
MCC Technical Report Number:

ACT-DC-153-90

Deriving a Fixpoint Computation Algorithm for

Top-down Abstract Interpretation of

Logic Programs

K. Muthukumar, M.V. Hermenegildo

MCC Non-Con�dential

April, 1990

Abstract

Bruynooghe described a framework for the top-down abstract interpretation of logic programs. In this frame-

work, abstract interpretation is carried out by constructing an abstract and-or tree in a top-down fashion for

a given query and program. Such an abstract interpreter requires �xpoint computation for programs which

contain recursive predicates. This paper presents in detail a �xpoint algorithm that has been developed for this

purpose and the motivation behind it. We start o� by describing a simple-minded algorithm. After pointing out

its shortcomings, we present a series of re�nements to this algorithm, until we reach the �nal version. The aim

is to give an intuitive grasp and provide justi�cation for the relative complexity of the �nal algorithm. We also

present an informal proof of correctness of the algorithm and some results obtained from an implementation.

Microelectronics and Computer Technology Corporation

Advanced Computing Technology

Deductive Computing Laboratory

3500 West Balcones Center Drive

Austin, Texas 78759

(512) 343-0978

Copyright

c

1990 Microelectronics and Computer Technology Corporation

All rights Reserved. Shareholders and associates of MCC may reproduce and distribute

these materials for internal purposes by retaining MCC's copyright notice, proprietary

legends, and markings on all complete and partial copies.

Deriving a Fixpoint Computation Algorithm for Top-down Abstract

Interpretation of Logic programs

K. Muthukumar

MCC and Department of Computer Science

The University of Texas at Austin

Austin, TX 78712 - USA

muthu@cs.utexas.edu

M.V. Hermenegildo

�

Universidad Polit�ecnica de Madrid (UPM)

Facultad de Inform�atica

28660-Boadilla del Monte, Madrid - Spain

herme@fi.upm.es or herme@cs.utexas.edu

Abstract

Bruynooghe described a framework for the top-down abstract interpretation of logic programs.

In this framework, abstract interpretation is carried out by constructing an abstract and-or tree in

a top-down fashion for a given query and program. Such an abstract interpreter requires �xpoint

computation for programs which contain recursive predicates. This paper presents in detail a

�xpoint algorithm that has been developed for this purpose and the motivation behind it. We

start o� by describing a simple-minded algorithm. After pointing out its shortcomings, we present

a series of re�nements to this algorithm, until we reach the �nal version. The aim is to give an

intuitive grasp and provide justi�cation for the relative complexity of the �nal algorithm. We

also present an informal proof of correctness of the algorithm and some results obtained from an

implementation.

�

This author is supported in part by ESPRIT project 2471 \PEPMA."

1 Introduction

Abstract interpretation is a useful technique for performing a global analysis of a program in order

to compute, at compile-time, characteristics of the terms to which the variables in that program will

be bound at run-time for a given class of queries. The technique of abstract interpretation for ow

analysis of programs in imperative languages was �rst presented in a sound mathematical setting by

Cousot and Cousot [2] in their landmark paper. Later, it was shown by Bruynooghe [1], Jones and

Sondergaard [7], Debray [3], and Mellish [10] that this technique can be extended to ow analysis of

programs in logic programming languages, and several frameworks or particular analyses have evolved

([8], [13], [14], [15], ...).

In [1], Bruynooghe described a framework for the top-down abstract interpretation of logic pro-

grams. In this framework, abstract interpretation is carried out by constructing an abstract and-or

tree in a top-down fashion for a given query and program. Essentially, starting with the abstract call

substitution for the query, abstract substitutions at all points of the abstract and-or tree are computed

and �nally, the success substitution for the query is computed. If the given program has recursive

predicates, then �xpoint computation is necessary.

In this paper, we present an e�cient �xpoint algorithm for a top-down abstract interpreter which

follows the top-down framework mentioned. This algorithm is derived gradually, evolving from a

simple and intuitive �xpoint algorithm (although ine�cient), through a series of re�nements, to the

�nal one. Other intermediate algorithms which look intuitively correct but which have minor errors

are also considered. These errors are pointed out and suitable modi�cations are made leading to

further re�nement of the algorithm. The �nal version of the algorithm is described also in [11] as part

of a particular abstract interpreter, although somewhat particularized for that particular application

and lacking motivation justifying its complexity. The purpose of this paper is to present the algorithm

in its general form and the motivations behind it.

The rest of the paper proceeds as follows: section 2 presents a brief review of the framework used

for abstract interpretation and describes the need for �xpoint computation in this context. Section 3

then describes a simple �rst cut at a �xpoint computation algorithm. This naive algorithm constructs

a new abstract and-or tree for every iteration in the �xpoint computation. We observe that this is not

e�cient since �xpoint computation can be \localized" to recursive predicates. We then proceed to

construct a less simple-minded algorithm based on such an idea in section 4. However, we then show

that this algorithm has some errors. We present a corrected and re�ned version of it in section 5. Upon

analysis, this re�ned version is still found to be ine�cient. We discuss how to overcome the ine�ciency

and present the �nal re�nement of our �xpoint computation algorithm in section 6. Finally, we give

an informal proof for the correctness of this algorithm in section 7. It is important to note that

this �xpoint algorithm is independent of the abstract domain used in the abstract interpreter. This

enhances its usability in di�erent abstract interpreters. Using an abstract domain introduced in [6]

and algorithms for computation of abstract entry and success substitutions presented in [12] which use

such an abstract domain, we have implemented an abstract interpreter based on the �xpoint algorithm

presented in this paper. Results from this implementation on various benchmarks are presented in

1

appendix A.

2 Framework for Top-Down Abstract Interpretation of Logic Pro-

grams

In this section, we present a brief review of the framework for top-down abstract interpretation and

describe the need for �xpoint computation in the context of abstract interpretation. A detailed

discussion of this framework can be found in [1] and [11]. For a given program and query, an abstract

interpreter interprets this program using abstract substitutions instead of concrete substitutions. The

output of the abstract interpreter is a list of abstract substitutions together with the locations of

the clauses where they occurred. This information can be used to speed-up the sequential as well as

parallel execution of programs as described in ([9],[3],[15],[11],[6], ...).

An abstract substitution is a �nite representation of a possibly in�nite set of concrete substitutions.

The former and latter are related to each other via a pair of functions referred to as the abstraction

(�) and concretization () functions. The details of these functions as well as the abstract domain (in

which abstract substitutions are represented) depend on the type of information to be obtained from

the analysis. In this paper, we assume that the set of all possible abstract substitutions for a given

clause is �nite.

1

This is to guarantee the termination of �xpoint computation.

The input to the abstract interpreter is a set of clauses (the program) and set of \query forms."

In its minimal form (least burden on the programmer) such query forms can be simply the names

of the predicates which can appear in user queries (i.e., the program's \entry points"). In order to

increase the precision of the analysis, query forms can also include a description of the set of abstract

(or concrete) substitutions allowable for each entry point. The goal of the abstract interpreter is then

to compute in abstract form the set of substitutions which can occur at all points of all the clauses

that would be used while answering all possible queries which are concretizations of the given query

forms. It is convenient to give di�erent names to abstract substitutions depending on the point in a

clause to which they correspond. Consider, for example, the clause h :- p

1

; : : : ; p

n

. Let �

i

and �

i+1

be

the abstract substitutions to the left and right of the subgoal p

i

; 1 � i � n in this clause. See �gure

1(b).

De�nition 1 �

i

and �

i+1

are, respectively, the abstract call substitution and the abstract success

substitution for the subgoal p

i

. For this same clause, �

1

is the abstract entry substitution (also

represented as �

entry

) and �

n+1

is the abstract exit substitution (also represented as �

exit

).

Control of the interpretation process can itself proceed in several ways, a particularly useful and

e�cient one being to essentially follow a top-down strategy starting from the query forms. One

framework that uses such a strategy is described in detail in [1]. In a similar way to the concrete

top-down execution, the abstract interpretation process can then be represented as an abstract AND-

OR tree, in which AND-nodes and OR-nodes alternate. A clause head h is an AND-node whose

1

In fact, in general it is su�cient that the abstract substitutions form a cpo of �nite height.

2

p

h1 hm

λcall λsuccess

β1entry β1exit βmentry βmexit.......

h

p1 pnλ1 λ2 λn λn+1......

(a) (b)

Figure 1: Illustration of the abstract interpretation process

children are the literals in its body p

1

; : : : ; p

n

(�gure 1(b)). Similarly, if one of these literals p can be

uni�ed with clauses whose heads are h

1

; : : : ; h

m

, p is an OR-node whose children are the AND-nodes

h

1

; : : : ; h

m

(�gure 1(a)). During construction of the tree, computation of the abstract substitutions

at each point is done as follows:

� Computing success substitution from call substitution: Given a call substitution �

call

for a

subgoal p, let h

1

; : : : ; h

m

be the heads of clauses which unify with p (see �gure 1(a)). Compute

the entry substitutions �1

entry

; : : : ; �m

entry

for these clauses. Compute their exit substitutions

�1

exit

; : : : ; �m

exit

as explained below. Compute the success substitutions �1

success

; : : : ; �m

success

corresponding to these clauses. The success substitution �

success

is then the least upper bound

(LUB) of �1

success

; : : : ; �m

success

. Of course the LUB computation is dependent on the abstract

domain and the de�nition of the v relation.

� Computing exit substitution from entry substitution: Given a clause h :- p

1

; : : : ; p

n

and an

entry substitution �

1

, �

1

is the call substitution for p

1

. Its success substitution �

2

is computed

as above. Similarly, �

3

; : : : ; �

n+1

are computed. Finally, �

n+1

is obtained, which is the exit

substitution for this clause. See �gure 1(b).

Given this basic framework, it is clear that a particular analysis strategy needs to:

� De�ne an abstract domain and substitution framework, and the v relation,

� Describe how to compute the entry substitution for a clause C given a subgoal p (which uni�es

with the head of C) and its call substitution,

� Describe how to compute the success substitution for a subgoal p given its call substitution and

the exit substitution for a clause C whose head uni�es with p.

Such information represents the \core" of a particular analysis strategy. In this paper, we assume

that the abstract domain has already been de�ned for the application in hand and that algorithms

for computing entry and success substitutions as well as the LUB of these abstract substitutions have

been provided.

3

In addition to the three points above, there is, however, one more issue that needs to be addressed.

The overall abstract interpretation scheme described works in a relatively straightforward way if the

program has no recursion. Consider, on the other hand, a recursive predicate p. If there are two

OR-nodes for p in the abstract AND-OR tree such that

� they are identical (i.e., they have the same atoms),

� one is an ancestor of the other, and

� the call substitutions are the same for both,

then the abstract AND-OR tree is in�nite and an abstract interpreter using the simple control strategy

described above will not terminate. In order to ensure termination, some sort of �xpoint computation

is required.

The algorithms that we describe in this paper for �xpoint computation use memo tables [4]. A

memo table contains the results of computation already performed. Frequently it is used to avoid

needless recomputing. However, in the context of �xpoint computation described in this paper, its

main use is to store - possibly incomplete - results obtained from an earlier round of iteration. An

entry in the memo table has at least �elds: subgoal, its projected call substitution (�) and its projected

success substitution (�

0

). Additional �elds can be used to characterize the information in this entry

(Sections 5 and 6).

3 A Naive Approach to Top-Down Fixpoint Computation

Informally, this approach can be described as follows. Start with an empty memo table with three

�elds: subgoal, � and �

0

. Using the call substitution of the query, the construction of the abstract and-

or tree is started. For a general subgoal p, given its call substitution �

call

, � is computed by projecting

�

call

onto p. If there is an entry in the memo table for p (modulo renaming of variables) and the

same �, then the value of �

0

is obtained from this entry. Else, a subtree for this node is started by

computing the entry substitutions for all clauses whose heads unify with p. The exit substitutions for

these clauses are then computed and from these, �

0

is computed. This is the broad picture. However,

there are some �ner points that need to be explained in detail.

Firstly, the procedure described above needs to be repeated until �xpoint is reached for the abstract

and-or tree, i.e. until it remains the same before and after one round of iteration. In order to do this,

we could keep two memo tables, one from the past iteration (old memo table) and one for the current

iteration (current memo table). Secondly, we need to use a ag to signal the termination of �xpoint

computation.

The old memo table is empty when we start the �rst iteration. Between the end of one iteration

and the beginning of another, the old memo table is emptied, the contents of the current memo table

are transferred to the old memo table and thus the current memo table is \emptied". For a subgoal p

with a projected call substitution �, if there is no entry in the current memo table, then it is checked

if there is an entry in the old memo table. If there is such an entry, then it is copied on to the current

4

memo table. Else, a new entry is added (p,�, ?) to the current memo table. After this step, the

subtree computation for p is started. When this computation is over, the old value of the projected

success substitution �

0

in the current memo table replaced with the new value. If there is a change in

this value, then a ag which signals the end of �xpoint computation is set to false. Else, its value is

not changed. Before the beginning of every iteration, this ag is set to true.

This procedure can be optimized further. Classify each predicate as follows: If it is recursive, call

it a changing predicate. If it is non-recursive, call it non-changing i� it does not have any changing

predicates as one of its subgoals. Otherwise, call it a changing predicate. This can be illustrated with

the following example:

p(0).

p(X) :- q(X,Y),p(X).

q(X,Y) :- Y is X-1.

r(X) :- p(X),write(X).

Here, p(X) is classi�ed as changing since it is a recursive predicate. Also, r(X) is classi�ed as

changing even though it is a non-recursive predicate, since one of its clauses has a changing predicate

i.e. p(X) in its body. The predicate q(X,Y) is classi�ed as non-changing since it is non-recursive and

it does not have a clause whose body contains a changing predicate.

The idea behind this classi�cation is as follows: After the �rst iteration, there is no need to

recompute the subtree for a non-changing subgoal s with a projected call substitution � if it already has

an entry in the old memo table. This is because it is a non-recursive predicate and all the descendents

in its sub-tree are also non-recursive, Hence the value of �

0

for this subgoal, once computed, does not

change with each subsequent iteration. Consequently, the value of �

0

from the old memo table can

be copied on to the current memo table and the subtree computation for this subgoal need not be

started. Thus this optimization helps to avoid needless recomputation.

Following is a formal version of this algorithm in pseudo-pascal format. It is assumed that, for the

given abstract domain procedures for the following procedures are given:

2

� call to entry(Lambda,Subgoal,Clause,Beta entry): i.e. given the projected call substitu-

tion for Subgoal and a clause whose head uni�es with Subgoal, this procedure computes the

entry substitution Beta entry for this clause.

� exit to success(Beta exit,Subgoal,Clause,Lambda,Lambda prime): i.e. given the exit sub-

stitution Beta exit for Clause, compute the projected success substitution of Subgoal from this

clause.

� lub(List of abstract substitutions,Their lub): This procedure computes the lub of a

given list of abstract substitutions.

procedure fixpoint_compute(program,query,call_subst)

2

The algorithms presented in sections 4, 5 and 6 also make use of these procedures.

5

begin

classify each predicate of the program as ``changing'' or ``non-changing'';

current_memo_table := nil;

repeat

flag := true;

old_memo_table := current_memo_table;

current_memo_table := nil;

call_to_success(program,query,call_subst,success_subst,old_memo_table,

current_memo_table,flag);

until flag = false;

end.

procedure call_to_success(program,subgoal,call_subst,success_subst,

old_memo_table,current_memo_table,flag)

begin

project call_subst on subgoal to obtain lambda;

if there is an entry in the current_memo_table corresponding to

(subgoal,lambda), then

get the value of lambda_prime from this entry;

else if subgoal is ``non-changing'' and there is an entry in the

old_memo_table corresponding to (subgoal,lambda), then

copy that entry i.e. (subgoal,lambda,lambda_prime) to the

current_memo_table;

else if subgoal is ``changing'' and there is an entry in the

old_memo_table corresponding to (subgoal,lambda), then

copy that entry i.e. (subgoal,lambda,old_lambda_prime) to the

current_memo_table;

lambda_to_lambda_prime(program,subgoal,lambda,lambda_prime,

old_memo_table,current_memo_table,flag);

if (lambda_prime <> old_lambda_prime) then

flag := false;

endif;

else /* there is no entry for (subgoal,lambda) either in the old

or in the current_memo_table */

create a new entry (subgoal,lambda,bottom) in the current_memo_table;

lambda_to_lambda_prime(program,subgoal,lambda,lambda_prime,

old_memo_table,current_memo_table,flag);

if (lambda_prime <> bottom) then

flag := false;

endif;

6

endif;

compute success_subst from lambda_prime and call_subst;

end;

procedure lambda_to_lambda_prime(program,subgoal,lambda,lambda_prime,

old_memo_table,current_memo_table,flag)

begin

lambda_prime := bottom;

for each clause whose head unifies with subgoal do

call_to_entry(lambda,subgoal,clause,beta_entry);

if clause has a nil body then

beta_exit := beta_entry;

else

entry_to_exit(beta_entry,clause_body,beta_exit,

old_memo_table,current_memo_table,flag);

endif;

exit_to_success(beta_exit,subgoal,clause,lambda,clause_lambda_prime);

lambda_prime := LUB of lambda_prime and clause_lambda_prime;

replace the entry corresponding to (subgoal,lambda) with the

entry (subgoal,lambda,lambda_prime) in the current_memo_table;

od;

end;

procedure entry_to_exit(beta_entry,clause_body,beta_exit,

old_memo_table,current_memo_table,flag)

begin

call_subst := beta_entry;

for each subgoal in clause_body (from left to right) do

call_to_success(program,subgoal,call_subst,success_subst,

old_memo_table,current_memo_table,flag);

call_subst := success_subst;

od;

beta_exit := success_subst;

end;

3.1 Drawbacks of this approach

Though the algorithm presented in this section is simple and it avoids some recomputation, it is

still quite ine�cient. For example, consider a program which has two changing predicates, p and q.

Assume further that p reaches its �xpoint in the �rst iteration itself but q reaches its �xpoint only after

7

p

q

p reaches
fixpoint

p

q

(b) Second & Third Iterations(a) First Iteration

q reaches
fixpoint
during 3rd
iteration

query query

needless
recomputation
of p’s subtree

Figure 2: Abstract and-or trees for the three iterations

three iterations. Hence, three iterations are required before �xpoint is reached for the whole program.

Even though �xpoint has been reached for p during the �rst iteration (�gure 2(a)), its subtree will be

explored during the second and the third iterations (�gure 2(b)). This is clearly unnecessary leading

to wasted work.

This problem arises because �xpoint computation is done for the whole program rather than just for

the recursive predicates. The solution to this problem seems to be to localize the �xpoint computation

for a predicate. We investigate such an approach in the next section.

4 An Algorithm Which Localizes Fixpoint Computation

In this section we develop an algorithm which seeks to localize the �xpoint computation for a recursive

predicate. Naturally, before the construction of the abstract and-or tree is begun, the predicates of

the program are classi�ed as recursive or non-recursive. In this algorithm, there is only one memo

table.

Briey, the central idea of this algorithm is as follows. Start with the query and its call substitution.

For a given subgoal p and its projected call substitution �, if it has an entry in the memo table, the

value of �

0

can be used from this entry and there is no need to start the computation of a subtree

for this subgoal. If there is no such entry in the memo table, the construction of its sub-tree is

started by computing the entry substitutions of all clauses whose heads unify with p. If p is a non-

recursive subgoal, then the exit substitutions from these clauses are \lubbed" and p's projected success

substitution �

0

is computed using this value.

If p is a recursive subgoal, then �xpoint computation is started for p's subtree. A ag which signals

the completion of this �xpoint computation is initialized to true. A new entry is created in the memo

table with the values of p and �. The value of �

0

in this entry is initialized to ?. For each clause whose

head uni�es with p, computation of a subtree is started. After the computation of the exit substitution

for this clause, the projected success substitution due to this clause is computed and is lubbed with

the old value of �

0

to give its new value. If this is di�erent from the old value, then the value of ag

is changed to false. Else, its value is not changed. After the computation of subtrees for all clauses is

8

completed, then the value of ag is examined. If its value is true, then �xpoint computation for p is

over. Otherwise, it is restarted by changing the value of ag to true and recomputing the subtrees for

all clauses for p.

Following is a formal version of this algorithm in pseudo-pascal format:

procedure compute_abstract_and_or_tree(program,query,call_subst)

begin

classify each predicate of the program as ``recursive'' or ``non-recursive'';

memo_table := nil;

call_to_success(program,query,call_subst,success_subst,memo_table);

end.

procedure call_to_success(program,subgoal,call_subst,success_subst,memo_table)

begin

project call_subst on subgoal to obtain lambda;

if there is an entry in the memo table corresponding to (subgoal,lambda), then

get the value of lambda_prime from this entry;

else if subgoal is ``non-recursive'', then

lambda_to_lambda_prime(program,subgoal,lambda,lambda_prime,memo_table);

record the entry (subgoal,lambda,lambda_prime) in the memo table;

else /* need to do fixpoint computation since subgoal is recursive */

create a new entry (subgoal,lambda,bottom) in the memo table;

fixpoint_compute(program,subgoal,lambda,lambda_prime,memo_table);

endif;

compute success_subst from lambda_prime and call_subst;

end;

procedure lambda_to_lambda_prime(program,subgoal,lambda,lambda_prime,memo_table)

begin

lambda_prime := bottom;

for each clause whose head unifies with subgoal do

call_to_entry(lambda,subgoal,clause,beta_entry);

if clause has a nil body then

beta_exit := beta_entry;

else

entry_to_exit(beta_entry,clause_body,beta_exit,memo_table);

endif;

exit_to_success(beta_exit,subgoal,clause,lambda,clause_lambda_prime);

lambda_prime := LUB of lambda_prime and clause_lambda_prime;

od;

end;

9

procedure fixpoint_compute(program,subgoal,lambda,lambda_prime,memo_table)

begin

lambda_prime := bottom;

repeat

flag := true;

for each clause whose head unifies with subgoal do

call_to_entry(lambda,subgoal,clause,beta_entry);

if clause has a nil body then

beta_exit := beta_entry;

else

entry_to_exit(beta_entry,clause_body,beta_exit,memo_table);

endif;

exit_to_success(beta_exit,subgoal,clause,lambda,clause_lambda_prime);

old_lambda_prime := lambda_prime;

lambda_prime := LUB of old_lambda_prime and clause_lambda_prime;

if (lambda_prime <> old_lambda_prime) then

flag := false;

replace the entry corresponding to (subgoal,lambda) with

the entry (subgoal,lambda,lambda_prime) in the memo table;

endif;

od;

until flag = true;

end;

procedure entry_to_exit(beta_entry,clause_body,beta_exit,memo_table)

begin

call_subst := beta_entry;

for each subgoal in clause_body (from left to right) do

call_to_success(program,subgoal,call_subst,success_subst,memo_table);

call_subst := success_subst;

end;

beta_exit := success_subst;

end;

4.1 Error in this algorithm

The algorithm just described is incorrect. Consider a program which has two mutually recursive

predicates p and q. Without loss of generality, assume that �xpoint computation for p was started

�rst. The subtree for p contains a node for q since they are mutually recursive. Now, it is possible

that the subtree for q contains a node for p with the same � as the ancestor node for p (See �gure

10

λ p λ′

λ p λ′

δ q δ′

Figure 3: Mutual recursion

3). Consider the following scenario. During the �rst round of �xpoint computation for p, �xpoint

computation for q is also started. This �xpoint computation for q involves using an approximate

value of �

0

for p from the memo table. After �xpoint computation for q is over, the memo table is

appropriately updated. But this entry is not complete since it has used an approximate value of �

0

for p. Assume that it takes at least two rounds of iteration to reach �xpoint for p. During the second

round of the subtree exploration for p, the subtree for q is not explored, since it has an entry in the

memo table already. This results in an approximate value for the value of �

0

for q, and consequently

for p, in the memo table. Hence this algorithm is incorrect.

The solution to this problem seems to be to characterize each entry in the memo table as approx-

imate or complete. In the next section, we investigate such a solution.

5 Re�nement #1

The algorithm in this section uses a memo table which, in addition to the three �elds: subgoal, � and

�

0

, uses a fourth �eld to characterize the value of �

0

and a �fth �eld for the node ID of subgoal. The

three values used to characterize �

0

and their meanings are as follows:

� �xpoint: �xpoint has not been reached for subgoal in this entry and hence this value of �

0

is not

complete.

� approximate: �xpoint has been reached for the subgoal (q) in this entry but, in doing so, it has

used a possibly incomplete value of the projected success substitution of some other subgoal (p)

from the memo table. p occurs in the subtree for q. Hence this value of �

0

is incomplete.

� complete: �xpoint has been reached for this subgoal and the value of �

0

is complete.

In order to detect occurrences of mutual recursion (i.e. as in �gure 3), we need to introduce node

IDs for recursive subgoals. The IDs are used as follows: When �xpoint computation is started for a

predicate q, it is assigned a unique ID. A set variable called subtree ids[q] is initialized to ;. While

�xpoint computation is in progress for this predicate, suppose a value from the memo table is used for

11

�

0

of a subgoal p and this value is characterized as �xpoint. Then the node ID for p is added to the set

subtree ids[q]. After the �xpoint computation for q is over, this set variable is examined. If it contains

any other ID in addition to the ID for q, then the same situation as in �gure 3 has occurred, i.e. q is

mutually recursive with another predicate. Hence the value of �

0

computed for q is characterized as

approximate. On the other hand, if the variable subtree ids[q] contains only the node ID for q, then

this entry in the memo table is characterized as complete.

Consider the following scenario. We are in the middle of �xpoint computation for a subgoal p. In

its subtree, we encounter a subgoal q which has an entry in the memo table for its �. If this entry

is characterized as complete, then the value of �

0

from this entry can be used for q. If it is labeled

as �xpoint,again, the value of �

0

from this entry can be used for q. But this time, the node ID for

q is added to subtree ids[p]. On the other hand, if it is characterized as approximate, then the same

situation as in �gure 3 has occurred and �xpoint computation for q has to be started again.

Following is a formal version of the algorithm in pseudo-pascal format. The following procedures are

essentially the same as in section 4 and are therefore not repeated: compute abstract and or tree,

lambda to lambda prime.

procedure call_to_success(program,subgoal,call_subst,success_subst,

memo_table,in_set,out_set)

begin

project call_subst on subgoal to obtain lambda;

if there is an entry in the memo table corresponding to (subgoal,lambda), then

if this entry is characterized as ``complete'', then

get the value of lambda_prime from this entry;

out_set := in_set;

else if this entry is characterized as ``fixpoint'',

get the value of lambda_prime from this entry;

out_set := in_set + ID for subgoal;

else /* this entry is characterized as ``approximate'' */

replace this entry from the memo table with the same values of

(subgoal,lambda,lambda_prime) but with the label ``fixpoint'';

fixpoint_compute(program,subgoal,lambda,lambda_prime,

memo table,in_set,out_set);

endif;

else if subgoal is ``non-recursive'', then

lambda_to_lambda_prime(program,subgoal,lambda,lambda_prime,memo_table);

out_set := in_set;

record the entry (subgoal,lambda,lambda_prime,complete,ID)

in the memo table;

else /* need to do fixpoint computation since subgoal is recursive */

create a new entry (subgoal,lambda,bottom,fixpoint,ID) in the memo table;

fixpoint_compute(program,subgoal,lambda,lambda_prime,memo_table,in_set,out_set);

12

endif;

compute success_subst from lambda_prime and call_subst;

end;

procedure fixpoint_compute(program,subgoal,lambda,lambda_prime,memo_table,

in_set,out_set)

begin

get the value of lambda_prime from the entry in memo table for this subgoal;

subgoal_outset := {};

repeat

flag := true;

for each clause whose head unifies with subgoal do

call_to_entry(lambda,subgoal,clause,beta_entry);

if clause has a nil body then

beta_exit := beta_entry;

else

entry_to_exit(beta_entry,clause_body,beta_exit,memo_table,{},clause_outset);

endif;

exit_to_success(beta_exit,subgoal,clause,lambda,clause_lambda_prime);

old_lambda_prime := lambda_prime;

lambda_prime := LUB of old_lambda_prime and clause_lambda_prime;

if (lambda_prime <> old_lambda_prime) then

flag := false;

replace the entry corresponding to (subgoal,lambda) with the

entry (subgoal,lambda,lambda_prime,fixpoint,ID) in the memo table;

endif;

subgoal_outset := subgoal_outset + clause_outset;

od;

until flag = true;

if (subgoal_outset - {ID for subgoal}) = {}, then

label := complete;

else

label := approximate;

endif;

replace the entry for (subgoal,lambda) with the new

entry (subgoal,lambda,lambda_prime,label,ID);

out_set := in_set + (subgoal_outset - {ID for subgoal});

end;

procedure entry_to_exit(beta_entry,clause_body,beta_exit,memo_table,in_set,out_set)

13

λ p λ′

λ p λ′

δ q δ′

δ q δ′

λ p λ′

q’s subtree is needlesssly
explored again because
q’s entry in the memo table
is still labeled as "approximate"

query

Figure 4: Ine�ciency in Re�nement #1

begin

call_subst := beta_entry;

i_set := in_set;

for each subgoal in clause_body (from left to right) do

call_to_success(program,subgoal,call_subst,success_subst,memo_table,

i_set,o_set);

call_subst := success_subst;

i_set := o_set;

od;

beta_exit := success_subst;

out_set := o_set;

end;

5.1 Drawbacks of this approach

This algorithm can be improved further. Consider the same scenario as in �gure 3 i.e. there are two

mutually recursive predicates p and q. Fixpoint computation is started for p �rst. While doing this,

�xpoint computation is started for q too. However, since this �xpoint computation uses an incomplete

value of �

0

for p, the entry for q in the memo table is labeled approximate. The consequence of this

is that, during subsequent iterations for p, the subtree for q is explored every time. After each one of

these �xpoint iterations is completed for q, its entry in the memo table is labeled approximate. After

the last round of iteration for p is over, its entry in the memo table is labeled complete but the entry

for q is still labeled approximate even though it has used a complete value of �

0

for p. Now suppose

that further computation of the abstract and-or tree entails computation of �

0

for q again (See �gure

4). Since the entry for q is still labeled approximate, its subtree will be explored again. This is clearly

unnecessary and makes this algorithm ine�cient. In the next section, we develop a modi�cation of

this algorithm which overcomes this drawback.

14

6 Final Re�nement

The algorithm presented in this section overcomes the above drawback by doing some book-keeping.

Consider �gure 4 again. Every time after �xpoint is reached for q, the variable subgoal outset is

examined. In this case, it contains the IDs for p and q. Every ID other than that of q is added to a new

variable depend list i.e. depend list[q] := p. When �xpoint computation for p is �nally over, the

depend lists of all nodes are examined to check if the ID for p occurs in them. Since depend list[q]

satis�es this criterion, the label for entry for q in the memo table is changed to complete, if its value

is approximate.

Following is a formal version of this algorithm in pseudo-pascal format. Except the procedure for

fixpoint compute, the other procedures are the same as in section 5 and are therefore not repeated.

procedure fixpoint_compute(program,subgoal,lambda,lambda_prime,memo_table,

in_set,out_set)

begin

get the value of lambda_prime from the entry in memo table for this subgoal;

subgoal_outset := {};

repeat

/* same as the body of the repeat-until loop for

fixpoint_compute in the Refinement #1 algorithm */

until flag = true;

if (subgoal_outset - {ID for subgoal}) = {}, then

label := complete;

for each Pid such that (ID for subgoal) occurs in depend_list[Pid] do

remove (ID for subgoal) from depend_list[Pid];

if depend_list[Pid] = {}, then

change the label for the entry for Pid from ``approximate'' to ``complete'';

end;

else

label := approximate;

depend_list[ID for subgoal] := subgoal_outset - {ID for subgoal};

endif;

replace the entry for (subgoal,lambda) with the new

entry (subgoal,lambda,lambda_prime,label,ID);

out_set := in_set + (subgoal_outset - {ID for subgoal});

end;

We have implemented this algorithm as part of the abstract interpreter for the &-prolog system

[5] at MCC. Appendix A contains the results of running this interpreter on an example program.

15

7 Outline of the proof of correctness of the �nal version of the �x-

point algorithm

In [11], we had given an outline of proof of correctness of this algorithm. We repeat it here for the

sake of keeping this paper self-contained. We are working on a formal proof of correctness and plan

to report it in future.

Proposition 1 Given the following:

� an abstract domain that satis�es the conditions:

{ that the number of distinct (modulo renaming of variables) abstract substitutions for a clause

is �nite,

{ that they form a lattice with respect to a given partial order

� correct, terminating procedures to compute the following:

{ abstract entry substitution �

entry

for a clause C given the abstract call substitution �

call

of

a subgoal sg which uni�es with the head of C

{ abstract success substitution for a subgoal sg given its abstract call substitution and the

abstract exit substitution of a clause C whose head uni�es with sg

{ LUB of two abstract substitutions (of the same clause)

the �xpoint computation algorithm described above correctly computes the abstract AND-OR tree (i.e.,

the abstract substitutions at all points) for a given program and goal. Also, it terminates for all inputs.

Proof (Sketch): The correctness of this algorithm follows from:

� the fact that it computes the abstract projected success substitution �

0

of a subgoal sg as the

LUB of the abstract projected success substitutions �

0

i

computed from the clauses C

i

, where

C

i

; i = 1; : : : ; n are all clauses whose heads unify with sg.

� the fact that if an atom sg with the same projected call substitution (�) (modulo renaming of

variables) appears in di�erent nodes of the tree, it has the same value for the projected success

substitution (�

0

) at these nodes

Termination: When the given program has no recursive predicates, it is clear that this algorithm

terminates since it builds the abstract AND-OR tree in a top-down fashion and that tree cannot have

two nodes with the same atom and projected call substitution (modulo renaming of variables), with

one node being the descendent of the other.

When the given program has recursive predicates, the termination of this algorithm follows from:

� the fact that the subtree of a node with a recursive predicate p is �nite. Since p can only

have a �nite number of distinct call substitutions, the subtree can only have a �nite number of

occurrences of nodes who have a variant of p and which themselves have subtrees. All other nodes

16

with p as their predicates use the approximate value of the projected success substitution from

the memo table (since they have an ancestor with the same atom and projected call substitution

(modulo renaming of variables)) and hence do not have any descendent nodes.

� given that the subtree of a node with a recursive predicate p is �nite, it is easy to see that the

complete construction of this subtree takes only a �nite number of steps. Broadly speaking, the

construction of this tree proceeds as follows: First the approximate value of the projected success

substitution is computed as the LUB of the projected success substitutions computed from p's

non-recursive clauses. Then the sub-tree is dynamically traversed in a depth-�rst manner and

we return to the root of the subtree. At this time, the value of the projected success substitution

is updated as the LUB of the old value and the value computed from p's recursive clauses.

If there is a change in this value, then the dynamic depth-�rst traversal is continued again. Note

that this \looping" through the depth-�rst traversal can take place only a �nite number of times,

since the LUB operation is obviously monotonic and the abstract substitutions for a clause form

a �nite lattice and so the �xpoint will be reached in a �nite number of steps.

If there is no change in the value of the projected success substitution for this node, then its

subtree is complete and so we have reached the end of �xpoint computation for this node.

2

8 Conclusions and Future Work

We started with a naive algorithm for �xpoint computation for top-down abstract interpretation of

logic programs and presented a series of re�nements to this algorithm. We have provided an informal

proof of correctness of the �nal algorithm and shown the results of running the implementation of this

algorithm on an example. The results of running this program on several examples are encouraging in

that the abstract interpreter is fast enough to be cost-e�ective. We are working on a formal proof of

correctness of this algorithm and we plan to report on its performance on various benchmark programs

in the future.

References

[1] M. Bruynooghe. A Framework for the Abstract Interpretation of Logic Programs. Technical

Report CW62, Department of Computer Science, Katholieke Universiteit Leuven, October 1987.

[2] P. Cousot and R. Cousot. Abstract Interpretation: a Uni�ed Lattice Model for Static Analysis

of Programs by Construction or Approximation of Fixpoints. In Fourth ACM Symposium on

Principles of Programming Languages, pages 238{252, 1977.

[3] S. K. Debray and D. S. Warren. Automatic Mode Inference for Prolog Programs. Journal of

Logic Programming, 5(3):207{229, September 1988.

17

[4] S. W. Dietrich. Extension Tables: Memo Relations in Logic Programming. In Fourth IEEE

Symposium on Logic Programming, pages 264{272, September 1987.

[5] M. Hermenegildo and K. Greene. &-Prolog and its Performance: Exploiting Independent And-

Parallelism. In 1990 International Conference on Logic Programming, pages 253{268. MIT Press,

June 1990.

[6] D. Jacobs and A. Langen. Accurate and E�cient Approximation of Variable Aliasing in Logic

Programs. In 1989 North American Conference on Logic Programming. MIT Press, October 1989.

[7] N. Jones and H. Sondergaard. A semantics-based framework for the abstract interpretation of

prolog. In Abstract Interpretation of Declarative Languages, chapter 6, pages 124{142. Ellis-

Horwood, 1987.

[8] H. Mannila and E. Ukkonen. Flow Analysis of Prolog Programs. In Fourth IEEE Symposium on

Logic Programming, pages 205{214, San Francisco, California, September 1987. IEEE Computer

Society.

[9] A. Marien, G. Janssens, A. Mulkers, and M. Bruynooghe. The Impact of Abstract Interpretation:

an Experiment in Code Generation. In Sixth International Conference on Logic Programming,

pages 33{47. MIT Press, June 1989.

[10] C.S. Mellish. Abstract Interpretation of Prolog Programs. In Third International Conference on

Logic Programming, number 225 in LNCS, pages 463{475. Springer-Verlag, July 1986.

[11] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence Information at

Compile-Time Through Abstract Interpretation. Technical Report ACA-ST-232-89, Microelec-

tronics and Computer Technology Corporation (MCC), Austin, TX 78759, March 1989.

[12] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence Information at

Compile-Time Through Abstract Interpretation. In 1989 North American Conference on Logic

Programming, pages 166{189. MIT Press, October 1989.

[13] T. Sato and H. Tamaki. Enumeration of Success Patterns in Logic Programs. Theoretical Com-

puter Science, 34:227{240, 1984.

[14] A. Waern. An Implementation Technique for the Abstract Interpretation of Prolog. In Fifth Inter-

national Conference and Symposium on Logic Programming, pages 700{710, Seattle,Washington,

August 1988.

[15] R. Warren, M. Hermenegildo, and S. Debray. On the Practicality of Global Flow Analysis of

Logic Programs. In Fifth International Conference and Symposium on Logic Programming, pages

684{699, Seattle, Washington, August 1988. MIT Press.

18

A Implementation Results

In this section, we present the results of running an implementation of an abstract interpreter which

uses the �nal version of the �xpoint algorithm discussed in section 6. The goal of this abstract inter-

preter is to infer the groundness and independence of program variables so that run-time groundness

and independence checks can be eliminated for an Independent And-Parallel execution of a given logic

program.

Details of the abstract domain used for this abstract interpreter can be found in [12]. However,

we give a brief description of this abstract domain here to make this paper self-contained. The

motivation behind this abstract domain is that abstract substitutions based on it should provide the

sharing information between the sets of terms to which program variables are bound.

The abstract substitution for a clause is de�ned to be a set of sets of program variables in that

clause. Informally, a set of program variables appears in the abstract substitution if the terms to

which these variables are bound share a variable. For example, if a clause has two program variables

X and Y , the value of an abstract substitution for this clause may be ffXg; fX;Y gg. This abstract

substitution corresponds to a set of substitutions in which X and Y are bound to terms t

X

and t

Y

such that (1) at least one variable occurs in both t

X

and t

Y

(represented by the element fX;Y g) and

(2) at least one variable occurs only in t

X

(represented by the element fXg).

Following is an example program (quicksort using di�erence lists):

:- qmode(qsort(Xs,Ys,[]),[[Ys]]). %% query and its call substitution

qsort([],A,A).

qsort([C|D],A,B) :-

partition(D,C,E,F),

qsort(F,G,B),

qsort(E,A,[C|H]),

G=H.

partition([],_,[],[]).

partition([C|D],A,B,[C|E]) :-

C > A,!,

partition(D,A,B,E).

partition([C|D],A,[C|E],B) :-

C =< A,

partition(D,A,E,B).

The results of running the abstract interpreter on this program are presented in table 1. Basically,

the output contains the abstract substitutions at all points of the clauses which have been used for

building the abstract and-or tree for the given query. Lists are used in the place of sets for abstract

substitutions. The �rst column gives the position of a subgoal within a clause i.e. partition/4/2/1

19

Position within clause Subgoal Abstract call substitution

partition/4/2/1 C>A [[B],[E]]

partition/4/2/2 partition(D,A,B,E) [[B],[E]]

partition/4/3/1 C=<A [[B],[E]]

partition/4/3/2 partition(D,A,E,B) [[B],[E]]

qsort/3/2/1 partition(D,C,E,F) [[A],[B],[E],[F],[G],[H]]

qsort/3/2/2 qsort(F,G,B) [[A],[B],[G],[H]]

qsort/3/2/3 qsort(E,A,[CjH]) [[A],[B,G],[H]]

qsort/3/2/4 G=H [[A,H],[B,G]]

Table 1: Results of abstract interpretation for the quicksort program

refers to the �rst subgoal for the second clause of partition/4. The second column gives the subgoal

itself and the third column its abstract call substitution.

20

