derivs(Q)
∃D′∈ rtc-derivs(Q) s.t. D′ is equivalent to D or (S1, . . . , Sk, 〈err(c) | _〉).

The proof of Theorem 5.2 is trivial, based on the same reasoning as
in the proof of Theorem 5.1, and is not included.

5.3 shallow run-time checking

As mentioned before, the main advantage of modular programming
is that it allows safe local reasoning on modules, since two different
modules are not allowed to contribute clauses to the same predicate.2

Our purpose herein is to study how in systems where the visibility
of function symbols can be controlled, similar reasoning can be per-
formed at the level of terms, and in particular how such reasoning
can be applied to reducing the overhead of run-time checks. We will
refer to these reduced checks as shallow run-time checks, which we
will formally define later in this section. We start by recalling how in
cases where the visibility of terms function symbols can be controlled,
this reasoning is impossible without global (inter-modular) program
analysis, using the following example module of the Figure 5.1:

Example 5.1. Consider a module m1 that exports a single predicate p/1
that constructs point/1 terms, as shown in Figure 5.1 (a). Here, we want
to reason about the terms that can appear during program execution at sev-
eral specific program points: (a) before we call p/1 (point at which execution
enters module m1); (b) when the call to p/1 succeeds (point at which execu-
tion leaves the module); and (c) before we call q/1 (point at which execution

2 In practice, an exception is multifile predicates. However, since they need to be
declared explicitly, local reasoning is still valid assuming conservative semantics
(e.g., topmost abstract values) for them.
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enters another module). When we exit the module at points (b) and (c) we
know that in any point(X) constructed in m1 either X = 1 or X = 2.
However, when we enter module m1 at point (a) A could have been bound by
the calling module to any term including, e.g., point([4,2]), point(2),
point(a), point(1), etc., since the use of the point/1 functor is not re-
stricted.

Now we will consider the case where the visibility of terms can be
controlled. We start by defining the following notion:

Definition 5.6 (Hidden Functors of a Module). The set of hidden func-
tors of a module is the set of functors that appear in the module that are local
and non-exported.

�
1 :- module(m1, [p/1, r/0]). % m1 declared ,
2 % p/1 and r/0 exported
3 p(A) :- A = point(B),
4 B = 1. % A = user:point (1)
5

6 :- use_module(m2,[q/1]). % import q/1 from a module m2
7

8 r :- X = point (2), q(X). % X = user:point (2)

(a) a module with all its functors visible.�
1 :- module(m1, [p/1, r/0]).
2 :- hide point/1. % point /1 is restricted to m1
3

4 p(A) :- A = point(B),
5 B = 1. % m1:point (1),
6 % not user:point (1)
7 :- use_module(m2,[q/1]).
8 % m1:point (2) escapes
9 r :- X = point (2), q(X). % through call to q/1

(b) the same module but with hidden functors.

Figure 5.1: Example module.

Example 5.2. In this example we mark instead the point/1 symbol as hid-
den, as shown in Figure 5.1 (b). We use Ciao module system notation [15],
where all function symbols belong to user, unless marked with a :- hide f/N
declaration. Such symbols are hidden, i.e., local and not exported.3

Let us consider the same program points as in Example 5.1. When we exit
the module, we can infer the same results, but with m1:point/1 instead of
user:point/1. Now, if we see the m1:point(X) term at point (a) we know
that it has been constructed in m1, and the X has to be bound to either 1 or
2, because the code that can create bindings for X is only located in m1 (and
the point/1 terms are passed outside the module at points (b) and (c)).

As mentioned before, these considerations will allow us to use an
optimized form of checking that we refer to as shallow checking. In

3 Note that this can be achieved in other systems: e.g., in XSB [106] it can be done with
a :- local/1 declaration, combined with not exporting the symbol.
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order to formalize this notion, we start by defining all possible terms
that may exist outside a module m as its escaping terms. We will also
introduce the notion of shallow properties as the specialization of the
definition of these properties w.r.t. these escaping terms, and we will
present algorithms to compute such shallow versions of properties.

Definition 5.7 (Visible Terms at a State). A property whose model rep-
resents all terms that are visible in a state S = 〈(L, _) :: G | θ〉 of some
derivation D ∈ rtc-derivs(Q) for a tuple (P,Q,A) is given by the predicate
visS(X) ← ∨

V∈VarsL
(X = V ∧ θ), where VarsL denotes the set of variables

of literal L.

Definition 5.8 (Escaping Terms). Consider all states S in all derivations
D ∈ rtc-derivs(Q) of any tuple (P,Q,A), where P imports a given module
m. A property whose model represents escaping terms w.r.t. m is given by
the predicate escm(X) ← ∨

visS(X) for each S = 〈(_, n) :: _ | _〉 with
n 6= m.

The set of all public symbols to which a variable X can be bound
is denoted as usr(X) = {X|mod(X) = user}. The following lemma
states that it is enough to consider the states at the module boundaries
to compute escm(X):

Lemma 5.3 (Escaping at the Boundaries). Consider all derivation steps
S1  rtc S2 where S1 = 〈(L1, m) :: _ | _〉 and S2 = 〈(L2, n) :: _ | θ〉 with
n 6= m. That is, the derivation steps when calling a predicate at n from m
(if L1 is a literal) or when returning from m to module n (if L1 is ret(_)).
Let escm′(X) be the smallest property (i.e., the property with the smallest
model) such that θ Z⇒ escm′(X) for each variable X in the literal L2, and
usr(X) Z⇒ escm′(X). Then escm′(X) ∨ usr(X) is equivalent to escm(X).

Proof. Let escm(X) ≡ ∨
i
∨

V∈Varsi
(X = V ∧ θi) and

escm′(X) ≡ ∨
i
∨

V∈Vars′i
(X = V ∧ θ′i). From the definitions, it can be

seen that the set of all θ′i (at the boundaries, before and after m) is
a subset of all θi (outside m). The rest of the θi correspond to states
not preceded by a literal from m. For such states

∨
V∈Varsi

(X = V ∧ θi)

must be: 1) covered by usr(X) (and thus escm′(X)); or 2) contain some
X = f (. . .) with f hidden in m. Since f cannot appear in literals from
n 6= m then it must have come from some θb ∧ θo, where θb is some
ancestor at the boundaries (already covered), θo is a conjunction of
constraints introduced outside m (with cannot contain f ), and thus it
is more specific and also covered by escm′(X)).

Algorithm 5.1 computes an over-approximation of the escm(X) prop-
erty. The algorithm has two parts. First, it loops over the exported
predicates in module m. For each exported predicate we use Post
from the success assertion conditions as a safe over-approximation
of the constraints that can be introduced during the execution of the
predicate. We compute the union (t, which is equivalent to ∨ but it
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Algorithm 5.1 Escaping_Terms

1: function Escaping_Terms(M)
2: Def := usr(X)

3: for all L exported from M do
4: for all success(L, _, Post) ∈ AC〈L〉 do
5: for all P ∈ LitNames(Post, vars(L)) do
6: Def := Deft P(X)

7: for all L imported from M do
8: for all calls(L, Pre) ∈ AC〈L〉 do
9: for all P ∈ LitNames(Pre, vars(L)) do

10: Def := Deft P(X)

11: return (escm(X)← Def)

12: function LitNames(G, Args)
13: return set of P such that A ∈ Args and G = (. . . ∧ P(A) ∧ . . .)

can sometimes simplify the representation) of all properties that re-
strict any variable argument in Post. The second part of the algorithm
performs the same operation on all the properties specified in the Pre
of the calls assertions conditions. This is a safe approximation of the
constraints that can be leaked to other modules called from m.

Note that the algorithm can use analysis information to detect more
precise calls to the imported predicates, as well as more precise suc-
cesses of the exported predicates, than those specified in the assertion
conditions present in the program.

Lemma 5.4 (Correctness of Escaping_Terms). The Escaping_Terms

algorithm computes a safe (over)approximation to escm(X) (when using the
operational semantics with assertions).

Proof. Let Q(X) = Escaping_Terms(m), we will show that Q(X)

over-approximates escm(X). Since escm(X) is equivalent to escm′(X)

(Lemma 5.3), it is enough to consider the derivation steps at the
boundaries. That is, S1  rtc S2 where S1 = 〈(L1, m) :: _ | _〉 and
S2 = 〈(L2, n) :: _ | θ〉 with n 6= m. If L1 is a literal (not ret(_))
then it corresponds to the case of calling an imported predicate. The
operational semantics ensures that θ Z⇒ Pre and thus Q(X) over-
approximates this case. If L2 is ret(_) then it corresponds to the case
of returning from m. The operational semantics ensures that θ Z⇒ Post
and thus Q(X) also over-approximates this case.

shallow properties Shallow run-time checking consists in us-
ing shallow versions of properties in the run-time checks for the calls
across module boundaries. While this notion could be added directly
to the operational semantics, we will present it as a program transfor-
mation based on the generation of shallow versions of the properties,
since this also provides a direct implementation path.
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Algorithm 5.2 Shallow_Interface

1: function Shallow_Interface(M)
2: Let M′ be M with wrappers for exported predicates
3: (to differentiate internal from external calls)
4: Let Q(X) := Escaping_Terms(M′)
5: for all L exported from M do
6: for all calls(L, Pre) ∈ AC〈L〉 do
7: Update AC〈L〉 with calls(L, Pre#)

8: for all success(L, Pre, Post) ∈ AC〈L〉 do
9: Update AC〈L〉 with success(L, Pre#, Post)

10: return M′

Example 5.3. Assume that the set of escaping terms of m contains point(1)
and it does not contain the more general point(_). Consider the property:
intpoint(point(X)) :- int(X).

Checking intpoint(A) at any program point outside m must check first
that A is instantiated to point(X) and that X is instantiated to an integer
(int(X)). However, the escaping terms show that it is not possible for a vari-
able to be bound to point(X) without X=1. Thus, the latter check is redun-
dant. We can compute the optimized – or shallow – version of intpoint/1
in the context of all execution points external to m as intpoint(point(_)).

Let Spec(L, Pre) generate a specialized version L′ of predicate L
w.r.t. the calls given by Pre (see [81]). It holds that for all θ, θ Z⇒ L iff
θ ∧ Pre Z⇒ L′.

Definition 5.9 (Shallow Property). The shallow version of a property
L(X) w.r.t. module m is denoted as L(X)#, and computed as Spec(L(X), Q(X)),
where Q(X) is a (safe) approximation of the escaping terms of m
(Escaping_Terms(m)).

Algorithm 5.2 computes the optimized version of a module inter-
face using shallow checks. It first introduces wrappers for the ex-
ported predicates, i.e., predicates p(X) :- p’(X), renaming all inter-
nal occurrences of p by p’. Then it computes an approximation Q(X)

of the escaping terms of M. Finally, it updates all Pre in calls and
success assertion conditions, for all exported predicates, with their
shallow version Pre#. We compute the shallow version of a conjunc-
tion of literals Pre =

∧
i Li as Pre# =

∧
i L#

i .

Theorem 5.5 (Correctness of Shallow_Interface). Replacing a mod-
ule m in a larger program by its shallow version does not alter the (run-time
checking) operational semantics.

Proof. By definition, the transformation only affects the checks for
Pre = (

∧
i Li(Xi)) conjunctions in assertion conditions of exported

predicates in m. These checks correspond to the derivation steps
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S1  rtc S2 where S1 = 〈(_, n) :: G | θ〉 and S2 = 〈(_, m) :: G | _〉
with n 6= m. Let Q(X) be obtained from Escaping_Terms(m). The
shallow version Pre# = (

∧
i Li(Xi))

# = (
∧

i Spec(Li(Xi), Q(Xi))) (Def-
inition 5.9). By Definition 5.8 it holds that θ Z⇒ (

∧
i escm(Xi)). By

Lemma 5.4 it holds that θ Z⇒ (
∧

i Q(Xi)). By correctness of Spec, since
θ entails each Q(Xi), then the full and specialized versions of Li can
be interchanged.

discussion about precision The presence of any top proper-
ties in the calls or success assertion conditions will propagate to the
end in the Escaping_Terms algorithm (see Algorithm 5.1). For a sig-
nificant class of programs, this is not a problem as long as we can
provide or infer precise assertions which do not use this top element.
Note that usr(X), since it has a void intersection with any hidden
term, does not represent a problem. For example, many generic Pro-
log term manipulation predicates (e.g., functor/3) typically accept
a top element in their calls conditions. We restrict these predicates
to work only on user (i.e., not hidden) symbols.4 More sophisticated
solutions, that are outside the scope of this dissertation, include: pro-
ducing monolithic libraries (creating versions of the imported mod-
ules and using abstract interpretation to obtain more precise assertion
conditions); or disabling shallow checking (e.g., with a dynamic flag)
until the execution exits the context of m (which is correct except for
the case when terms are dynamically asserted).

multi-library scenarios Recall that properties can be exported
and used in assertions from other modules. The shallow version of
properties in m are safe to be used not only at the module bound-
aries but also in any other assertion check outside m. Computing the
shallow optimization can be performed per-library, without strictly
requiring intermodular analysis. However, in some cases intermodu-
lar analysis may improve the precision of escaping terms and allow
more aggressive optimizations.

5.4 experimental evaluation

We explore the effectiveness of the combination of term hiding and
shallow checking in the reusable library context, i.e., in libraries that
use (some) hidden terms in their data structures and offer an inter-
face for clients to access/manipulate such terms. We study the four
assertion checking modes of [102]: Unsafe (no library assertions are
checked), Client-Safe (checks are generated only for the assertions of
the predicates exported by the library, assertions for the internal li-
brary predicates are not checked), Safe-RT (checks are generated from

4 This can be implemented very efficiently with a simple bit check on the atom prop-
erties and does not impact the execution.
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Table 5.1: Benchmark metrics.

Name LOC Size (KB)
pred # Hidden

Assertions Symbols

AVL-tree 147 16.7 20 2

B-tree 240 22.1 18 3

Binary tree 58 8.3 6 2

Heap 139 15.1 12 3

RB-tree 678 121.8 20 4

assertions both for internal and exported library predicates), and Safe-
CT+RT (like RT, but analysis information is used to clear as many
checks as possible at compile-time). We use the lightweight instru-
mentation scheme from [101] for generating the run-time checks from
the program assertions. For eliminating the run-time checks via static
analysis we reuse the Ciao verification framework, including the ex-
tensions from [102]. We concentrate in these experiments on shape
analysis (regular types).

In our experiments each benchmark is composed of a library and
a client/driver. We have selected a set of Prolog libraries that im-
plement tree-based data structures. Libraries B-tree and binary tree
were taken from the Ciao sources; libraries AVL-tree, RB-tree, and
heap were adapted from YAP, adding similar assertions to those of
the Ciao libraries. Table 5.1 shows some statistics for these libraries:
number of lines of code (LOC), size of the object file (Size KB), the
number of assertions in the library specification considered (Pred As-
sertions), and the number of hidden functors per library (# Hidden
Symbols).

In order to focus on the assertions of the library operations used
in the benchmarks (where by an operation we mean the set of predi-
cates implementing it) we do not count in the tables the assertions for
library predicates not directly involved in those operations. Library
assertions contain instantiation (moded) regular types. For each li-
brary we have created two drivers (clients) resulting in two experi-
ments per library. In the first one the library operation has constant
(O(1)) time complexity and the respective run-time check has O(N)

time complexity (e.g., looking up the value stored at the root of a bi-
nary tree and checking on each lookup that the input term is a binary
tree). Here a major speedup is expected when using shallow run-time
checks, since the checking time dominates operation execution time
and the reduction due to shallow checking should be more noticeable.
In the second one the library operation has non-constant (O(log(N)))
complexity and the respective run-time check O(N) complexity (e.g.,
inserting an element in a binary tree and checking on each insertion
that the input term is a tree). Here obviously a smaller speedup is
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Table 5.2: Static analysis time for benchmarks for the Safe-CT+RT mode.

Benchmark
Analysis time, ms

prep shfr prep eterms total

AVL-tree 2 10 2 31 45 (2%)

B-tree 3 9 3 38 53 (2%)

Binary tree 1 9 1 14 25 (2%)

Heap 2 7 2 24 35 (2%)

RB-tree 13 11 14 35 73 (3%)

Table 5.3: Static checking time for benchmarks for the Safe-CT+RT mode.

Benchmark
Assertions

checking, ms unchecked

AVL-tree 59 (2%) 2/20

B-tree 90 (3%) 3/18

Binary tree 33 (2%) 2/6

Heap 71 (4%) 2/12

RB-tree 298 (10%) 3/20

to be expected with shallow checking. All experiments were run on a
MacBook Pro, 2.6 GHz Intel Core i5 processor, 8GB RAM, and under
the Mac OS X 10.12.3 operating system.

static analysis Tables 5.2 and 5.3 present the detailed compile-
time analysis and checking times for the Safe-CT+RT mode. Numbers
in parentheses indicate the percentage of the total compilation time
spent on analysis, which stays reasonably low even in the most com-
plicated case (13% for the RB-tree library). Nevertheless, the analy-
sis was able to discharge most of the assertions in our benchmarks,
leaving always only 2-3 assertions unchecked (i.e., that will need run-
time checks), for the predicates of the library operations being bench-
marked.

run-time checking After the static preprocessing phase we have
divided our libraries into two groups: (a) libraries where the only
unchecked assertions left are the ones for the boundary calls (AVL-tree,
heap, and binary tree),5 and (b) libraries with also some unchecked
assertions for internal calls (B-tree and RB-tree). We present run time

5 Due to our reusable library scenario the analysis of the libraries is performed with-
out any knowledge of the client and thus the library interface checks must always
remain.
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Figure 5.2: Run times in different checking modes, AVL-tree library,
O(log(N)) operation.
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Figure 5.3: Run times in different checking modes, B-tree library,
O(log(N)) operation.

plots6 for one library of each group. Since the unchecked assertions
in the second group correspond to internal calls of the O(log(N))

operation experiment, we only show here a set of plots of the O(1)
operation experiment for one library, as these plots are very similar
across all benchmarks.

Fig. 5.2 illustrates the overhead reductions from using the shallow
run-time checks in the AVL-tree benchmark for the O(N) insert oper-
ation experiment. This is also the best case that can be achieved for
this kind of operations, since in the Safe-CT+RT mode all inner as-
sertions are discharged statically. Fig. 5.3 shows the overhead reduc-
tions from using the shallow checks in the B-tree benchmark for the
O(log(N)) insert operation experiment. In contrast with the previous
case, here the overhead reductions achieved by employing shallow
checks are dominated by the total check cost, and while the overhead

6 The current measurements depend on the C getrusage() function, that on Mac
OS has microsecond resolution.
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Figure 5.4: Run times in different checking modes, AVL-tree library, O(1)
operation.

reduction is obvious in the Client-Safe mode, it is not significant in the
Safe-CT+RT mode where some internal assertion was being checked.

Fig. 5.4 presents the overhead reductions in run-time checking re-
sulting from the use of the shallow checks in the AVL-tree benchmark
for the O(1) peek operation experiment on the root. As we can see,
using shallow checks allows us to obtain constant overhead on the
boundary checks for such cheap operations in all execution modes
but Safe-RT. In summary, the shallow checking technique seems quite
effective in reducing the shape-related run-time checking overheads
for the reusable-library scenario.

More plots are available in the Appendix B.2.

5.5 conclusions

The topic of modules and logic programming has received consider-
able attention, dating back to [116, 19, 63] and resulting in standard-
ization attempts for ISO-Prolog [46]. Currently, most mature Prolog
implementations adopt some flavor of a module system, predicate-
based in SWI [118], SICStus [17], YAP [90], and ECLiPSe [92], and
atom-based in XSB [106]. As mentioned before, Ciao [40, 15] uses a
hybrid approach, which behaves by default as in predicate-based sys-
tems but with the possibility of marking a selected set of symbols as
hidden, making it essentially compatible with that of XSB. Some pre-
vious research in the comparative advantages of atom-based module
systems can be found in [38].

While traditionally Prolog is untyped, there have been some pro-
posals for integrating it with type systems, starting with [69]. Several
strongly-typed Prolog-based systems have been proposed, notable ex-
amples being Mercury [97], Gödel [44], and Visual Prolog [80]. An ap-
proach for combining typed and untyped Prolog modules has been
proposed in [93].
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In this work we have described a lightweight modification of a
predicate-based module system to support term hiding and explored
the optimizations that can be achieved with this technique in the con-
text of combined compile-time/run-time verification. We have stud-
ied the challenging case of reusable libraries, i.e., library modules
that are pre-compiled independently of the client. We have shown
that with our approach the shape information that can be inferred
can be enriched significantly and large reductions in overhead can
be achieved. The overheads achieved are closer to those of static
languages, even in the reusable-library context, without requiring
switching to strong typing, which is less natural in Prolog-style lan-
guages, where there is a difference between error and failure/back-
tracking. We have shown herein that even in the challenging context
of calls across open module boundaries it is sometimes possible to
achieve constant run-time overhead.





6
H I G H E R - O R D E R E X T E N S I O N S

Many high-level programming languages support higher-order pro-
gramming style which adds flexibility to the software development
process. Within the (C)LP paradigm, Prolog has included higher-order
constructs since the early days, and there have been many proposals
for combining the first-order kernel of (C)LP with different higher-
order constructs (see, e.g., [115, 71, 20, 70, 16, 14]). Many of these
proposals are currently in use in different (C)LP systems and have
been found very useful in programming practice, inheriting the well-
known benefits of code reuse (templates), elegance, clarity, and mod-
ularization.

When higher-order constructs are introduced in the language it be-
comes necessary to describe properties of arguments of predicates
that are themselves also predicates. While the combination of con-
tracts and higher-order has received some attention in functional pro-
gramming [32, 30], within (C)LP the combination of higher-order
with the previously mentioned assertion-based approaches has re-
ceived comparatively little attention to date. Current Prolog systems
simply use basic atomic types (i.e., stating simply that the argument is
a pred, callable, etc.) to describe predicate-bearing variables. The ap-
proach of [4] is oriented to meta programming. It allows describing
meta-types but there is no notion of directionality (modes), and only a
single pattern is allowed per predicate. Although this approach looks
promising in the line of reasoning about higher–order calls, there are
many limitations that make it undesirable for our purposes.

This chapter contributes to filling the existing gap between higher-
order programs and assertions in (C)LP for describing them. Our
starting point is the Ciao assertion model, since, as mentioned be-
fore, it has been adopted at least in part in a number of the most
popular (C)LP systems. We start by extending the traditional notion
of programs and derivations in order to deal with higher-order calls
(Section 6.1). This part allows us to revisit the traditional model in this
new, higher-order context, while introducing a different formalization
than the original one of [85]. This formalization, which will be used
throughout the chapter, is more compact and gathers all assertion vi-
olations as opposed to just the first one, among other differences. We
then define an extension of the properties used in assertions and of
the assertions themselves to higher-order, and provide corresponding
semantics and results (Section 6.2).
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6.1 first-order assertions on higher-order derivations

We start by extending the traditional notion of programs and deriva-
tions to include higher-order calls. We also recall the notions of first-
order conditional literals, assertions, program correctness, and run-
time checking and adapt them to the case of higher-order derivations.

While this adaptation is not complex, this part allows us to revisit
the traditional model in this new, higher-order context, while propos-
ing a richer formalization than that of the Chapter 2. This new for-
malization, which will be used throughout the chapter, gathers all
assertion violations as opposed to just the first one, among other dif-
ferences.

higher-order programs and derivations We start by ex-
tending the definition of program, state reduction, and derivations in
order to deal with the syntax and semantics of higher-order calls.1

Definition 6.1 (Higher-order Programs). Higher-order programs are
a generalization of constraint logic programs where:

• The set of literals LS is extended to include higher-order literals
X(t1, . . . , tn), where X ∈ VS and the ti ∈ TS.

• The set of terms TS is extended so that PS ⊂ TS (i.e., predicate sym-
bols p can be used as constants).

In the following we assume a simple semantics where when a call
to a higher-order literal X(t1, . . . , tn) occurs, X has to be constrained
to a predicate symbol in the store:2

Definition 6.2 (Reductions in Higher-order Programs). A state
S = 〈L :: G | θ〉 where L is a literal can be reduced to a state S′, denoted
S# S′, as follows:

1. If L is a constraint and θ ∧ L is satisfiable, then S′ = 〈G | θ ∧ L〉.

2. If L is an atom of the form p(t1, . . . , tn), for some clause (L ← B)
∈ cls(L), then S′ = 〈B :: G | θ〉.

3. If L is of the form X(t1, . . . , tn), then S′ = 〈G′ | θ〉 where

G′ =

{
p(t1, . . . , tn) :: G if ∃p ∈ PS∧ θ |= (X = p) ∧ ar(p) = n

εuninst_call otherwise
1 While the higher-order programs considered can also be reduced to first order via a

defunctionalization transformation (see, e.g., [115]) we prefer herein to treat higher
order natively. This is in line with current Prolog implementations which provide
syntax and direct implementation support (e.g., call/n etc.) for higher order. Also,
the transformation-based approach requires a static pre-processing which would
not work in general for modular programs since the number of predicates would be
unknown a priori.

2 This is also the most frequent semantics in current systems. Other alternatives, such
as residuation [1] (delays), predicate enumeration, etc. can also be used, requiring
relatively straightforward adaptations of the model proposed.
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The concepts of answers and of finished and successful derivations
carry over without change to this notion of higher-order derivations.
The notion of (finitely) failed derivation is extended as follows:

Definition 6.3 ((Finitely) Failed Derivation). A finished derivation from
a query (L, θ) is failed iff its last state is not of the form 〈� | θ′〉 or
〈εuninst_call | θ〉.

Finally, we introduce the concept of floundered derivations:

Definition 6.4 (Floundered Derivation). A finished derivation from a
query (L, θ) is floundered iff its last state is of the form 〈εuninst_call | θ〉.

first-order assertions on higher-order derivations In
order to keep track of any violated assertion conditions, we introduce
an extended program state of the form 〈G | θ | E〉, where E denotes
the set of identifiers for falsified assertion condition instances. For the
sake of readability, we write labels in negated form when they appear
in the error set.

The definitions below adapt the base first-order definitions from
the Chapter 2 to the notation with extended program states.

Definition 6.5 (Reductions in Higher-order Programs with First-order
Assertions). A state S = 〈L :: G | θ | E〉, where L is a literal can be
reduced to a state S′, denoted S#A S′, as follows:

1. If L is a constraint and θ ∧ L is satisfiable, then S′ = 〈G | θ ∧ L | E〉.

2. If L is of the form X(t1, . . . , tn), then S′ = 〈G′ | θ | E〉 where

G′ =

{
p(t1, . . . , tn) :: G if ∃p ∈ PS∧ θ |= (X = p) ∧ ar(p) = n

εuninst_call otherwise

3. If L is an atom and ∃(L← B) ∈ cls(L), then the new state
S′ = 〈B :: PostC :: G | θ | E ′〉 where:

E ′ =


E ∪ {c̄} if ∃ C = calls(L, Pre) ∈ AC〈L〉 s.t.

id(C) = c ∧ θ 6 Z⇒ Pre

E otherwise

and PostC is the sequence check(c1) :: . . . :: check(cn) including all
the checks check(ci) such that
Ci = success(L, Prei, Posti) ∈ AC〈L〉 ∧ id(Ci) = ci ∧ θ Z⇒ Prei.

4. If L is a check literal check(c), then S′ = 〈G | θ | E ′〉 where:

E ′ =


E ∪ {c̄} if C = success(L, _, Post) ∈ AC〈L〉 s.t.

id(C) = c ∧ θ 6 Z⇒ Post

E otherwise
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Note that the order in which the PostC check literals are selected is irrele-
vant.

As before,#∗A denotes a series of consequent program state reduc-
tions.

To address the changes introduced to the operational semantics by
extending the program state, we adapt several definitions and proofs
from the Chapter 2, as they will be instrumental later on in this chap-
ter.

Definition 6.6 (Assertion Conditions Renaming). Given the atoms L
and La s.t. La = σ(L), and the set of assertion conditions AC〈L〉, the set of
assertion conditions AC〈La〉 can be obtained from AC〈L〉, such that: ∃C ∈
AC, C = calls(L, Pre) (or C = success(L, Pre, Post)), Ca = calls(La, σ(Pre))
(or Ca = success(La, σ(Pre), σ(Post))).

Definition 6.7 (Error-erased Higher-order Derivation). The set of error-
erased derivations from#A is obtained by a syntactic rewriting (−)� that
removes states that begin by a check literal, check literals from goals, and the
error set. It is recursively defined as follows:

{D1, . . . , Dn}� = {D�1 , . . . , D�n}

(S1, . . . , Sm, Sm+1)
� =


(S1, . . . , Sm)�

if Sm+1 = 〈check(_) :: _ | _ | _〉
(S1, . . . , Sm)� ‖ ((Sm+1)

�)

otherwise

〈G | θ | E〉� = 〈G� | θ〉

(L :: G)� =

{
G� if L = check(_)

L :: (G�) otherwise

�� = �

where ‖ stands for sequence concatenation.

We provide below the proof of the Theorem 2.1 but adapted to the
semantics with extended program states of the Definition 6.5:

Proof of Theorem 2.1 (for higher-order derivations). We will prove D =

(D′)� by showing that D ⊆ (D′)� and D ⊇ (D′)�.

• (⊆) For all D ∈ D exists D′ ∈ D′ so that D = (D′)�.

• (⊇) For all D′ ∈ D′, D = (D′)� ∈ D.

We will prove each case:

• (⊆) Let D = (S1, . . . , Sn), Si = 〈Li | θi〉, for some Q = (L1, θ1) ∈
Q and Si # Si+1. Proof by induction on the length n of D:
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– Base case (n = 1). Let S′1 = 〈L1 | θ1 | ∅〉. It holds that
(S′1)

� = 〈L1 | θ1 | ∅〉)� = 〈L�1 | θ1〉 = 〈L1 | θ1〉 = S1

(since L1 does not contain any check literal). Thus, (D′)� =
((S′1))

� = ((S′1)
�) = (S1) = D.

– Inductive case (show n + 1 assuming n holds). For each
D2 = (S1, . . . , Sn, Sn+1) there exists D′2 = (S′1, . . . , S′m, S′m+1)

such that (D′2)
� = D2. Given the induction hypothesis it

is enough to show that for each Sn # Sn+1 there exists
S′m #A S′m+1, such that (S′m+1)

� = Sn+1. According to
#A (see Def. 6.5), L′m+1 and θ′m+1 are obtained in the same
way than in# (see Def. 6.2), except for the introduction of
check literals. Since all check literals are removed in error-
erased states, it follows that (S′m+1)

� = Sn+1.

• (⊇) Let D′ = (S′1, . . . , S′m), S′i = 〈L′i | θ′i | Ei〉, for some Q =

(L′1, θ′1) ∈ Q and S′i #A S′i+1. Proof by induction on the length
m of D′:

– Base case (m = 1). It holds that (S′1)
� = S1 (showed in base

case for ⊆). Then (D′)� = D ∈ D.

– Inductive case (show m+ 1 assuming m holds). We want to
show that given D′2 = (S′1, . . . , S′m, S′m+1), (D′2)

� = D2 ∈ D.
Given the induction hypothesis it is enough to show that
for each S′m #A S′m+1 there exists Sn # Sn+1 such that
Sn+1 = (S′m+1)

� (so that (S1, . . . , Sn, Sn+1) ∈ D) or Sn =

(S′m+1)
� (D2 = D ∈ D). According to cases of Def. 6.5:

* If L′m begins with a check literal then (L′m+1)
� = (L′m)�.

Thus (S′m+1)
� = (S′m)� = Sn.

* Otherwise, it holds that (S′m+1)
� = Sn+1 using the

same reasoning than in the inductive case for ⊆.

Definition 6.8 (Run-time Valuations of an Assertion Condition on a
Derivation (for higher-order derivations)). Let E(D) denote the error set
of the last state of derivation D, D[−1] = 〈_ | _ | E〉. The run-time valuation
of an assertion condition C on a derivation D is given by:

rtsolve(C, D) , ∀c, C′, σ, L (C′ ∈ AC〈L〉 ∧ id(C′) = c ∧ σ(C) = C′)

⇒ E(D) 0 c̄

Proof of Theorem 2.2 (for higher-order derivations): Let us assume asser-
tion condition A ∈ AC is false⇔ from Def. 2.9 and Def. 2.5 ∃{Cc, Cs}
assertion conditions s.t. false(Cc) ∨ false(Cs), where Cc = calls(L, Pre)
and Cs = success(L, Pre, Post) correspond to A. Let us first prove the
¬rtsolve(Cc, D) case and then the ¬rtsolve(Cs, D) one:
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• false(Cc)

⇔ from Def. 2.8 ∃D ∈ derivs(Q) s.t. ¬solve(Cc, D)

⇔ from Def. 2.6 (prestep(L, D) = (θ, σ) ∧ θ 6 Z⇒ σ(Pre))
⇔ from Def. 6.5 ∃ S#A S′ where:

S =〈L :: G | θ | E〉
s.t. ∃ C = calls(L, Pre) ∈ AC〈L〉 ∧ id(C) = c

S′ =〈_ | θ | E ′〉
s.t. E ′ = E ∪ {c̄}

⇔ from Def. 6.8 ¬rtsolve(Cc, D)

• false(Cs)

⇔ from Def. 2.8 ∃D ∈ derivs(Q) s.t. ¬solve(Cs, D)

⇔ from Def. 2.6 (step(L, D) = (θ, σ, θ′) ∧ θ Z⇒ σ(Pre) ∧
θ′ 6 Z⇒ σ(Post))
⇔ from Def. 6.5 ∃ S#∗A S′ #A S′′ where

S =〈L :: G | θ | _〉∧
∃ C = success(L, Pre, Post)∈AC〈L〉
∧ id(C) = c ∧ θ Z⇒ Pre

S′ =〈check(c) :: G | θ′ | E ′〉 ∧ θ′ 6 Z⇒ Post

S′′ =〈_ | _ | E ′′〉 ∧ E ′′ = E ′ ∪ {c̄}

⇔ from Def. 6.8 ¬rtsolve(Cs, D)

6.2 higher-order assertions on higher-order derivations

Once we have established basic results for the case of first-order asser-
tions in the context of higher-order derivations, we extend the notion
of assertion itself to the higher-order case. The motivation is that in
the higher-order context terms can be bound to predicates and our
aim is to also be able to state and check properties of such predicates.

anonymous assertions In the higher-order case terms can be
bound to predicate names. In this context it is convenient to be able
to describe the properties that such predicates must meet. To this end
properties of terms that may be bound to predicates but where the
predicate name may not be known statically in the code.

We start by generalizing the notion of assertion to include anony-
mous assertions: assertions where the predicate symbol is a variable
from VS, which can be instantiated to any suitable predicate symbol
from PS to produce non-anonymous assertions. An anonymous asser-
tion is an expression of the from “:- pred L : Pre => Post”, where
L is of the form X(V1, . . . , Vn) and Pre and Post are DNF formulas of
prop literals.
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Example 6.1. The anonymous assertion:
:- pred X(A,B) : list(A) => list(B).

states that for any predicate p ∈ P that X is constrained to be of arity 2,
it should be called with its first argument instantiated to a list, and if it
succeeds, then its second argument should be also a list on success.

We now introduce predprops, which gather a number of anonymous
assertions in order to fully describe variables containing higher-order
terms (predicate symbols), similarly to how prop literals describe con-
ditions for variables containing first-order terms.

Definition 6.9 (Predprop). Given Prei and Posti conjunctions of prop
literals, a predprop pp(X) is an expression of the form:

pp(X){ :- pred X(V1, . . . , Vm) : Pre1 => Post1.

. . .

:- pred X(V1, . . . , Vm) : Pren => Postn. }

Definition 6.10 (Anonymous Assertion Conditions for a predprop).
The corresponding set of anonymous assertion conditions for the pred-
prop pp(X) is defined as AH〈pp〉〈X〉 = {Hi〈X〉 | i = 0..n} where:

Hi〈X〉 =
{

calls(X(V1, . . . , Vm), Pre) i = 0

success(X(V1, . . . , Vm), Prei, Posti) i = 1..n

The variable X can be instantiated to a particular predicate symbol q ∈ PS
to produce a set of non-anonymous assertion conditions AC〈pp〉〈q〉 for q
(see Definition 6.12 for one possibility).

Example 6.2. Consider defining a comparator(Cmp) predprop that de-
scribes predicates of arity 3 which can be used to compare numerical values:
:- prop comparator(Cmp) {
:- pred Cmp(X,Y,R) : int(X),int(Y) => between(-1,1,R).
:- pred Cmp(X,Y,R) : flt(X),flt(Y) => between(-1,1,R).
}.

The comparator(Cmp) predprop includes two anonymous assertions de-
scribing a set of possible preconditions and postconditions for predicates of
this kind. In this example:

AH〈comparator〉〈Cmp〉 = {
calls(Cmp(X, Y, Res), (int(X) ∧ int(Y)) ∨ ( f lt(X) ∧ f lt(Y))),

success(Cmp(X, Y, Res), int(X) ∧ int(Y), between(−1, 1, Res))

success(Cmp(X, Y, Res), f lt(X) ∧ f lt(Y), between(−1, 1, Res))

}



96 higher-order extensions

�
1 :- prop nneg(P) {:- pred P(X) : true => nnegint(X).}
2 :- prop neg(P) {:- pred P(X) : true => negint(X).}
3

4 :- pred test_c(P,N) : nneg(P) => true.
5 :- pred test_c(P,N) : neg(P) => true.
6

7 test_c(P,N) :- P(N).
8

9 :- pred test_s(N,P) : nnegint(N) => nneg(P).
10 :- pred test_s(N,P) : negint(N) => neg(P).
11

12 test_s( 1,P) :- P = z. % bug here , should be P = p
13 test_s(-1,P) :- P = n.
14

15 z(1). z(-2). p(1). p(2). n(-1). n(-2). c(a). c(b).

Figure 6.1: Sample program with predprops.

Example 6.3. Figure 6.1 provides a larger example. It is more stylized for
brevity, but it covers a good subset of the relevant cases, used later to il-
lustrate the semantics. Lines 1-2 provide the definitions of two predprops,
nneg/1 and neg/1 respectively. The former describes a unary predicate
which should have its argument constrained to a non-negative integer on
success (expressed by the nnegint/1 property), independently of how the
predicate is called (note the true keyword in the precondition part). Simi-
larly, the latter describes a unary predicate which succeeds with its argument
bound to a negative integer (negint/1 property). Predicates z/1, p/1, n/1
and c/1 are used as arguments in queries to test_c/2 and test_s/2 to
trigger the checking of the predprops. While p/1 and n/1 completely satisfy
nneg/1 and neg/1 respectively, z/1 and c/1 satisfy neither one of these
predprops.

Note that it would still be possible to define nneg/1 or neg/1 without
the higher-order assertions. For example, we could define them by
considering the meaning of each predicate symbol in our program.
However, this approach has some serious limitations. First, we would
need global reasoning over the whole program.3

Definition 6.11 (Meaning of a predprop Literal). The meaning of a pred-
prop pp(X), denoted |pp(X)| is the set of constraints {X = q | q ∈
PS, ∀C ∈ AC〈pp〉〈q〉 : checked(C)}.

A predicate given by its predicate symbol p ∈ PS is compatible with
a predprop pp(X) if all the assertions resulting from pp(p) are checked
for all possible queries in an annotated program.

3 For the sake of simplicity we are not using modules in this chapter, but note that the
reasoning would also have to include all modules in the program. Second, we would
need to reconsider nneg/1 or neg/1 every time a new predicate is introduced in the
program, which again is error prone, and against reusability and modular design.
Our approach of dealing directly with higher order does not suffer from any of
those limitations.
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operational semantics for higher-order programs with

higher-order assertions We now discuss several alternative
operational semantics for higher-order programs with higher-order
assertions. In all cases the aim of the semantics is to check whether
assertions with predprops hold or not during the computation of the
derivations from a query.

checking with static predprops According to Definition 6.11,
a predprop literal pp(X) denotes the subset of predicates for which all
the associated assertions are checked. When that set of assertions can
be statically computed, then θ Z⇒ Cond can be used for both prop and
predprop Cond literals, and the operational semantics is identical to
the one for the higher-order programs and regular assertions.

We will denote as S #HAs S′ a reduction from a state S to a state
S′ under the semantics for higher-order derivations in programs with
assertions that may contain higher-order properties, which are stati-
cally precomputed.

Thus, state reductions are performed as follows:

〈G | θ | E〉#A 〈G′ | θ′ | E ′〉
〈G | θ | E〉#HAs 〈G′ | θ′ | E ′〉

The meaning of each predprop, |pp(X)|, can be inferred or checked
(if given by the user) by static analysis.

In this semantics, given the program shown in Figure 6.1 and the
goal test_c(z,-2), assertions are detected to be false since {P = z} 6⊂
|neg(P)| and {P = z} 6⊂ |nneg(P)|.

checking with dynamic predprops Given the difficulty in
determining the meaning of |pp(X)| statically, we also propose a se-
mantics with dynamic checking. In this semantics we treat the case
when a predprop pp(X) is interpreted as a set of corresponding anony-
mous assertion conditions AH〈pp〉〈X〉 (see Definition 6.9), since in
this case |pp(X)| is not known statically. We start with an over-ap-
proximation of each predprop |pp(X)| = {X = p | p ∈ PS} and
incrementally remove predicate symbols, as violations of assertion
conditions are detected:

• we can detect when some assertion condition is violated (Def. 6.5);

• we need a way to obtain a set of assertion conditions from pred-
props (anonymous assertion conditions);

We do that by defining instantiations of anonymous assertion condi-
tions for particular predicate symbols and the dependencies among
those instances.

The following definition extends the notion of assertion conditions
from the Definition 2.5 to the case of anonymous assertion conditions
and higher-order literals:
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Definition 6.12 (Hypothetical Assertion Condition). Given a predprop
pp(X) and a predicate symbol p ∈ PS, AC〈pp〉〈p〉 denotes the set of hy-
pothetical assertion conditions Cp, such that for H〈X〉 ∈ AH〈pp〉〈X〉
(Def. 6.10), L = X(V1, . . . , Vn), and Lp = p(V1, . . . , Vn), Cp is defined
as:

Cp =

{
calls(Lp, Pre) if H〈X〉 = calls(L, Pre)

success(Lp, Pre, Post) if H〈X〉 = success(L, Pre, Post)

and the h is a unique identifier provided by the id(Cp), that can be easily
distinguished from the identifiers c of the first-order assertion conditions.
Please note that anonymous assertion conditions H〈_〉 do not have identi-
fiers assigned to them, but rather serve as templates.

Example 6.4. Consider the comparator(P) predprop from Ex. 6.2, where P
is constrained to a predicate symbol less/3. Then, the set of corresponding
hypothetical assertion conditions is constructed as:

AC〈comparator〉〈less〉 = {
C1 = calls(less(X, Y, R), (int(X) ∧ int(Y)) ∨ ( f lt(X) ∧ f lt(Y))),

C2 = success(less(X, Y, R), int(X) ∧ int(Y), between(−1, 1, R))

C3 = success(less(X, Y, R), f lt(X) ∧ f lt(Y), between(−1, 1, R))

}

and id(Ci) = hi, 1 ≤ i ≤ 3.
This way we obtain “first-order” assertion conditions for less/3 similar

to the ones that would be obtained from user-provided assertions.

Violation of such hypothetical assertion conditions has to be treated
in a special way, as it does not signal the violation of the conditions
themselves, but instead of the corresponding predprop. The error set
E in Def. 6.5 contained negated assertion condition instance identi-
fiers. Now we extend this set with assertion dependency rules4 of the
form

∧
(
∨

c̄) → c̄. For simplicity, we also introduce a special label h0

to denote the assertion conditions that appeared originally in the pro-
gram. The following definitions provide the description of how such
dependencies are generated.

Definition 6.13 (Literal Simplification). The simplification of a literal L
w.r.t. θ is defined as:

simp(L, θ) =


L if L is a predprop

true if θ Z⇒ L

f alse if θ 6 Z⇒ L

We extend this definition for a conjunction of literals.
4 Note that those rules are propositional Horn clauses (about negated propositions), a

P-complete problem solvable in linear time – a subset solvable for Prolog engines.
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Definition 6.14 (Extension of AC and E for dynamic predprop check-
ing). Given the label c of an assertion condition and a formula of the form
Props =

∨n
i=1(

∧m(i)
j=0 Propij), where Propij is either a prop or predprop lit-

eral s.t. simp(Props, θ) 6= true, the extension of AC and E for dynamic
predprop checking, denoted as ext(AC, c, Props) = (∆AC, ∆E), is obtained
as follows:

1. if simp(Props, θ) = f alse, then ∆AC = ∅ and ∆E = {c̄};

2. otherwise: ∆AC =
⋃n

i=1Ai
C, and ∆E = {∧n

i=1(
∨

h∈Hi
h̄) → c̄}

where:

Ai
C = {C | C ∈ AC〈Propij〉〈Xij〉, 0 ≤ j ≤ m(i),

and Xij is bound to some q ∈ PS}.
Hi = {h | C ∈ Ai

C and id(C) = h}

We will denote as S #HAd S′ a reduction from a state S to a state
S′ under the current semantics.

Definition 6.15 (Reductions in Higher-order Programs with High-
er-order Assertions). A state S = 〈L :: G | θ | E〉 where L is a literal can
be reduced to a state S′, denoted S#HAd S′, as follows:

1. If L is a constraint and θ ∧ L is satisfiable, then S′ = 〈G | θ ∧ L | E〉.

2. If L is of the form X(t1, . . . , tn), then S′ = 〈G′ | θ | E〉 where

G′ =

{
p(t1, . . . , tn) :: G if ∃p ∈ PS∧ θ |= (X = p) ∧ ar(p) = n

εuninst_call otherwise

3. If L is an atom and ∃(L ← B) ∈ cls(L), then for each Ci ∈ AC〈L〉
s.t. id(Ci) = ci:

hi =

{
h if ∃Cj ∈ AC〈L〉 ∧ Ci = σ(Cj) ∧ id(Cj) = h

h0 otherwise

(∆iAC, ∆iE)=
{

ext(AC, ci, Pre) if Ci = calls(L, Pre)

(∅, ∅) otherwise

PostCi =


check(ci) if Ci = success(L, Prei, Posti)

and simp(Prei, θ) = true

true otherwise

and S′ = 〈B :: PostC :: G | θ | E ′〉, where A′C = AC ∪
⋃

i ∆iAC,
E ′ = E ∪⋃

i{c̄i → h̄i} ∪
⋃

i ∆iE , and PostC is the sequence
PostC1 :: . . . :: PostCn (simplifying true literals).

4. If L is a check literal check(c) and C = success(L′, _, Post) ∈ AC〈L′〉
s.t. id(C) = c, then S′ = 〈G | θ | E ′〉 where:
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a) (∆E , ∆AC) = ext(AC, c, Post),

b) E ′ = E ∪ ∆E and A′C = AC ∪ ∆AC.

Note that in this semantics we support more than one calls assertion
condition per predicate (as several predprops may be applied to the
same predicate symbol). Also note that in general we cannot prove
with dynamic checking that a predprop is true. So, as a safe approxi-
mation we treat preconditions in such success assertion conditions as
f alse.

Definition 6.16 (Trivial Assertion Condition). An assertion condition C
is trivial if it is of the form calls(_, true) or success(_, _, true). It is also
assumed that for any predprop pp(X) AH〈pp〉〈X〉 does not contain trivial
assertion conditions.

Theorem 6.1 (Higher-order Run-time Checking). For any annotated
program (P,Q,A), if ∃D ∈ derivsHAd(Q) s.t. ¬rtsolve(C, D) ⇒ C ∈
AC is f alse.

Proof. In this proof we reflect on the case when an assertion condi-
tion is falsified because some of its predprops are violated. To do
so it is enough to show that at least one predprop was violated. Let
us first prove the theorem for the case when the unsatisfied asser-
tion condition is Cc = calls(L, pp(X)) and then for the case Cs =

success(L, Pre, pp(X)), where pp(X) is a predprop. Without loss of
generality we assume that AH〈pp〉〈X〉 has cardinality 1 (which is the
case when pp(X) consists of one anonymous assertion and one of the
corresponding anonymous assertion conditions is trivial).

•Let’s assume ¬rtsolve(Cc, D)

⇔ From Def. 6.8: ∃c′, C′c, σ, L (C′c ∈ AC〈L〉) ∧ id(C′c) = c′

(σ(Cc) = C′c) ∧ (E(D) ` c̄′)
⇒ From Def. 6.15 and E(D) ` c̄′ it must hold that
D = (. . . , S1, . . . , S2, S3 . . . , S4, . . .) where:

S1 = 〈L′ :: _ | θ1 | _〉 s.t. ∃ L′ ← B′ ∈ cls(L), C′′ = calls(L′, σ(pp(X))),

id(C′′) = c′, C′′ ∈ AC〈L〉,
θ1 |= (X = q), q ∈ PS

S2 = 〈L2 :: _ | _ | E2〉s.t. {h̄ → c̄′, c̄′ → h̄0, } ∈ E2, id(Cq) = h,

Cq ∈ AC〈pp〉〈q〉, L2 = q(. . .)

S3 = 〈_ | θ3 | E3〉 s.t. {c̄′′ → h̄} ∈ E3, c′′#C′′c ∈ AC〈L2〉
S4 = 〈_ | _ | E4〉 s.t. E4 ` c̄′′

⇒ From E3 ` c̄′′ and Th. 2.2 we know that ¬checked(C′′c )
and thus (X = q) 6∈ |pp(X)| according to Def. 6.11.
⇒ From Def. 2.3 it follows that θ3 6 Z⇒ pp(q)
⇒ Given the state S1 before the call to L′ and the state S3:
(prestep(L, D) = (θ3, σ)) ∧ (θ′ 6 Z⇒ σ(pp(X)))
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⇒ From Def. 2.6 ¬solve(Cc, D)

⇒ From Def. 2.8 false(Cc)

•Let’s assume ¬rtsolve(Cs, D)

⇔ From Def. 6.8: ∃c′, C′s, σ, L (C′s ∈ AC〈L〉) ∧ id(C′s) = c′ ∧
(σ(Cs) = C′s) ∧ (E(D) ` c̄′)
⇒ From Def. 6.15 and E(D) ` c̄′ it must hold that
D = (. . . , S1, S2, . . . , S3, S4, . . . , S5, S6, . . . , S7, . . .) where:

S1 = 〈L′ :: _ | θ1 | _〉 s.t. ∃ L′ ← B′ ∈ cls(L), id(C′′) = c′

C′′ = success(L′, σ(Pre), σ(pp(X))) ∈ AC〈L〉,
θ1 Z⇒ σ(Pre)

S2 = 〈B′ :: check(c′) :: _ | _ | E2〉 s.t. {c̄′ → h̄0} ∈ E2

S3 = 〈check(c′) :: _ | _ | _〉
S4 = 〈_ | θ4 | E4〉 s.t. θ4 |= (X = q), q ∈ PS,

{h̄ → c̄′} ∈ E4, id(Cq) = h,

Cq ∈ AC〈pp〉〈q〉.
S5 = 〈L5 :: _ | _ | _〉 s.t. L5 = q(. . .)

S6 = 〈_ | _ | E6〉 s.t. {c̄′′ → h̄} ∈ E6where

C′′s ∈ AC〈L5〉, id(C′′s ) = c′′

S7 = 〈_ | θ7 | E7〉 s.t. E7 ` c̄′′

⇒ From E7 ` c̄′′ and Th. 2.2 we know that ¬checked(C′′s )
and thus (X = q) 6∈ |pp(X)| according to Def. 6.11.
⇒ From Def. 2.3 it follows that θ7 6 Z⇒ pp(q)
⇒ Given the state S1 before the call to L′ and the state S7:
(step(L, D) = (θ1, σ, θ7)) ∧ (θ1 Z⇒ σ(Pre)) ∧ (θ7 6 Z⇒ σ(pp(X)))

for C′s ∈ AC〈L〉 s.t. id(C′s) = c′

⇒ From Def. 2.6 ¬solve(Cs, D)

⇒ From Def. 2.8 false(Cs)

Let us trace finished derivations D1, D2 and D3 from the queries
Q1 = (test_c(n,X), true), Q2 = (test_c(c,X), true) and
Q3 = ((test_s(1,P),P(-2)), true), respectively, to the program in Fig-
ure 6.1.

In D1
[1] (see Table 6.1) we encounter two assertions for test_c/2

with a predprop in each precondition and trivial postconditions. Ac-
cording to state reduction rules, ∆AC consists of calls assertion con-
dition instance c1 and two hypothetical assertion conditions h1 and
h2, derived from predprops nneg/1 and neg/1, and ∆E = {c̄1 →
h̄0, h̄1 ∧ h̄2 → c̄1}. In D1

[2] and current goal P(-1) (which is implicitly
reduced as n(-1)), success assertion condition instances c2 and c3 are
derived from the hypotheses h1 and h2, and ∆E = {c̄2 → h̄1, c̄3 → h̄2}.
Consequently, two check literals, check(2) and check(3) are added to
the goal sequence. In states D1

[3] and D1
[4] those literals are reduced,

which results in adding c̄2 to E because nnegint(-1) property from the



102 higher-order extensions

G ∆θ ∆E ∆AC

test_c(n,X) P = n
N = −1
X = N

c̄1 → h̄0

h̄1 ∧ h̄2 → c̄1

c0

h1

h2

P(-1) Z = −1 c̄2 → h̄1

c̄3 → h̄2

c2

c3

check(c2),
check(c3)

- c̄2 -

check(c3) - - -

� - - -

c0 calls(test_c(n, X), nneg(n) ∨ neg(n))

c2 success(n(−1), true, nnegint(−1))

c3 success(n(−1), true, negint(−1))

h1 success(n(Z), true, nnegint(Z))

h2 success(n(Z), true, negint(Z))

Table 6.1: A derivation of the query (test_c(n,X), true) to the program in
Figure 6.1.

postcondition of c2 is violated. This example shows that the mecha-
nism of dependencies between assertion conditions allows avoiding
“false negative” results in assertion checking.

The derivation D2 is similar to D1 (see Table 6.2). The difference
is in the D2

[4] state, when it becomes possible to infer E ` c̄1 and
thus to conclude that c/1 6∈ |nneg(X)| ∧ c/1 6∈ |neg(X)| and that both
assertions for test_c/2 are f alse for this query.

In D3
[1] (see Table 6.3) we encounter two assertions with a pred-

prop in each postcondition. According to the state reduction rules,
∆AC for this state consists of calls and success assertion condition
instances, c0 and c1, ∆E = {c̄0 → h̄0, c̄1 → h̄0} for them. Also, a check
literal check(c1) is added to the goal sequence. After its reduction a
hypothetical assertion condition h2, derived from the nneg(X) pred-
prop which appears in c1, is added to AC in D3

[3], and E is extended
with a dependency rule {h̄2 → c̄1}. In state D3

[4] an assertion condi-
tion instance c2 is obtained from h2 and ∆E = {c̄2 → h̄2}. Finally, in
D3

[5] the error set contains the following chain of dependency rules:
E ⊃ {c̄2, c̄2 → h̄2, h̄2 → c̄1, c̄1 → h̄0} and rule c̄1 → h̄0 allows us to de-
tect and report the violation of the assertion condition c1 for predicate
test_s/2.
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G ∆θ ∆E ∆AC

test_c(c,X) P = c
N = a
X = N

c̄1 → h̄0

h̄2 ∧ h̄3 → c̄1

c1

h2

h3

P(a) Z = a c̄2 → h̄2

c̄3 → h̄3

c2

c3

check(c2),
check(c3)

- c̄2 -

check(c3) - c̄3 -

� - - -

c1 calls(test_c(c, X), nneg(c) ∨ neg(c))

c2 success(c(a), true, nnegint(a))

c3 success(c(a), true, negint(a))

h2 success(c(Z), true, nnegint(Z))

h3 success(c(Z), true, negint(Z))

Table 6.2: A derivation of the query (test_c(c,X), true) to the program in
Figure 6.1.

6.3 minimalistic sample implementation

The following code (portable to most Prolog systems with minor
changes) shows a minimalistic sample implementation (as an inter-
preter intr/1) of the operational semantics for dynamic predprop
checking (Def. 6.15). Conciseness and simplicity has been favoured
over efficiency. We assume that clauses, assertion conditions, and
predprops have been parsed and stored in cl/2, ac/1, pp/2 facts, re-
spectively. The interpreter will throw an exception the first time that
a failed program assertion is detected (see ext/2 predicate). E.g.,
intr((test_s(1,P),P(1))) is a valid query while intr((test_s(1,P),P(-2)))
throws a failed assertion exception. Predicate reset/0 must be called
between intr/1 queries to reset error status and temporary data. In
the handler errors can be gathered (as in the semantics) or execution
aborted.
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G ∆θ ∆E ∆AC

test_s(1,P),
P(-2)

N = 1 c̄0 → h̄0

c̄1 → h̄0

c0

c1

P = z, check(c1),
P(-2)

P = z - -

check(c1), P(-2) - h̄2 → c̄1 h2

P(-2) Z = −2 c̄2 → h̄2 c2

check(c2) - c̄2 -

� - - -

c0 calls(test_s(1, P), nnegint(1) ∨ negint(1))

c1 success(test_s(1, P), nnegint(1), nneg(P))

c2 success(z(−2), true, nnegint(−2))

h2 success(z(Z), true, nnegint(Z))

Table 6.3: A finished derivation of the query ((test_s(1,P),P(-2)), true)
to the program in Figure 6.1.

�
1 :- module(_,[reset/0,intr/1],[hiord ,dcg ,dynamic_clauses]).
2 :- use_module(library(aggregates)).
3

4 % -------------------------------------------------------%
5 % Sample program data and properties
6

7 % negint /1 and nnegint /1 properties
8 eval_prop(negint(X)) :- integer(X), X < 0.
9 eval_prop(nnegint(X)) :- integer(X), X >= 0.

10

11 % predprops nneg/1 and neg/1
12 pp(nneg(P),ac(P(X), nneg_c1(P)#success(true ,nnegint(X)))).
13 pp(neg(P), ac(P(X), neg_c1(P)#success(true , negint(X)))).
14

15 % assertion conditions and clauses for test_s /2
16 ac(test_s(N,_P), c1#calls(( nnegint(N);negint(N)))).
17 ac(test_s(N,P), c2#success(nnegint(N), nneg(P))).
18 ac(test_s(N,P), c3#success(negint(N), neg(P))).
19 cl(test_s( 1,P), P = z).
20 cl(test_s(-1,P), P = n).
21

22 % clauses for z/1, n/1
23 cl(z(1), true). cl(z(-2), true).
24 cl(n(-1), true). cl(n(-2), true).
25

26 % -------------------------------------------------------%
27 % Intepreter
28

29 :- dynamic hyp_ac /2. % hypothetical assertion condition
30 :- dynamic negac/1. % (negated) assertion dependency rule
31

32 % Reset errors and hypothetical assertion conditions
33 reset :- retractall(hyp_ac(_, _)),
34 ( retract ((negac(_) :- _)), fail ; true ).
35

36 % Interpreter with higher -order assertion checking
37 intr(X) :- ctog(X, X1), !, intr(X1).
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38 intr(X) :- is_blt(X), !, X.
39 intr((A,B)) :- !, intr(A), intr(B).
40 intr((A ; B)) :- !, ( intr(A) ; intr(B) ).
41 intr(A) :-
42 get_acs(A, Acs),
43 pre(Acs , Ids , []), cl(A, Body),
44 intr(Body), post(Ids , Acs).
45

46 % Built -ins
47 is_blt(true). is_blt(fail). is_blt(_ = _).
48

49 % From call(N,...) to N(...),where N is a predicate symbol
50 ctog(X, _) :- var(X), !, throw(inst_error).
51 ctog(X, X1) :-
52 X =.. [call ,N|Args],
53 ( atom(N) -> true ; throw(inst_error) ),
54 X1 =.. [N|Args].
55

56 % Get assertion conditions for the given literal A
57 get_acs(A, Acs) :- ( bagof(Ac , get_ac(A, Ac), Acs)
58 -> true ; Acs = [] ).
59 get_ac(A, Ac) :- ( ac(A, Ac) ; hyp_ac(A, Ac) ).
60

61 pre([]) --> [].
62 pre([Ac|Acs]) --> pre_(Ac), pre(Acs).
63 pre_(Id#calls(Pre)) --> { ext(Pre , Id) }.
64 pre_(Id#success(Pre , _)) --> ( { simp0(Pre , true) }
65 -> [Id] ; [] ).
66

67 post([], _Acs).
68 post([Id|Ids], Acs) :- post_(Id, Acs), post(Ids , Acs).
69 post_(Id , Acs) :- member(Id0#success(_Pre ,Post), Acs),
70 Id == Id0 , !, ext(Post , Id).
71 post_(_, _).
72

73 % Check/extend assertion conditions
74 ext(Props , Id) :-
75 simp(Props , Props2), ext_(Props2 , Id),
76 ( negac(A), atom(A)
77 -> throw(failed_assertion(A)) ; true ).
78 ext_(true , _Id) :- !.
79 ext_(false , Id) :- !, assertz (( negac(Id) :- true)).
80 ext_(Props , Id) :- acsubs(Props , Props2),
81 assertz (( negac(Id) :- Props2)).
82

83 % Add assertion dependency rules
84 acsubs ((A,B), (A2;B2)) :- !,
85 acsubs(A, A2), acsubs(B, B2).
86 acsubs ((A ; B), (A2 , B2)) :- !,
87 acsubs(A, A2), acsubs(B, B2).
88 acsubs(ac(L, Id#Ac), negac(Id)) :-
89 ctog(L, L2), assertz(hyp_ac(L2 , Id#Ac)).
90

91 % Condition simplification
92 simp(true , R) :- !, R = true.
93 simp((X;Y), R) :- !,
94 simp(X, Rx), simp(Y, Ry), or(Rx, Ry, R).
95 simp((X,Y), R) :- !,
96 simp(X, Rx), simp(Y, Ry), and(Rx, Ry , R).
97 simp(X, R) :- pp(X, Ac), !, R = Ac.
98 simp(X, R) :- eval_prop(X), !, R = true.
99 simp(_, R) :- R = false.

100

101 % Condition simplification for success preconditions
102 simp0(true , R) :- !, R = true.
103 simp0 ((X,Y), R) :- !,
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104 simp0(X, Rx), simp0(Y, Ry), and(Rx, Ry , R).
105 simp0(X, R) :- eval_prop(X), !, R = true.
106 simp0(_, R) :- R = false.
107

108 or(true , _, R) :- !, R = true.
109 or(false , X, R) :- !, R = X.
110 or(_, true , R) :- !, R = true.
111 or(X, false , R) :- !, R = X.
112 or(X, Y, (X;Y)).
113

114 and(false , _, R) :- !, R = false.
115 and(true , X, R) :- !, R = X.
116 and(_, false , R) :- !, R = false.
117 and(X, true , R) :- !, R = X.
118 and(X, Y, (X,Y)).

6.4 conclusions

This chapter contributes towards filling the gap between higher-order
(C)LP programs and assertion-based extensions for error detection
and program verification. To this end we have defined a new class of
properties, “predicate properties” (predprops in short), and proposed
a syntax and semantics for them. These new properties can be used in
assertions for higher-order predicates to describe the properties of the
higher-order arguments. We have also discussed several operational
semantics for performing run-time checking of programs including
predprops and provided correctness results.

Our predprop properties specify conditions for predicates that are
independent of the usage context. This corresponds in functional
programming to the notion of tight contract satisfaction [30], and it
contrasts with alternative approaches such as loose contract satisfac-
tion [32]. In the latter, contracts are attached to higher-order argu-
ments by implicit function wrappers. The scope of checking is local
to the function evaluation. Although this is a reasonable and prag-
matic solution, we believe that our approach is more general and
more amenable for combination with static verification techniques.
For example, avoiding wrappers allows us to remove checks (e.g., by
static analysis) without altering the program semantics.5 Moreover,
our approach can easily support loose contract satisfaction, since it is
straightforward in our framework to optionally include wrappers as
special predprops.

We have included the proposed predprop extensions in an exper-
imental branch of the Ciao assertion language implementation. This
has the immediate advantage, in addition to the enhanced checking,
that it allows us to document higher-order programs in much more

5 E.g. f(g)=g is not an identity function if wrappers are added to g on call. This
complicates reasoning about the program, and may lead to unexpected and hard to
detect differences in program semantics. Similar examples can be constructed where
the presence of predprops in assertions would invalidate many reasonable program
transformations.
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accurate way. We have also implemented several prototypes for oper-
ational semantics with dynamic predprop checking (Section 6.3)





7
C O N C L U S I O N S A N D F U T U R E W O R K

This chapter closes the dissertation by summarizing the main gen-
eral results and conclusions from the previous chapters, highlighting
what has been achieved with respect to the objectives and plan pre-
sented in Chapter 1. It also outlines possible future developments in
the methods and tools proposed in the dissertation.

7.1 conclusions

A motivation of this dissertation has been the development of im-
proved techniques and tools for efficient assertion-based compile- and
run-time software verification for dynamic programming languages.
These techniques and tools have been presented in the context of Ciao
— a dynamic declarative multi-paradigm programming language with
a combined static/dynamic assertion checking framework. However,
it is also an argument of the thesis that the results are applicable to
other programming paradigms, either directly (e.g., to other forms of
declarative programming), or to imperative programs, via the tech-
nique of semantic transformation into Horn clauses.

Among the most relevant results and conclusions from this work
we can mention:

• We have proposed an unobtrusive run-time check caching mech-
anism that allowed performing fewer repeated checks and where
(Chapter 3):

significant run-time overhead reductions (orders of
magnitude) were observed for checks of deep immutable
recursive data structures defined by regular types;

several caching policies were experimentally evaluated
for different data structures which demonstrated the effect
of caching policy in property caching efficiency.

• We have proposed improvements in the context of combined
(multivariant) compile-time and run-time checking that allowed
simultaneously improving the efficiency of both verification tech-
niques, such that (Chapter 4):

improved static checking precision was achieved by im-
proving the precision of static program analysis through
the inclusion of additional multivariant information about
reachable and unreachable program states coming from
the run-time checks;
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significant reductions in run-time overhead were ob-
served due to the fact that more precise static analysis was
able to verify more checks at compile time;

several scenarios of run-time check instrumentation

were formalized as assertion checking modes which allowed
discussing about the trade-off between checking thorough-
ness and program behavior safety guarantees;

• We have presented an approach for run-time overhead reduc-
tion in checks for calls across module boundaries in multi-modular
programs where (Chapter 5):

a semantics for modular logic programs was proposed
that is implementation-agnostic;

constant run-time checking overhead was achieved in
several assertion checking modes due to taking module sys-
tem visibility rules into account when reasoning about term
visibility in different execution contexts. These techniques
were shown to provide results for shape-style properties
similar to strong typing even in open library scenarios.

• We have presented a lightweight extension for the Ciao asser-
tion language for providing specifications of run-time behav-
ior of predicate-bearing arguments of higher-order predicates
where (Chapter 6):

more detailed specifications , which are a syntactic and
semantic extension of the Ciao assertion language with
higher-order properties (predprops), allow specifying in de-
tail the run-time behavior of the predicate-bearing argu-
ments of higher-order predicates;

a better error reporting mechanism for controlling blame
assignment in the case of predprop violation (assertion de-
pendency rules) makes it possible to pinpoint erroneous
higher-order calls with greater precision.

7.2 future work

Among the work which this dissertation leaves open for the future
we would like to outline the following directions:

caching and garbage collection The proposed property caching
techniques could be improved by a more sophisticated interac-
tion/integration with the garbage collection (GC) mechanism.
Currently, to remain consistent, the cache contents are invali-
dated on GC. This behavior could be replaced by a less intru-
sive one, where only the parts of the cache that contain terms
subject to GC are invalidated, keeping the rest intact.
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just in time compilation Another interesting direction would
be to explore the potential of “just-in-time” compilation tech-
niques in the context run-time check optimization.

improved blame assignment While the Ciao system already has
facilities for reporting and locating errors stemming from asser-
tion checking, the current blame assignment mechanisms could
be improved, specially in the context of higher-order calls. There
have been interesting recent advances in this area for functional
programming languages.

combinations with static/dynamic profiling The proposal
here is to develop tools for statically/dynamically tracking how
run-time checking affects overall program costs and how the
run-time checking is combined with standard program execu-
tion flow. Our argument here is that if run-time checks are
present within program “hot spots” – frequent and costly oper-
ations – investing in the optimization of not only the hot spots
themselves, but also specifically the associated run-time checks
might significantly contribute to run-time overhead reductions.
In this context, we have already made some early progress in
a method for static profiling of programs with run-time checks
in order to detect combined costs, detect these hot spots, and
provide static performance guarantees [49, 48].

specification inference from textual documentation

There already exist proposals and techniques for program speci-
fication inference from natural language comments, or construct-
ing specifications using natural language processing tools over
variable and function names of programs. In the context of the
Ciao assertions model it seems an attractive research direction
since the textual documentation appears within assertion con-
texts and thus strong connections can be established between
the textual documentation and the formal properties. Also help-
ing towards this end is the availability of extensive documen-
tation of this kind since all the system manuals are extracted
from this combination of specifications adorned with text (see,
e.g., the LPDoc system [41, 39]).

enhancing specifications with mined data Numerous tech-
niques have been proposed for inferring program invariants or
partial specifications by mining execution traces (usually in the
context of using run-time monitors). We feel this would consti-
tute a promising complementary approach for obtaining or cor-
recting existing specifications for higher-order predicates.
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A
L I S T O F S Y M B O L S

This appendix includes notation symbols used in the dissertation.

common symbols

_ anonymous variable

VS set of variable symbols

FS set of function symbols

PS set of predicate symbols

TS set of all terms

ar(p) arity of a symbol p

θ constraint

σ(_) variable renaming

θ1 |= θ2 constraint entailment

cls(L) definition of an atom L

〈_ | _〉 program state

S1  S2 single reduction from a state S1 to a state S2

S1  ∗ S2 a series of reductions from a state S1 to a state S2

D[−1] current state on a derivation D

D[n] n-th state on a derivation D

Q query

Q set of queries

derivs(Q) set of derivations from a query Q

� empty goal

answers(Q) set of answers to a query Q

θ Z⇒ L literal L succeeds trivially for the constraint θ

A set of all assertions in the program

A〈L〉 set of all assertions for a literal L

AC set of all assertion conditions in the program

AC〈L〉 set of all assertion conditions for a literal L

c assertion condition identifier

id(_)
mapping between assertion conditions and their
identifiers
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err(c) error literal

check(c) check literal

S1  A S2
single reduction from a state S1 to a state S2 (with
assertions)

S1  ∗A S2
a series of reductions from a state S1 to a state S2

(with assertions)

derivsA(Q) set of derivations from a query Q (with assertions)

_◦ error-erasing syntactic rewriting

new symbols introduced in chapter 3

M cache store

〈_ | _ | _〉 extended program state with cache store

θ
MZ⇒ L

literal L succeeds trivially for the constraint θ and the
cache M

upd(θ, M, _) cache update

new symbols introduced in chapter 4

status(c, _) status of an assertion condition with the identifier c

ppt program point identifier

Lppt literal L located at the program point ppt

statusppt(c, _)
status of an assertion condition with the identifier c
at the program point ppt

new symbols introduced in chapter 5

MS set of module symbols

mod(L) mapping for a module of a symbol L

def(m) set of symbols defined in a module m

exp(m) predicate symbols export list of a module m

imp(m) predicate symbols import list of a module m

ret(_) clause end literal

ret(_, _) extended clause return literal

S1  rtc S2
single reduction from a state S1 to a state S2 (with
assertions and explicit module resolution)

rtc-derivs(_)
set of derivations for a modular program (with
assertions and explicit module resolution)
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escm(_) escaping terms of a module m

vism(_) visible terms of a module m

usr(_) set of all public user terms

new symbols introduced in chapter 6

LS set of literals

S1 # S2
single reduction from a state S1 to a state S2 (higher
order derivations)

c̄ negated assertion condition identifier

E store for violated assertion conditions and assertion
dependencies

〈_ | _ | _〉 extended program state

S1 #A S2
single reduction from a state S1 to a state S2 (higher
order derivations, first order assertions)

S1 #∗A S2
a series of reductions from a state S1 to a state S2

(higher order derivations, first order assertions)

_� error-erasing syntactic rewriting (higher-order case)

H〈X〉 a hypothetical assertion condition with a free variable
X instead of a predicate symbol

AH〈pp〉〈X〉 set of anonymous assertion conditions for the predprop
pp(X)

AC〈pp〉〈q〉 set of non-anonymous assertion conditions generated
for the predprop pp and a q ∈ PS

h hypothetical assertion condition identifier

h̄ negated hypothetical assertion condition identifier

S1 #HAs S2

single reduction from a state S1 to a state S2 (higher
order derivations, higher order assertions, static
predprop checking)

S1 #HAd S2

single reduction from a state S1 to a state S2 (higher
order derivations, higher order assertions, dynamic
predprop checking)

derivsHAd(_)
set of higher-order derivations (higher order
assertions, dynamic predprop checking)





B
A D D I T I O N A L P L O T S

b.1 additional plots for chapter 3

This section includes plots of the run-time checking overhead ob-
served in the set of 7 benchmarks for different cache replacement
policies. There are four groups of plots:

• overhead ratio plots, where overhead ratio curves are grouped
by cache size and check depth limit (Figures B.1 and B.8);

• overhead ratio plots, where overhead ratio curves are grouped
by benchmark and check depth limit (Figures B.2 and B.9);

• maximal regtype check depth reached plots, where check depth
curves are grouped by benchmark and cache size (Figures B.4 and B.11);

• absolute and relative benchmark execution time plots for bench-
marks without rtchecks, with rtchecks and with both rtchecks
and caching (Figures B.6 and B.13).
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Figure B.1: Overhead ratios for all benchmarks, check depth limits 1, 2 and
∞, LRU caching policy.
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Figure B.2: Overhead ratios for each benchmark, check depth limits 1, 2 and
∞, LRU caching policy.
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Figure B.3: Overhead ratios for each benchmark, check depth limits 1, 2 and
∞, LRU caching policy (contd).



B.1 additional plots for chapter 3 135

��

��

���

���

���

�� ���� ����� ����� �����

�
��
�
�
�
�
�
��
��
��

���������������������������

�������������������������������������

��

��

���

���

���

�� ���� ����� ����� �����

�
��
�
�
�
�
�
��
��
��

���������������������������

�������������������������������������

��

��

���

���

���

�� ���� ����� ����� �����

�
��
�
�
�
�
�
��
��
��

���������������������������

���������������������������������������

��

��

���

���

���

�� ���� ����� ����� �����

�
��
�
��
�
�
��
��
��

���������������������������

���������������������������������

��

��

���

���

���

�� ���� ����� ����� �����

�
��
�
��
�
�
��
��
��

���������������������������

���������������������������������

��

��

���

���

���

�� ���� ����� ����� �����

�
��
�
��
�
�
��
��
��

���������������������������

�����������������������������������

��

��

���

���

���

�� ���� ����� ����� �����

�
��
�
��
�
��
��
��
�

���������������������������

��������������������������������������

��

��

���

���

���

�� ���� ����� ����� �����

�
��
�
��
�
��
��
��
�

���������������������������

��������������������������������������

��

��

���

���

���

�� ���� ����� ����� �����

�
��
�
��
�
��
��
��
�

���������������������������

����������������������������������������

��

��

���

���

���

�� ���� ����� ����� �����

�
��
�
��
�
��
��
��
�

���������������������������

��������������������������������������

��

��

���

���

���

�� ���� ����� ����� �����

�
��
�
��
�
��
��
��
�

���������������������������

��������������������������������������

�������������
�������������

��������������
��������������

��

��

���

���

���

�� ���� ����� ����� �����

�
��
�
��
�
��
��
��
�

���������������������������

����������������������������������������

Figure B.4: Max regtype check depth for each benchmark, check depth lim-
its 1, 2 and ∞, LRU caching policy.
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Figure B.5: Max regtype check depth for each benchmark, check depth lim-
its 1, 2 and ∞, LRU caching policy (contd.).
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Figure B.6: Absolute and relative benchmark running times, cache size 256

elements, check depth limit 2, LRU caching policy.
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Figure B.7: Absolute and relative benchmark running times, cache size 256

elements, check depth limit 2, LRU caching policy.
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Figure B.8: Overhead ratios for all benchmarks, check depth limits 1, 2 and
∞, DM caching policy.
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Figure B.9: Overhead ratios for each benchmark, check depth limits 1, 2 and
∞, DM caching policy.
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Figure B.10: Overhead ratios for each benchmark, check depth limits 1, 2

and ∞, DM caching policy (contd).
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Figure B.11: Max regtype check depth for each benchmark, check depth lim-
its 1, 2 and ∞, DM caching policy.
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Figure B.12: Max regtype check depth for each benchmark, check depth lim-
its 1, 2 and ∞, DM caching policy (contd.).
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Figure B.13: Absolute and relative benchmark running times, cache size 256

elements, check depth limit 2, DM caching policy.
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Figure B.14: Absolute and relative benchmark running times, cache size 256

elements, check depth limit 2, DM caching policy (contd.).
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����

����

����

���

���

���

���

��� ��� ��� ���

�
��
��
��
��

�
��
�
��

�
�
�

������������������������

�������������������

���������
�������

�����������
������

��������������
����������������

Figure B.15: Run times for the AVL-tree benchmark in different execution
modes, O(log(N)) operation + O(N) check complexity
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Figure B.16: Run times for the AVL-tree benchmark in different execution
modes, O(1) operation + O(N) check complexity
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Figure B.17: Run times for the 2-3-4 B-tree benchmark in different execu-
tion modes, O(log(N)) operation + O(N) check complexity
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Figure B.18: Run times for the 2-3-4 B-tree benchmark in different execu-
tion modes, O(1) operation + O(N) check complexity
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Figure B.19: Run times for the binary tree benchmark in different execu-
tion modes, O(log(N)) operation + O(N) check complexity
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Figure B.20: Run times for the binary tree benchmark in different execu-
tion modes, O(1) operation + O(N) check complexity
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Figure B.21: Run times for the min-heap benchmark in different execution
modes, O(log(N)) operation + O(N) check complexity
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Figure B.22: Run times for the min-heap benchmark in different execution
modes, O(1) operation + O(N) check complexity
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Figure B.23: Run times for the RB-tree benchmark in different execution
modes, O(log(N)) operation + O(N) check complexity
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Figure B.24: Run times for the RB-tree benchmark in different execution
modes, O(1) operation + O(N) check complexity
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