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Abstract

In order to improve the quality of software products various techniques can be used within
the software development life cycle. A topic that has received significant interest in recent
years has been the technique of program validation via static and/or dynamic checking of
user–provided assertions. Such assertions can be considered a (partial) program specifi-
cation in the form of annotations in the source code. Together with analysis tools, they
allow detecting incorrect program behaviors, studying resource consumption, and reason-
ing about various other properties of the program.

This approach has proven quite useful in the domain of Logic Programming, where
one of the richest designs and implementations of a combination of assertion language
and analysis tools can be found in the Ciao system. One of the features of this system is
the support of higher–order. Higher–order logic programming extends the expressiveness
of conventional first–order logic programming, both syntactical and semantically. While
quite useful in practice, higher-order also poses challenges in analysis and verification.

This thesis contributes to solving the problem of analysis, checking, and specification
of higher–order logic programs. It proposes a higher-order extension of the traditional
Ciao assertion language and of the CiaoPP run-time verification mechanisms. We explore
different alternatives for checking, highlighting the benefits and drawbacks of each of
them. We also present a prototype implementation, based on the current language ex-
tension mechanism of Ciao, and some early experimental results. We expect this first
approach to the problem to serve as a basis for the design and development of more so-
phisticated checking and analysis tools of higher-order programs.
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Resumen

Varias técnicas pueden usarse para mejorar la calidad de los productos software durante
su ciclo de desarrollo. Una técnica que ha suscitado un interés significativo durante los
últimos años es la validación de programas mediante análisis estático y/o dinámico de
aserciones proporcionadas por el usuario. Dichas aserciones pueden considerarse como
una especificación (parcial) del programa, en forma de anotaciones en el código. Junto
con herramientas de análisis, permiten inferir comportamientos incorrectos del programa,
estudiar el consumo de recursos y razonar acerca de varias otras propiedades del pro-
grama.

Estos métodos han resultado muy útiles en el contexto de la Programación Lógica,
donde uno de los diseños e implementaciones de análisis y lenguaje de aserciones más
ricos puede encontrarse en el sistema Ciao. Una de las caracterı́sticas de este sistema es
el soporte a la programación de orden superior. La programación lógica de orden superior
extiende la expresividad de la programación lógica convencional de primer orden tanto
sintáctica como semánticamente. Aunque muy útil en la práctica, el orden superior plantea
retos en el análisis y la verificación.

Esta tesis contribuye a la solución de problema del análisis, comprobación y especi-
ficación de programas lógicos de orden superior. Propone una extensión del lenguaje de
aserciones de Ciao y del sistema de comprobación en tiempo de ejecución por parte de
CiaoPP. Exploramos diferentes alternativas para la comprobación en tiempo de ejecución,
destacando los beneficios e inconvenientes de cada una de ellas. También presentamos
un prototipo de implementación, basado en el mecanismo de extensiones de lenguaje
de Ciao, ası́ como algunos resultados experimentales preliminares. Esperamos que la di-
rección adoptada en este trabajo para atacar estos problemas sirva como base para el
diseño y desarrollo de herramientas más sofisticadas de análisis y comprobación de pro-
gramas de orden superior.
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Chapter 1

Introduction

The rising complexity of software has brought about an increased need for advanced
development and debugging environments. One of the topics of greatest interest is the
particular issue of program validation and debugging via direct static and/or dynamic
checking of user–provided assertions [1, 2, 3, 4, 5, 6, 7], which can be considered as the
starting point for correctness validation and debugging. For the environments that support
such reasoning mechanism, the following features are desirable:

• optional assertion annotation: specifications may be given only for some parts of
the program and even for those parts the information given may be incomplete;

• supporting assertions which are much more general than traditional type declara-
tions, and such that it may be statically undecidable whether they hold or not for a
given program;

• automatically generating assertions, especially for parts of the program for which
there are no user–specified assertions.

A consequence of these assumptions is that the overall framework typically needs
to deal throughout with approximations [8, 9, 10] rather than directly with the concrete
semantics of a program. Another desirable feature of the framework and the assertion lan-
guage is that the design must support dynamic checking of assertions (run–time tests) in
addition to static checking. This approach was embodied within the Ciao system, strongly
motivated by the availability of powerful and mature static analyzers for (constraint) logic
programs, generally based on abstract interpretation [9].

Despite the advancements of those tools and techniques, that work has focused mainly
on relatively flat programs and languages. An interesting and heavily used abstraction
mechanism consists in the introduction of mechanisms for writing higher-order pro-
grams. Higher-order programming was initially borrowed from computation models such
as λ-calculus and introduced in the functional programming paradigm. In higher-order,
functions can be passed as arguments or returned as arguments of other functions. With
higher-order, the program structure of different problems can be shared (e.g., sorting a
list of elements) and reused for different instances (e.g., different order relations). Many
extensions and variants of Prolog extend the idea for logic programming, so that variables
can be unified with predicates [11, 12].
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In this work we explore different solutions for enhancing the capabilities of the Ciao
assertion language and dynamic checking framework to support higher-order program-
ming.

1.1 Possibilities of Static and Dynamic Analyses

The starting point for this work is the Ciao [13] language together with the CiaoPP pre-
processor [14, 15, 16, 13], which is able to perform static global program analysis (see
Fig 1.1 from [13] for the details of preprocessor and assertion framework architectures).
The system includes several abstract analysis domains developed by several groups in the
LP and CLP communities and can infer both variable– and procedure–level properties
such as data structure shape and instantiation state (“moded types”) together with pointer
sharing [17, 18, 19, 20, 18], definiteness, freeness, independence among program vari-
ables [21, 22], absence of side effects [23], determinacy [24, 25], detect predicates that
are “covered”, i.e., such that for any input (included in the calling type of the predicate),
there is at least one clause whose “test” (head unification and body builtins) succeeds,
termination, non–failure [26, 27]), lower and upper bounds on the sizes of terms and the
computational cost of predicates [28, 29, 30, 31, 32, 8, 32], bounds on the execution
time [33] and the consumption of a large class of user-defined resources [34]. Thanks
to this functionality, CiaoPP can also certify programs with resource consumption assur-
ances as well as efficiently checking such certificates [35].

Code
(user, builtins,
libraries)

Assertions
(user, builtins,
libraries)

:- check
:- test
:- trust
Unit-tests

Static
Analysis
(Fixpoint)

Assertion
Normalizer
& Library
Interface

Analysis Info

:- true

Static
Com-

parator

RT-Check

Unit-Test

:- texec

:- check

:- false

:- checked

Possible
run-time er-
ror

Compile-time
error

Verification
warning

Verified

Certificate
(ACC)

(optimized)
code

Preprocessor
Program

Figure 1.1: The Ciao assertion framework (CiaoPP’s verification/testing architecture).

After performing static analysis the framework compares the obtained results with
assertions, which allows to prove or disprove some of them, and, thus, reason whether
the corresponding program properties hold or not. However, for some cases it is impos-
sible to perform static checks, and the only suitable solution consists of introducing and
performing run–time checks.
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1.2 Dynamic Checking of Higher–order Predicates
When higher–order programming is introduced in the language it becomes necessary to
describe properties about the predicates that are bound to variables. However, the current
Ciao assertion language and verification tools only include very limited facilities for de-
scribing the predicate arguments of higher–order predicates and the corresponding calls:
essentially the basic typing required by the module system (meta-predicate declarations).
The capability of the static analyzers for dealing with higher order is also quite limited.
Still, the framework itself serves as the perfect foundation for introducing improved anal-
ysis facilities, allowing both the extension of the assertion language with the necessary
properties and the addition of the corresponding reasoning and checking mechanisms.

Since the first objective of this work is to enhance the specification of logic programs
by extending it with better ways of describing higher–order, we intentionally restrict our
approach to dynamic checking. This consists in defining the evaluation mechanisms able
to detect violations of specifications that include properties about higher–order predicates.

1.3 Structure of the Document
This document is organized as follows:

• Chapter 2 describes the State of the Art in assertion–based analysis for logic pro-
grams, concentrating on the approach adopted in Ciao. It provides a description of
its rich assertion language and gives an overview of the higher–order extension to
Ciao.

• Chapter 3 shows the inadequacies of the State of the Art for the specification and
verification of higher–order predicates, describes a new extension of the Ciao asser-
tion language that allows asserting statements about higher–order calls, and details
several alternatives for run–time checking.

• Chapter 4 presents a working prototype implementation of the extensions presented
in Chapter 3.

• Chapter 5 describes the evaluation process and presents some experimental results
on performance.

• Chapter 6 draws some conclusions and presents ideas for future work.

3
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Chapter 2

State of the Art

Several research areas need to be considered as background for the discussion of pos-
sible solutions to the problem of enhancing the specification of logic programs. The re-
cent achievements in the area of program annotation with assertions and corresponding
analyses can be seen as a first foundation stone of such discussion. Next, the discussion
should take into account the practical issues of higher–order programming extensions,
available in the domain of logic programming. Finally, the related areas, such as meta–
programming, should not be omitted in order to have a precise feeling of the domain of
the problem.

This chapter presents an overview of techniques corresponding to the aforementioned
research areas, to provide background on the field that this thesis covers. Section 2.1
provides a brief introduction to the theoretical foundation of program analysis based on
assertions, described further in Section 2.2. Then, the description of Ciao assertion lan-
guage is outlined in Section 2.3. The peculiarities of introducing higher–order to logic
programming are described in Section 2.4, and Section 2.5 illustrates the relation of the
area of meta–programming to the problem.

2.1 The Foundation for Advanced Static and Dynamic
Program Analysis

As emphasized in [14], the technique of Abstract Interpretation [9] has allowed the devel-
opment of sophisticated program analyses which are at the same time provably correct and
practical. The semantic approximations produced by such analyses have been tradition-
ally applied to high– and low–level optimizations during program compilation, including
program transformation. More recently, novel and promising applications of semantic ap-
proximations have been proposed in the more general context of program development,
such as verification and debugging. Some basic concepts from abstract interpretation are
recalled below.

In the setting of fixpoint semantics, a (monotonic) semantic operator SP is associated
with each program P . This SP function operates on a semantic domain D which is gen-
erally assumed to be a complete lattice or, more generally, a chain complete partial order.
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The meaning of the program [[P ]] is defined as the least fixpoint of the SP operator, i.e.,
[[P ]] = lfp(SP ).

In the abstract interpretation technique, the program P is interpreted over a non–
standard domain called the abstract domain Dα which is simpler than the concrete do-
main D. The abstract domain Dα is usually constructed with the objective of computing
safe approximations of the semantics of programs, and the semantics w.r.t. this abstract
domain, i.e., the abstract semantics of the program, is computed (or approximated) by
replacing the operators in the program by their abstract counterparts. The abstract domain
Dα also has a lattice structure. The concrete and abstract domains are related via a pair of
monotonic mappings: abstraction α : D 7→ Dα, and concretization γ : Dα 7→ D, which
relate the two domains by a Galois insertion (or a Galois connection) [9].

One of the fundamental results of abstract interpretation is that an abstract semantic
operator SαP for a program P can be defined which is correct w.r.t. SP in the sense that
γ(lfp(SαP )) is an approximation of [[P ]], and, if certain conditions hold (e.g., ascending
chains are finite in the Dα lattice), then the computation of lfp(SαP ) terminates in a finite
number of steps. The result of abstract interpretation for a program P , lfp(SαP ), is further
denoted as [[P ]]α.

Typically, abstract interpretation guarantees that [[P ]]α is an over–approximation of
the abstract semantics of the program itself, α([[P ]]). Thus, we have that [[P ]]α ⊇ α([[P ]]),
which is further denoted as [[P ]]α+ . Alternatively, the analysis can be designed to safely
under–approximate the actual semantics, and then [[P ]]α ⊆ α([[P ]]) holds, which is fur-
rther denoted as [[P ]]α− .

Both program verification and debugging compare the actual semantics of the pro-
gram, i.e., [[P ]], with an intended semantics for the same program, further denoted by I.
The abstract interpretation technique allows computing safe approximations of the pro-
gram semantics.

Property Definition
P is partially correct w.r.t. I [[P ]] ⊆ I
P is complete w.r.t. I I ⊆ [[P ]]
P is incorrect w.r.t. I [[P ]] 6⊆ I
P is incomplete w.r.t. I I 6⊆ [[P ]]

Table 2.1: Set theoretic formulation of verification problems.

In the approach adopted in Ciao [8], the abstract approximation [[P ]]α is actually com-
puted over the concrete semantics of the program [[P ]] and is compared directly to the
(also approximate) intention (which is given in terms of assertions [36]), following al-
most directly the scheme of Table 2.1.

This approach assumes that the program specification is given as a semantic value
Iα ∈ Dα. The implications of comparing Iα and [[P ]]α, which is an approximation of
α([[P ]]), are relevant on our context. In Table 2.2 [8] (sufficient) conditions for correctness
and completeness w.r.t. Iα are proposed, which can be used when [[P ]] is approximated.
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Property Definition Sufficient condition
P is partially correct w.r.t. Iα α([[P ]]) ⊆ Iα [[P ]]α+ ⊆ Iα
P is complete w.r.t. Iα Iα ⊆ α([[P ]]) Iα ⊆ [[P ]]α−

P is incorrect w.r.t. Iα α([[P ]]) 6⊆ Iα [[P ]]α− 6⊆ Iα, or
[[P ]]α+ ∩ Iα = ∅ ∧ [[P ]]α 6= ∅

P is incomplete w.r.t. Iα Iα 6⊆ α([[P ]]) Iα 6⊆ [[P ]]α+

Table 2.2: Validation problems using approximations.

Analyses which over–approximate the actual semantics (i.e., those denoted as [[P ]]α+),
are specially suited for proving partial correctness and incompleteness with respect to the
abstract specification Iα. It will also be sometimes possible to prove incorrectness in the
extreme case in which the semantics inferred for the program is incompatible with the
abstract specification, i.e., when [[P ]]α+ ∩ Iα = ∅. It will only be possible to prove total
correctness if the abstraction is precise, i.e., [[P ]]α = α([[P ]]).

On the other hand, [[P ]]α− denotes the (less frequent) case in which analysis under–
approximates the actual semantics. In such case, it will be possible to prove completeness
and incorrectness. In this case, partial correctness and incompleteness can only be proved
if the analysis is precise.

Performing these validation tasks can result in the validation of P with respect to I,
i.e., proving that P is partially correct and/or complete with respect to I, or in the de-
tection of incorrectness and/or incompleteness symptoms, which would flag the existence
of errors in P , and in which case a process of diagnosis should be started to locate such
errors.

2.2 Assertion–based Analysis
Assertions are linguistic constructions which allow expressing properties of programs [36].
Syntactically they appear as an extended set of declarations, and semantically they allow
talking about preconditions, (conditional–) postconditions, whole executions, program
points, etc [13]. Assertions have been used in the past in different contexts and for differ-
ent purposes related to program development:

Run–time checking: In this context, assertions express properties about the run–time
behavior of the program which should hold if the program is correct [37] (see [38]
for an application in Constraint Logic Programming (CLP) [39]).

Replacing the oracle: In declarative debugging [40], the existence of an oracle (nor-
mally the user) which is capable of answering questions about the intended behav-
ior of the program is assumed. Here also assertions are used to express properties
which should hold for the program to be correct [1, 2, 4].

Compile–time checking: In this context, assertions express properties about the pro-
gram which are intended to be checked at compile–time. The result of such check-
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ing may indicate either that the assertions actually hold and the program is validated
w.r.t. the assertions or that the assertions do not hold, and then the program is in-
correct w.r.t. the assertions [37]. Again, these are properties which should hold, i.e.,
otherwise a bug exists in the program. An example of this kind of assertions are type
declarations (e.g., [41, 42], functional languages, etc.), which have been shown to
be useful in debugging.

Providing information to the optimizer: Assertions have also been proposed as a means
of providing information to an optimizer in order to perform additional optimiza-
tions during code generation. In this context, assertions do not express properties
which should hold for the program, but rather properties which do hold for the
program at hand. If the program is not correct, the properties which hold may not
coincide with the properties which should hold.

General communication with the compiler: In a setting where there is both a static in-
ference system, such as an abstract interpreter [9, 43], and an optimizer, assertions
have also been proposed as a means of allowing the user to provide additional in-
formation to the analyzer [3], which it can use both to increase the precision of the
information it infers and/or to perform additional optimizations during code gener-
ation [44, 45, 46, 47]. Also, assertions can be used to represent analysis output in
a user-friendly way and to communicate different modules of the compiler which
deal with analysis information [3]. In this context, assertions express both properties
which should hold and properties which do hold for the program in hand.

Program documentation: Assertions have also been used to document programs and to
automatically generate manuals (as inspired by the “literate programming” style [48,
49]). In this application, assertions may express both properties which do hold or
which should hold for the program in hand.

In addition to the classification given above, made according to the context in which
assertions are used, assertions can be classified according to many other criteria. For ex-
ample, as mentioned above, in some cases the assertions express properties which should
hold (intended properties) while in others the assertions express properties which actually
hold (actual properties) for the program.

One of the design choices behind the Ciao assertion language [8, 15, 36, 50] was to al-
low expressing any property which is of interest for any of the debugging (and validation)
tools in the environment. The other one was to allow the assertion language to be inde-
pendent of the particular CLP platform in which it is applied and the constraint domains
supported. Thus, it was chosen not to restrict too much beforehand the kind of properties
which can be expressed with assertions. A fundamental motivation behind this choice was
the frequent availability in Ciao of tools which can handle quite rich properties, through
techniques such as approximations and abstract interpretation [9].

However, not all tools within the development environment are capable of dealing
with all properties expressible in Ciao assertion language. This was the main reason for
proposing the use of the same assertion language for all of them. This facilitates com-
munication among the different tools and enables easy reuse of information, i.e., once

8



a property has been stated there is no need to repeat it for the different tools. Each tool
could then only make use of the part of the information given as assertions which the tool
understands and could deal safely with the part of the information it does not understand.

In the Ciao assertion language, assertions are always instances of some assertion
schema together with a reference to which part of the program (predicate or program
point) the assertion refers to and, depending on the schema used, one or two logic formu-
lae. Whereas the assertion language has a fixed set of assertion schemas, the user has a
high degree of freedom for defining the logic formulae for the properties considered of
interest. Thus, the whole assertion language is determined by a set of assertion schemas
and the way in which “logic formulae” can be built.

2.2.1 The Role of Properties
Whereas each kind of assertion indicates when, i.e., in which states or sequences of states,
to check the given properties, the properties themselves define what to check. This section
revises the use of properties for run–time checks according to [15]. In order to make it
possible to check a property at run–time, some code must exist somewhere in the system
that performs this check. If the set of properties were fixed, the code to be used when
performing the run–time tests could be contained in a predefined library. However, if
one of the language design objectives is to allow the user to define new, quite general
properties it is necessary to provide an option of writing the definitions of properties in
the source language.

A property may be a built–in predicate or constraint (such as integer(X) or X>5, and
including extra–logical properties such as var(X)), an expression built using conjunctions
(and/or disjunctions) of properties, or, in principle, any predicate defined by the user, using
the full underlying CLP language. Some limitations are useful in practice, for instance, to
avoid the behavior of the program to change in a fundamental way depending on whether
the run–time tests are being performed or not.

In Ciao the user is required to ensure that the execution of properties terminate for
any possible initial state. Also, checking a property should not change the answers com-
puted by the program or produce unexpected side–effects. Regarding computed answers,
in principle properties are not allowed to further instantiate their arguments or add new
constraints. Regarding side–effects, it is required that the code defining the property does
not perform input/output, add/delete clauses, etc. which may interfere with the program
behavior.

There are two fundamental classes of properties:

• the properties that refer to a particular execution state, namely, properties of execu-
tion states;

• the properties that refer to a sequence of states, called properties of computations.

Yet another point of view allows differentiating instantiation and compatibility prop-
erties. The following (combined) example from [36] gives the intuition for these two
notions:

9



Consider the following definition of the property predicate list/1:

list([]).

list([_|Xs]):- list(Xs).

In this definition of property list it is not obvious which one of the follow-
ing two possibilities we mean exactly: “the argument is instantiated to a list”
(let us indicate this property with the property predicate inst to list), or
“if any part of the argument is instantiated, this instantiation must be compat-
ible with the argument being a list” (we will associate this property with the
property predicate compat with list). For example, inst to list should
be true for the terms [], [1,2], and [X,Y], but should not for X and [a|X].
In turn, compat with list should be true for [], X, [1,2], and [a|X], but
should not be for [a|1] and a.

As a general rule, the properties that can be used directly for checking for compat-
ibility should be downwards closed, i.e., once they hold they will keep on holding in
every state accessible in forwards execution. Also, properties about execution states are
interpreted by default as instantiation properties.

2.2.2 Compile–time Analysis
In Ciao the actual checking of assertions at compile–time [15] is performed as follows
(precise details on how to reduce assertions at compile–time can be found in [51]). The
properties which appear in the user-provided check assertions are compared one by one
with the properties inferred by the analysis. An assertion is validated if all its properties
are implied by the analysis results (preconditions require special consideration in this
process). On the other hand, errors are detected if any property specified is incompatible
with the analysis results. If it is not possible to prove nor to disprove an assertion, then
such assertion is left as a check assertion, for which run–time checks might be generated.
However, if some properties are implied but others cannot be proved nor disproved, the
assertion as a whole can be simplified, in the sense of reducing the number of properties
which have to be checked at run–time.

As a result, compile–time checking must be able to deal (at least safely) with prop-
erties that have perhaps been written with run–time checking in mind or for which no
specific analysis is available. Conversely, the run–time checking machinery must also be
able to deal correctly with properties that are primarily meant for compile–time checking.

In this context properties can be divided into classes from the point of view of a given
analysis. First, native properties are those which are directly “understood” (abstracted)
by this analysis. This is the case for example of properties like ground or var for a
mode analysis, does not fail for a non–failure analysis, terminates for a termination
analysis, or a predicate defining a (regular) type for a regular type analysis, etc.

If a property appearing in an assertion is native of an analysis then it is often possible
to either prove it or disprove it, provided that the analysis is accurate enough and the
“direction” of approximation performed by the analysis is the appropriate one [51, 8]
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(this is the case for the properties var and does not fail in the example above). It
can be specified that the properties are abstractly reducible (to either true or false), or
abstractly executable [52]. If the analysis is precise (in the sense defined before, i.e., that
the abstract operations do not lose information beyond the abstraction implied by the
abstraction function used [9]) and, obviously, terminates, then the native properties will
be decidable in all cases. However, since there may in general be cases in which some
such properties remain for run–time checking (and because in the Ciao framework the
definitions of properties can be called from user programs) it is required that there be an
executable definition of all properties available in the system.

There are properties which can be proved (or disproved) at compile–time by a given
analyzer but for which no accurate definition can be written in the underlying language.
An extreme example of this is the property terminates, for which it is obviously not
possible to define a run–time test which will give a warning if it does not hold. For these
properties, an approximate definition may be given, and this approximation should be
correct in the usual sense that all errors flagged should be errors, but there may be errors
that go unchecked.

In summary, it is not necessary that the executable definition of all properties be an
exact implementation of a given property, but the user must provide, or import, some code
for each property and understand and take into account the impact of approximation being
performed in the property definition when using these properties in assertions.

Conversely, and again for a given analysis, there may be properties which are defined
precisely and are perfectly executable at run–time, but which may not be native for that
analysis. For them, the analysis may not be capable of obtaining an exact representation
(abstraction). However, a useful approximation (usually an over–approximation) of such
property can be obtained by directly analyzing the code which defines the property.

In general, typical analyzers obtain over–approximations of properties, i.e., they suc-
ceed for a superset of the cases in which the exact property would succeed. However, for
the case of properties in preconditions of success or comp assertions, under–approximations
(i.e., the approximation succeeds for a subset of the cases in which the exact property
would succeed) rather than over–approximations should be considered.

2.3 The Ciao Assertion Language
As pointed out in [36], when reasoning about whether a certain program behaves as in-
dicated by a set of assertions, it is often useful to restrict the discussion to a set of valid
initial queries. Informally, a program is correct when it behaves according to the user’s
intention for any input data satisfying certain preconditions. Such input data can be seen
as valid input data, and the corresponding queries as valid queries. In what follows it is
assumed that program debugging and validation is always performed w.r.t. a given set of
(descriptions of) valid queries.

Very often, the properties of a program which are interesting to express by means of
assertions are related to the run–time behavior of the program. For this, the operational
semantics of the program needs to be considered. The operational semantics of a program
is in terms of its derivations which are sequences of reductions between execution states.
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An execution state 〈G θ〉 consists of the current goal G and the current constraint store
(or store for short) θ which contains information on the values of variables. The way in
which a state is transformed into another one is determined by the operational semantics
and the program code. One of the advantages of CLP is that in addition to the operational
semantics, programs also have a declarative meaning or semantics which is independent
of the particular details on how the program is executed.

Every assertion A is conceptually composed of two logic formulae which are referred
to as appA and satA. The formula appA determines the applicability set of the assertion:
a context s is in the applicability set of A iff appA takes the value true in s. Also, an
assertion A is applicable in context s iff appA holds in s. The formula satA determines
the satisfiability set of the assertion: a context s is in the satisfiability set ofA iff satA takes
the value true in s. If it can be proved that there is a context which is in the applicability set
of an assertion A but is not in its satisfiability set then the program is definitely incorrect
w.r.t. A. Conversely, if it can be proved that every context in which A is applicable is in
the satisfiability set of A then the program is validated w.r.t. A. The following sections
describe a repertoire of assertion schemas, used in the Ciao assertion language. Such
schemas can be seen as templates which when properly instantiated define in a simple
and clear way the required formulae appA and satA.

2.3.1 Assertion Schemas for Execution States
When considering the operational behavior of a program, it is natural to associate (sets
of) execution states with certain syntactic elements of the program. Typically, a program
can be seen as composed of a set of predicates (also known as procedures). Alternatively,
a program can be seen, at a finer-grained level, as composed of a set of program points.
Thus, we first introduce several assertion schemas whose applicability contexts are related
to a given predicate. Then we introduce an assertion schema whose applicability context is
related to a particular program point. We refer to the former kind of assertions as predicate
assertions, and to the second ones as program-point assertions. Though a simple program
transformation technique can be used to express program-point assertions in terms of
predicate assertions, we maintain program-point assertions in our language for pragmatic
reasons.

As a general rule, we restrict the properties expressible by means of assertions about
execution states to those which refer to the values of certain variables in the store of the
corresponding execution state. This has the advantage that in order to check whether the
appA and satA logic formulae hold or not it suffices to inspect the store at the correspond-
ing execution state.

An Assertion Schema for Success States

This assertion schema is used in order to express properties which should hold on termi-
nation of any successful computation of a given predicate. They can be expressed in our
assertion language using the assertion schema:

:- success Pred => Postcond.
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This assertion schema has to be instantiated with suitable values for Pred and Postcond.
Pred is a predicate descriptor, i.e., it has a predicate symbol as main functor and all argu-
ments are distinct free variables, and Postcond is a logic formula about execution states,
and which plays the role of the satA formula.

The resulting assertion should be interpreted as “the assertion is applicable in those
execution states which correspond to success states of a computation of Pred, and its
satisfiability set has those states in which Postcond holds.”

An Assertion Schema for Success States with Preconditions

The success schema can be used when the applicability set of an assertion is the set of
success states for a given predicate. However, it is often useful to consider more restricted
applicability sets. The success schema with precondition takes the form:

:- success Pred : Precond => Postcond.

and it should be interpreted as “the assertion is applicable to those execution states which
correspond to success states of a computation of Pred which was originated by a calling
state in which Precond holds, and its satisfiability set has those states in which Postcond
holds.”

An Assertion Schema for Call States

This assertion schema has an aim to express properties which should hold in any call to
a given predicate. Assertions built using this schema can be used to check whether any
of the calls for the predicate is not in the expected set of calls (i.e., the call is “inadmissi-
ble” [53]). This schema has the form:

:- calls Pred : Precond.

This assertion schema has to be instantiated with a predicate descriptor Pred and a
logic formula about execution states Precond. The resulting assertion should be inter-
preted as “the assertion is applicable in those execution states which correspond to calling
states to Pred, and its satisfiability set has those states in which Precond holds.”

As mentioned in [15], from the point of view of their use in debugging, calls asser-
tions are conceptually somewhat different from success and comp assertions (see later).
Introducing calls assertions is a good idea even for correct predicates because the fact
that a predicate is correct does not guarantee that it is called in the proper way in other
parts of the program.

An Assertion Schema for Query States

It is often the case that one wants to describe the exported uses of a given predicate, i.e., its
valid queries. This is for example the case also in traditional preconditions of a program.
Thus, in addition to describing calling and success states, assertions are used to describe
query states, i.e., valid input data. In terms of the operational semantics, in which program
executions are sequences of states, query states are the initial states in such sequences.
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These can be described in Ciao assertion language using the entry schema, which has
the form:

:- entry Pred : Precond.

where, Pred is a predicate descriptor and Precond is a logic formula about execution
states. It should be interpreted as “the assertion is applicable in those execution states
which correspond to initial queries to Pred, and the satisfiability set has those states in
which Precond holds.”

It can be noted that entry and calls schemas are syntactically (and semantically)
similar. However, their applicability set is different. The entry assertion only applies to
the initial calls to Pred, whereas the calls assertion applies to any call to Pred, including
all recursive (internal) calls. Thus, entry assertions allow providing more precise de-
scriptions of initial calls, as the properties expressed do not need to hold for the internal
calls.

Program–point Assertions

As already mentioned, usually, when considering operational semantics of a program, in
addition to predicates we also have the notion of program points. The program points are
considered as the places in a program in which a new literal may be added, i.e., before
the first literal (if any) of a clause, between two literals, and after the last literal (if any)
of a clause. For simplicity, program–point assertions can be introduced to a program by
adding a new literal at the corresponding program point. This literal is of the form:

check(Cond).

and it should be interpreted as “the assertion is applicable in those execution states origi-
nated at the program point in which the assertion appears and its satisfiability set has those
states in which Cond holds.”

Logic Formulae about Execution States

This section describes how the aforementioned formulae are defined in Ciao assertion
language. Both conjunctions and disjunctions are allowed in the formulae, are written in
the usual CLP syntax. Thus, logic formulae about execution states can be:

• An atom of the form p(t1, . . . , tn) with n ≥ 0, where p/n is a property predicate;

• An expression of the form (F1, F2) where F1 and F2 are logic formulae about
execution states and, as usual in CLP, the comma should be interpreted as conjunc-
tion;

• An expression of the form (F1; F2) where F1 and F2 are logic formulae about
execution states and, as usual in CLP, the semicolon should be interpreted as dis-
junction.
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2.3.2 An Asertion Schema for Declarative Semantics
As already mentioned, one of the main features of CLP is the existence of a declarative
semantics which allows concentrating on what the program computes and not on how it
should be computed. Consider the case of CLP(D), where D is the domain of values. For
example, in classical logic programming D is the Herbrand Universe.

The assertion schema which allows stating properties which should hold in the least
D-model [[P ]] of a program (otherwise the program is incorrect) is described below:

:- inmodel Pred => Cond.

where Pred is a predicate descriptor and Cond is a logical formula about D-atoms. It
should be interpreted as “the applicability set of the assertion has those D-atoms in [[P ]]
whose predicate symbol is that of Pred and the satisfiability set is the set of D-atoms
whose predicate symbol is that of Pred which satisfy the property Cond.”

In fact, a program which is correct w.r.t. an assertion ‘:- inmodel Pred => Cond’
is also correct w.r.t. the assertion ‘:- success Pred => Cond’ due to correctness of the
operational semantics (but not vice versa due to possible incompleteness of the opera-
tional semantics). A further difference between inmodel and success assertions is that
in inmodel it is not possible to add preconditions since the declarative semantics does not
capture calls to predicates.

2.3.3 Assertion Schemas for Program Completeness
As seen above, there is a similarity between success and inmodel assertions in that
they both express properties about the answers of predicates. More precisely, success
assertions express properties of the computed answers of predicates, i.e., those generated
by the operational semantics, whereas inmodel assertions refer to correct answers, i.e.,
those which are in the declarative semantics of the program (its least D-model). When
considering answers to predicates, one particular aspect to reason about is correctness of
the program, which corresponds to answering the question: Are all the actual answers of
the program in the set of intended answers? Conversely, another aspect we can reason
about is the well known concept of completeness of the program, which corresponds to
answering the question: Are all the intended answers of the program in the set of actual
answers? In other words, a program is complete when it does not fail to produce any ex-
pected answer. Clearly, we would like our program to be both correct and complete w.r.t.
our intention. This corresponds to the classical notion of total correctness, as opposed to
the previous notion of correctness, which is also known as partial correctness.

Below is described another kind of assertions which is a variation of the inmodel

and success assertions to reason about completeness of programs.Such assertions can
be distinguished from the previous ones because the arrow (=>) now points in the reverse
direction, i.e., <=. For example, an assertion of the form:

:- inmodel Pred <= Cond.

should be interpreted as “any D-atom of the form p(d1, . . . , dn) whose predicate symbol
is the same as that in Pred and on which Cond holds should be in [[P ]].”
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Completeness assertions for operational semantics can be written using the following
schema (optional “fields” appear in square brackets):

:- success Pred [: Precond] <= Postcond.

which should be interpreted as “any call to predicate Pred which on the calling state satis-
fies Precond must have as success states at least all those states which satisfy Postcond.”

2.3.4 Status of Assertions

The assertion language should be able to express both intended and actual properties
of programs. However, all the assertions presented in the examples in previous sections
relate to intended properties. The Ciao assertion language allows adding in front of an
assertion a flag which clearly identifies the status of the assertion. The status indicates
whether the assertion refers to intended or actual properties, and possibly some additional
information.

Five different status are considered. They are listed below, grouped according to who
is usually the generator of such assertions:

• For assertions written by the user:

check The assertion expresses an intended property. Note that the assertion may
hold or not in the current version of the program.

trust The assertion expresses an actual property. The difference with status true
introduced below is that this information is given by the user and it may not
be possible to infer it automatically.

• For assertions which are results of static analyses:

true The assertion expresses an actual property of the current version of the pro-
gram. Such property has been automatically inferred.

• For assertions which are the result of static checking:

checked A check assertion which expresses an intended property is rewritten
with the status checked during compile–time checking when such property
is proved to actually hold in the current version of the program for any valid
initial query.

false Similarly, a check assertion is rewritten with the status false during compile–
time checking when such property is proved not to hold in the current version
of the program for some valid initial query.
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2.3.5 An Assertion Schema for Computations
The assertion schema named comp relates to computations, where by computation it is
meant the (ordered) execution tree of all derivations of a goal from a calling state. The
need for it arises when considering properties which refer to the computation of the pred-
icate (rather than the input-output behavior), which are not expressible with the previous
schemas. Examples of properties of the computation which we may be interested in are:
non–failure, termination, determinacy, non–suspension, non–floundering, etc. In the Ciao
language, this sort of properties are expressed using the schema:

:- comp Pred [: Precond] + Comp-prop.

where Pred is a predicate descriptor, Precond is a logic formula on execution states, and
Comp-prop is a logic formula on computations. It can be interpreted as “the applicability
set of the assertion is the set of computations of Pred in which the logic formula on states
Precond holds at the calling state, and its satisfiability set has all computations in which
the logic formula on computations Comp-prop holds.”

2.3.6 Syntax of the Assertion Language
The summarized syntax of the assertions is presented with the following two formal
grammars. The first one defines the syntax of program assertions, from the non–terminal
program–assert:

program-assert ::= predicate-assert
| prog-point-assert

predicate-assert ::= :- stat-flag pred-assert .
| :- entry .

pred-assert ::= calls pred-cond
| success pred-cond direction state-log-formula
| inmodel pred-desc direction state-log-formula
| comp pred-cond + comp-log-formula

entry ::= entry pred-cond
pred-cond ::= pred-desc

| pred-desc : state-log-formula
pred-desc ::= Pred-name

| Pred-name(args)
args ::= Var

| Var,args
state-log-formula ::= (state-log-formula , state-log-formula)

| (state-log-formula ; state-log-formula)
| compat(State-prop)
| State-prop

comp-log-formula ::= comp-log-formula , comp-log-formula
| comp-log-formula ; comp-log-formula
| Comp-prop
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stat-flag ::= status
| ε

status ::= check

| true
| checked
| trust
| false

direction ::= =>

| <=
prog-point-assert ::= status(state-log-formula)

There are some non–terminals in the grammar which are not defined. This is because
they are constraint domain- and/or platform-dependent. They can be easily distinguished
in the previous grammar because their name starts with a capital letter:

Pred-name As we are interested in having an assertion language which looks homoge-
neous with the CLP language used, we admit as Pred-name any valid name for a
predicate in the underlying CLP language. Usually, non-empty strings of characters
which start with a lower–case letter.

Var It corresponds to the syntax for variables in the CLP language. Usually, non–empty
strings of characters which start with a capital letter. As mentioned before, it is
assumed that all variables in the same predicate description are distinct.

State-prop An atom of a prop property predicate.

Comp-prop An atom of a cprop property predicate.

The second one defines the syntax of assertions for declaring property predicates, from
the non–terminal prop–assert:

prop-assert ::= prop-exp
| approx-exp

prop-exp ::= :- is-flag prop pred-spec .
prop ::= prop

| cprop
is-flag ::= [ is-idlist ]

| Is-id
| ε

is-idlist ::= Is-id , is-idlist
| Is-id

pred-spec ::= Pred-name/Number
approx-assert ::= :- approx approx-exp .

approx ::= proves

| disproves
approx-exp ::= State-prop : state-log-formula

| Comp-prop : comp-log-formula
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The new non-terminals in the grammar are as follows:

Is-id A constant of the language which uniquely identifies an inference system in the
debugging system being used.

Number A number (which is meant to be the arity of a predicate).

Assertion Grouping Possibilities

The motivation for introducing compound assertions is twofold:

• when more than one success (resp. comp) assertion is given by the user for the
same predicate, in the user’s mind this set is usually meant to cover all the different
uses of the predicate. In such cases, the disjunction of the preconditions in all the
success (resp. comp assertions) is often a description of the possible calls to the
predicate. The user would have to explicitly write down a calls assertion to express
this. It would be desirable to have the calls assertion be automatically generated in
such cases for the set of assertions, rather than having to add it manually. Compound
assertions allow this.

• a disadvantage of the assertion success, calls, entry and comp schemas is that it
is often the case that in order to express a series of properties of a predicate, several
of them need to be written.

Each compound assertion is translated into one, two, or even three basic predicate
assertions, depending on how many of the fields in the compound assertion are given.
Compound assertions are built using the pred schema, which has the form:

:- pred Pred [: Precond] [=> Postcond] [+ Comp-prop].

Both basic and compound assertions may be given for a program. Compound asser-
tions are only a more compact way to write what otherwise would have to be written as
a set of basic assertions. The syntax grammar presented previously does not include this
extension. Table 2.3 presents how a compound assertion is translated into basic success
and comp assertions. Generation of calls assertions from compound assertions is more
involved, as the set of all compound assertions for one predicate must cover all possible
calls to that predicate.

Field Translation if given Otherwise
=> Postcond success Pred : Precond => Postcond Ø
+ Comp-prop comp Pred : Precond + Comp-prop Ø

Table 2.3: Compound assertions transformation into basic ones.

Yet another way of grouping properties, stated in assertions, is to specify the properties
of some arguments both at the call and success states of the predicate. To avoid repeating
the properties, the syntax of the following example can be used:
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:- pred qsort(A,B) :: ( list(A), list(B) ).

which is equivalent to:

:- pred qsort(A,B) : ( compat(list(A)), compat(list(B)) ) =>

( compat(list(A)), compat(list(B)) ).

This kind of writing can also be “in-lined” into the predicate arguments. For example, the
following assertion is equivalent to the two ones above:

:- pred qsort(list,list).

2.3.7 Run–time Checking

This section describes a possible scheme for translation of a program with assertions into
code which will perform run–time checking, from [15]. The checking of the properties
can be an instantiation check or a compatibility check.

Success Assertions. A possible translation scheme for success assertions (ones used
to express properties which should hold on termination of any successful computation of
a given predicate) into run-time tests is the following. Let A(p/n) represent the set of
current assertions for predicate p of arity n. Let S be the set {Postcond s.t. ‘:- success

p(X1, ..., Xn) => Postcond’ ∈ A(p/n)}. Then the translation is:

p(X1,...,Xn):- new_p(X1,...,Xn), check(S).

where new p is a renaming of predicate p.
LetRS be the set {(Precond, Postcond) s.t. ‘:- success p(X1, ..., Xn) : Precond

=> Postcond’ ∈ A(p/n)}. A possible translation scheme for success assertions with a
precondition is as follows:

p(X1,...,Xn):-

collect_valid_postc(RS,S),

new_p(X1,...,Xn), check(S).

The predicate collect valid postc/2 collects the postconditions of all pairs in RS such
that the precondition holds.

Calls Assertions. A possible translation scheme for calls assertions (ones used to ex-
press properties which should hold in any call to a given predicate) into run-time tests
follows. Let C be the set {Cond s.t. ‘:- calls p(X1, ..., Xn) : Cond ∈ A(p/n)}.
Then the translation is:

p(X1,...,Xn):- check(C), new_p(X1,...,Xn).
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Comp Assertions. LetRC be the set {(Prec, Comp prop) s.t. ‘:- comp p(X1, ..., Xn) :
Prec + Comp prop’ ∈ A(p/n)}. Then, a possible translation scheme of comp assertions
(ones used to express properties about computations of a predicate) into run–time tests is
as follows:

p(X1,...,Xn):-

collect_valid_postc(RC,C),

add_arg(C,new_p(X1,...,Xn),C1),

( C1 == [] ->

call(new_p(X1,...,Xn)) %% then

; call_list(C1) ). %% else

where the predicate add arg adds the goal new p(X1,...,Xn) as the first argument to
any property of the computation, and call list calls each goal in the argument list.

2.4 Higher–order Logic Programming
This section does not deeply discuss the recent advances in higher–order programming in
general, as they are out of scope of the present work, but the interested reader is referred
to relevant bibliography [54, 55, 56, 11]. The intent of it is to provide the description of
the Ciao implementation of higher–order programming, introduced in [57, 12, 58].

2.4.1 Higher–order Extensions in Ciao
As it was highlighted in [54], the term “higher–order logic” is ambiguous with several
widespread readings used:

• from the point of view of philosophy and mathematics, logic can be divided into
first–order and second-order. The latter is a formal basis for all of mathematics and,
as a consequence of Gödel’s first incompleteness theorem, cannot be recursively
axiomatized.

• from the point of view of a proof theorist, all logics correspond to formal systems
that are recursively presented and a higher–order logic is no different. The main dis-
tinction between a higher–order and a first–order logic is the presence in the former
of predicate variables and comprehension, i.e., the ability to form abstractions over
formula expressions.

• to many working in automated deduction, higher–order logic refers to any compu-
tational logic that contains typed terms and/or variables of some higher–order type,
although not necessarily of predicate type.

According to [55], there are two main ways of adding meaningful higher–order exten-
sions to the first–order base of Prolog:

• add a mechanism to handle predicates as data objects;
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• add set expression implementations.

The former task is inspired by the facilities, provided by functional languages, in
which it is possible to have a function call that is determined at run–time and, thus, may
be constructed from parameters passed to the caller function. In turn there are two main
ways for passing such higher–order parameters:

• pass a term that can be bound to an existing predicate at run–time;

• pass a so–called anonymous predicate, or predicate abstraction, through the means
of a lambda expression.

However, this solution does not really introduce the power of higher–order expres-
sions, as it can be easily translated into first–order, so at the end it is rather “syntactic
sugar” for conventional syntax. The latter one, though, has an aim to combine the solu-
tions generated by backtracking into a single data structure and in such a manner that
introduces what is called set expressions. The main difficulty in implementing such func-
tionality is remembering already discovered correct solutions when backtracking to get
new ones, and, in turn, allow these expressions to be backtrackable themselves, so they
can be used freely in any context.

The approach implemented in Ciao covers both of these approaches, supporting a
form of higher–order untyped logic programming with predicate abstractions [57, 50,
12]. Predicate abstractions are Ciao’s translation to logic programming of the lambda
expressions of functional programming: they define unnamed predicates which will be
ultimately executed by a higher–order call, unifying its arguments appropriately.

2.4.2 Implementation Issues

One of the foundations of Ciao, that enables, among other things, the underlying support
for various analysis techniques and an easy way for performing language extensions, is
a (predicate–based) module system [59]. Modules allow dividing programs into separate
parts, which have their own independent name spaces and interfaces for communicating
with the rest of the parts of the program. This provides the necessary support for reusing
program patterns by means of having library predicates that can be customized in differ-
ent ways when used in different modules (and, thus, in different contexts). While tradi-
tional design patterns for reusing code in Prolog are mainly represented with “skeletons
and techniques” [60, 61, 56], cliches [62], program schemata [63] and logic description
schemata[64], higher–order code can be seen as a more powerful alternative [56].

In the rest of the section we adopt several definitions from [65, 66] to address the
practical issues of higher–order programming in modular systems, concentrating on the
Ciao approach.

Module is a set of Prolog clauses associated to a unique identifier, the module name.

Goal is a logical formula over a definite set of predicate calls to be satisfied.
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Closure is a callable term used to construct a goal by appending one or more additional
arguments.

Qualified goal M:G is a classical Prolog goal G prefixed by a module name M in which it
must be interpreted (a context).

Definition context for a predicate is a module that contains the definition of it.

Calling context for a predicate is a module from which a predicate is called. This can be
a module where the predicate is defined in the case of a local call or another module
assuming that the predicate is within scope.

Visibility. A predicate is visible from some context if it can be called from this particular
context without any qualification.

Accessibility. A predicate is accessible from some context if it can be called from this
particular context with or without qualification.

Meta–predicate is a predicate that handles arguments to be interpreted as goals. Those
arguments are called meta–arguments.

The latter definition requires more attention than others, which we will devote to it in
Section 2.4.3, but for the rest of this section the definition provided above is enough. Basi-
cally, here we consider meta–predicates as a way of supporting higher–order functionality
in the presence of modularity by means of correct handling of contexts.

One of the key issues regarding modular systems are visibility rules. In Ciao the set of
predicates visible in a module is comprised of the predicates, defined in this module plus
the predicates imported from other modules. The default module for a given predicate
name is the one which contains the definition of the predicate which will be called using
the predicate name without module qualification. Such policy requires special handling
for meta–programming usages, since in those cases functors can become predicate names
and vice–versa.

Although module qualifications make it possible to refer to a predicate from a module
which is not the default for it, thus allowing some call customization, still this will not
work for predicates not visible from a module. In Ciao module qualifications are used
only for disambiguating predicate names and not for changing the naming context. Thus,
if in a module a local, unexported (and thus not visible out of the module) predicate is
passed to a predicate argument of higher–order predicate, that in turn was imported from
another module, the corresponding higher–order call in a module will fail because of the
definition context of the higher–order predicate which is different from its calling context.

At the same time if the higher–order predicate is declared also as a meta–predicate,
these context mismatching difficulties can be overcome. In Ciao the manipulation of such
meta–data through the module system is possible through an advanced version of the
meta predicate/1 directive. Before calling the meta–predicates, the system dynami-
cally translates the meta–arguments into an internal representation containing the goal
and the context in which the goal must be called. Since this translation is done before
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calling the meta–predicate, the system correctly selects the context in which the meta–
data must be called. As far as the system does not document any predicate able to create
or manipulate the internal data, the protection of the code is preserved. However, this
approach is a well–known source of misunderstandings, as it often leads to mixing the
concepts of higher–order and meta–programming, which is discussed in the following
section.

2.4.3 The Difference Between Meta– and Higher–order Predicates
In the present work we follow the point of view of [57], where the concepts of meta–
and higher–order programming are separated, unlike the position, expressed in [66]. Ad-
ditional information on the meta–programming facilities in logic programming can be
found in [67, 68, 69].

In the Ciao approach the notion of higher–order programming implies having data,
different from ordinary data, which represent processing units (in logic programming the
natural choice will be predicates), and the ability of calling them instantiating their argu-
ments. This good behavior is ensured by the following two principles:

• Higher–order data is syntactically differentiated from ordinary data. In this way any
name of the program can be easily told apart as a predicate name or a data functor
name. Additionally, a predicate name occurs always with its proper arity.

• Higher–order data is like an “abstract data type”: it is regarded as a “black box”
which cannot be inspected or manipulated, except by specific operations defined
on it. This other property makes higher–order more amenable to effective global
analysis.

At the same time, meta–programming can be seen as the manipulation of data repre-
senting code with the purpose of later executing it by its lifting to an executable status.
Regarding the interaction of higher–order and modularity, and in order to respect module
separation, names inside a predicate abstraction appearing in the code of a module are
interpreted in the context of that module, and not in the context of the module where the
apply builtin is ultimately invoked.

To sum up, higher–order predicates can be seen as mechanisms that execute their pred-
icate arguments as “black boxes” without inspecting their structure, while the predicate
arguments of meta–predicates are term expressions, enriched with the appropriate execu-
tion context for them. Detailed overviews of meta–predicate implementations in other LP
systems can be found in [65, 66].

2.5 The Meta–programming Approach
One of the first approaches to the problem of reasoning about higher–order types in the
context of logic programs is described in [70]. The main difference here from our intended
approach is that the authors perform the analysis of meta–types, a related, but different
concept. A meta–type can be seen as a pattern of a program part: a clause pattern like
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Head :- Body, directive patterns, structure patterns, etc. PA–props can be derived from
meta–types, but not vice versa. Still, the approach proposed by them covers some higher–
order cases as well.

The authors highlight that in the general case a description of a type for a meta–
structure is more complex than a description of a first–order type and they differentiate
three kinds (dimensions) of such information:

• type–arguments and arity;

• argument application (currying);

• nature of the meta–type.

The first dimension can provide some information about the type–arguments of the
meta–type and its arity. The type–arguments and arity of the meta–type must fit the type–
arguments given in a definition of a predicate or in a predicate declaration, respectively.

The second dimension can provide a clear distinction between a function or a callable
predicate with its arguments and a functor, as it is possible for both to appear in the place
of a meta–type.

The third dimension can provide a description of the nature of a meta–type. For in-
stance, for the previously described map/3 predicate a meta–type declaration with a spec-
ified nature could look as follows:

:- pred map( meta(trmName(T1,T2) of mpred), list(T1), list(T2)).

where the first argument should now be a declared predicate (have a nature mpred). The
concept of nature is hierarchical, as shown in Fig 2.1. The nature mterm gives no restric-
tions for meta–structures, its first refinement allows to separate the type definition mtype

and the predicate declaration mpred, and several more cases are considered.

Figure 2.1: The hierarchy of natures for meta–types.

Finally, the overall combination of the three dimensions of meta–types and also an
introduced “capsulation” of a standard call/1 predicate, fcall/N (in a way similar to
the Ciao suite of call/N predicates), which is capable of inspecting the structure of its
argument(s), allows even more specified meta–types usage, as, for instance, in the case of
map/3:
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:- pred map( meta(trmName(list(T),list(T)) of mpred), list(@T),

list(@T) ).

where now it is possible to specify the types not only for the arguments of map/3 itself,
but also the types that are accepted by its first predicate argument.

Although this approach looks promising in the line of reasoning about higher–order
calls, there are many limitations that make it undesirable for our purposes. We believe that
using assertions for the analysis of predicate arguments of higher–order calls provides
more flexibility and more possibilities, including:

• more flexible handling of types (including user–defined);

• a possibility of exploiting the directionality of types;

• a possibility of describing several I/O patterns for a predicate.
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Chapter 3

Approach

Although the Ciao assertion language is quite expressive when introducing and checking
various statements about different kinds of properties of first–order predicates, the ways
in which the CiaoPP preprocessor can be provided with information about predicate ar-
guments that contain higher–order terms are comparatively limited, as well as the amount
of static or dynamic checks that can be performed for such arguments. One of the reasons
behind this is that the predicate arguments of higher–order calls are instantiated in a man-
ner that cannot always be checked statically and even adding run–time checks for such
predicates is not a trivial task. However, higher–order predicates are extremely useful in
many cases and it is desirable to fill this gap in the assertion language and add reasoning
support for higher–order .

We start with the general idea of performing run–time checks of assertions for higher–
order predicates as a way of reasoning about instantiation states of predicate arguments of
higher–order calls. This can be achieved as a result of forming the necessary foundation
basis, which consists of several key elements:

• allow writing assertions about predicates whose arguments may be instantiated with
predicate abstractions;

• reuse the existing assertion language for this purpose minimizing the syntactic and
semantic complexity introduced;

• separate the implicit data transformations problem (introduced by meta–predicates)
from the task of dealing with predicates as data (higher–order programming ap-
proach);

• ensure that the language extension introduced is compatible with analyzers.

In the following we illustrate some practical uses of higher–order programming in
logic programming. Those examples will allow us to motivate the need for an extended
assertion language and verification tools. Then, we will provide the overview of the prob-
lem together with possibilities for solving it.
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3.1 Higher-order: Uses and Challenges for Specification

3.1.1 Passing Data as Predicates
In declarative programming, program data is always explicitly passed as program argu-
ments. However, efficient data encoding often needs the use of complex data structures. In
some cases, Prolog facts provide a convinient and efficient way of storing data. However
this has a main inconvenient in first-order programs: the predicate that stores the data has
a fixed name in the algorithm. This problem can be solved with higher–order program-
ming, by passing the predicate that stores the input data as an argument of the algorithm.

Example (Graph–related Problems: Finding Paths) When solving graph–related
problems, such as graph traversal, one of the key issues is a way to represent the graph
structure. There are many possibilities to do it in Prolog. Consider the following small
graph and its representations, from [71] (Fig. 3.1).�

1 % Arc -clause form

2 arc(m,q,7).

3 arc(p,q,9).

4 arc(p,m,5).

5 % Graph -term form

6 digraph ([k,m,p,q],

[a(m,q,7),a(p,m,5),a(p,q,9)])

7 % Adjacency -list form

8 [n(k,[]), n(m,[q/7]), n(p,[m/5,q/9]),n(q,[])]

9 % Human -friendly form

10 [p>q/9, m>q/7, k, p>m/5]
� �
Figure 3.1: Simple graph and its possible representations in Prolog.

For finding a path between two nodes the author proposes the code in Fig 3.2.
However, this solution could be greatly generalized using higher–order calls and a

simple representation of a graph by a predicate arc/3 (Fig. 3.3). This approach has its
benefits like the simplicity of graph representation, that there is no need to keep a list
of edges and pass it as a parameter, and that edges and vertices can be easily added or
removed. The main drawback here is that we lose the guarantee that the data that is being
processed is a valid graph representation. Thus it would be desirable to check whether the
predicate arguments of path/4 and path1/4 are instantiated to a suitable predicate. In
this case we may want to specify that Pred should be a predicate with atomic (atom or
integer) arguments.

3.1.2 Data Structure Manipulation (Classic higher–order Predicates)
Manipulation of algebraic data structures (like lists or trees) is often implemented as pro-
grams that perform structural recursion on data. Most of those programs show an specific
structure where only some specific parts change (the constructors for the data structure,
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�
1 path(G,A,B,P) :- path1(G,A,[B],P).

2

3 path1(_,A,[A|P1],[A|P1]).

4 path1(G,A,[Y|P1],P) :-

5 adjacent(X,Y,G),

6 \+ memberchk(X,[Y|P1]),

7 path1(G,A,[X,Y|P1],P).

8

9 % A useful predicate: adjacent /3

10 adjacent(X,Y,graph(_,Es)) :- member(e(X,Y), Es).

11 adjacent(X,Y,graph(_,Es)) :- member(e(Y,X), Es).

12 adjacent(X,Y,graph(_,Es)) :- member(e(X,Y,_),Es).

13 adjacent(X,Y,graph(_,Es)) :- member(e(Y,X,_),Es).

14 adjacent(X,Y,digraph(_,As)) :- member(a(X,Y), As).

15 adjacent(X,Y,digraph(_,As)) :- member(a(X,Y,_),As).
� �
Figure 3.2: Path finding solution.�

1 path(Pred ,A,B,P) :- path1(Pred ,A,[B],P).

2

3 path1(_ ,A,[A|P1],[A|P1]).

4 path1(Pred ,A,[Y|P1],P ) :-

5 Pred(X,Y,_),

6 \+ memberchk(X,[Y|P1]),

7 path1(G,A,[X,Y|P1],P).
� �
Figure 3.3: An example of finding paths in graph with higher–order calls.

mappings between elements, filtering criteria, etc.). Classical higher–order predicates bor-
rowed from functional programming, like foldl/4, map/3, filter/3, split/4, etc. fall
into this category.

Example (Minimum Element of a List) One of the possible examples that fall into the
category of classical uses of higher–order is a predicate that finds the minimal element in
a list according to some order releation. A possible implementation is shown in Fig. 3.4.
Let us consider a case in which valid input data is represented by integers and lists of
integers. In such a case it would be desirable to check that the second argument is a
predicate that accepts only integers as inputs. However, the current assertion language
implementation allows only to specify that we expect a callable term in the position of the
second argument.

3.1.3 Support for Generic Programming

Despite generic programming often requires sophisticated language mechanisms and type
systems, higher–order programming can be used as the basis for abstracting concrete and
efficient algorithms. For example, sorting algorithms can be parameterized to work with
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�
1 :- meta_predicate minimum(_, pred (2), _).

2 :- pred minimum (?List , +SmallerThan , ?Minimum)

3 : list * callable * term .

4

5 minimum ([X|Xs], Pred , Min) :-

6 min(Xs , Pred , X, Min).

7

8 min([], _Pred , M, M ).

9 min([X|Xs], Pred , CurrMin , Min) :-

10 ( Pred(CurrMin , X)

11 -> min(Xs , Pred , CurrMin , Min)

12 ; min(Xs , Pred , X, Min)

13 ).
� �
Figure 3.4: An example of min/3 implementation in Ciao.

different data structures or order relations.

Example (Parameterized Sorting Algorithms) The famous quicksort algorithm im-
plemented in Prolog is shown in Fig. 3.5. If one would like to change the standard total
ordering of elements, used in partition/4, the only way for this implementation is only
to rewrite the predicate itself. Making partition/4 a higher–order predicate eliminates
this problem, but at the same time one may want a way to perform a check whether a
passed comparison predicate is compatible with the data arguments.

�
1 qsort ([] ,[]).

2 qsort([X|L],R) :-

3 partition(L,X,L1,L2),

4 qsort(L2,R2),

5 qsort(L1,R1),

6 append(R1 ,[X|R2],R).

7

8 partition ([],_B ,[] ,[]).

9 partition ([E|R],C,[E|Left1],Right):-

10 E @< C,

11 partition(R,C,Left1 ,Right).

12 partition ([E|R],C,Left ,[E|Right1 ]):-

13 E @>= C,

14 partition(R,C,Left ,Right1).

15

16 append ([],X,X).

17 append ([H|X],Y,[H|Z]) :- append(X,Y,Z).
� �
Figure 3.5: An example of quicksort implementation in Ciao.
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3.2 Scope
Considering the aforementioned issues and keeping in mind the possibilities of the Ciao
machinery for (assertion) language extensions and the peculiarities of higher–order im-
plementation, we come up with the following approach to the problem:

• we extend the set of properties that can be used in assertions, with new ones to
describe predicate arguments in higher–order predicates, calling them properties of
predicate abstractions (PA–props);

• we exploit full assertions as parts of these properties to keep and reuse the expres-
siveness of the assertion language in predicate specifications;

• we reuse the existing machinery of run–time checks for regular assertions to per-
form the checks for PA–props ;

• we introduce an additional layer of source–to–source transformations to add the
support for higher–order properties within the framework of run–time checks for
the first–order predicates;

A number of other issues deserve mentioning: First, the properties that we are intro-
ducing fall into the category of instantiation properties, and not compatibility ones (recall
this from p. 10 in Chap. 2). In addition to the implementation issues, that we have to
take into account, the meaning of compatibility properties is not straightforward in this
context.

Next, in this work we aim at a simple first solution that does not change the machin-
ery of analyzers and the CiaoPP preprocessor and performs at most some module–local
analysis, but we do not attempt to perform any reasoning about the behavior of the whole
program and/or imported libraries.

3.3 An Extension to the Assertion Language
Several questions should be discussed before we come up with a set of properties for pred-
icate arguments of higher–order predicates that are suitable for the approach considered
above. First, we need to choose the way that statements about higher–order variables are
introduced. There are two main ways to do this:

• add new types of assertions;

• add new properties and use them in the current set of assertions.

The former case may sound more natural but at the same time is requires performing
general changes not only in the structure of the assertion language, but also in all the
tools that make use of it, which is undesirable. The latter approach does not have such
demands and can be implemented as a combination of a set of new properties for predicate
arguments and a corresponding translation, which manages the mentioned matching of
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arguments and regular assertions. Our design choice for the language extension follows
exactly this approach.

Next, we need to specify the way of introducing new properties. Two possible solu-
tions can be considered:

• allow the user to write some ad–hoc higher–order property definitions.

• provide some built–in mechanism to allow providing full assertions within PA–
props .

The second option is much more elegant and desirable, and will also facilitate program
understanding and automated analysis, since it is essentially a recursive extension of the
assertion language.

Keeping in mind these considerations, we present below a description of the PA–
props that represent predicate arguments in assertions for higher–order predicates. Our
definition of PA–props follows in its syntax the compound form of the predicate assertion
(see Sec. 2.3.6, p. 19), as it is considered to represent a predicate with its behavior and not
a data property.

Another major issue regarding PA–props is the issue of meta predicate declara-
tions, which are required in many cases by the low–level compiler. As we have described
before (see Sec 2.4.3), we distinguish pure higher–order programming style and meta–
programing facilities. However, to be able to take into account both issues, our PA–props
implementation should also reflect this separation. Meta–programming support is already
implemented in Ciao, so there is no need to for a re–implementation. Thus, we concen-
trate our attention on the higher–order part, narrowing meta–programming issues as much
as possible.

We introduce PA–props as arguments of binary properties that relate both the caller
higher–order predicate and the first–order callee predicate, passed as parameter. To refer
to the meta–nature of the caller (typically expressed by a meta predicate declaration),
we provide two kinds of those properties: ones that imply meta predicate declaration
for the caller, and ones that don’t do it.

In our language extension we chose the following schemas for PA–prop declarations:

• Explicit syntax:

’ ’ ( Arg1, . . ., ArgN ) [: Precond] [=> Postcond] [+ Comp-prop]

• Abridged syntax:

’ ’ / Arity [: Precond] [=> Postcond] [+ Comp-prop]

where the mandatory part of the declaration (’ ’ / Arity in abridged form) is syntactically
similar to Ciao’s predicate abstraction (with Arity denoting a number of arguments of the
callee), and all the optional parts (enclosed in square brackets) keep the same meaning as
they do in the regular assertions. Thus, the mentioned properties take the form:

• for arguments of higher–order caller that need to be defined as a meta–predicate:
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mprd( Callee , PA–prop )

• for arguments of higher–order caller that need not to be defined as a meta–predicate:

prd( Callee , PA–prop )

�
1 :- module(usr_lib ,_,[hiord ,assertions ,hiochk ]).

2

3 :- meta_predicate minimum(_, pred (2), _).

4 :- pred minimum (?List , +SmallerThan , ?Minimum)

5 : list * prd(’’/2 : (int * int)) * term .

6

7 minimum ([X|Xs], Pred , Min) :-

8 min(Xs , Pred , X, Min).
� �
Figure 3.6: An example of higher–order assertion for the minimum/3 predicate (abridged

syntax).

We illustrate the use of PA–props with the following two examples, that derive from
the minimum/3 predicate (see Fig. 3.4).The first example (see Fig. 3.6) refers to the case
when the meta predicate declaration is explicit, the second example (see Fig. 3.7) is
semantically identical to the first one. The PA–prop ’’/2 : (int * int) denotes a
predicate with two arguments, both of which should be instantiated to integers at the
moment of the higher–order call.�

1 :- module(usr_lib ,_,[hiord ,assertions ,hiochk ]).

2

3 :- pred minimum (?List , +SmallerThan , ?Minimum)

4 : list(List),

5 mprd(SmallerThan ,’’(A,B):(int(A),int(B))).

6

7 minimum ([X|Xs], Pred , Min) :-

8 min(Xs , Pred , X, Min).
� �
Figure 3.7: An example of higher–order assertion for the minimum/3 predicate (with

implicit meta predicate declaration).

3.4 Extending the Runtime Checking Machinery
As described in Section 2.2, in Ciao run–time checks for predicates are performed by
means of the assertion language and source–to–source program transformations. To ad-
dress the extension of the checking machinery to support our extended assertion language
several solutions are possible, keeping in mind the specificity of dealing with higher–order
arguments in modular systems.
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In this section we introduce several alternatives to the extension of the current run–
time checks mechanism. Although we concentrate on performing checks for PA–props
during runtime, we see several possibilities to associate higher–order calls with corre-
sponding checks for PA–props . We call the process of such association checks propaga-
tion and such calls affected calls. It can be performed either statically (at compile time)
or dynamically (at runtime).

For those PA–props checks, that are propagated statically, we define the scope of the
check propagation:

• predicate, if the check is performed for each higher–order call, that occurs in clauses
of the predicate, in assertion for which a PA–prop appears.

• module, if the check is performed for all affected higher–order calls that appear in
one module.

For those PA–props checks, that are propagated dynamically, we define the temporal
direction of the check propagation:

• the check for a PA–prop is propagated through subsequent higher–order calls, if it
is performed for those affected calls, that occur after the program point in which the
execution reaches the PA–prop check definition in some predicate assertion.

• the check for a PA–prop is propagated through all higher–order calls, if it is per-
formed for all affected higher–order calls that take place during the program execu-
tion.

We illustrate these check propagation choices in Figure 3.8.

Checks
propagation

During
compile time

During
runtime

predicate scope

module scope

for subsequent calls

for all calls

Figure 3.8: Checks for PA–props propagation possibilities.

We distinguish the possible alternatives by the checks propagation strategy they imple-
ment. Of course, it would be desirable to have all affected higher–order calls checked, but
at the same time another major objective is to minimize the computational effort involved
in the checking as much as possible, without losing checking precision.

Below we discuss the characteristics of the possible implementations of each of the
alternatives. We provide a reference name for each of them in order to keep track of the
features of each of them.
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3.4.1 Static Checks Propagation Alternatives
ChkLocal Alternative

The first alternative to consider is ChkLocal, which reflects the static propagation strategy
in predicate scope for the checks of PA–props . The type of checking done is similar to
that of the regular calls and success predicate assertions: it implies a local check(s) inside
the body of the corresponding higher–order predicate for all the higher–order calls.

To illustrate this and other alternatives, let us consider a small program, with a higher–
order predicate c/1, which accepts a unary predicate as its argument, and an assertion for
c/1 with a PA–prop , which requires the argument to be compatible with unary predicate
with argument, for which property one/1 holds (please assume that one/1 is defined as
:- regtype one/1. one(1).).

Then, the ChkLocal alternative would allow detecting incorrect higher–order calls
within a body of c/1, for instance, P(0) (we denote such places as Chk):

:- pred c(P) : prd(P,’’/1: int).

c(P) :- Chk.

This alternative introduces minimal overhead in the program, which can be reduced
even more if we decide to treat checks here as entry/exit pairs (thus not repeating the
PA–prop check for recursive calls of the calling higher–order predicate). However, the
precision of the checking in this case will be comparatively poor, which will be shown in
the following examples.

ChkPropMod Alternative

The next alternative to consider is ChkPrpMod, which reflects static propagation strategy
in module scope for the checks of PA–props . It is similar to the previous one, but ex-
tends it by propagating the PA–prop check to those places, where other affected higher–
order calls occur (within the same module). This approach does not propagate PA–props
across modules, but for the programs which have all higher–order calls within one module
this alternative probably represents the best trade–off between the checking precision and
computational cost.

Consider a simple extension of the small program we used to illustrate the previous
alternative:

:- pred c(P) : prd(P,’’/1: int).

c(P) :- Chk1, d(P), Chk3.

d(P) :- Chk2.

With the ChkPropMod alternative the incorrect higher–order calls could be detected
not only within the body of predicate c/1 (positions Chk1 and Chk3), but also inside the
body of d/1 (position Chk2).
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The common feature that these two alternatives share is that the propagation of the
PA–props is performed at compile time, minimizing the overhead that may be introduced
by other solutions that implement PA–prop propagation at run time.

3.4.2 Dynamic Checks Propagation Alternatives

DelayChk Alternative

The alternative, that supports the check propagation for subsequent higher–order calls, is
the one we call DelayChk. The main idea behind it is to store a list of existing PA–props
checks and for each higher–order call try to match it with an appropriate check as soon
as the execution mechanism can perform a call (thus, delaying the check until the very
moment before or after the corresponding higher–order call).

Let us now extend our simple example by passing predicate variables between higher–
order predicates that are defined in different modules m1 and m2:

% m1.pl % m2.pl

:- pred c(P) : prd(P,’’/1: int). e(P) :- Chk3
c(P) :- Chk1, d(P), Chk5.

d(P) :- Chk2, e(P), Chk4.

With the DelayChk alternative the incorrect higher–order calls now could be detected
not only for the affected calls that occur in the bodies of predicates c/1 and d/1 (positions
Chk1, Chk2, Chk4 and Chk5), but also for those that take place in the body of e/1 (position
Chk3).

The main benefit of this approach is that no higher–order calls affected by a check are
omitted. Still the drawback is that it requires major changes in the call handling mecha-
nism.

TblChk Alternative

The alternative that supports the check propagation for all higher–order calls is the one
we call TblChk. The main idea behind it is to keep track of all the calls and their suc-
cesses/failures for a particular program during its execution. Thus, would be possible to
check them by looking through the table of calls and informing the user for which cases
the PA–prop checks have failed/succeeded.

Let us extend our sample program once more, so now there is a higher–order predicate
b/1, that starts passing a variable, instantiated to a predicate of arity 1, to other higher–
order predicates before there occurs any assertion that could specify PA–prop for this
variable:
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% m1.pl % m2.pl

b(P) :- Chk1, c(P), Chk7. e(P) :- Chk4.

:- pred c(P) : prd(P,’’/1: int).

c(P) :- Chk2, d(P), Chk6.

d(P) :- Chk3, e(P), Chk5.

With the TblChk alternative the checks for PA–prop now would be performed not only
for the higher–order calls that occur after the assertion for c/1 (positions Chk2 – Chk6),
but also for those that take place in the body of b/1 (positions Chk1 and Chk7).

Still, the main limitation of this approach is the need for storing the table of higher–
order calls, which can obviously be quite costly for large programs. Moreover, in this
scenario the checks of PA–props can be applied only to those calls that appear in the
program after them.

3.4.3 Measuring the Precision of Checking

We describe here a family of artificial test programs to measure the efficiency of each of
the alternatives described before. Let us assume five predicates a/1, b/1, c/1, d/1, e/1.
Predicates b/1, c/1, and d/1 are all defined in the same module, while a/1 and e/1 are
both defined in a different module. We define a family of programs Ti as follows:

a(P) :- Chk1,b(P),Chk9.

b(P) :- Chk2,c(P),Chk8. :- regtype one/1. one(1).

c(P) :- Chk3,d(P),Chk7. :- pred c(P) : prd(’’/1 : one).

d(P) :- Chk4,e(P),Chk6.

e(P) :- Chk5.

where Chkj is P(0) if i = j or true otherwise. We assume that P is instantiated at the time
of calling a/1 with a predicate of arity one. Only c/1 has an assertion that specifies what
property should hold for P. In our case, P(0) is a wrong call. The test program Ti will
measure if the HO-checking method is able to detect a wrong call at the i-th location. We
mark calls to P(0) as “×” when a wrong call is detected, or “–” otherwise. The detection
of wrong calls for each alternative is shown in Table 3.1. Note that only the ideal case
is able to detect incompatibility between higher–order predicates before they are actually
called (the T0 case).
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Ideal ChkLocal ChkPropMod DelayChk TblChk

T0 × – – – –
T1 × – – – ×
T2 × – – – ×
T3 × × × × ×
T4 × – × × ×
T5 × – – × ×
T6 × – × × ×
T7 × × × × ×
T8 × – – × ×
T9 × – – × ×

Table 3.1: Precision of the different HO run–time checking alternatives.
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Chapter 4

Implementation

In this chapter we present the implementation of some of the alternatives presented in
Chapter 3, using the language extension mechanism of Ciao and the existing run–time
checking facilities, which we will also briefly describe. Our approach extends the lan-
guage in two directions, reusing the existing extensions for assertions and run–time check-
ing. Syntactically, it extends the assertion language with higher–order types (PA–props),
that allow the specification of predicate abstractions with some desired properties (writ-
ten themselves with the assertion language). Semantically, it extends the run–time checks
facilities to check such higher–order types (reusing all the run–time checking machinery
for the first-order case).

4.1 Language Extensions in Ciao
In Ciao, language extensions can be implemented as different groups of syntactic defini-
tions and translation rules, that can be stacked one on top of the other, extending a core
base language [72]. Extensions are encoded by means of packages: libraries that define
extensions to the language with a well defined structure. Such extensions are local to the
module or user file defining them [59]. This not only improves modularity, it also allows
the use of different extensions in different parts of the same application.

Packages consist of a main source file, which includes syntactic declarations (e.g., op-
erator declarations), the auxiliary run–time code, and other declarations that specify the
modules that implement the language translation. Packages are used in modules just by in-
cluding their main file, using the special use package directive. The load compilation-

module/1 directive specifies the modules that contain the auxiliary code that is needed at
compile–time to perform program translations. This directive allows separating code that
will be used at compilation time (e.g., the code used for program transformations) from
code which will be used at run–time. It loads the module defined by its argument into the
compiler. The effects usually achieved through conventional term expansion/2 in Pro-
log can be obtained in Ciao by means of four different, more specialized directives, which,
again, affect only the current module and are (by default) only active at compile–time.

Each of such directives defines a different target for the translations. The argument for
all of them is a predicate indicator of arity 2 or 3. When reading a file, a general-purpose
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module processing library (embedded in the Ciao compiler [73]) invokes such translation
predicates at the right times, instantiating the first argument with the item to be translated.
If the predicate is of arity 3, the optional third argument is instantiated with the name of
the module where the translation is being done. If the call to the expansion predicate is
successful, the term returned by the predicate in the second argument is used to replace
the original. Otherwise, the original item is kept. The directives are:

add sentence trans/1: declares a translation of the terms read by the compiler which
affects the rest of the current text (module or user file). For each subsequent term
(directive, fact, clause, assertion, etc.) read by the compiler, the translation predicate
is called to obtain a new term which will be used by the compiler in place of the
term present in the file.

add term trans/1: declares a translation of the terms and sub–terms read by the com-
piler which affects the rest of the current text. This translation is performed after
all translations defined by add sentence trans/1 are done. For each subsequent
term read by the compiler, and recursively any subterm included in such a term, the
translation predicate is called to possibly obtain a new term to replace the old one.

add clause trans/1: declares a translation of the clauses of the current text. This
translation is performed after add sentence trans/1 and add term trans/1 trans-
lations. This kind of translation is defined for more involved translations and is re-
lated to the compiling procedure of Ciao. The usefulness of this translation is that
information on the interface of related modules is available when it is performed.

add goal trans/1: declares a translation of the goals present in the clauses of the cur-
rent text. The translation is performed after all translations defined by directives
add sentence trans/1, add term trans/1 and add clause trans/1 (option-
ally) are done. For each clause read by the compiler, the translation predicate is
called with each goal present in the clause to possibly obtain another goal to replace
the original one, and the translation is subsequently applied to the resulting goal.
This translation continues recursively, until a fixpoint is reached and it is aware of
meta predicate definitions.

This interaction order among translations is shown in Fig. 4.1 (taken from [59]).

Figure 4.1: The order and subjects of source-to-source translations.

The proposed higher–order assertion syntax is implemented as a Ciao package that
performs a source-to-source translation. In particular, we have used the add sentence trans/1
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directive. A sentence translation is a predicate which will be called by the compiler to pos-
sibly convert each term (clause, fact, directive, input, etc.) read by the compiler to a new
term, which will be used in place of the original term.

We exploit sentence translation both for translating higher–order properties in asser-
tions and the corresponding higher–order calls in predicate bodies in order to be able
to perform run–time checks. Though the conventional path is to use goal translation in
the latter case, it is not suitable way of source transformation in our approach due to the
aspect of dealing with higher–order meta–predicates and their meta–arguments, that are
goals themselves and thus would fall into an infinite translation loop if not taken care of.

4.2 Run–time Checks
Run–time assertion checking is performed in the Ciao framework mainly by means of
source-to-source translation. This is based on transforming the program into a new one,
which preserves the semantics of the original program and at the same time checks during
its execution if the program assertions are violated for some particular concrete data.

One approach to this translation is described in [74], implemented in rtchecks pack-
age. There is an alternative mechanism built into the CiaoPP processor, but in this work
we have used the rtchecks library as the starting point, since is is a smaller, standalone
package.

The Ciao run–time checking system is composed of a set of transformations, to be
performed by the preprocessor, and a library containing a number of primitives that the
transformed programs will call. Applying the transformation that is called transforming

procedure definitions, the original predicate is rewritten so that it performs the run–
time checks itself, each time it is called, and calls to it are left unchanged. This procedure
can be seen as done in two steps (see Fig. 4.2 (adapted from [74]) for process illustration).�

1 p :-

2 entry -checks ,

3 exit -preconditions -checks ,

4 ext -comp -checks (p1),

5 exit -postconditions -checks.

6

7

8 % p renamed to p1 within

9 % module
� �

�
1 p1 :-

2 calls -checks ,

3 success -preconditions -checks ,

4 comp -checks(

5 call stack(p2 , locator)),

6 success -postconditions -checks.

7 p2 :- body0.

8 ...

9 p2 :- bodyN.
� �
Figure 4.2: Ciao run–time checks program transformation.

In this transformation the original predicate p is renamed to p2 and a new definition
of p, which performs the run–time checks, is added:

1. run–time checks, corresponding to, e.g., entry and exit assertions before and after a
call, are added to a new predicate p1. The objective of this first transformation is to
separate external calls from internal ones.
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2. p1 is defined so that it calls predicate p2 and performs all run–time checks corre-
sponding to each type of predicate–level assertions, i.e., calls, success, or comp in
the right place.

4.3 Meta–types and Higher–order types

In most Prolog implementations, as well as in Ciao, there is no explicit syntax for deal-
ing with higher–order predicates. Instead, a form of meta–programming is supported by
meta predicate declarations. As mentioned before, it is important to distinguish be-
tween the two notions of meta–types and higher–order types.

In Ciao meta–predicate declarations introduce an implicit casting operation that com-
poses the execution context at the caller site with the actual argument, to create a meta-
term. That is, those meta–predicate declarations are required when passing predicates
across modules (that is, when changing execution context). In the most general sense,
meta–programming involves manipulation of meta-terms (e.g., deconstructing goals, ma-
nipulating goal arguments, etc.). However, in this work we are only interested in executing
those meta-terms. In practice, we can map this particular view of meta-terms to predicate
abstractions.

Having no direct notion of higher–order predicates, our implementation of higher–
order assertions will need to take this peculiarity into account. We take care of it by
performing a transformation between meta–types (which involve an implicit casting) and
PA–props (that assume that data is a predicate abstraction, a native and opaque element).
Basically, this can be seen as removal of the syntactic sugar for meta–types. Such source
expansion is illustrated in Fig. 4.3. 1

�
1

2

3 :- pred p(P,...)

4 :(mprd(P,’’/2:( int*int))).
� �

�
1 :- meta_predicate

p(pred (2) ,...).

2 :- pred p(P ,...)

3 :(prd(P,’’/2:( int*int))).
� �
Figure 4.3: Meta–types to PA–props translation example: mprd/2 to prd/2.

Note that in general, unlike PA–props, meta–types cannot be propagated or inferred
without semantically affecting the program.

Another interesting issue regarding meta predicate declarations is that in many
cases only one declaration is valid for each predicate. For example, consider the erro-
neous example in Fig. 4.4: the user–provided declaration describes p as a higher–order
predicate with first argument a predicate of arity 2, but the meta–type states that a pred-
icate of arity 1 is expected. This is not a problem if we describe just higher–order types
(as there can be one clause of p using each different version).

1An alternative to this approach is the introduction of special syntax to build predicate abstractions.
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�
1 :- meta_predicate p(pred (2) ,?).

2 :- pred p/2:( mprd(’’/1:( list)) * list).
� �
Figure 4.4: Meta–types translation example: incompatible meta predicate

declarations.

4.4 A Source-to-Source Transformation-Based Approach
for Higher–order Checking

We perform run–time checking of the properties introduced in Section 3.3 by means of
a source-to-source transformation that introduces checks at the program points where
higher–order call are invoked. This transformation consists on a two–pass process. For
our task it is desirable to extract PA–props from assertions in the first phase and to modify
the corresponding higher–order calls in the second. In the first pass, PA–prop information
is propagated though the program variables. During the second pass, this type information
is used to transform unchecked higher–order calls into checked higher–order calls. In this
way, we can effectively check PA–props at run–time during the program execution. 2

To describe the translation, we adopt the following definitions:

Caller: a higher–order predicate with at least one argument that is instantiated to a pred-
icate a run–time.

Callee: a predicate (usually, first–order) passed as an argument of a higher–order caller.

Check: a tuple of four parameters that relate the predicate argument of the caller with
the corresponding meta–type from the corresponding predicate assertion:

• caller head;

• integer number that corresponds to a position of predicate argument for which
a PA–prop is provided by user;

• the PA–prop itself;

• the name of the module that is the definition context of the caller.

The translation establishes the relation between the PA–prop and the call of the corre-
sponding callee. It is done in two steps. During the first one a predicate assertion for the
caller is expanded so that a check, composed of a meta–type definition, is asserted to a
program as a fact of a special data predicate. During the second step, each corresponding
callee invocation of the form call(Callee,Args) is substituted with a call to an aux-
iliary first–order predicate. We expand the check as a regular predicate assertion for the
auxiliary predicate. This transformation is illustrated in Fig. 4.5.

2Obviously, this method will only detect incorrect executions in programs where PA–props are violated
at HO call locations.
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�
1 :- pred p(P,...)

2 :(prd(P,’’/2:( int*int))).

3 p(P,Arg1 ,..., ArgN) :-

4 ...,

5 P(P,Arg1 ,ArgN),

6 ....

7

8

9

10 % P(...) == call(P,...)
� �

�
1 :- pred p(P ,...).

2 p(P,Arg1 ,..., ArgN) :-

3 ...,

4 p_1(P,Arg1 ,ArgN),

5 ....

6

7 :- pred p_1(P,Q,R)

8 :(int(Q)*int(R)).

9 p_1(X,A,B):-

10 call(X,A,B).
� �
Figure 4.5: PA–props translation example: call/N expansion.

Please note that the arity of the auxiliary predicate is larger than the arity of the anony-
mous predicate from the meta–type by 1, due to the necessity of passing the callee as an
argument of the system call/N predicate.

Below we explain the policy for PA–prop propagation adopted in the translation. This
kind of source-to-source transformation covers those cases in which callee is local to the
module of the higher–order predicate itself, for which no assertions with PA–props are
given. To make the run–time checking as precise as possible, we propagate the check
from caller to callee, changing respectively the first and the second parameters of the
check. This transformation is illustrated in Fig. 4.6.�

1 :- pred p(P,...)

2 :(prd(P,’’/2:( int*int))).

3 p(P,Arg1 ,..., ArgN) :-

4 ...,

5 q(P,Arg1 ,ArgN),

6 ....

7

8 q(Pr ,Arg1 ,..., ArgM) :-

9 ...,

10 Pr(ArgM ,Arg1),

11 ....

12

13

14

15 %
� �

�
1 :- pred p(P ,...).

2 p(P,Arg1 ,..., ArgN) :-

3 ...,

4 q(P,Arg1 ,ArgN),

5 ....

6

7 q(Pr ,Arg1 ,..., ArgM) :-

8 ...,

9 q_1(ArgM ,Arg1),

10 ....

11

12 :- pred q_1(P,Q,R)

13 :(int(Q)*int(R)).

14 q_1(X,A,B):-

15 call(X,A,B).
� �
Figure 4.6: PA–props translation example: check propagation.

4.4.1 General Translation Workflow
The translation mechanism proposed covers several tasks:

1. For the properties that imply a meta predicate declaration for the caller, consider
two cases (and later treat the higher–order part):
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• if there is already such a declaration, check whether it is consistent with the
meta–type definition and report an error if not;

• if there is no such declaration, add one.

2. For higher–order properties, replace all the higher–order calls in bodies of corre-
sponding callers by calls to the auxiliary first–order predicates and for each aux-
iliary predicate add an assertion, corresponding to the meta–type from the caller
declaration.

The translation has two principal phases:

• source-to-source transformations of higher–order predicates and assertions with
PA–props;

• source-to-source transformations of meta–programming parts.

For each
sentence S

Type of S
directive D rule Head:-Body

Type of D

:-meta predicate
directive

predicate
assertion

Leave to
phase 2

Expand
PA–props

Check
for Head

no exists

For each goal
G in Body

Type of G

call/N
invocation

higher–order
call

Expand
call/N

Propagate
PA–prop

Figure 4.7: Source-to-source translation: phase 1 of 2.

During the first phase (see Fig. 4.7) source expansion for higher–order takes place.
While the translation processes the module sentence–by–sentence it infers checks to be
combined with corresponding higher–order calls, expands such calls in the manner de-
scribed previously, but both read and inferred meta predicate declarations are kept as
data predicates facts until the beginning of the second translation phase.

The second phase of the translation (see Fig. 4.8) begins when the end of the module
is read. During it both read and inferred meta predicate declarations are analyzed and
if no incompatibility errors occur, they are returned to the module.
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Collect all
:-meta predicate

declarations

Group them
by predicate

For each
group

Compatibility
analysis

passed failed

Report
an error

Figure 4.8: Source-to-source translation: phase 2 of 2.

After these source-to-source transformations take place, all the PA–props and corre-
sponding calls are rewritten as conventional first–order predicates and assertions. This
way the consequent translation performed by the rtchecks package is able to construct
such run–time checks that precisely represent the PA–props for the corresponding calls.
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Chapter 5

Evaluation and Experimental Results

We present below some experimental results from our implementation within the Ciao
system of the proposed run–time checking of properties of PA–props of predicate ar-
guments of higher–order predicates. To evaluate the performance of programs using such
checks we measure the increase in execution time caused by the checking-related program
transformations and the increase in compilation time caused by PA–prop propagation.

We distinguish two main sources of run–time overhead that slow down the perfor-
mance:

• run–time checks for regular properties in (predicate) assertions;

• run–time checks of PA–props in predicate assertions.

The former source of run–time overhead is the one corresponding to the source trans-
formation, performed by rtchecks Ciao package, while the latter is introduced by our
implementation of PA–props checks.

We start with the performance evaluation of the recursive predicate qsort/2-3 of
Fig. 3.5. We are particularly interested in performing checks of the instantiation states
of the variables E and C, which are used in the basic comparison operation within the
partition/4-5 predicate. We chose the following four benchmarks for performance
tests:

1. Optimal case performance as explicit instantiation check;

2. Conventional predicate assertion check at run–time;

3. Check for a PA–prop propagated through partition/5;

4. Check for a PA–prop propagated through qsort/3;

The first benchmark is shown in Fig. 5.1. In this version the type checking is in-
troduced by hand (lessthan/2 clause). We consider this version, which directly calls
the necessary instantiation checks at the right places, as optimal in terms of run–time
overhead (before doing program optimizations statically). We take it as the baseline for
comparison with other versions.
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�
1 qsort([], []).

2 qsort([X|L],R) :-

3 partition(L,X,L1,L2),

4 qsort(L2,R2),

5 qsort(L1,R1),

6 append(R1 ,[X|R2],R).

7

8 partition ([] ,_,[] ,[] ).

9 partition ([E|R],C,[E|Left1],Right):-

10 lessthan(E,C) ,!,

11 partition(R,C,Left1 ,Right).

12 partition ([E|R],C,Left ,[E|Right1 ]):-

13 partition(R,C,Left ,Right1).

14

15 lessthan(A,B) :- integer(A), integer(B), !, A @< B.
� �
Figure 5.1: Benchmark 1: Hand–coded type check.

The second benchmark is shown in Fig. 5.2. Here the types of the arguments of the
comparison predicate are checked with the current system implementation of run–time
checks. This use case reflects the run–time overhead added by the rtchecks package and
it can be considered as a measure of the real performance impact in practice.

�
1 qsort([], []).

2 qsort([X|L],R) :-

3 partition(L,X,L1,L2),

4 qsort(L2,R2),

5 qsort(L1,R1),

6 append(R1 ,[X|R2],R).

7

8 partition ([] ,_,[] ,[] ).

9 partition ([E|R],C,[E|Left1],Right):-

10 lessthan1(E,C) ,!,

11 partition(R,C,Left1 ,Right).

12 partition ([E|R],C,Left ,[E|Right1 ]):-

13 partition(R,C,Left ,Right1).

14

15 :- pred lessthan1(X,Y) : (int(X),int(Y)).

16 lessthan1(A,B) :- A @< B.
� �
Figure 5.2: Benchmark 2: First–order run–time checks.

The third benchmark is shown in Fig. 5.3. Here we use higher–order versions of both
qsort/2 and partition/4 and to check the types of the arguments of the call Pr(E,C)
we specify a PA–prop for the predicate argument of the caller partition/5. In this case
no PA–prop propagation takes place.
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�
1 :- meta_predicate qsort(?,pred (2) ,?).

2 qsort([],_, []).

3 qsort([X|L],P,R) :-

4 partition(L,P,X,L1,L2),

5 qsort(L2,P,R2),

6 qsort(L1,P,R1),

7 append(R1 ,[X|R2],R).

8

9 :- pred partition(A,T,B,C,D) : (mprd(T,’’/2:( int*int))).

10 partition ([] ,_ ,_,[] ,[] ).

11 partition ([E|R],Pr,C,[E|Left1],Right):-

12 Pr(E,C),!,

13 partition(R,Pr,C,Left1 ,Right).

14 partition ([E|R],Pr,C,Left ,[E|Right1 ]):-

15 partition(R,Pr,C,Left ,Right1).
� �
Figure 5.3: Benchmark 3: PA–prop check propagation 1

The fourth benchmark is shown in Fig. 5.4. It is similar to the third benchmark, the
only difference between them is that the PA–prop of the predicate variable is specified
for qsort/3, so here the PA–prop propagation takes place, from caller qsort/3 to callee
partition/5.

�
1 :- pred qsort(L1,T,L2) : (mprd(T,’’/2:( int*int))).

2 qsort([], _, []).

3 qsort([X|L],P,R) :-

4 partition(L,P,X,L1,L2),

5 qsort(L2,P,R2),

6 qsort(L1,P,R1),

7 append(R1 ,[X|R2],R).

8

9 partition ([],_, _,[] ,[] ).

10 partition ([E|R],Pr,C,[E|Left1],Right):-

11 Pr(E,C),!,

12 partition(R,Pr,C,Left1 ,Right).

13 partition ([E|R],Pr,C,Left ,[E|Right1 ]):-

14 partition(R,Pr,C,Left ,Right1).
� �
Figure 5.4: Benchmark 4: PA–prop check propagation 2

The benchmarks described above were executed on two different computers, whose
specifications are described in Table 5.1.
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Parameter MacBookAir2,1 [1] Dell Vostro 1440 [2]
Processor Name Intel Core 2 Duo Intel Core i3
Processor Speed 2.13 GHz 2.40 GHz

Number Of Processors 1 1
Total Number Of Cores 2 4

RAM 2 GB 4 GB
Bus Speed 1.07 GHz 1.333 GHz

OS Mac OS X 10.6.8 Linux Mint 15 “Olivia”
Ciao version 1.15.0 1.15.0

Table 5.1: Hardware and Software Specifications.

Table 5.2 presents the execution time values for each benchmark (in milliseconds)
using as input lists of integer numbers of different lengths. We estimated the average time
of 5 consecutive runs on the same input and repeated the experiment for lists of 1024,
2048, 4096, and 8192 elements.

List length 1024 2048 4096 8192
Computer [1] [2] [1] [2] [1] [2] [1] [2]

First
order

Pure 3 2 5 5 11 8 23 20
Hand–coded 3 2 6 8 14 14 35 35

Run–time check 170 136 439 350 962 719 2398 1805

Higher
order

Pure 17 13 32 36 74 67 180 186
Check 1 197 155 444 380 1226 854 2927 1902
Check 2 198 162 444 374 1166 854 2751 1890

Table 5.2: Benchmark execution times in milliseconds.

The results show that the run–time overhead is added not only by the run–time checks,
but also by expansions performed because of meta predicate declaration. However, the
impact of the latter is not significant, compared to the former one.

Table 5.3 presents the rations of execution times of the benchmarks which use run–
time checks compared to the execution time of hand–coded type checks (which, as we
have mentioned, we consider as the optimal performance case). Table 5.4 presents the
execution time ratios of benchmarks 3 and 4 (which evaluate run–time added by PA–
props check propagation) compared to benchmark 2 (first–order run–time checks), whose
performance we see as an average practical case.

50



List length 1024 2048 4096 8192
Computer [1] [2] [1] [2] [1] [2] [1] [2]

First
order

Run–time
check 55.34 56.67 68.56 43.80 66.87 49.94 69.21 55.02

Higher
order

Check 1 64.41 64.67 69.35 47.50 85.26 59.33 84.49 57.98
Check 2 64.62 67.67 69.35 46.80 81.07 59.28 79.41 57.61

Table 5.3: Benchmark execution time ratios (compared to hand–written type checks).

List length 1024 2048 4096 8192
Computer [1] [2] [1] [2] [1] [2] [1] [2]

Higher
order

Check 1 1.16 1.14 1.01 1.08 1.28 1.19 1.22 1.05
Check 2 1.17 1.19 1.01 1.07 1.21 1.19 1.15 1.05

Table 5.4: Benchmark execution time ratios (compared to first–order run–time checks).

These ratios allow us to conclude that the overhead, introduced by our approach is not
significantly larger than the the one already added by system run–time checks, and at the
same time it allows to discover those errors at run–time that are usually left undiscovered.
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Chapter 6

Conclusions and Future Work

In the present work we have introduced an extension of the Ciao assertion language for
higher–order predicates. We identified that previously to this work, there was limited sup-
port for the specification of the behavior of higher–order predicates in the domain of
(C)LP programming, especially about instantiations of their predicate arguments.

We have also outlined several possible solutions that allow us to perform run–time
checking of these properties. They vary in trade–offs between expressiveness and com-
putational effort required for their implementation, which we have discussed in Chapter 3
from a theoretical point of view. Along with the discussion of benefits and drawbacks of
each we have narrowed our attention to several alternatives, most suitable for the imple-
mentation of a prototype checker.

We have developed a prototype implementation of the run–time checking of higher–
order properties as a part of the Ciao system and its powerful preprocessor, capable of
performing various types of source code analysis. The preliminary experimental results
are encouraging and prove that the problem of checking higher–order predicates can be
tackled – for small but realistic cases – with assertion–based run–time checks with rea-
sonable overhead.

Still, a lot of work remains to be done before such checking can be performed in an
elegant and reliable manner in larger, real-life code. We foresee several possible improve-
ments as future work:

• A basic goal is to improve the performance for the checks for higher–order types,
which implicitly requires also optimizing further the run–time checking machin-
ery for first-order programs, since from our experiments this seems to be the main
component of the overhead.

• We also plan to study additional cases for the semantics of PA–props assertion
checking. For example, there exist other possible interpretations of the scope of
checking for higher–order predicates, like checking properties just for the deriva-
tions under the predicate that introduce the assertion with PA–props. Checking in
those semantics may have quite different overheads than those described in this
work.
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• It would desirable to have support not only for instantiation properties, but also for
compatibility ones.

• Finally, the property propagation pass should be reformulated as an abstract interpretation-
based analysis. When plugged into the CiaoPP analysis framework, this will give
much better precision and performance (as many run–time checks can be detected
and removed, e.g., by abstract program specialization). It will also make the transformation-
based approach more powerful for modular applications (e.g., with inter-modular
analysis).
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U. of Linköping Press.

[5] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Lan-
guage for Debugging of Constraint Logic Programs. In Pro-
ceedings of the ILPS’97 Workshop on Tools and Environments for
(Constraint) Logic Programming, October 1997. Available from
ftp://clip.dia.fi.upm.es/pub/papers/assert lang tr discipldeliv.ps.gz

as technical report CLIP2/97.1.

[6] K. Apt, editor. From Logic Programming to Prolog. Prentice-Hall, Hemel Hemp-
stead, Hertfordshire, England, 1997.

[7] Claude Laı̈. Assertions with Constraints for CLP Debugging. In Pierre Deransart,
Manuel V. Hermenegildo, and Jan Maluszynski, editors, Analysis and Visualization
Tools for Constraint Programming, volume 1870 of Lecture Notes in Computer Sci-
ence, pages 109–120. Springer, 2000.

[8] F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski,
and G. Puebla. On the Role of Semantic Approximations in Validation and Diagno-
sis of Constraint Logic Programs. In Proc. of the 3rd. Int’l Workshop on Automated
Debugging–AADEBUG’97, pages 155–170, Linköping, Sweden, May 1997. U. of
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[28] S.K. Debray, P. López-Garcı́a, M. Hermenegildo, and N.-W. Lin. Estimating the
Computational Cost of Logic Programs. In Static Analysis Symposium, SAS’94,
number 864 in LNCS, pages 255–265, Namur, Belgium, September 1994. Springer-
Verlag.
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