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Abstract

Abstract machines provide a certain separation between platform-dependent and platform-inde-
pendent concerns in compilation. Many of the differences between architectures are encapsulated
in the specific abstract machine implementation and the bytecode is left largely architecture in-
dependent. Taking advantage of this fact, we present a framework for estimating upper and lower
bounds on the execution times of logic programs running on a bytecode-based abstract machine.
Our approach includes a one-time, program-independent profiling stage which calculates constants
or functions bounding the execution time of each abstract machine instruction. Then, a compile-
time cost estimation phase, using the instruction timing information, infers expressions giving
platform-dependent upper and lower bounds on actual execution time as functions of input data
sizes for each program. Working at the abstract machine level allows taking into account low-
level issues without having to tailor the analysis for each architecture and platform, and instead
only having to redo the calibration step. Applications of such predicted execution times include
debugging/verification of time properties, granularity control in parallel/distributed computing,
and resource-oriented specialization.

Resumen

Las méquinas abstractas proporcionan una cierta separacién entre partas dependientes e inde-
pendientes de la plataforma de ejecucién en el momento de compilar y ejecutar. Muchas de las
diferencias entre las distintas arquitecturas estdn encapsuladas en la implementacién de la maquina
abstracta, siendo el codigo de byte basicamente independiente del ordenador en que se ejecutaré.
Nos aprovechamos de este hecho para presentar un entorno que estima limites superiores e in-
feriores al tiempo de ejecucién de programas légicos que se ejecutan en una méquina abstracta.
Nuestro enfoque incluye una etapa de perfilamiento independiente del programa que calcula cons-
tantes o funciones que dan limites al tiempo de ejecucion de cada una de las instrucciones de la
maquina abstracta. Una fase de estimacion en tiempo de compilacién, utilizando la informacién
sobre el tiempo de ejecucién de cada instruccién, infiere expresiones que dan limites a los tiempos
de ejecucién en una plataforma en concreto, tomando como entrada los tamanos de los datos. El
trabajar al nivel de la maquina abstracta permite tener en cuenta consideraciones de nivel inferior
sin tener que adaptar los andlisis de complejidad para cada arquitectura y plataforma, teniendo
que repetirse unicamente el paso de calibracion. Entre las aplicaciones se incluyen la verificacién
/ depuracién de propiedades relacionadas con el tiempo, control de granularidad en computacién
paralela y distribuida y especializaciéon guiada por los recursos.
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1 Introduction

Cost analysis has been studied for several declarative languages [6l 14,9, [TT]. In logic programming
previous work has focused on inferring upper [I0, [ or lower [II], 20] bounds on the cost of
programs, where such bounds are functions on the size (or values) of input data. This approach
captures well the fact that program execution cost in general depends on input data sizes. On the
other hand the results of these analyses are in terms of execution steps. While this measure has
the advantage of being platform independent, it is not straightforward to translate such steps into
execution time.

Estimation of worst case execution times (WCET) has received significant attention in the
context of high-level imperative programming languages [24]. Bernat et al. [I7] 5] have proposed
a portable WCET analysis for Java. However, the WCET approach only provides absolute upper
bounds on execution time (i.e., bounds that do not depend on program input arguments) and
often requires annotating loops manually.

Our objective is to infer automatically more precise bounds on execution times that are in
general functions that depend on input data sizes. In [2]] a static analysis was proposed in order
to infer such platform-dependent time bounds in logic programs. This approach is based on a high-
level analysis of certain syntactic characteristics of the program clause text (sizes of terms in heads,
sizes of terms in bodies, number of arguments, etc.). Although promising experimental results were
obtained, the predicted execution times were not very precise. However, these preliminary results
have encouraged us to develop a new analysis which takes into account lower level factors in order
to improve the accuracy of the time predictions.

Regarding the choice of this lower level, rather than trying for example to model directly
the characteristics of the physical processor, as in WCET, and given that most popular logic
programming implementations are based on variations of the Warren abstract machine (WAM) [23]
1], we chose to model cost at the level of abstract machine instructions. Abstract machines have
been used as a basic implementation technique in several programming paradigms (functional,
logic, imperative, and object-oriented) [12] and they have the advantage that they provide an
intermediate layer that separates to a certain extent the many low-level details of real (hardware)
machines from the higher-level language, while at the same time making compilation easier. This
property can be used to facilitate the design of our framework.

Within this setting, we present a new framework for the static estimation of execution times
of programs. The basic ideas in our approach follow:

1. Given a lower-level Lp (bytecode) language, measure for each instruction in Lp its execution
time (or approximate it with a function if it depends on the value of an argument) in some
specific abstract machine implementation while executing on a given processor and O.S.

2. Make the information regarding instruction execution time available to the timing analyzer.
This is, in our proposal, done by means of cost assertions (written in a suitable assertion
language) which are stored in a module accessible to the compiler/analyzer.

3. Given a concrete program P written in the source language Ly, compile it into Lp and
record the relationship between P and its compiled counterpart.

4. Automatically analyze program P, taking into account the instruction execution time (de-
termined in item [l above) to infer a cost function Cp. This function is an expression which
returns (bounds on) the actual execution time of P for different input data sizes for the
given platform.

Points and are performed in a one-time profiling phase, independent from program P,
while the rest are performed once for each P in the static (compile-time) cost analysis phase. We
would like to point out that, in general, the basic ideas underlying our work can be applied to
any language Ly as long as (i) cost estimation can be derived for programs written in Ly, (ii)
the translation of Ly to some other (usually lower-level) language Lp is accessible, and (iii) the
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execution time of the instructions in L can be timed accurately enough. We will, however, focus
herein on logic languages, so that we assume Ly to be a Prolog-like language and L some variant
of the WAM bytecode.

The proposed framework has been implemented as part of the CiaoPP [16] system in such a way
that any abstract machine properly instrumented can be analyzed. To the best of our knowledge,
this is the first attempt at providing a timing analysis producing upper- and lower-bound time
functions based on the cost of lower-level machine instructions.

2 Mappings Between Program Segments and Bytecodes

Let OpSet = {b1,ba,...,b,} be the set of instructions of the abstract machine under consideration.
We assume that each instruction is defined by a numeric identifier and its arity, i.e., b; = f;/ni,
where f; is the identifier and n; the arity. Each program is compiled into a sequence of expressions
of the form f(a1,as,...,a,) where f is the instruction name and a; are its arguments. For
conciseness, we will use I; to refer to such expressions. Such sequences are generally encoded
using bytecodes. In the following we will often refer to sequences of abstract machine instructions
or sequences of bytecodes simply as “bytecodes.”

Let C be a clause H :- Ly, ..., L,. Let E(C) be a function that returns the sequence of bytecodes
resulting from the compilation of clause C:

E(C) =< 11,12,...,11) >

Let E(C,H) be a function that maps the clause head H to the sequence of bytecodes in E(C)
starting from the beginning up to the first call instruction or to the end of the sequence E(C)
if there are no more call instructions (i.e., to the end of the bytecode sequence resulting from
the compilation of clause C). Let E(C,L;) be the function that maps literal L; of clause C to the
sequence of bytecodes in E(C) which start at the call bytecode instruction corresponding to this
literal and up to the next call instruction or to the end of the sequence E(C) if there are no more
call instructions. If W represents the concatenation of sequences of bytecodes, then:

m

E(c) = E(c,H) |H(lH E(c,Ly))

i=1

Note that functions F(C,H) and F(C,L;) do not necessarily return the bytecodes that one

would normally associate to the clause head H and literal L; respectively. Instead, the definition
of those functions associates the instructions corresponding to argument preparation for a given
call with the (success of the) previous call (or head). This is to cater for the fact that, in the
context of backtracking, in the WAM argument preparation occurs only one time per call to a
literal, even if such call is retried more times before failing definitively. As a result, the cost of
argument preparation for a given call instruction needs to be associated with the previous literal
to that call, in order not to count it every time the call is retried.
Table |1 shows how append is compiled to bytecodes, and identifies the result of calling the F(C, H)
and F(C,L;) functions for each clause head and body literal. H' represents the head of the first
clause, and H? and L? the head of the second (recursive) clause and the first literal in such clause
body (the only body literal).

3 The Timing Model: Estimating the Execution Time of Instructions

We define a function ¢(I), that we will refer to as the timing model, which takes a bytecode
instruction I and returns the estimated execution time for it (as in [4]).

In many cases we can assume that the time the bytecode takes to execute is constant. However
there are some special cases. Some instructions have internal recursion. In many of these cases,
the timing model consists of an initial constant time ¢y plus another an additional constant time
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append([], X, X).

append/3/1: | try_me_else append/3/2
allocate
get_constant([],0)
E(C,H') get_variable(0,1)
get_value(0,2)
deallocate

proceed

append([X|Xs], Y, [X|Zs]) :-
append/3/2: | trust_me

allocate
get_variable(0,0)
unify_list(3,1,2)
E(C,H?) unify_variable(0,3)
get_variable(4,1)
get_variable(5,2)
unify_list(7,1,6)
unify_variable(5,7)
put_value(2,0)
put_value(4,1)
put_value(6,2)
append(Xs, Y, Zs).

call append/3
E(C,L?) deallocate

proceed

Table 1: Sequences of bytecodes assigned to clause heads and body literals of the clauses of
predicate append by the functions F(C,H) and E(C,L;).

titeration 10 cater for the cost of each iteration, i.e., we generally use a simple linear model:
to + ntiteration. Consider for example the unify_void n instruction. Its execution time is a linear
function on n, where n is the number of new unbound cells pushed on the heap [I]. In some
other cases instructions have different execution times depending on the (fixed) values a given
argument can take from some finite set. In such cases, execution time is an arbitrary function on
the argument. Specific constants are assigned for each possible argument value (by profiling —see
Section .

Finally, there are some additional variable factors (such as, e.g., length of dereferencing chains)
which may affect execution times (in addition to other lower-level factors, such as cache behavior,
etc.). These factors are not impossible to cater for via a combination of static and dynamic analysis,
but, given the additional complication involved, we will ignore them herein and explore what kind
of precision of timing prediction can be achieved with this first level of approximation. Another
factor that will not be taken into account at this moment is garbage collection. We assume for
now that garbage collection is turned off for upper bound estimation. For lower bounds garbage
collection time can also be assumed to be turned off or, if left on, then it would simply make the
bounds obtained end up being more conservative.

4 Static Cost Analysis

We now present the compile-time component of our combined framework: the static cost anal-
ysis. This analysis has been implemented and integrated in CiaoPP [I5] by extending previous
implementations of reduction-counting cost analyses.
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4.1 Overview of the Approach

Since the work done by a call to a recursive procedure often depends on the “size” of its input,
knowing this size is a prerequisite to statically estimate such work. Our basic approach is as
follows: given a call p, an expression ®,(n) is statically computed that (i) is relatively simple to
evaluate, and (ii) it approximates Time,(n), where Time,(n) denotes the cost (in time units) of
computing p for an input of size n. Various measures are used for the “size” of an input, such as
list-length, term-size, term-depth, integer-value, etc. It is then evaluated at run-time, when the
size of the input is known, yielding (upper or lower) bounds on the execution time required by
the computation of the call on a given platform. In the following we will refer to the compile-time
computed expressions ®,(n) as cost functions.

Certain program information (such as, for example, input/output modes and size metrics for
predicate arguments) is first automatically inferred by other analyzers which are part of CiaoPP
and then provided as input to the size and cost analysis. The techniques involved in inferring this
information are beyond the scope of this paper —see, e.g., [I5] and its references for some examples.
Based on this information, our analysis first finds bounds on the size of input arguments to the
calls in the body of the predicate being analyzed, relative to the sizes of the input arguments to this
predicate, using the inferred metrics. The size of an output argument in a predicate call depends in
general on the size of the input arguments in that call. For this reason, for each output argument
we infer an expression which yields its size as a function of the input data sizes. To this end,
and using the input-output argument information, data dependency graphs (namely the argument
dependency graph and the literal dependency graph) are used to set up difference equations whose
solution yields size relationships between input and output arguments of predicate calls. The
argument dependency graph is a directed acyclic graph used to represent the data dependency
between argument positions in a clause body (and between them and those in the clause head).
The argument dependency graph is constructed from the argument dependency graph (grouping
nodes) and represents the data dependencies between literals.

The information regarding argument sizes is then used to set up another set of difference
equations whose solution provides bound functions on predicate calls (execution time). Both the
size and cost difference equations must be solved by a difference equation solver. Although the
operation of such solvers is beyond the scope of the paper, our implementation does provide a
table-based solver which covers a reasonable set of difference equations such as first-order and
higher-order linear difference equations in one variable with constant and polynomial coePﬁcientsE
divide and conquer difference equations, etc. In addition, the system allows the use of external
solvers (such as, e.g. [3], Mathematica, Matlab, etc.). Note also that, since we are computing
upper/lower bounds, it suffices to compute upper /lower bounds on the solution of a set of difference
equations, rather than an exact solution. This allows obtaining an approzimate closed form when
the exact solution is not possible.

4.2 Estimating the Execution Time of Clauses and Predicates

Our cost analysis approach is based on that developed in [10, [9] (for estimation of upper bounds
on resolution steps) and further extended in [11] (for lower bounds). More recently, in [21] the
analysis was extended to work with vectors of cost components, with each component considering
a known aspect that affects the total cost of the program. In these approaches the cost of a clause
can be bounded by the cost of head unification together with the cost of each of its body literals.
For simplicity, the discussion that follows is focused on the estimation of upper bounds. We refer
the reader to [II] for details on lower-bounds cost analysis.

Consider as before a clause C defined as H :- Ly, ...,L,. Because of backtracking, the number
of times a literal will be executed depends on the number of solutions that the literals preceding it
can generate. Assume that 7 is a vector such that each element corresponds to the size of an input
argument to clause C and that each n;, ¢ = 1...m, is a vector such that each element corresponds

INote that it is always possible to reduce a system of linear difference equations to a single linear difference
equation in one variable.
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to the size of an input argument to literal L;. Assume also that 7(H) is the execution time needed
to resolve the head H of the clause with the literal being solved, Solsy, is the number of solutions
literal L; can generate, and B(L;) the time needed to prepare the call to literal L; in the body
of the clause (note that this execution time includes the time needed to create terms and only
depends on the bytecodes assigned E(C,L;) but does not depend on 7;). Then, an upper bound
on the cost of clause C (assuming all solutions are required), Costc(7), can be expressed as:

Coste(m) < 7(H) + Z(H Solst, (72;))(B(Ls) + Costy, (7)),

i=1 j<i

Here we use j < i to denote that L; precedes L; in the literal dependency graph for the clause
(described in Section [4.1)). We have that:

IeE(C,L;)

with E(C,L;) and t(I) defined as in Sections [2| and 3| respectively. Also:

I€E(CH)

A difference equation is set up for each recursive clause, whose solution (using as boundary
conditions the execution times of non-recursive clauses) is a function that yields the execution time
of a clause. The execution time of a predicate is then computed from the execution time of its
defining clauses. Since the number of solutions generated by a predicate that will be demanded is
generally not known in advance, a conservative upper bound on the execution time of a predicate
can be obtained by assuming that all solutions are needed, and that all clauses are executed (thus
the execution time of the predicate is assumed to be the sum of the execution times of its defining
clauses). If we take mutual exclusion among clauses into account, we can obtain a more precise
estimate of the execution time of a predicate: the execution time for deterministic predicates can
be approximated by the maximum of the execution times of mutually exclusive groups of clauses.

Given a predicate defined by r clauses Cy,...,C,, we can improve the precision of our analysis
by noting that clause C; will be tried only if clauses Cy,...,C;_; fail to yield a solution. For an
input of size 7, let 0;(7) denote the execution time necessary to determine that clauses C;,...,C;—;
will not yield a solution and that C; must be tried: the function J§; obviously has to take into
account the type and cost of the indexing scheme being used in the underlying implementation.
The precision of the analysis is improved by adding d;(7) to the cost of clause C;.

Note that our approach allows defining via assertions the execution time of external predicates,
which can then be used for modular composition. This includes also predicates for which the code
is not available or which are even written in a programming language that is not supported by the
analyzer. In addition, assertions also allow describing by hand the execution time of any predicate
for which the automatic analysis infers a value that is not accurate enough, and this can be used
to prevent inaccuracies in the automatic inference from propagating. The description of the used
assertion language is out of the scope of this paper, and we refer the reader to [22] for details.

5 Estimating Instruction Execution Times via Profiling

As mentioned before, data regarding the expected execution time of each instruction in the abstract
machine is obtained via profiling. This process requires, on one hand, a means to actually isolate
the execution of each instruction in a realistic environment, and, on the other hand, the ability to
measure actual execution times as accurately as possible.
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while (op != END) { /x WAM emulation loop */

record_profile_info(op); /x op is the current bytecode x/
switch(op) {

}

op = get_next_op();
}

Figure 1: Instrumenting a simple WAM emulation loop

5.1 Profiling Instructions

More concretely, profiling aims at calculating ¢(I) for each bytecode instruction I. One way
to do this, which is the approach we have taken, is by instrumenting the source code of the
WAM implementation so that time measures are taken and recorded at appropriate times. In
practice a number of issues have to be carefully taken into account in order to achieve a reasonable
degree of reliability in such measurements [I7]. These include the choice of the point where the
instrumentation code will be inserted, how to minimize the effects of such instrumentation on the
execution (not only execution time but also, e.g., cache behavior), and how to work around the
complex instruction scheduling performed by modern processors, which may lead to large variance
in the results, especially since we are measuring very small pieces of code.

As a first approximation we take a relatively simple approach in which we add profiling-related
calls in designated parts of the main bytecode scheduling loop. Figure [1| shows a code sketch
illustrating this. The record_profile_info(op) macro records the start time for bytecode op.
The end time is processed when the next opcode is fetched. The data for each bytecode is
maintained during execution in memory and in raw form (in order to impact execution as little as
possible) and later saved in an external file.

5.2 Measuring Time Accurately

Being able to make precise timing measurements is clearly an a priori condition in order to achieve
reliable estimation of execution times. Unfortunately, portable, standardized time measurement
calls provide very limited accuracy in most operating systems. Additionally, the overhead of calling
O.S. routines is often very high when compared to the times being measured in our context and
thus too much noise is introduced. Therefore, in practice, time has to be measured often in an
architecture- and operating system-dependent fashion.

As an example, modern Intel (and compatible) processors include a rdtsc instruction [19]
which returns the number of CPU cycles since the last processor reset. The (exact) frequency
of the processor can then be used to work out a relatively precise estimation of the time taken
by each instruction. It is in practice important to note that recent architectures can change
dynamically the clock speed to save energy, so the execution times for the bytecodes should be
taken in a situation similar to that in which we expect final programs to run —most probably,
at full speed. Similarly, multicore processors can give erroneous results regarding the number
of executed instructions, so that the estimation should be run making sure that the estimating
program is locked in one core.

The same approach can be used in other platforms where similar instructions exist. As an
example, PowerPC platforms have a “time-base counter” whose frequency is one-fourth of that
of the bus clock [I8]. Solaris provides a very precise gethrtime () routine specifically designed to
take frequent timings.

In platforms where high resolution timing is difficult or impossible to achieve (e.g., mobile or
embedded devices whose processors do not offer access to a CPU cycle counter or whose O.S. does
not provide any high-resolution timing routine), workarounds have to be used. One possibility is to
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use synthetic benchmarks which on purpose repeatedly execute the instructions under estimation
during a large enough time, and later divide the total execution time by the number of times the
instructions have been executed. In general this requires finding an approximate solution to a
system of equations, and can be less precise than the direct measurement approach, but it does
provide a solution for such processors.

Finally, issues related to non-trivial instruction scheduling at the processor level, such as out-
of-order and speculative execution, need to be dealt with at the processor level as well. The main
problem with out-of-order execution is that an instruction like rdtsc, with no data dependencies,
may be executed before the previous (in program order) instructions have finished, thereby giving
wrong CPU cycle counts. In the case of Intel systems, this can be worked around (not without
other complications) by using instructions which force all previous instructions to finish, such as
cpuid, thereby making timing estimations much more accurate.

6 Experimental results

In order to evaluate the techniques presented so far we need to choose a concrete bytecode language
and an implementation of its abstract machine to execute and profile with. As mentioned before,
the de-facto target abstract machine for most Prolog compilers is the WAM [23], [I] or one of its
derivatives. In order to evaluate the feasibility of the approach we have chosen a relatively simple
WAM design, which is quite close to the original WAM definition. It is based on [7], but has been
ported from Java to C/C++. The use of a relatively simple abstract machine allows evaluating the
technique while avoiding the many practical complications present in modern implementations,
such as having complex instructions resulting from merging other, simpler ones, or specializations
of instruction and argument combinations. This of course does not preclude the application of our
technique to the more complex cases. The leftmost column of Table 2] summarizes the instructions
of our WAM implementation that are actually being used in the examples tested. In the examples
we deal with a subset of Prolog which only has operations on integers, atoms, lists, and terms.
Likewise, we obviate issues like modules or syntactic sugar which can be dealt with at the Prolog
level. A few built-in predicates are required to have a minimal functionality including write/1,
consult/1, etc. They are profiled separately and their timing is given to the system through
assertions.

In the examples which follow times are given in terms of CPU cycles. The experiments where
made in a computer with Intel Core Duo 1.66GHz processor, 2GB of RAM, and Ubuntu Linux
7.04. To reduce noise in the data due to spurious results, the highest 1% observed times have been
discarded, and at least 1.000 measurements were taken for each instruction. Note that discarding
the lowest observed times is not necessary, since we are simply trying to disregard executions where
a large delay occurred. The tests were performed with the machine in single-user mode, stopping
unnecessary processes. System tasks such as garbage collection, which, as mentioned before, is
not considered in our model at the moment, were turned off.

Table |2 shows the timing model for this WAM and architecture. As a first approximation,
we assume that the time of all WAM instructions is bounded by constants, and we have taken
the minimum and maximum observed times as such bounds. The is instruction considers only
basic operations over two numbers. The execution time of the unify_* family of instructions is
not bounded by any a-priori known constant, but here we are in practice only using unifications
between a variable and a ground term. Note however, that, as mentioned before, in our imple-
mentation it is possible to use functions instead of constants as timing model for a given bytecode,
so an improvement to handle such bytecodes is to introduce tighter functions depending of the
bytecode arguments as input into the timing model. The errors and the differences that appear
in the lower and upper bounds in Table 2] are in general due to the fact that the cost of a specific
bytecode depends on its arguments and the current status of the abstract machine. However,
note that, even for instructions whose execution time is constant, and even if we use CPU cycles
precisely to measure such times, the measurements will still vary slightly because they depend for
example on the cache status, processor pipeline status, or system tasks that cannot be controlled
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| Instruction | Lower | Upper | Mean [ Error |
allocate 550 900 600 5.5%
call* 420 560 455 4.9%
cut 600 830 629 2.4%
deallocate 360 430 385 2.0%
get_constant 1260 5400 | 2552 | 44.7%
get_level 1930 7750 | 2422 | 22.1%
get_struct 3730 | 14990 | 6306 | 42.4%
get_value 1080 1180 | 1110 | 1.6%
get_variable 1200 7790 2489 | 20.1%
is* 2660 7980 2862 | 19.1%
proceed 340 390 366 | 2.4%
put_constant 2020 | 10970 | 4064 | 33.1%
put_value 880 1310 958 | 10.0%
retry_me_else 5600 | 11660 | 6142 | 18.4%
trust_me 360 430 390 4.3%
try_me_else 2470 | 11520 | 4268 | 46.3%
unequal 1090 1330 | 1150 2.4%
unify_list* 1530 | 10020 3347 | 47.5%
unify_variable* 1010 2860 | 1501 | 39.3%

Table 2: A timing model expressed in terms of Upper and Lower Bounds for the WAM instructions
with a confidence level of 99%, in CPU cycles.

by the user.

Table [3] shows the results of applying our technique to a series of programs for which exact
cost functions could be automatically derived. The timing model we used was the (simplistic) one
in Table 2 The maximum, minimum, and average execution times given by this model (measured
in CPU cycles, and labeled as U, L, and M, respectively), are used to generate another cost function
that returns CPU cycles as result (column labeled Cost Function). The execution time predicted
by this cost function appears in the following column, together with the error with respect to the
experimentally measured execution time. The reported execution time does not take into account
the overhead of profiling.

In general, the combination of an exact cost function and an average of the running time of the
bytecode instructions gives results which are quite close to the actual execution time (always with
an error less than 10%). These results are more than three times better on the same platform than
those obtained for similar programs using higher-level models [2I]. With the abstract machine-
based model, for this type of programs we believe the remaining error comes simply from the
accumulated loss of accuracy of the bytecode instruction profiling and expect that making the
timing model more precise will increase precision even further. Also, lower bounds are indeed
always smaller and upper bounds larger than the actual execution times (which was not the case
in [21]), with variations within 160%.

Table (4] diplays the results for a series of programs in which the automatically obtained lower
and upper cost function approximations (labeled as L and U, respectively, in the second column)
differ. The predictions in Table [4] are understandably much less accurate than those in Table [4]
In any case, lower bounds (L-L combinations) are still always smaller and upper bounds (U-U
combinations) larger than the actual execution times. In most cases the best approximation is
given by the combination of “upper approximation of cost execution” with “mean of bytecode
instruction execution time,” even if this combination still sometimes produces inaccurate results
for this class of programs. This is, in any case, quite understandable since, to start with, no exact
cost function was deduced for them.
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Program Prof. Static Estimation Exec.
App. Cost Function | Time | Error || Time

palindro(+A,-) M 30z 2771 +22.27 — 12 79399 -4% 82326
x=length(A)=9 L 237 - 271 +25.2% — 14 47876 | -42%

U Tlx - 2°71 45627 — 31 198718 | 141%
evalpol(+A,+X,-) M 30.5x 4+ 13.2 3066 -2% 3286
x=length(A)=100 L | 204z+7.44 2048 | -34%

U 78.8x 4 32.4 7913 | 152%
nrev(+L,-) M 14.82% + 28.4x + 9.7 104511 -2% || 106315
x=length(L)=83 L 8.872 +17.52 + 5.3 62186 | -42%

U | 382 +68.8x423.1 267615 | 152%
powset(+A,-) M 18- 221 4+ 402 — 13 75071 | 0.3% 74851
x=length(A)=11 L | 11-2°F1 4257 —8 43771 | -42%

U 48 - 221 4+ 957 — 33 197807 | 164%
append(+A,+,-) M | 29.7x 4+ 11.8 4790 5% 4259
x=length(A)=150 L 17.6x 4+ 7.3 2652 | -38%

U 76.0z 4 28.3 11433 | 169%
hanoi(+N,+,+,+,-) M 27(30z + 18) — 56 65330 -9% 72181
x=N=8 L 27(18z + 13) — 39 39380 | -45%

U 27(76x + 39) — 126 165673 | 130%
fib(+N,-) M 47-1.6"4+12(-0.6)" — 45 102813 | -10% || 113920
x=N=16 L 33 -1.6"+8(-0.6)" — 32 72519 | -36%

U 110 - 1.6*4+31(-0.6)" — 108 | 243085 | 113%

Table 3: Observed and estimated execution time (with exact cost functions), measured in thou-
sands of CPU cycles. L = Lower, M = Mean, U = Upper.

7 Conclusions and Future Work

We have developed a framework for estimating upper and lower bounds on the execution times
of logic programs running on a bytecode-based abstract machine. We have shown that working
at the abstract machine level allows taking into account low-level issues without having to tailor
the analysis for each architecture and platform, and obtaining more accurate estimates than with
previous approaches, including correct upper and lower bounds on execution time.

Although the framework has been presented in the context of logic programs, the technique can
easily be applied to other languages, which generally results in a simplification, since backtracking
does not need to be taken into account. For example, analyses have been recently developed for
Java bytecode [2] which infer the number of execution steps using similar techniques to those
used in logic programming [I0, @, 11]. Such analyses could be adapted, following the techniques
presented herein, to take into account the bytecode timing information and would then be able to
estimate actual execution time for Java programs.

We believe that the more accurate execution time estimates that can be obtained with our
technique can be very useful in several contexts including parallelism, compilation, real-time ap-
plications, pervasive systems, etc. More concretely, increased timing precision can improve the
effectiveness of resource/granularity control in parallel /distributed computing. This belief is based
on previous experimental results, where it appeared that, even if improved precision in timing es-
timates is not essential, it does yield increased speedups. Also, the inferred cost functions can be
used to develop automatic program optimization techniques. For example, they can be used for
performing self-tuning specialization which compares statically the estimated execution time of
different specialized versions [g].

Given that our experimental results are encouraging with respect to actually being able to
find more accurate upper and lower bounds to program execution times, the approach can also be

UPM — Department of Computer Science
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Program An. | Prof. Static Estimation Exec.
App. | App. Cost Function | Time [ Error Time
list_inters(+L,+D,-) L M | 41z +13 2667 | -31% 3894
x=length(L)=65 L L 28x 4+ 7 1800 -53%
y=length(D)=65 U M 29zy 4 103x + 26 127673 -13% || 146852
U U TTxy + 264z + 65 344171 134%
list_diff(+L,+D,-) L M 36z + 13 2352 -35% 3597
x=length(L)=65 L L | 25047 1635 | -55%
y=length(D)=65 U M 29zy 4 95z + 26 127200 -13% || 145204
0] U TTxy + 243z + 65 342771 136%
derive(+E,+,-) L M 4441z 3331 -68% 10031
x=term_size(E)=75 L L 29.49z 2212 | -79%
U M 1772 + 171 13435 34% 10031
0) U 402z 4 386 30565 205%
substitute(+A,+B,-) L M | 4441z 20976 | -70% 9929
x=term_size(A)=67 || L | L | 29.49z 1976 | -80%
y=length(B)=80 0) M 69(x 4+ 1)y + 200z + 96 386872 178% || 138871
0) U 174(xz + 1)y + 4752+231 | 979350 605%
fatten(+A-B) U | M | 148(z —1)2 + 922 1 29 | 224652 | 566% || 33718
x=term_size(A)=121 U U 38.6(x — 1)% + 2272477 | 583417 | 1630%

Table 4: Observed and estimated execution time (with approximate cost functions), measured in
thousands of CPU cycles. L = Lower, M = Mean, U = Upper.

used for verification (or falsification) of timing constraints, as in, for example, real-time systems,
which was not possible in an accurate way with previous approaches. In fact, the approach can be
used to solve a common problem in current WCET static analysis, where only constant WCET
bounds (i.e., non dependent on input data sizes) are inferred. These bounds are not always
appropriate since the WCET of a given program often depends on several input parameters, and
using an absolute bound, covering all possible situations (i.e., all possible values or sizes of input),
produces only a very gross over approximation [I3]. Using our tool, the WCET is expressed as
a cost function parametrized by the size or values of input arguments, providing tighter WCET
approximations.
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