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Abstract

Although studies of a number of parallel implementations of logic progriagitanguages are now available,
their results are difficult to interpret due to the multiplicity of factors involvees effect of each of which is
difficult to separate. In this paper we present the results of a high4awellation study of or- and independent
and-parallelism with a wide selection of Prolog programs that aims to detertimnintrinsic amount of paral-
lelism, independently of implementation factors, thus facilitating this separatdmexpect this study will be
instrumental in better understanding and comparing results from actplrmntations, as shown by some ex-
amples provided in the paper. In addition, the paper examines someisdties and tradeoffs associated with the
combination of and- and or-parallelism and proposes reasonable sslbaged on the simulation data obtained.

Keywords: Logic Programming, Simulation, Or-Parallelism, And-Patesm, Combining Par-
allelism

1 Introduction

There has been considerable research interest in the itypdicllel execution of logic pro-
grams, resulting in the proposal of many execution modelthénliterature (for example,
[18,141,/ 52, 48| 6, 45, 29, 46, 15, 2,13, 37, 34} 60, 56, 30, 8286(), Many of these pro-
posals have been implemented, with some associated respiited, and of these, some now
approach sequential Prolog in stability and usability, levlailso providing good performance
improvements.

This paper is an extended and updated versidn 6f [63]. Therigéiens in various parts of the paper have been extendsdgescriptions,
such as the discussion of speculative scheduling have bekmléed; finally, new results are presented: some more progresrstudied, and
results for Aurora and Muse are provided, along with newlte$ar &-Prolog.

§Most of the work reported in this paper was carried out whils author was at: Computer Laboratory, Cambridge Universigy



The main reason for the above mentioned interest is that wiglicit parallelism, logic
programming can maintain its advantages (in ease of pragmgj etc), while gaining the
performance benefits of parallelism. In this way, the additf parallelism does not add sig-
nificantly to the complexity of programming, as logic pragwaing separates the specification
of the problem (the “logic”) from (at least the lower levegtdils of the control of execution,
which can be relatively transparent to the programmer.

The different proposals for parallel execution of Prologesdially specify different meth-
ods of parallelising the control. They differ in the type @rallelism they exploit, and also
to the way the exploitation of such parallelism is impleneeht They can lead to very differ-
ent execution schemes, with varying effectiveness in etitrg and exploiting parallelism in
programs.

Performance results have been presented to date for a godzenof proposals. However, it
is generally difficult to interpret such results. Firstlyetstudies have understandably tended to
concentrate on programs that are reasonably suited topgkefyparallelism being exploited. It
seems important to have a broader view of the nature andhbildy of the parallelism across
a more representative set of programs. Secondly, and perhape importantly, most of the
published results reflect the combined effects of at leastfagtors: thenherentamount of
parallelism in the benchmarks used with respect to the l{gke) model of parallelism under
consideration, and the (lower level) impact of the impletagan itself. Ideally these two
factors should be separated. In fact, most performancéesthdve concentrated on studying,
analysing, or optimising the low level factors. Compardjivitle effort has been devoted to
the equally important task of determining the impact of tighbr level factors. We believe
that the lack of understanding of such factors can easily feanisleading conclusions when
interpreting the results from actual implementations. rdllgj and finally, most of the results
published to date are relatively specific to the variousesystproposed, and provide either few
comparisons or comparisons with only other very similatays, which make it difficult to
abstract the results away from the particular system uniddys

In this paper, we present a high-level simulation study efamount, characteristics, and
inter-relationship of the two most common forms of par&lel exploited in many of the ap-
proaches, or- and (independent) and-parallelism, in a sadiection of Prolog programs, from
simple benchmarks to medium-sized applications. Prolapadsen as it is by far the most pop-
ular logic programming language, has recently been stdissat, and is also the most popular
candidate for implicit parallelisation.

The simulation approach provides a measure of the ideaharamt amount of parallelism
which is largely independent of implementation effects.rtii@rmore, a simulation study is
more flexible than studies associated with real implememtst as a simulation is not con-
strained by the available hardware (e.g. the number of pemrs in a parallel system) and,
unlike a real implementation, results are not perturbed Biing measurements. In addition,



the results are potentially applicable across a wide rahgpproaches. Thus, in addition to al-
lowing better understanding of each approach, the resafide also used to compare different
approaches which would otherwise be difficult to compare.

Before discussing our study further, we first present a bmigbduction to the forms of par-
allelism available in a Prolog program, followed by a dissas of related work. A discussion
of the model of parallelism simulated in the simulator falfo We then expand on our stated
objective of studying the nature of the parallelism, andcdbs the simulation tools. A de-
scription of the experiments performed and results obthiméllowed by a discussion of these
results. Comparisons of the simulated results with someiegisystems are then given, and,
finally, future work is discussed. Throughout this discossie assume some familiarity with
Prolog and logic programming — it is beyond the scope of thisgr to give a detailed intro-
duction to Prolog except to give the definitions of the termmesclin this paper. The readers are
referred to textbooks such as [16] 68] for a good introductmothe language.

1.1 Summary of Prolog

The section gives a very brief overview of some of the logmgoamming related terminology
that will be used in this paper. The definitions are not desilgo be detailed, formal or precise.
Rather, they serve only to introduce the terms and give sogagaflhow they are used.

In Prolog, the execution of a program can be regarded as agsaf finding zero, one or
more proofs to a supplieduery with respect to the program. A Prolog program consists of
predicates each of which consists of one or markause A clause consists of head and a
body. The head consists of a goal (referred to &a&ad goa), and the body consists of zero or
more goals (each of which are referred to dsody goal A goalis the basic unit from which
Prolog program is composed. A query also consists of one oe guals.

The basic unit of computation in Prolog is tresolution, which consists of thenification
of a query goal with a head goal of a clause from the progranchifaine unification is successful,
the addition of the body goals of the clause to the query. thtifbn consists of trying to match
the query goal to a head goal, with possible bindingsr(stantiation of variables in the goal).
If the goals match, the unification succeeds, otherwiselg.fdn general, zero, one or more
clause heads from the program can successfully unify witlheayogoal. Thus, Prolog execution
can be thought of as the exploration cfearch-spacésometimes referred to asaarch-treg.
The search-space consists of the different paths which edallowed in order to find one or
more proofs for the query. Each path consists of a seriesi6tations. More than one path
exist because there can be more than one successful caididaach unification. If there is no
successful candidate to a particular unification, the watifio is said tdail, and the path leads
to no proof. A path leads to a proof when all the query goaleHhmen successfully unified.

In sequential Prolog, the exploration of this search-sgmoeeeds in a depth-first, left-to-
right manner: that is, when there is more than one candidatarfification with a goal, the
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leftmost (textually in the program) is tried first, and, iistsuccessful, then the body goals of
the successful clause are added as the next query goals &gain in a textually left to right
manner. If failure occurs, then the systéacktracks to the last unification where there are
still pending alternative candidates, where the next adtire will be tried.

Prolog is considered to be a declarative language, and Bdgpte calculus as its mathemat-
ical basis. However, in order to make the language prac¢itscahe goals can perform actions
which are outside of the scope of the calculus: these inaadés which perfornside-effects
as part of their executions: e.g. I/O functions and thoseré@uce prune) the search-space
of the program. “Cut” () is the standard sequential pruning operator in Prologs & side-
effecting predicate which removes parts of the searchespalative to the point where the cut
appears. Those parts will then not be explored during theutixa of the program.

1.2 Parallelism in Prolog

In order to make the paper self-contained, we include a disetussion of parallelism in Prolog.
The reader is referred tb [13] for references and a morelddtaverview of the field.

Prolog provides many opportunities for parallel executibhne parallelism can be classified
in many ways, but all classifications contain at least twenf®iof parallelism, which are the
most generally accepted terms: and-parallelism, and @lipasm [17]. In their most general
definition, they include most proposed ways of exploitingaialism in logic programming.
Many classification schemes recognise other forms of disath which are really subclasses of
the above two forms. Here, we will use the following definitiand subdivide and-parallelism
into two subclasses:

Or-parallelism: Or-parallelism arises if potentially more than one pathding the proof(s)
can be tried at the same time. In sequential Prolog, therdiftgpaths are tried sequentially
in textual (i.e. left-to-right) order.

And-parallelism: And-parallelism arises if parts of an attempt at a proof fgabfs) can them-
selves be potentially executed at the same time. And-disati can be further classified
into two types:

¢ independent and-parallelisnonly subproofs which are known to be “independent”
from (i.e. their executions are not affected by) all othdsmoofs that are in the pro-
cess of being executed are allowed to be executed in parallel

e dependent and-parallelisnsubproofs are allowed to execute in parallel even when it
cannot be known in advance that they will not affect eachrotiiete that this doesot
mean that they will affect each other: for example, they mag but to be indepen-
dent. In fact, it is possible to devise schemes which en$iateetven those subproofs



that are really dependent will not affect each other (fomepde, [56/62]). The im-
portant difference with respect to independent and-pelisih is that the execution
of such subproofgan overlap in time. Thus, from this point of view, independent
and-parallelism can be seen as a special case of dependepaaailelism.

In this study, we analysed what are currently the two most-esthblished and frequently
exploited forms of parallelism: or-parallelism, and indadent and-parallelism at the goal level
(i.e. where the sub-proofs being executed in parallel spoad to whole Prolog goals). Goals
are considered to be independent if they do not share unbarables, because instantiation
of unbound shared variables is the only way one goal cantadfeather. In addition, we also
consider “non-strict” independent and-parallelism [36,/36], where some goals which share
variables are also considered independent because thégonee conditions which ensure that
they do not affect each other’s execution.

Other forms of and-parallelism are possible, but most atteeeivery dependent on the
approach being taken and thus difficult to generalise (eegeddent and-parallelism), (inter-
esting) sub-cases of the previously mentioned forms ofgardielism (e.g. data-parallelism
[8,50,[32]), or they exploit parallelism at a lower levelgeunification parallelism, pipeline
parallelism), which in general can only give a relativelyiled speedup to programs [67, 5].

Although Prolog provides many opportunities for paradledi actual exploitation of such
parallelism presents many practical problems, includivggroblem of smoothly integrating
the exploitation of the different forms of parallelism. Herthere are many different proposed
approaches.

In our study, we wish to define some high-level model which ynethemes can be ab-
stracted to, to allow the simulation results to be as gelyeaplplicable as possible. A high-
level model of or-parallelism is relatively simple to defirees the ideal or inherent amount
of or-parallelism can be defined as running all alternatiathg in parallel. For independent
and-parallelism, however, the situation is more complelxer€ are two basic issues: what is
understood by “goal independence” and how and when suclp@mdkence is detected and the
corresponding goals scheduled for parallel executiofivéNapproaches to solving each of these
problems are inefficient or even intractable in practice].[22oreover, there is an even more
open issue as to how or-parallelism and and-parallelisnicelbe combined. These issues will
be discussed in Sectiéh 3.

2 Related Work

There are relatively few high-level studies of parallellBgo The following are known to us:
[57,[14,64] 39, 57]. Of these, only Sehr and &{7] studied both or- and independent and-
parallelism. However, the results they presented proviesslinformation than our study, as it



only estimated the maximum ideal speedup (which they calldhtical path times’), without
the number of processors needed to achieve this. This iafitwmis provided by our system,
but in addition we provide the variation of speedups with bemof processors, which is more
important in gauging the performance of real systems, wreseurces are always limited. All
the other high-level studies were of or-parallelism oniyd @ general studied a smaller set of
programs than our study.

Some lower level studies of specific parallel Prolog systeamsalso provide some insights
into the more general higher level issues. The one that isapsrmost closely related to our
work is the study by Fagin and Despalin [23] of their or- ancejmehdent and-parallel Prolog
model, PPP. This work provided one of the earliest studigh@properties of combining the
two forms of parallelism. However, this study was quite $fi@to the PPP model, in which
or-parallelism is quite severely limited under and-pa&lam, and thus the study is not very ap-
plicable to more recent and less restrictive schemes fobaung the parallelism. Furthermore,
we feel that it is important to examine a greater number ofenwealistic programs than was
considered in this study. More recently, one of lus [24] apphed the problem of obtaining
ideal speedups by obtaining the timing information fromuatexecutions (&-Prolog running
sequentially, although other Prologs can be used), andubkmg this timing information to
obtain speedups. Both or- and independent and-parallelisra studied separately, although
not combining the two as in this study. This approach (cdllZ®dA) can produce quite accu-
rate predictions of speedups for many programs, but to sateatethis accuracy is specific to
using the same implementation for which the speedups ang lpeedicted when obtaining the
timings. In addition, its objectives are much more restrectit was not designed as a general
study of characteristics of parallelism.

3 Model of parallelism simulated

We employ interchangeably the widely used termgiofker andagentto refer to the entities
that perform the computation, avork. Parallelism is achieved by allowing several work-
ers/agents to simultaneously explore the search-spacerobaam. Each worker explores the
search-space in much the same way as a sequential Prolaweerdgpth-first, left-to-right.
Generally, each worker will be assigned to a different pathe search-space, and thus the
search-space can be thought of as being divided into “chiwflsub-tree, with each sub-tree
being executed sequentially. Each such sub-tree is referras aask. When a worker finishes
exploring its sub-tree, it may then start on an unexploratl gfathe sub-tree. This process is
referred to asask switching.

As a worker works on a task, opportunities for parallelisem@enerated — i.e. other workers
which are not working can come and “steal” part of the sub-ngsplitting it. Conceptually, the
search-space can be thought of as being annotatecduautttesof parallelism, which generate



a(1) a(2)

b(l) b2) b@B) b(l) b2) b@)

foo :- a(X), b(Y).

a(1). a(2).
b(1). b(2). b(3).

Figure 1: Example execution

available nodesi.e. points where parallelism is possible. Available reoaey be of two types:
available or-nodes andavailable and-nodes Available or-nodes allow goal®f-goals) to
be run in or-parallel, allowing the exploration of more thame possible proof to the goal.
Available and-nodes allow sibling-goals within a clauaad-goalg to be run in and-parallel
with each other, cooperating to find a particular proof.

As stated in the introduction, it is difficult to model indeykent and-parallelism without
making assumptions about the detection and selection i@dsding of the available and-goals.
For this study we selected the restricted and-parallelRAR) rule, first proposed by DeGroot
[21] and refined (by proposing backward semantics and ingargvaph expressions for control-
ling parallelism) by one of us [37]. Parallelism is specifigdgeneralised “Conditional Graph
Expressions” (CGEs) where conditional tests are used tordete whether the goals are to be
executed in parallel or not. The choice of RAP was influencethbyready availability of an
automatic annotator for this type of parallelismI[75} 51] 44d of an actual implementation
(&-Prolog) with which to contrast the results of the simidas.

3.1 Avoiding re-computation

With independent and-parallelism, the opportunity arteggerform less work than in a sequen-
tial system, as each independent and-task need be perfamsecbnly. Consider the example
execution in Figuréll: the program and the search-spacerexpby a sequential execution is
shown. As the goala( X) andb(Y) are independent, they can be executed in and-parallel.
Note that sequentiallyg( Y) is executed twice, one for each branctaéiX) . The execution of
b(Y) is independent of that ai( X) and therefore the two executions are identical. Thus, if
b(Y) is computed once only, and then “reused” in the two branches ¥) , then the amount
of computation performed overall can be reduced. The amolucdmputation saved in such
a scheme can (in theory) be very significant. Reusing such gtatipns is possible even for



sequential systems (e.g. through use of some form of menwidm{49] and, in particular in
Prolog, using all solution predicates), but this would mkeeping the state of computation of
the goal to be reused around, thus consuming memory anddihaag the condition needed
for reuse — independence of the goals — also needs to be el@té&hen exploiting indepen-
dent and-parallelism, the independence is detected glaesaplart of the parallelisation process,
although memory would still need to be set aside for presgrthe state of goals that might
be reused. In the case of a system that combines or- and aaliefigm, there is in princi-
ple no memory disadvantage with preserving the state of thésgand there is the possibility
that the amount of computation might be reduced drasticaliys, reuse of computation may
seem particularly attractive in systems that combine botih @and or-parallelism, and most
early proposals for combining the two forms of parallelisrolude reuse of computation (e.g.
[42,16,29]). These systems differ in how and- and or-pdisiteare exploited and combined,
but for the reusage of computation, essentially each amadligeomputed once (in the example
of Figure[1l,a( X) andb(Y) are each computed once) in and-parallel, and their resoilts ¢
bined to form all the possible combinations of the solutitreg are computed in a sequential
system (6 solutions in the example of Figlie 1). However,dmagback of such a method for
combining independent and-parallelism and or-paratfeisthat it is complicated both for an
actual implementation and a simulation to actually comlireevarious solutions from the and-
goals, and the process of combining the solutions would addheads to any implementation
that supports it. In addition, it is more difficult to suppfull Prolog because it is harder to han-
dle side-effects correctly with respect to sequential ®yokhe reusage of a goal must ensure
that any side-effects of the goal be performed each timedhéig reused. This again increases
the complexity. Therefore, it appears interesting to sthdyw much search-space reduction
goal reusage would obtain in programs.

3.2 Combining the parallelism

In addition to the implementation complexity of reusing ayahls, theunrestrictedcombina-
tion of independent and- and or-parallelism adds both toctrmeeptual and implementation
complexity. An alternative is to restrict parallelism imse way when both types of parallelism
are combined. This leads to simpler schemes, but obviot#hea@xpense of some parallelism.
Examples of such approaches are those of Conery [17], FadiDaspain[[23], and Biswaet
al. [9]. Many other restriction schemes are possible.

In this study, the effects of restricted and unrestrictechlsimations of and- and or-
parallelism were studied using two schemes: in the firstreeh&hich we called “no or-under-
and with goal reusage”, or simply “no or-under-and”, orgdlism is not allowed within and-
parallelism. Reusage of goals as described in the previatissés allowed, which can reduce
the amount of computation performed. The restriction omlelism makes it much simpler to
implement goal reusage, at the expense of parallelism.els¢lsond scheme, which we called



“or-under-and with no goal reusage”, or simply “or-undedg or-parallelism is allowed within
and-parallelism, but with no reusage of goals — goals onra¢ppaths are computed separated
as in sequential Prolog.

no or-under-and, reusage| or-under-and, no reusag

D

| a(1) b(2) | a(1) a(2) b(1) b(2) b(3
b(2) | b(1) b(2) b(3)
b(3)

a(2) (b(1) b(2) b(3) reused

Figure 2: Parallelism in the two schemes

To illustrate the two methods of combining the paralleli@mnsider the example program
of Figure[1l again. Figurle 2 shows how the parallelism wouldianged for the two methods.
For “no or-under-and with goal reusage”,&sX) andb(Y) are to be executed in and-parallel,
they cannot be executed in or-parallel because of theetstrion combining parallelism. Only
one solution (the leftmosta( 1) andb( 1)) is initially executed in parallel (as shown in the
first row of the left side of Figurel2). Backtracking is thendi$e produce the other solutions
of b(Y), one at a time: thus, first, the second alternativebfoY) , b( 2) , is found, producing
the solution:a( 1), b(2);followed by the next solutioa(1), b(3) inthe same way.

As this scheme also has goal reusage, then as each solutituG Y is produced, it is
also stored for later reuse, so when all three alternatif/eég ¥) have been produced, and the
system backtracks again, this time to execute the secoedhalive ofa( X) (a(2)). Once
a( 2) is produced, then as the solutions fY) are already available through reusage, the
three remaining solutiong(2), b(1);a(2), b(2);a(2), b(3))areavailable with-
out having to computb( Y) again.

In the case of “or-under-and with no goal reusagg(’X) andb(Y) can be run in and-
parallel together and, in addition, each goal can run inaselel. Thus, the alternativeg 1)
anda( 2) would be generated in parallel. With no goal reusage, tlegradtives folb( Y) can
only be used for one of the alternativesaffl) : following Prolog, they are combined with the
leftmost alternativea( 1) . Alternatives ofb(Y) for a(2) have to be computed separately.
The second set of alternatives fof Y) are computed in or-parallel as sooned2) succeeds.
The reason this is not done earlier is because, in generanitot be known in advance how
many alternatives there would be for the left gag] X) in this cas@, and thus how many sets
of the right goal b( Y) in this case) have to be computed separately.

It is important to point out that the issues of a) re-compaitaand b) of restriction in the
way the two forms of parallelism can be combined, are orthafjo This allows us to infer
conclusions about other models implementing other contibimsifrom only the two simulation
schemes proposed. For example, since the goals which asede® not change because of

L Although it is clear that there are two alternatives whichuldlcsucceed here, in real programs the situation would giyeealess clear.



changes in the nesting restrictions, it is possible to seeusful reusage would be in general,
from data obtained with one of the parallelism nesting sasem

4 Issues for investigation

The following issues were investigated in the study:

e Which (if any) programs are suitable for the two types of galiasm simulated? What
types of programs are suitable for each of the two schemesrabining the types of
parallelism?

¢ Do the two types of parallelism generate tasks at differtattgs in the search-tree and are
the sizes of tasks different? That is, is the nature of thestgenerated different?

e How does the speedup of various types of parallelism and whgembining them vary
with the number of workers?

e How do overheads affect the speedups for the various typearaflelism?

e How do the two methods of combining and- and or-parallelignmgare? Are they ef-
fective ways of combining and- and or-parallelism? How machk is saved by reusing
goals? How do and- and or-parallelism interact?

In addition, although less central to the objective of thegrawe would also like to estimate
the overhead involved in evaluating the tests in the CGEsallyjnwhile, as mentioned in
the introduction, the main aim of the paper is to study isse&sed to the characteristics of
parallelism in Prolog programs in the abstract, rather thahe context of specific systems, it
is also our aim to illustrate how the simulation results areldimulator itself can be used as a
tool for studying specific parallel systems. To this end, \8e axplore the following issue:

e Are the results obtained from the simulator meaningful &al systems? Can we use the
simulated results to aid in the analysis of real systems?

5 The simulator

The simulator is a greatly modified version of the or-pataimulator described in [58], with
support for independent and-parallelism (in the form of RA&Jed. The actual model used for
the simulator is an idealised version of the RAP-WAM for indegent and-parallelism, with
or-parallelism also being idealised.

The simulator is written in Prolog and divided into two pads'static” simulator (basically
a Prolog engine which generates a graph representing thehsieae explored by the Prolog
program being simulated) and a “dynamic” simulator (whighwdates the processing of this
tree by a number of workers).
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5.1 Assumptions

In order to make the results applicable to as wide a range alefs@and implementations as
possible, as few assumptions as possible were made abautdbeying hardware and execu-
tion model. The speedups can thus be regarded in some wag &dehl speedup” attainable
with the program given the annotation. Many actual scheraasbe idealised directly to the
simulator's model of or-parallelism, e.q. [53,/72) 74| 128). Furthermore, results are also
meaningful for schemes that are not based on the same caatepidel used in the simulator.
With respect to the various schemes related to Conery’s ANDg@cess model (for example,
[17,77)41] 10]), our model can be thought of as the case wthere is no cost in creating a new
or-process (however, note that Conery’s model restricigsaoallelism in some other ways). As
another example, the simulated model can be regarded agalisét realisation of Clocksin
and Alshawi’s Delphi mode[[15], where the oracles haveegxrknowledge of the search-tree,
and can send workers to the right paths perf&t&milarly, the simulated model can be re-
garded as an idealised version of the randomised paralt&tiaaking method [40], where the
“correct” alternatives are always selected. Also, as tkk savitching can be cost-less, the re-
sults are meaningful even for Lin’s self-organising taskextuler [46], which transforms the
program to obtain a better size distribution for the taskisis Bpproach does not increase the
inherent parallelism as its purpose is to make task switcless costly. The major assumptions
made in the simulator are:

e The basic time interval used is one unification, i.e. all ¢assful) unifications take the
same amount of work to perform and hence take the same ambiimiedo execute. If a
goal fails totally (i.e. no match at all could be found), itailso assumed to take the same
amount of time as one unification.

It seems reasonable to assume that unifications take rotlghlsgame amount of time to
perform as in a sequential system. Indeed, a “logical imfeg is basically a unification,
and is commonly used to measure the performance of a Prokigmy There are vari-
ations on the work done (and thus the time taken to do it) pdication, but to a first
approximation, theaveragetime taken for each unification can be assumed to be constant
over the execution of the program. This approximation istelt is needed for an abstract,
high level simulator. The extra work and overhead requicedafparallel Prolog system
may have some effect on the validity of this assumption. H@aren an idealised situa-
tion, the overhead of a real system can be ignored, and the wrtk needed assumed to
be zero. Certainly it has been shown (for both or-parallebsm |1AP) that the overhead
can be kept low [69, 38], so the assumption that all unificestiare equal should still be a
reasonable approximation.

2This describes the case where resources (workers) are tedinWith limited resources, the results can still be reghatean idealised
version of Delphi where all re-computation besides theah@omputation needed to get a worker to a unexplored nodeatdess.
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e Perfect indexing for clauses is assumed. That is, only wtifins which will succeed are
tried. Therefore, unification failures only occur when thare no candidates for unifica-
tion at all.

No real Prolog system can have perfect indexing, though $omeof indexing does exist
in most Prolog systems to filter out some of the failures. Teal case is perfect indexing,
where all such failures are filtered out. Again, the ideabdasssumed.

¢ When the simulator encounters a parallel node, all the wark#oallel alternatives or sib-
ling and-goals) is made available at that time unit, and @pibked up by other workers
at the same time.

In a real system, parallel work cannot be made availablehteravorkers immediately, as
it takes some time to spawn parallel work. Furthermore, t@lfel work available at a
node probably cannot all be taken at the same time. For exarfglor-parallelism, the
alternative clauses probably have to be selected one atea films is difficult to model,

and again the simplifying assumption is to idealise theasitun.

e Overheads are modelled by allocating a fixed amount of del#tyet start and termination
of a task. This can be regarded as overhead for task-switdtself and also overhead
within a task. The amount of delay can be varied between sitiouis.

This way of modelling overheads has the advantage of bempilsi It assumes a constant
overhead for each task, which is probably reasonably atxtmasome overheads in real
systems: some would indeed be constant and some would avetago be constant,
although it can vary from task to task. However, it is alsoside to have overheads
which have some sort of dependencies on the size of the tagdlsuech overheads are not
modelled accurately. However, the main aim is again not tdehany individual system
accurately, but to provide some more general and high-lieNetmation. The simple
modelling is sufficient to show how sensitive a particulasxggam’s speedups (under some
form of parallelism) might be to perturbation by overheathe greater the perturbation
(i.e. where a small overhead have a large effect on the sietutpeedups), the less likely
the indicated speedup will be achieved in a real systemsttali be demonstrated clearly
by the comparison with real systems in Secfibn 7.

Note that some systems would be expected to have highereadshe.g. systems which

run on distributed machines. This does not affect the \glafithe speedups produced by
the simulator; the ideal case is still the figures with O oeads, but the realistic speedups
would be expected to be better modelled using higher oveehea

e “Cut” is dealt with as in sequential Prolog, so or-branchehesearch tree to the right of
the “cut” are not tried. This behaviour is chosen as, firstlig allows programs that would
generate an infinite search-tree without the “cut” to be &ted. Secondly, it seems that
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this new behaviour is closer to the “ideal” situation whergyatem could predict which
branches would be cut away and therefore not try them. Intipedt is impossible to
make such predictions in all cases, and thus some work toighe of a cut would be
performed in real systems, but the amount of work can be emtlby scheduling, up to
the idealised limit of not performing any such work at all.

Backtracking in a CGE behaves essentially like Prolog, so tedligent backtracking is
done. If an and-goal fails, and-goals to the right of it areexe@cuted, whereas those to
its left are tried fully. If the and-goal immediately to theftl of the failed and-goal has
not completed yet, then backtracking takes place when ifineshed. Backtracking in a
real and-parallel system (with and without or-parallelssna complex issue, with many
possible schemes that would give correct behaviour withingrdegrees of sophistication
and complexity of implementation. We avoid all this comtgx our simulation.

The search-space explored by the simulator is thereforelgthat explored by a sequen-
tial Prolog system, and not what an independent and-phsgi¢em might explore: in a
real and-parallel system, the actual search-space exiploeld be the same as the se-
quential one in the absence of failure, but with failure, éRact search-space explored is
non-determinate, with the sequential search-space bemgassibility. For the simulator,
it is very difficult to deal with failures within a CGE in a diffent way from the sequential
case due to the method of simulation. It is also unclear tbguraing the search-space to
be something other than the sequential case would bring amg accuracy, due to the
many possible schemes of backtracking in actual systemexeldre, again, the simplest
case is assumed in the simulator, which, once more, comelspto the ideal case.

Backtracking takes no time.

In a parallel system, especially an and-parallel systerktbacking may be more expen-
sive than in a sequential system for various implementatic@asons. In addition, the time
taken for backtracking is very highly implementation degemt and is therefore unsuit-
able for modelling by a high-level simulator. Again, theatlsituation is that backtracking
takes no time.

And- and or-parallelism are combined in one of two ways. Qorlg way can be used
for a particular simulation. These two ways are “no or-uraled” and “or-under-and” as
described in more detail in Sectibn B.2.

The CGE tests for groundness and independence were assuimetiandled by the un-

derlying implementation, instead of being done as Prolagra® level code since this

reduces the cost of these tests considerably. Howevemasgthat the tests are handled
at a low level makes modelling their cost on our simulator endifficult. In a compiled
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system, the tests would each be compiled into one abstraxttin@instruction of the Pro-
log engine. A study by Tick of the sequential WAM (the most coomly used Prolog
abstract machine) suggests that about 15 WAM abstract maatstructions are executed
per procedure invocation (see table 3-3 of [71]). Succegsiwcedure calls correspond to
a unification. Thus, this implies that on average, an abistnachine instruction i$/15
the cost of a unification, the basic time-interval used ingiarulator. Naturally, the ac-
tual cost of each abstract machine instruction does vapgally if it needs to handle
potentially large structures such as performing the CGEs taistlarge structures, where
the whole structure needs to be traversed, where the codti\depend on the size of the
structure. We would thus like to model this variation in tlestcas well. We thus assume
the basic cost of each CGE testlisl5 the cost of a unification, plus extra cost (again at
1/15 of a unification) per level of recursion needed to traversesthuctures being tested.
This is then rounded up to the next larger integer to arrigeast in terms of unifications.
For the work reported herein, the tests exhaustively tem/tre terms.

At this approximate level, it is reasonable to model theaextsst at each recursion level
as the cost of an extra abstract machine instruction. In #enity of cases, an abstract
machine instruction does not operate on large structunetsthaus the cost of /15 reflects
more the cost of operating on relatively small structures.c@urse, this modelling is
probably not very accurate, but nevertheless it should b&ulig giving us some idea of
how expensive or otherwise CGE tests are.

At the end of a task, a worker is free to switch task to any atéaél node. If the worker
was an and-task, it first tries to pick any sibling and-nogs ik still available to the left
of the and-task it just completed. If no such node exists, fitée to choose any available
node.

A real system may (or may not) have restrictions on which gealn be taken by an
idle worker, and task selection and switching may be radgtiexpensive. Again, this is
idealised by assuming it to be cost-less.

With everything else being equal, available and-nodessaiired over available or-nodes
in selecting an available node.

There is no strong reason for doing this. Some form of sclmglnhust be assumed, and
it seems that and-goals may have some advantage over arigeeduse and-parallelism
may have some advantage in memory usage over or-paralldlisimhas no effect with the

simulator, and given the many idealised assumptions, tpadtof a particular scheduler
on the actual speedups is not high in any case.
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Figure 3: Result Generation Process

5.2 Generation of results

As shown in Figurél3, Prolog programs were first run through & @@notator program, gen-

erating Prolog code which was annotated with CGEs (&-Prolddpe annotator used for this

simulation is the “mel” annotator introduced in [75] and ci@sed in [51]. This was done only

with the more complex programs, since the simpler progravukide easily annotated by hand.
Then a checker program was used to check the validity of thesIEGHﬁis annotated program

was then converted to the format used by the simulator andlaied.

6 Summary and discussion of results

6.1 Programs simulated

Two broad categories of programs were simulated. The first.goay includes simple
benchmark-type programs. Most of these were used to bemkhseguential systems, and
were not specifically designed for exhibiting paralleliSthese programs are useful as they are
relatively simple and can thus be easily analysed: in masts;@he annotations which would
lead to maximum theoretical independent and-parallelisenkaown, and the programs are

3This step was quite instrumental in flagging a number of bugsily @nplementations of the “mel” annotator. It became unneargsat
the later stages of this study as the annotators matured.
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thus annotated. The second category includes existingcagiphs, running relatively simple
or small input to get the execution time to a level suitablesimulation. These programs are
more representative of realistic programs. The advantbgaah application programs is that
they allow us to study more realistic examples, but, at tmeesdme, we cannot be as certain
that the annotations used were the optimal ones for andlglaggecution.

For some of the programs simulations were performed foewdfit sets of input data in
order to observe the sensitivity of the simulation resutthe size and nature of the input. In
other cases a few similar programs solving the same problgnuding different algorithms
were studied. In the latter case we distinguish programisandbles by slight variations of the
program name. In the former, by providing a different laldbiackets.

Brief descriptions of the programs are given in appehdix A.

6.2 Overall results

Each program was simulated using the two ways of combinimy and or-parallelism, and
with and-parallelism only (with no reusage of goals) angarallelism only. For each of these,
the program was simulated for a range of workers, genenally fone worker up to the max-
imum number of workers the program could take advantage tf thiat form of parallelism.
The simulation was first performed assuming no overhead.sifhelation was then also done
assuming 8 units of overhead per task (4 units each at theasthfinish of a task). This amount
of overhead was used simply to give us some idea about thiéitgtabthe predicted speedups:
a constant amount of overheads for all the programs has tsdxin order to allow the effect
on different programs to be compared against one anotharit8af overhead was chosen be-
cause it was not so small that its effect would not show up istroases, and not so large that it
would come to dominate the behaviour.

Various tests to examine various other aspects of the phsatl and annotations were per-
formed. Some of these results are summarised in the tableguned 4, b andl6. The first table
records the “static” data obtained from the static part efgimulator, and the other two record
the “dynamic” data. To reduce the amount of data presentgdyés[5 andl6 only show the
results for one example when results are available for g¢ixacof the program with different
data. TableB]7 arid 8 present the results for changing theéhgapsmogram is being run with. The
meaning of the columns is as follows:

name Name of program simulated.

Y res. Total number of resolutions (successes and failures) igraro when executed by Pro-
log, i.e. assuming no reuse of computation or CGE test ovdrhea

sol. Number of solutions given by the program.

par. CGE The number of run-time invocations of CGEs whose test suezkethis includes
the unconditional CGEs.
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seq. CGE The number of run-time invocations of sequential CGEs, hes¢ CGEs whose test
failed.

uncon. CGE The number of run-time invocations of unconditional CGEs.

Y. cost The cost, in number of resolutions, of the CGE tests. The nummblrackets is the
percentage cost with respectiaes.

Y. reused The size, in number of resolutions, of the reused resolatidhe number in brackets
is the percentage size with respectioes.

max. perf. “Maximum performance” in terms of the maximum speedup, dred rhinimum
number of workers at which this is achieved (the “demand’j,the particular form of
parallelism being studied. The format isspeedup x @<number of agents

The number given assumes that all available or-nodes indecls tree are allowed to
run in or-parallel, and also assumes that there is no ovdrhitas alsowith respect to
the sequential execution with no CGE annotati@ires. “actual speedups”). is used to
indicate a value that has been estimated by interpolatiomdas two actually simulated
values.

half perf. The number of workers that are needed to achieve approXyrzé the numeric
value of maximum speedup for the particular form of parafel The same format as
“max. perf.” is used.

ratio This is% x 100 wheret) is the time for executing the program with 0 overhead and
t? the time for 8 units of overhead (per task). Both time measergsnare made with
the number of workers in “half per{ﬂ"This is @ measure of sensitivity of the program to
overhead. The closer the ratio is to 100%, the less senditise “half perf.” number
of workers were used as it was considered to be a representigtiire for the program.
However, if the program has insignificant amounts of paliatie such that “half perf.”
occurs at 1 worker, measuring the overhead at 1 worker wauagratio very close to
100%. For these programs, the “ratio” figure is computedgusinie speedups at “max.
perf.” number of workers. Such figures are marked by a “*”.

6.3 Discussion of the tables

The results show that many of the programs do exhibit speeditp either or-parallelism or
independent and-parallelism. However, neither are utngaj indeed, a few of the “real” ap-
plications do not have much of either parallelism in it. Batdependent and-parallelism and
or-parallelism seem to be present in most programs, thauglome cases they can be in in-
significant amounts. The exact amount of parallelism of sewften depends on the size of

4Note that “ratio” was called “over.” irl [64]. We feel that ‘ia” is a more accurate name.
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name Y res. | sol. | par. CGE| seq. CGE| uncon. CGE Y cost Y reused

gsort(20) 307 1 20 0 20 0 (0%) 0 (0%)
gsort(100) 2490 1 100 0 100 0 (0%) 0 (0%)
serialise 504 1 9 0 9 0 (0%) 0 (0%)
numbers 898 16 0 0 0 0 (0%) 0 (0%)
4Queensl 824 2 144 0 144 0 (0%) 0 (0%)

4Queens?2 377 2 48 14 29 58 (15.4%) | 42 (11.1%)

mapl 3662 | 18 505 28 409 344 (9.4%) 152 (4.2%)

atlas 2678 4 1 0 1 0 (0%) 1679 (62.7%)

deriv 2874 1 483 0 483 0 (0%) 0 (0%)
vmatrix(10) 326 1 110 0 110 0 (0%) 0 (0%)
tak 21356 | 1 1186 0 1186 0 (0%) 0 (0%)
hanoi 2560 1 511 0 0 1013 (39.6%) 0 (0%)
cluster 35370 | 1 100 0 100 0 (0%) 0 (0%)
warplan(wqgl)| 2039 1 81 17 16 160 (7.85%) 0 (0%)
warplan(wqg2)| 3131 1 74 56 17 179 (5.72%) 0 (0%)
compiler(cpl)| 105465 1 23 0 23 0 (0%) 0 (0%)
compiler(cp2)| 193494 | 1 10 0 10 0 (0%) 0 (0%)
compiler(cp3)| 13374 | 1 56 0 16 80 (0.598%) 0 (0%)
boyersi(1) 2749 1 2 168 2 168 (6.11%) 0 (0%)
boyersi(2) 28056 | 1 5 2180 5 2180 (7.77%) 0 (0%)
boyernsi(2) | 30486 | 1 2436 0 2436 0 (0%) 0 (0%)
tp 10273 | 1 158 59 158 59 (0.574%) 0 (0%)
chatp(cql) 1204 1 50 27 35 55 (4.57%) 0 (0%)
chatp(cq2) 1067 1 52 25 40 42 (3.94%) 0 (0%)
chatp(cg3) 1356 1 77 26 65 50 (3.69%) 0 (0%)
sim(spl) 9465 1 234 0 234 0 (0%) 0 (0%)
orsim(spl) 9197 1 21 0 21 0 (0%) 0 (0%)
sim(sp2) 35346 | 1 877 0 877 0 (0%) 0 (0%)
orsim(sp2) | 34117 | 1 66 0 66 0 (0%) 0 (0%)
annotator 14481 | 1 15 0 15 0 (0%) 0 (0%)
floorplan 43296 | 4 787 88 785 90 (0.208%) 0 (0%)

the input data — the influence of this important issue will tgled in the following section.
Both types of parallelism have obvious areas of applicatibere significant speedups can be
achieved. Or-parallelism is more abundant in programsréatire substantial searching, such
as thewarplan programs. Independent and-parallelism is more abundaadgorithms which

Figure 4: Summary of Static data from simulations

follow the pattern of “divide and conquer” algorithms — swadcompiler(cp3)andannotator

Overall, independent and-parallelism and or-paralleligve essentially comparable speedups
over the range of programs studied. Not many programs timicosignificant amounts of both
independent and- and or-parallelism were fourldsterandcompiler(cp3)were the only pro-
grams which approached having significant amounts of bgibstyf parallelism. In addition,
the or-parallelism irclusteris very fine grained as all the tasks are very sn%ualbvertheless, it

5In fact, in systems such as Aurora and Muse, there is no ofkgiga for this program due to some low-level optimisatioristiee
Prolog system: the low granularity or-parallelism is due tick failures on some branches after performing simple “guéygeé tests. The
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name And only Or only
max. perf. half perf. ratio max. perf. half perf. ratio

gsort(100) 2.8x@8 1.7x@2 | 98.8% 1.34x @2 1x@1 59.4%*
serialise 1.08x@4 1x@1 94.9%* 2.0x@6 1.0x@1 | 63.4%*
numbers 1x@1 Ix@1 99.1% 1x@1 1x@1 99.1%
4Queensl 1.27x @5 1x@1 77.8%* || 18.7x@52 9.1x@10 | 75.8%
4Queens2 0.97x@3 0.87x@1 | 76.1%* || 7.25x@15 3.5x@4 82.9%
mapl 1.22<@6 0.91x@1 | 75.0%* || 41.1x@59 | 20.6x@26 | 78.4%
atlas 1.00x @2 Ix@1 99.7% 243x @576 | 116x@185| 41.5%
deriv 84.5x@~248 | 42.3x@60 | 50.4% Ix@1 Ix@1 100%
vmatrix(10) 9.06x@18 4.66x@6 | 45.2% 1x@1 1x@1 100%
tak 45.6x @~396 | 22.9<@30 | 76.9% 1.13x@2 1.0x@1 | 80.0%*
hanoi 52.3x@427 | 26.1x@53 | 61.5% 1x@1 1x@1 100%
cluster 32.04< @54 | 15.9<@20 | 90.5% 3.16x@4 1.93x@2 | 48.6%
warplan(wq?2) 1.09x@4 0.95x@1 | 94.5%* || 12.8x@~30 | 6.75x@7 | 77.9%
compiler(cp3)|| 7.48<x@15 3.84x@4 | 98.2% 2.49<x@8 1.66x@2 | 63.3%
boyernsi(2) 12.77x@~74 | 6.54<x@8 | 82.5% 1.20x@3 Ix@1 75.3%*
tp 1.14x @4 0.99x@1 | 97.6%* 1.17x@5 1Ix@1 96.7%*
chatp(cq3) 1.03x@3 0.96x@1 | 94.1%* 2.18x@27 1.49x@2 | 84.2%
sim(sp2) 1.12x@5 Ix@1 97.0%* 1.47x@4 1x@1 83.4%*
orsim(sp2) 8.32x@~20 | 4.44x@6 | 99.5% 1.47x @5 1x@1 87.9%*
annotator 10.0x@~16 | 4.88x@6 | 98.8% 1.28x@5 1x@1 99.9%
floorplan 1.02x@2 1.00x@1 | 93.3%* || 41.08x @233 | 20.5x@26 | 91.5%

Figure 5: Summary of dynamic data for and- & or- parallelisoni simulations

is interesting to see how the two types of parallelism irte=a.

In all programs studied, the “or-under-and” method of camrig and- and or-parallelism
gave better or equal speedups as “no or-under-and”. Thedjai@using goals by “no or-
under-and” is insufficient to compensate for the loss of lpgism. This shows that banning
or-parallelism inside and-parallelism may be too drastiesdriction, although this depends of
course on the price in overhead incurred by allowing suchlfgism. In fact, of the programs
tested, only a few were able to benefit from reusing goald) afitas being the only one to
gain significantly (63.5% of all resolutions). This suggesiat, in general, although there
is or-parallelism inside and-parallelism (otherwise tmder-and” should be no worse than “no
or-under-and”), not much of it leads to success (as otherthisre should be more reused goals).

It seems that “or-under-and” is quite a good compromise geefbr combining and- and
or-parallelism: it avoids the complexities of allowing estricted or-parallelism under and-
parallelism with full reusage of goals, with hopefully simialss in speed by needing to re-
compute the reused goals. Note that some of this loss cangheeel by the extra amount
of parallelism, and that in any case no extra cost is involwéti respect to the sequential
computation, which also performs such re-computation.dufiteon, as mentioned before, the
re-computation can be avoided by programming the formatfaie cross product explicitly

optimisations were able to avoid such tests altogether.
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name Or-under-and No or-under-and
max. perf. half perf. ratio max. perf. | halfperf. | ratio
1x@1 68.1%*

gsort(100) 3.7x@14 1.8x@2 83% 3.1x@8 1.8x@2 88.7%
serialise 2.2x@9 1x@1 59.1%* 1.3x@5 1x@1 82.0%*
numbers 34.5x@81 17.3x@21 | 48.6% 34.5x@81 17.3x@21 | 48.6%
4Queensl 45.8x@76 22.9x@27 | 48.6% 45.8x@76 22.9x@27 | 48.6%
4Queens?2 6.9x @25 3.7x@5 70.1% 1.50<x @4 0.96x@1 | 71.2%*
mapl 63.1x@202 | 31.6x@42 | 58.9% 5.15x @26 2.46x@3 91.7%
atlas 243x @552 | 122x@177 | 37.3% 12.6x @24 5.89x @3 56.9%
deriv 84.5x@~248 | 42.3x@60 | 50.4% || 84.5x@~248 | 42.3x@60 | 50.4%
vmatrix(10) 9.06x @18 4.66x @6 45.2% 9.06x @18 4.66x @6 45.2%
tak 56.5x@~475 | 29.5x@40 | 78.2% || 46.0x@~396 | 27.7x@~40 | 73.2%
hanoi 52.3x @427 | 26.1x@53 | 61.5% 52.3x @427 | 26.1x@53 | 61.5%
cluster 55.62x @326 | 27.87x @41 | 57.0% 32.04x @54 15.9x@20 | 90.5%
warplan(wg2) || 11.7x@~30 5.53x @6 71.8% 1.98x@~19 0.95x @1 89.1%*
compiler(cp3)|| 16.9x@~60 | 8.88x@10 | 78.3% 7.48<@15 3.84x @4 98.2%
boyernsi(2) || 16.54x@~74 | 8.50x@10 | 66.3% || 12.87x@~74 | 6.56x@8 82.1%
tp 1.38x@7 0.99x@1 | 93.6%* 1.38x@7 0.99x@1 | 93.6%*
chatp(cg3) 2.32x@27 1.51x@2 85.6% 1.93x@10 0.96x@1 | 81.6%*
sim(sp2) 1.67x@8 1x@1 79.4%* 1.52x@5 Ix@1 86.4%*
orsim(sp2) 10.7x @~43 5.13x @6 94.8% 8.59x @18 451x @6 97.9%
annotator 12.5x @25 6.49x @8 86.4% || 10.0x@~16 4.88x @6 98.8%
floorplan 42.41x @256 | 21.3x@27 | 89.2% || 41.92x@256 | 21.2x@27 | 89.3%

Figure 6: Summary of dynamic data for combined and/or peliath from simulations

at the Prolog level (an example is given in[61]). This can Bsdeneasier for the program-
mer by providing predicates that perform the cross prodtiseweral goals (along the lines of
meta-logical predicates such ast _of / 3). Furthermore, program analysis may be able to
transform some programs into a form that tries to avoid meqmatation. The important point
is that since reusage of goals appears to be not common imaethe cases where it is useful
can be dealt with by specialised means instead of providggnaral and complex mechanism.

Another point in favour of a re-computation scheme over asaga scheme is that it is
much easer to deal with side-effects. In fact, “or-undet*dras, since the first publication of
this study [63], formed the basis for some proposed impleéatem schemes for combining
independent and- and or-parallelism![27].

The speedup obtained from all forms of parallelism simual#&dar from linear as the number
of workers is increased towards the maximum demand. Thitws by the number of workers
required to achieve half the maximum performance being imeged much less than half that
required to achieve maximum performance. This will be dised in more detail later.
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name And only Or only
max. perf. | half perf. ratio max. perf. | half perf. ratio
gsort(20) 1.56x@3 Ix@1 85.7%* 1.25<@2 Ix@1 | 65.0%*
gsort(100) 2.8x@8 1.7x@2 98.8% 1.34x @2 Ix@1 | 59.4%*
warplan(wql)|| 1.46x@10 | 0.93x@1 | 88.3%* || 8.90x@~19 | 4.71x@5 | 72.0%
warplan(wg2)|| 1.09x@4 | 0.95x@1 | 94.5%* || 12.8x@~30 | 6.75x@7 | 77.9%
compiler(cpl)|| 2.09x@3 1x@1 | 100.0%* 1x@1 1x@1 100%
compiler(cp2)|| 4.78<@6 | 2.94x@3 | 100.0% Ix@1 1Ix@1 100%
compiler(cp3)|| 7.48x@15 | 3.84x@4 | 98.2% 249x@8 | 1.66x@2 | 63.3%
chatp(cql) 1.01x@3 | 0.96x@1 | 94.4%* 1.67x @20 Ix@1 | 72.7%*
chatp(cg2) 1.0x@3 | 0.96x@1 | 92.8%* 1.84<@17 Ix@1 | 72.0%*
chatp(cg3) 1.03x@3 | 0.96x@1 | 94.1%* 2.18x@27 | 1.49x@2 | 84.2%
orsim(spl) 1.14x @2 1x@1 99.9%* 1.29< @5 1x@1 | 87.5%*
orsim(sp2) || 8.32x@~20 | 4.44x@6 | 99.5% 147 @5 Ix@1 | 87.9%*
Figure 7: Scalability of and- & or- parallelism from simutats
name Or-under-and No or-under-and
max. perf. half perf. ratio max. perf. | half perf. ratio
gsort(20) 2.0x@5 1x@1 56.7%* 1.8x@3 1x@1 | 68.1%*
gsort(100) 3.7x@14 1.8x@2 83% 3.1x@8 1.8x@2 88.7%
warplan(wgl)|| 7.5x@~20 | 3.46x@4 | 75.9% 1.66x@6 | 0.93x@1 | 83.1%*
warplan(wg2)|| 11.7x@~30 | 5.53x@6 | 71.8% || 1.98x@~19 | 0.95x@1 | 89.1%*
compiler(cpl)|| 2.09x@3 1x@1 100.0%* 2.09x@3 1x@1 | 100.0%*
compiler(cp2)|| 4.78x@6 2.94x@3 | 100.0% 4.78<x@6 | 2.94x@3 | 100.0%
compiler(cp3)|| 16.9x@~60 | 8.88x@10 | 78.3% 7.48<@15 | 3.84x@4 | 98.2%
chatp(cqgl) 1.75<@18 | 0.96x@1 | 70.2%* 151x@12 | 0.96x@1 | 79.5%*
chatp(cg2) 1.87x@20 | 0.96x@1 | 69.1%* 1.58<@11 | 0.96x@1 | 78.0%*
chatp(cq3) 2.32x@27 | 1.51x@2 85.6% 1.93x@10 | 0.96x@1 | 81.6%*
orsim(spl) 1.44x @6 1x@1 87.0%* 1.15< @5 Ix@1 99.1%*
orsim(sp2) 10.7x@~43 | 5.13x@6 94.8% 8.59%x @18 | 4.51x@6 | 97.9%

Figure 8: Scalability for combined and/or parallelism freimulations

6.4 More detailed look at the results

The summary tables are not sufficient to show some of the wisens made during the study.
This is partly because these observations depended otsd®taishown in the summary, and
partly because some involved extra experiments. Some sé¢ thieservations will be presented
in this section.

e For both or-parallelism and independent and-parallelema, also for the two methods of
combining them, the speedup diverges from the ideal 1-tpekdup relatively quickly,
especially if overhead is considered (although this eféeet of course be “pushed for-
ward” to some extent by increasing the sizes of the prograwig)think this is due at least
partly to the fact that in many cases, especially for thedgngore realistic programs, the
granularity of the parallelism is quite fine, and sometimesuos in small “bursts”, with
intervening sequential areas, thus resulting in a clalssistance of the “Amdabhl effect”.
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Figure 9: Execution profile fasim(sp1l) “or-under-and”, no overhead

Figure[9 shows such an example. It should be possible to wepite performance by
trying to reduce the scheduling of tasks with very fine gratnsimple runtime control
mechanism, where a new task does not immediately allowadtaihodes to be taken by
other workers until the task has performed some amount df,wbus reducing the num-
ber of tasks with very fine granularity, was proposed by onesg64]. This method was
incorporated and tested in the Aurora or-parallel Prologiesy. It did result in coarser
granularity and improvement in performance for some pnograbut also a decrease in
performance for other programs, because the mechanisoisaiiétasks, and thus delays
the start of tasks which lead to significant parallelism éuse they have large granular-
ity) as well as limiting tasks with small granularity [69]. Better approach may be to
perform some form of granularity analysis (e!g.![20, [43,4B,[19]) at compile time to
obtain information of the likely granularity of tasks, thakowing granularity to become
more coarse without limiting the parallelism in tasks whaech not fine grained.

The speedups for “or-under-and” show that combining and- anparallelism can lead
to a significant increase in performance if both types of lfgism are present in the
program. Examples of the speedups with the various typesu@lplism are shown in
Figured 1D and_11. They show the speedupgt@ueensindcompiler(cp3) With no

overheads, it can be seen that the speedup from “or-undgiisasignificantly higher than
that obtained by other means. The graphs show that the spe&dth “or-under-and”
continue to increase after the other methods have flattemediod this is most striking
in 4Queenslwhere the or-parallelism does not overlap with the anddpgism at all.

The difference is all the more remarkable as and-parathetis its own gives a maximum
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Figure 11: Speedups faompiler(cp3)

speedup of about 1.2 only.

Figure[ 12 shows the execution profiles &@ueensiinder “or-under-and”, “and only” and

“or only”. This clearly shows that the and-parallelism occafter the or-parallelism, and
in fact the main effect is to “fold” the or-parallel branchegether, thus greatly increasing
the effectiveness of both forms of parallelism.
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Figure 12: Execution profiles fefQueenslinder various parallel schemes

However, it should be noted that with overheads, the adgentd “or-under-and” de-
creases significantly, and in the casecompiler(cp3) and-parallelism on its own gave
better speedups beyond about 7 workers. The reason forsthinat the or-parallelism
in this case, and the and-parallelism in the casé@fieenslis very fine grained and is
thus strongly affected by the overheads. In general, thowghcan say that combining
or- and and-parallelism does offer us the opportunity toease speedups of programs
significantly by more effectively utilising both forms of gadlelism. In addition, and per-
haps more importantly, it allows us to parallelise the ekeouof a much wider range of
programs than either parallelism alone would.

As expected, the greater the delay overhead, the slowerettiermance of a program.
The variations are shown in Figure] 13 for two programssim(sp2)andtak. Although
orsim(sp2)has lower speedups th#ak, the impact of overheads on speedups is smaller:
the reason is that the task sizes are greater in the cassiof(sp2) Figures b andl6 show
that fororsim(sp) the effect of overheads is not the same for or- and andiphsat: the
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Figure 13: Variations of Speedups with Overheads

impact is greater for the or-tasks than for the and-taskglyimg that the and-tasks are of
larger granularity. In fact, most of the slowdown seen iruFgl3 for the program is due to
the effect of overheads on the or-tasks. Note also that eitrsuch a simple modelling of
the overheads, the expected behaviour of the differendesba the speedups increasing
with increasing number of workers is observed.

¢ In many cases in all the four parallel schemes, no furtheedyges are obtained beyond

a critical number of workers (the “demand”), even though eneorkers continue to be
used by the system, up to the maximum parallelism of the pragfThus, the maximum
performance is not necessarily reached only at the maximanallplism exploited by a
program: sometimes it is reached much earlier. The reasdhifis that in many cases,
before the maximum parallelism is reached, there are enolglvorkers around to pick
up the work that would be taken up by the extra workers, i.e.pgarallelism is merely
redistributed with extra workers after the “demand” is e, leading to lower utilisation
of individual workers, but no speedups.

e An important question is how much or-parallelism existsiioggams where there is only

one solution; or in programs which have more than one salubat where only the first
solution is needed. The results for tharplan program suggest that or-parallelism can
be useful in some cases even if the program has only one@ulutiowever, the results
presented do not apply for the case where the return of thesdihstion is enforced by a
cut. A further study was conducted to evaluate such casesrédults are summarised in
Figure[14. The programs studied are taken from the benchsenksed by Szeredi [69]
for the study of Aurora, which has been used to study sevetgdrallel Prolog systems.

The results suggest that there can be substantial amountspafrallelism, even if only
the first solution is required. It can therefore be profitablexploit or-parallelism in such
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name Y res. max. perf. half perf.
farmer 136 2.7x@5 1.7x@2
house 1089 20.2x @52 10.4x @13
parsel 455 4.9x @17 2.7x@3
parse2 1114 7.6x @28 3.6x@4
parse3 383 5.0x@20 2.7x@3
parse4 2879 8.4x@74 4.3x@5
parse5 7354 8.7x@74 4.3x@5
db4 4627 | 112.9<@514 | 56.4x@80
db5 6630 88.4x @614 | 43.9x@59
8-queensl|| 10567 | 67.7x@291 | 33.9x@42
8-queens?|| 25650 | 102.2x@~320 | 50.9x @60

Figure 14: Speedups for First Solution Only

cases.

Furthermore, this has significant implications for schadus$trategies used in existing or-
parallel Prolog systems. With many of the early schedulseslin systems such as Aurora
and Muse, almost no speedups were obtained for program$whéd the cut to force the
return of the first solution only. The reason is that thesedualers took no account of the
cut, and scheduled workers to work on work that would be literarded by the cut. More
recent schedulers in Aurora and Muse (€.g. [7] 65, 4, 66Kleabis problem by allowing

a worker to suspend the work it is doing and switch to more {aiolie work if it discovers
that the current piece of work gpeculativei.e. that it might be discarded. Much better
speedups than the older schedulers have been obtainec$er phograms. However, the
speedups are still generally significantly less than thtiaéeable in theory, as given by the
simulator, which, as mentioned before, assumes the idesalwhere no discarded work is
performed: for example, a speedup of 3.25 is reported infi@8-queens1 for 10 workers,
compared to 9.59 for 10 workers for the simulator. This disagent is considerably more
than the differences for the same systems in programs wiaeé little or no discarded
work, as reported in Sectidn 7. The most likely reason istiath wasteful work is still
performed by executing work that will be discarded, and these is still much room for
possible improvements to these scheduling strategies.

Significant amounts of non-strict independent and-pdistieseem to exist in some pro-
grams.boyernsi(2), exploiting non-strict independent and-parallelism,egawuch better
speedups thaboyer si(2) running the same data with strict independent and-paisatiel
tp was also found to contain non-strict independent and-jgdisath — what little indepen-
dent and-parallelism that exists is almost all non-strithis suggests that this type of
parallelism deserves further study and we have startedajeag compiler technology to
exploitit. A technique for detecting this type of paralii using global analysis informa-
tion available with well known analysis domains is reporitefiL2].
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e The amount of parallelism obtained can depend greatly ompantcular problem being
solved, as shown in Figurgék 7 dd 8. In some cases, the amfcpartadielism depends on
the size of the problenmafnotatorandclusterare good examples of this). Some other pro-
grams are not very sensitive to the problem size @g--the and/or simulator). However,
many programs have more complex dependencies on the prbielieign solved.

For example, fororsim, or-parallelism in the simulated program can be mapped tb rea
independent and-parallelism in the simulator. Tlarsim(spl)which is simulating niare
reverse, a program with no or-parallelism, has very litpeeslup, whereasrsim(sp2)
which is simulating a small version of the highly or-parbb¢las program, gave good
speedups. As another example, the amount of computatialede¢e compile the clauses
in compileris very heavily dependent on the size of the clause. Passliglgenerated
using a fairly simple annotator) arises from clauses beargpled in parallel, so the best
results are achieved with clauses of equal sizes, asnmpiler(cp3) When the compiler
was run on other programs with greater differences betwésmrse sizes, the speedup
was correspondingly lower: for example, compiling a vensa the atlas benchmark
with a small database took 105465 resolutions, nearly 8stilmeger tharcompiler(cp3),
but the maximum speedup (for and-parallelism only) was 2.08ly, versus 7.48 for
compiler(cp3).

e The simulator was originally written as a sequential Prapglication, without any no-
tion of making it parallelisable. Indeed, the simulatorgarally contained very little par-
allelism, and automatic annotation was not able to extrasthrparallelism. However,
the simulator that simulated or-parallelism was easilajalisable by very slight modi-
fications of the program, resulting in a program with sigaifitamounts of independent
and-parallelism. This suggests that there are programs Whbich it may be difficult to
automatically extract parallelism, but are neverthelesalfelisable with only a little effort
in modifying them. Of the application programs that exlatitittle initial parallelism, we
were most familiar with the two versions of the simulatord arf these, we were able to
easily parallelise the or-simulator, but not the and/ornuator. The number of examples
is far too small to generalise, but it is encouraging.

An important point with the parallelised version of the anslator is that there is not
much overhead in the parallel version. The parallelisediwarcontains just over 1%
more unifications than the original (33775 resolutionserariginal or-parallel simulator,
versus 34117 foorsim(sp2) simulating the same program), and part of this cost is due to
the way independent and-parallelism has to be expresskd gystem we used, and should
be avoidable.
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7 Comparisons with real systems

At the time of making our comparisons, there were severaliraitr-parallel systems, and at
least one reasonably mature independent and-paralleirsyghich allow comparison with the
results from the simulator. Here we present comparisongdegt the simulator and results from
Aurora and Muse, two or-parallel Prolog systems, and &®&yphn independent and-parallel
Prolog system. Note that this comparison between the sgsdeamot meant to be an exhaustive
study of these systems; rather, it is intended to show howithalator can be used to aid any
study of these systems.

The simulator has been used previously to aid the perforeneweduation of Aurora [69], and
we feel that it could also be used to evaluate the performahother parallel Prolog systems.
Two of the programs from that study, 8queensl, which solve8tqueens puzzle, apdrse5
which is the natural language parsing part of Chat-80, findlhgossible parses for a senteane,
plus orsim2(sp2)rom this simulation study, were compared to the resultsftbe simulator.
For &-Prolog,boyernsi(2), orsim(splandorsim(sp2from this simulation study were selected
for comparison.

8queensl parse5 orsim(sp2)

>867x @1300 58.46x @256 1.47x @5
Time| Act. | Pre.0) | Pre. Time[ Act. | Pre.0) [ match [[Time[ Act. [ Pre.0) | match
8.02| 1x Ix 1x (0) 400 1x Ix 1x (0) |[ 212 1x Ix 1x (0)

4.03 | 1.99x | 2.00x (0.05)| 1.99x (78) || 2.01 | 1.99x | 2.00x (1.6) | 2.00x (0) || 2.18 | 0.97x | 1.27x (8.1) | 0.97x (32)

2.70 | 2.97x | 3.00x (0.2) | 2.97x (72) || 1.36 | 2.94< | 3.00x (2.9) | 2.93x (6) || 2.27 | 0.93x | 1.44x (10.1) | 0.92x (46)

2.03 | 3.96x | 4.00x (0.2) | 3.96x (66) || 1.07 | 3.74< | 4.00x (3.8) | 3.74x (14) || 2.28 | 0.93x | 1.45x (10.6) | 0.94x (44)

1.66 | 4.84x | 5.00x (0.4) | 4.84x (70) || 0.87 | 4.60x | 5.00x (6.5) | 4.58x (12) || 2.33 | 0.91x | 1.47x (13.8) | 0.91x (36)

1.39 | 5.78x | 5.99x (0.3) | 5.78x (130) || 0.74 | 5.41x | 6.00x (10.0) | 5.45x (8) || 2.26 | 0.94x | 1.47x (13.8) | 0.95x (32)

1.21 | 6.64x | 6.99x (0.5) | 6.62x (98) || 0.66 | 6.07< | 7.00x (12.8) | 6.04x (10) || 2.30 | 0.92x | 1.47x (13.8) | 0.93x (34)

1.06 | 7.57x | 7.99x (0.5) | 7.54x (100) || 0.62 | 6.45x | 7.99x (14.6) | 6.38x (16) || 2.31 | 0.92x | 1.47x (13.8) | 0.93x (34)

O|O|N|O|ODWIN|FP||FH

0.94 | 855x | 8.99x (0.5) | 8.56x (74) || 0.55 | 7.27x | 8.99x (17.0) | 7.23x (12) || 2.29 | 0.93x | 1.47x (13.8)| 0.93x (34)

[N

0.86 | 9.34x | 9.98x (0.8) | 9.32x (90) || 0.53 | 7.56x | 9.98x (19.3) | 7.65x (14) || 2.26 | 0.94x | 1.47x (13.8)| 0.95x (32)

=
| O

0.79 | 10.18< | 10.98< (0.9) | 10.18 (74) || 0.49 | 8.16x | 10.98x (22.2) | 8.12x (14) || 2.28 | 0.93x | 1.47x (13.8) | 0.93x (34)

Figure 15: Comparison of actual and predicted speed-up f@aWversion 14.gamma,#1)

Figures[ 15 — 1I7 show the comparison of the simulator’'s reswith those of the three
parallel Prolog systems. The results for Aurora and Museswathered from the a Sequent
Symmetry with 12 80386 processors at 16MHz, and those for&elg from a Sequent Sym-
metry with 10 80386 processors at 20MHz.

In the tables, the maximum performance of each program, asuned by the simulator, is
given under their nam,sand the columns have the following meaning:

# Number of workers

6The sentence was “Which European countries that contaity ¢heitpopulation of which is more than 1 million and that bordepantry
in Asia containing a city the population of which is more thamilion border a country in Western Europe containing a diy population of
which is more than 1 million?”

"We were not able to obtain the maximum speedup8gueenslit was still producing reasonable speedups with 1300 wstkd@he
maximum performance is well beyond this.
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8queensl parseb5 orsim(sp2)
>867x @1300 58.46x @256 1.47x @5
# |[ Time[ Act. [ Pre.(0)] match Time| Act. [ Pre.0)] match |[[ Time[ Act. [Pre.(0)] match
1| 8.14 1x 1x 1x (0) 529 | 1x 1x 1x (0) 232 | 1x 1x 1x (0)
2 || 406 | 2.00x | 2.00x 2.00x (0) 2.84 | 1.86x | 2.00x | 1.86x (36) || 2.37 | 0.98x | 1.27x | 0.98x (30)
3 || 2.78 | 2.93x | 3.00x | 2.93x (184)|| 1.84 | 2.87x | 3.00x | 2.88x (12) || 2.35| 0.99x | 1.44x | 0.99x (38)
4 || 211 | 3.86x | 4.00x | 3.85x (296)|| 1.50 | 3.53x | 4.00x | 3.54x (26) || 2.33 | 1.00x | 1.45x | 1.00x (38)
5 || 1.65| 4.94x | 4.99x | 4.94x (28) || 1.17 | 4.52< | 5.00x | 4.54x (14) || 2.40 | 0.97x | 1.47x | 0.97x (30)
6 || 1.38 | 5.90x | 5.99x | 5.89x (50) || 1.03 | 5.14x | 6.00x | 5.14x (16) || 2.36 | 0.98x | 1.47x | 0.99x (28)
7| 1.21| 6.73x | 6.98x | 6.73x (72) || 0.89 | 5.95x | 7.00x | 5.91x (12) || 2.35 | 0.99x | 1.47x | 0.99x (28)
8 || 1.05| 7.76x | 7.98x | 7.77x (58) || 0.82 | 6.45x | 7.99x | 6.39x (16) || 2.35 | 0.99x | 1.47x | 0.99x (28)
9 || 0.93| 8.75x | 8.99x | 8.73x (50) || 0.76 | 6.97x | 8.98x | 6.90x (16) || 2.36 | 0.98x | 1.47x | 0.99x (28)
10|| 0.85| 9.58x | 9.96x | 9.58x (52) || 0.73 | 7.25x | 9.98x | 7.65x (14) || 2.37 | 0.98x | 1.47x | 0.99x (28)
11| 0.78 | 10.45«x | 10.96x | 10.48x (48) || 0.69 | 7.68x | 10.98x | 8.12x (14) || 2.34 | 0.99x | 1.47x | 0.99x (28)
Figure 16: Comparison of actual and predicted speed-up fioora (version 0.6/Foxtrot #8)
boyernsi(2) orsim(spl) orsim(sp2)
12.7x@~74 1.14x @2 8.32x @~20
#| Time [ Act. [ Pre.0) [ match Time [ Act. [ Pre.0) [ match Time [ Act. [ Pre.0) [ maich
1] 1.239] 1x 1x 1x (0) 049 | 1x 1x 1x (0) [[1.799] 1x 1x 1x (0)
21/ 0.670| 1.85x | 1.97x (1.5) | 1.85x (44) || 0.43 | 1.14x | 1.14x (0.1) | 1.14x (18) 1.1 | 1.65x | 1.87x (0.3) | 1.65x (378)
3] 0.45 ] 2.75x | 2.91x (4.8) | 2.77x (8) || 0.43 | 1.14x | 1.14x (0.1) | 1.14x (18) || 0.67 | 2.69x | 2.68x (0.6) | 2.68x (0)
41| 0.35 | 3.54x | 3.76x (8.1) | 3.55x (6) 0.43 | 1.14x | 1.14x (0.1) | 1.04x (18) || 0.53 | 3.39x | 3.37x (1.4) | 3.37x (0)
51/ 0.299| 4.14x | 4.53x (15.0)| 4.19x (4) 0.43 | 1.14x | 1.14x (0.1) | 1.14x (18) || 0.439| 4.10x | 3.75x (1.0) | 3.75x (0)
6 || 0.259| 4.78x | 5.28x (18.0) | 4.81x (4) 0.43 | 1.14x | 1.14x (0.1) | 1.14x (18) || 0.389| 4.63x | 4.43x (0.5) | 4.43x (0)
7 ]] 0.240] 5.16x | 5.91x (21.0)| 5.08x (6) || 0.429] 1.14x | 1.14x (0.1) | 1.14x (18) || 0.350| 5.14x | 5.34x (3.8) | 5.13x (10)
8 || 0.230| 5.39x | 6.53x (21.1) | 5.40x (8) || 0.429| 1.14x | 1.14x (0.1) | 1.14x (18) || 0.329| 5.47x | 5.84x (3.0) | 5.47x (32)
9 || 0.219| 5.66x | 7.11x (22.2) | 5.67x (10) || 0.429| 1.14x | 1.14x (0.1) | 1.14x (18) || 0.309| 5.82x | 6.15x (1.1) | 5.82x (34)

Figure 17: Comparison of actual and predicted speedup fBrdleg (version 0.2.2.2/C1.2)

Time Time in seconds to execute the program on the three systdnssisthe fastest of many
timings — the fastest time instead of the average time isethbgcause the fastest time
corresponds closer to the ideal speedup.

Act. The actual speedup of the systems over the execution timenamnker.

Pre.(0) Speedup predicted by simulator, assuming 0 units of ovelthEae number in bracket
is the percentage slowdown of this speedup if an overheaduniit8 is assumed. This
gives some idea of how sensitive the speedup is to overheads.

match The amount of overheads needed for the speedup from theadonwb most closely
match that of the actual speedup. The predicted speedupsettwith the overheads is
shown in brackets.

There is general agreement between the actual speed-ufiseasichulated speed-ups. Pro-
grams predicted to have high speed-ups have high speegnaggsams predicted to have low
speed-ups have low speed-ups. In addition, the numericaéagent is generally better if the
speedup is predicted to be less sensitive to overheads (e.g.
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parse5 boyernsi(2). In general, the agreement for &-Prolog seems better thiatmé other
two systems; although the speedups for 2 agents seem to ber jpoal should be investigated.
This behaviour (probably due to scheduler) would probabhhave been detected if the simu-
lator were not used.

The results illustrate how the simulator can help in intetipg actual performance data. For
example, the reason that such low speedups are achievexsiny(spl)for &-Prolog andor-
sim(sp2)for Muse and Aurora are due almost entirely to a lack of paliath, instead of some
other implementation factor. Also, the fact that the sp@sdarorsim(sp2)under &-Prolog is
not 1-to-1 with number of agents is again due to the amountaifable parallelism: this is cer-
tainly something that would be very difficult to decide withdhe simulator’s result. However,
using the simple overhead model in the simulator, we canimltagen more information: e.g.
the results show that botbarse5(under or-parallelism) anboyernsi(2) (under independent
and-parallelism) have speedups which are very sensitiezdécheads, and thus the relatively
poor numerical agreement between the actual speedups amiddicted speedups in these
cases are probably not due to some very significant overh@adsct, the agreement for it
parse5 for both Muse and Aurora is probably better than tlesults for8Bqueens;lalthough
the numerical agreement seems better.

A useful feature of the simulator’s results is that theywlkhe selection of programs that
can stress the actual system with a small number of workemsexample of this is programs
with low maximum speed-up and/or fine granularity. The paogs used for the &-Prolog
comparison, andrsim(sp2)rom the two or-parallel Prolog comparisons, are exampiasich
programs. Other examples appeared in Szeredi’s studyhwieccalled the “low speed-up
group” (“Group L").

Another useful feature of the results is that they allow cargon between different Prolog
systems, even if they exploit different forms of paralleljswhich makes meaningful direct
correlation of results difficult. With the simulator, moreeamingful comparison can be made
by dividing simulated programs into groups based on thekximam speed-ups and granularity.
The idea is to select different programs with similar paladharacteristics for different parallel
Prolog systems, and then use them to compare such systethis. daseprsim(splyunning on
&-Prolog can be compared twrsim(sp2)on Muse and Aurora, andoyernsi(2) on &-Prolog
can probably be compared parse5(because of their granularity). The results suggest tteat th
agreement between actual and predicted speedups is abadrtte or perhaps slightly better
for &-Prolog. We believe that this is at least partly becasd®eduling in &-Prolog is much less
costly than in either Aurora or Muse.
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8 Conclusion and Future Work

We have studied the nature of or- and independent and-plsailin Prolog programs. We find
that not many programs contain both forms of parallelismhBaprograms tend to exhibit one
form of parallelism or the other. Thus, a system which explboth forms of parallelism can be
expected to provide speedups for a much greater range ofggngghan exploiting either form
of parallelism on its own. We believe that the “or-under-angthod of combining the two
forms of parallelism is a good solution to the problems imedl in this combination. We are
actively researching incorporating this method into alatag@lementations in the ACE [28, 54]
and the DASWAM/Prometheus systems|[59, 61]. From our exasy@nd extrapolating the
results we have for running realistic programs on small eptardata to larger data, it seems
reasonable to expect 10 to 100 fold speedups for realistigrams running on realistic data.

However, even when exploiting both forms of parallelisneréhare still programs that can-
not be sped up. Some of these may have li@gendenand-parallelism, which is not exploited
by the models studied. We are also examining ways to explbidépendent and-parallelism
within the framework of Prolod [60, 62]. Initial results skéhat more and-parallelism can be
exploited in some realistic programs. Another interesatigrnative is to exploit only deter-
ministic and-parallelism, as in the Andorra model![55, 56}, which interesting results have
been shown. This leaves out some independent and-paswailléior example, and-parallelism
of independent goals which contain choice points) but plesideterministic dependent and-
parallelism at potentially less cost than a full dependedtparallel system.

The simulator has provided us with valuable information @ nature of both independent
and- and or-parallelism, and has allowed us to better utatetshe results from actual im-
plementations. For example, it allowed us to see how clostesys like Aurora, Muse, and
&-Prolog come to achieving the ideal speedups predictetiégimulator. The information ob-
tained has already been used to refine implementations,neslgoSzeredi [69], or to develop
new compilation technology, as done by us in the context oi-stact independence [12].
Furthermore, it allowed us to sensibly compare the resudtaived from &-Prolog to those
obtained from Aurora and Muse, running different benchreavke expect that the simulator’s
results can also be applied to better understand other imgpitations.

Finally, we are also currently using the simulator to study guality of the automatic an-
notation technology that has been developed for &-Prolog. &§o plan to use the simulator
to help us better evaluate some of the new parallel Prologsysswe are developing, such as
ACE [28,/54], DASWAM [62], and CIAOI[33, 31].

31



9 Acknowledgements

We thank \Mtor Santos Costa, David Warren and other members from th&REd ParForCE
ESPRIT Projects, the Gigalips group, the CLIP group at UPM,thachinonymous referees for
their help and discussions on this work. We also gratefutkhawledge the invaluable help
of Mats Carlsson with SICStus Prolog, without which this wordubld not have been possible.
We also thank Bristol for the use of their Symmetry. The Seg8gmmetry at UPM was made
possible by a grant from British Telecom. The original workch#bed in this paper was funded
in part by ESPRIT project PEPMA, while the latest work was fethéh part by ESPRIT project
ParForCE and CICYT project IPL-D.

A Programs simulated

The benchmark-type programs are the follomﬁwg:

gsort(20) : This is a version of the quick-sort algorithm. A list of 20 numbers, gateel randomly, is sorted in this example.
gsort(100) : A longer list of 100 random numbers is sorted.

serialise : This program takes an input list and converts each item to a numbemdurhber is the order of that item in the
sorted list. The list for this simulation consists of 25 characters.

numbers : This is a solution to a simple numeric puzzle. It is an example of a simplefgénand test’ program.
4Queensl: This is a solution to the 4-Queens problem. This is a sequentially ineffiogesion of the solution.
4Queens2: This is another solution to the 4-Queens problem. It is sequentially misceeaf thandQueensl

mapl : This is a program to solve the map colouring problem, i.e. colouring asuap that no 2 neighbouring countries
have the same colour. All the solutions to the problem are returned. Taealasists of 5 countries, 4 colours, with the
colour for one of the countries pre-set.

atlas : This program searches a database consisting of populations asdofiauntries, and finds pairs of countries with
population densities that are within 5% of each other. The database cafgStsountries.

deriv : This program does symbolic differentiation by specifying the differé¢iotierules in Prolog.
vmatrix(10) : This program multiplies a 10 by 10 matrix and a 10 by 1 matrix. The matrixigesented as a list of lists.

matrix(10) : This program multiplies a 10 by 10 matrix and another 10 by 10 matrix. Taixris represented as a list of
lists.

tak : This is a translation of the standard Takeuchi Lisp benchmark [25May Eick [70].
hanoi : This program solves the Towers of Hanoi problem. The example 8 discs.

cluster : This is an implementation of the core part of a network clustering algoriged by British Telecom Research Labs.
This program was written by A. Beaumont to exploit and-parallelism,dasen original British Telecom program. It
is used as a benchmark for Andorra-[[78]. Here, the clusteringrfemeed on 100 elements, instead of the 500 used
in Andorra-l.

The application-type programs are the following:

8The text of the programs cannot be included for space rea$tmey.are available however by ftp by contacting the auttibing. simulator
itself is also available in order to be able to generate igagdllelism numbers for other benchmarks.
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warplan(wql) : This is Warren’s Warplan planning program. A plan is generated fofimgca robot to a particular point in a
“strips” world.

warplan(wqg2) : Warplan generates a plan for moving a robot to a certain location in akbleorld.”

compiler(cpl) : This is a slightly modified version of the public domain Prolog compiler by Ray [73], compiling a version
of the atlas benchmark that has a smaller database.

This version contained no or-parallelism because of the limitations of thdagmnat the time this test was done. And-
parallelism was annotated by hand at the top-level only.

compiler(cp2) : This is Van Roy’s compiler compiling a version of the deriv benchmaitk anly the differentiation rules.

compiler(cp3) : This is Van Roy’s compiler, with further annotations for and-parallelifitaimed by using the annotator, and
with or-parallelism. The compiled code is a small subset — 8 clauses — dathbase predicates of atlas.

boyer_nsi(2) : This is the version of the Prolog Boyer theorem prover benchmarkslated by Evan Tick [40] from the one
in the Gabriel Lisp benchmarks [25]. The theory used is a simple tautology

(=2 y) Ay = 2) = (z = 2)

where
z=f((a+b)+(c+0))
y = f((axb)x(ct+d)
z = lessp(remainder(a,b), member(a, length(b)))
tp : This is a version of a propositional theorem prover by Ross Overbéélas been modified by Mats Carlsson and Carl
Kesselman for more efficient sequential execution. Here, one otipiidied example theorems (ct.3) was used.

chatp(cql) : This program is the natural language analysis part of the Chat-8(nsystarting from the list of input words
to the generation of the final query (i.e. after rearrangement of dyatgiery pIanning)H The parsed question was
“Where is China?”.

chatp(cg2) : Same program ashatp(cql) with the question “Is London in United Kingdom?”.
chatp(cg3) : Same program ashatp(cql) with the question “Which countries are European?”.

sim(sp2) : This is the first part of the and/or simulator itself (slightly modified so thait simulate itself). The and-
parallelism was produced by using the annotator. The program simulatad bimulated simulator is the atlas program
with a database of 6 countries.

orsim(sp2) : This is an older version of the first part of the simulator which simulatgsacallelism only. It was modified
from the original or-parallel simulator so that it is basically the same asrtparallel part of the and-or simulator. The
program was modified slightly and hand annotated with independentamatigiism. The same small atlas program as
in sim(sp2)is simulated.

orsim(spl) : This is the or simulator simulating a 5 elementugareverse.
annotator : This is the annotator used for generating and-parallelism, running makh et of clauses.

floorplan : This is a floor plan design program by L. B. Kass [44]. It generates valid partitions of an area into various
rooms, given a set of constraints. The query used has 6 roonsraioed to be within certain sizes, and six additional
requirements such as placement of windows.

9The results presented here are significantly different filense presented i [64] because more of the Chat system isséduiere, and
also because of the change of behaviour of “cut” in the simulat
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