
Towards Verification of Java Bytecode
using Logic Programming Tools

E. Albert1, M. Gómez-Zamalloa1, L. Hubert2, and G. Puebla2

1 Complutense University of Madrid,
elvira@sip.ucm.es

mzamalloa@clip.dia.fi.upm.es
2 Technical University of Madrid,

{laurent,german}@clip.dia.fi.upm.es

Abstract. State of the art analyzers in the (Constraint) Logic Program-
ming paradigm (or (C)LP for short) are nowadays mature and sophisti-
cated. They allow inferring a wide variety of global properties including
termination, run-time error freeness, bounds on resource consumption,
etc. The aim of this work is to automatically transfer the power of such
analysis tools for LP to the analysis and verification of Java bytecode.
In order to achieve our goal, we rely on well-known techniques for meta-
programming and program specialization. More precisely, we propose to
partially evaluate a Java bytecode interpreter implemented in LP w.r.t.
(a LP representation of) a set of Java bytecode classes and then an-
alyze the residual program. Interestingly, at least for the examples we
have studied, our approach produces very simple LP representations of
the original Java bytecode programs. This can be seen as an automatic
translation and decompilation from Java bytecode to LP source. Rea-
soning about properties of such residual programs allows automatically
proving some non-trivial properties of Java bytecode programs such as
termination and run-time error freeness.

1 Motivation
The technique of abstract interpretation [6] has allowed the development of very
sophisticated global static program analyses which are at the same time auto-
matic, provably correct, and practical. The basic idea of abstract interpretation
is to infer information on programs by interpreting (“running”) them using ab-
stract values rather than concrete ones, thus, obtaining safe approximations of
programs behavior. A classical application of the semantic approximations pro-
duced by an abstract interpreter is to perform program verification.

Verifying programs in the (Constraint) Logic Programming paradigm —
(C)LP — offers a good number of advantages, an important one being the ma-
turity and sophistication of the analysis tools available for it. These analyzers
are parametric w.r.t. the so-called abstract domain, which provides a finite rep-
resentation of possibly infinite sets of values. Different domains capture differ-
ent properties of the program with different levels of precision and at a differ-
ent computational cost. This includes error freeness, data structure shape (like

JVML

JVML
Interpreter

(CLP)

CLASS
EVALUATOR

PARTIAL

 Class n

Class 1

....

Class files

META−PROGRAMMING

Program

asser

ANALYZER

Domains
Abstract

READER

check

VERIFICATIONPROGRAM TRANSFORMATION

Program
Residual Abs

Fig. 1. Verification of Java Bytecode using Logic Programming Tools

pointer sharing), bounds on data structure sizes, and other operational variable
instantiation properties, as well as procedure-level properties such as determi-
nacy, termination, non-failure, and bounds on resource consumption (time or
space cost), etc. CiaoPP [11] is the abstract interpretation-based preprocessor of
the Ciao (C)LP system. It uses modular, incremental abstract interpretation as
a fundamental tool to obtain information about programs. The semantic ap-
proximations thus produced have been applied to perform high- and low-level
optimizations and program verification.

A principal advantage of verifying programs on the (LP) source code level
is that we can infer complex global properties for them. However, in certain
applications like within a mobile environment, one may only have the object
code available, since mobile components are typically deployed as bytecode. In
general, it is not immediate to specify/infer global properties for the bytecode by
using pre and post-conditions (as it is usually done in existing tools for high-level
languages such as Java [2]). Also, analysis tools for such low-level languages are
unavoidably more complicated than for high-level languages because they have
to cope with complicated and unstructured control flow. The aim of this work
is to provide a practical framework for the verification of Java bytecode which
exploits the expressiveness, automation and genericity of the advanced analysis
tools for LP. In order to achieve this goal, we will focus on the techniques
of meta-programming, program specialisation and static analysis that together
support the use of LP tools to analyse jvml programs (i.e., programs written
in the Java Virtual Machine Language). Similar interpretative approaches have
been applied to analyse high-level imperative languages [19] and also the PIC
processor [10] by relying on CLP tools.

Figure 1 presents a general overview of our approach. We depict an element
within a straight box to denote its use as a program and a rounded box for data.
The whole verification process is split in three main parts:

1. Meta-programming. We use LP as a language for representing and ma-
nipulating jvml programs. We have implemented an automatic translator
class reader which, given a set of .class files {Class 1,. . ., Class n}
returns an LP representation of them in jvmlβ (a representative subset of
jvml which will be discussed in detail in Section 1), i.e., a jvmlβ Program

denoted by P . Furthermore, we have also implemented in LP an interpreter
jvmlβ int, which captures the JVM semantics. In addition, the interpreter
has been extended in order to compute execution traces, which will be very
useful for reasoning about certain properties.

2. Partial evaluation. The development of partial evaluation techniques [13] has
allowed the so-called “interpretative approach” to compilation. We have used
an existing partial evaluator for LP in order to specialize the jvmlβ int
w.r.t. the LP representation of {Class 1,. . ., Class n}, as described in 1).
As a result, we obtain IP , an LP residual program which can be seen as a
decompiled and translated version of P into LP.

3. Verification of Java bytecode. The final goal is that the jvml program can
be verified by analysing the residual program IP obtained in 2) with state-
of-the-art analyzers developed for LP.

The resulting scheme has been incorporated in the CiaoPP preprocessor. By
means of two running examples, we demonstrate that it can be used to verify
non-trivial properties on Java bytecode.

2 The Class Reader (jvml to jvmlβ in LP)

In this section and the next one we describe (and give some implementation
details of) the “meta-programming” phase in Figure 1. In particular, this sec-
tion presents the elements depicted as class reader and Section 3 presents
jvmlβ int.

As notation, we use Prog to denote LP programs and Classes to denote
.class files (i.e., jvml classes). The input of our verification process is a set of
jvml .class files, denoted as C1 . . . Cn ∈ Classes, which describe the informa-
tion of a set of Java classes (as specified by jvml, see the Java Virtual Machine
Specification [16]). Then, the process named class reader in the figure takes
C1 . . . Cn and returns an LP program which contains all the information available
in the classes and represents it in the jvmlβ language. jvmlβ is a representative
subset of the jvml language which is able to handle: classes, interfaces, ar-
rays, objects, constructors and object initialization, virtual, interface and static
invocations, exceptions, method call to class and instance methods, etc. For sim-
plicity, some other features such as packages, types as float, double, long and
string, concurrency and tableswitch instructions are left out of the chosen subset.
Figure 7 in Appendix A describes in the form of a grammar the formal syntax
of jvmlβ . For the sake of conciseness, in the following we use the prefix jvmlβ
on Prog, written as jvmlβ Prog, to make explicit that a LP program contains a
jvmlβ representation.

Definition 1 (class reader). We define function class reader: Classes+ →
jvmlβ Prog which takes a set of .class files C1 . . . Cn ∈ Classes and returns
an LP program P ∈ jvmlβ Prog which is the LP representation of C1 . . . Cn.

The implementation of class reader in Ciao [4] reads the .class files byte
by byte and organizes and interprets them as it is specified in the class file

public int exp(int base, int exponent){

int result=1;

int i=exponent;

while(i>0){

result*=base;

i--;

}

return result;

}

Fig. 2. Method for Computing the Exponential

format specification (see [16]). As a result, it produces a Ciao program (i.e., an
LP program) which consists of a set of facts containing exactly the same infor-
mation as the original .class files. The differences between jvml and jvmlβ
are essentially the following:

1. Bytecode factorization. Some instructions in jvml have similar behavior and
have been factorized in jvmlβ in order to have fewer instructions 3 but
without affecting expressiveness. This will make the jvmlβ code easier to
read (as well as the traces which will be discussed in Section 3) and the
jvmlβ int easier to program and maintain.

2. References resolution. Original jvml instructions very often use indexes onto
the constant-pool table [16], a structure present in the .class file which
stores different kinds of data (constants, field and method names and de-
scriptors, class names, etc). The class reader removes all references to
the constant-pool table in the bytecode instructions by replacing them with
the complete information. This can be seen as an unfolding step whose pur-
pose is to get rid of intermediate steps and which could benefit an analyzer’s
inference task later.4 Thus, we no longer need the constant-pool table and
all the required data are included within the jvmlβ class representation.

As a result, class reader produces in the output, on one hand, the bytecode
instructions for the methods in all the involved Java classes and represented
as “bytecode” facts. On the other hand, a single fact “program” obtained by
putting together the Class terms which store all required information (except for
the bytecode instructions which appear separately in the above facts). All such
facts (bytecode and program) are structured as specified by the jvmlβ syntax
(see Figure 7 in Appendix A for details). Let us see an example.

3 This allows covering over 200 bytecode instructions of jvml in 54 instructions in
jvmlβ .

4 It should be noted that the partial evaluator can automatically perform this
unfolding step. But we prefer to have a translator with reference resolution which
can be used independently of our current approach (e.g., by a Java bytecode analyzer
written in Ciao directly).

Example 1. In Figure 2, we show the Java method exp which computes the expo-
nential for the parameters base and exponent. The execution of class reader
on this example returns the LP program depicted in Figure 3, which contains all
the information concerning the class to which exp belongs in the jvmlβ language.
Due to space limitations, we only show the bytecode facts which correspond to
the method exp (and omit the remaining information about the class). Each
bytecode fact is of the form bytecode(ModuleName,Bi,Mi,Inst,L), where Bi is
the index of this instruction in the code array, Mi is the index of the actual
method, Instruction is a term with its “opcode” as functor and its parameters
as arguments, and L is the instruction length, i.e., the number of bytes it uses in
the code array. The ModuleName argument represents the class name. This al-
lows us to deal with bytecode instructions which come from different Java classes
(since we are considering Java programs as sets of Java classes). It should be
noted that there are no indexes to the constant-pool table since, as already men-
tioned, they have been replaced by the full information. It can also be seen that
some original instructions have been replaced by their factorized version (e.g. in
the first bytecode fact, const(primitiveType(int),1)) corresponds in jvml
to the iconst 1 opcode without arguments).

bytecode(’Exp_class’,0,2,const(primitiveType(int),1),1).

bytecode(’Exp_class’,1,2,istore(3),1).

bytecode(’Exp_class’,2,2,iload(2),1).

bytecode(’Exp_class’,3,2,istore(4),2).

bytecode(’Exp_class’,5,2,goto(10),3).

bytecode(’Exp_class’,8,2,iload(3),1).

bytecode(’Exp_class’,9,2,iload(1),1).

bytecode(’Exp_class’,10,2,ibinop(mulInt),1).

bytecode(’Exp_class’,11,2,istore(3),1).

bytecode(’Exp_class’,12,2,iinc(4,-1),3).

bytecode(’Exp_class’,15,2,iload(4),2).

bytecode(’Exp_class’,17,2,if0(gtInt,-9),3).

bytecode(’Exp_class’,20,2,iload(3),1).

bytecode(’Exp_class’,21,2,ireturn,1).

Fig. 3. Partial output of class reader for Exponential

3 Specification of the Dynamic Semantics

(C)LP programs have been used for expressing the semantics of both high and
low-level languages [19, 25]. In our approach, we want to express the JVM seman-
tics in Ciao. The formal jvml specification chosen for our work is Bicolano [20],
which is a superset5 of jvmlβ . Bicolano is written with the Coq Proof Assis-
tant [1]. This allows checking that the specification is consistent and also proving
properties on the behavior of some programs.

5 It also includes the tableswitch and lookupswitch instructions.

In the specification, a state is modeled by a 3-tuple6 〈 Heap, Frame, Stack-
Frame 〉 which represents the machine’s state where:

– Heap represents the content of the heap,
– Frame represents the execution state of the current Method,
– StackFrame is a list of frames corresponding to the call stack.

Each frame is of the form 〈 Method, PC,OperandStack, LocalV ar 〉 and con-
tains the stack of operands OperandStack and the values of the local variables
LocalV ar at the program point PC of the method Method. The definition of
the dynamic semantics is based on the notion of step.

Definition 2 (step L−→P). The dynamic semantics of each instruction is speci-
fied as a partial function step : jvmlβ Prog×StateJVM → StateJVM×Step Na-
mes that, given a program P ∈ jvmlβ Prog and a state S ∈ StateJVM , computes
the next state S′ ∈ StateJVM and returns the name of the step L ∈ Step Names.
For convenience, we write S

L−→P S′ to denote step(P, S) = (S′, L).

The operational semantics of an instruction is expressed differently in the original
JVM specification, in Bicolano and in our implementation. The next example
shows the different specifications for the const instruction, which pushes onto
the stack the value of its parameter.

Example 2. The Coq representation in Bicolano of the JVM instruction const,
which corresponds to the Sun specification showed in Appendix B, is as follows:
Inductive step (p:Program) : State.t → State.t → Prop :=
| const step ok: ∀ h m pc pc’ s l sf t z,
instructionAt m pc = Some (Const t z) →
next m pc = Some pc’ →
step p (St h (Fr m pc s l) sf)

(St h (Fr m pc’ (Num (I (iconst z))::s) l) sf)

The above representation is written in Ciao as the program rule:
step(const step ok, Program,

st(H,fr(M,PC,S,L),SF),
st(H,fr(M,PCb,[num(int(Z))|S],L),SF)):-

instructionAt(M,PC,const(T,Z)),
next(M,PC,PCb).

In order to formally define our interpreter, we need to define the following func-
tion which iterates over the steps of the program until obtaining a final state.

Definition 3 (T−→
∗
P). Let T−→

∗
P be a relation on StateJVM with S

T−→
∗
P S′ iff:

6 There also exists in Bicolano and in our implementation another kind of state that
models exceptions, but, to keep this presentation simpler we have omitted it from
this formalization

– there exists a sequence of steps L1 to Ln such that S
L1−−→P . . .

Ln−−→P S′,

– there is no state S′′ ∈ StateJVM such that S′
L−→P S′′, and

– T ∈ Traces such that T = [L1, . . . , Ln] is the list of the names of the steps.

We can then define two different interpreters. One that takes as only parameters
a program and a list of strings, and starts the execution for the static void
main(java.lang.String[]) method of the first class of the program. This has
been implemented, but we have also defined a more general interpreter which
takes as parameters a program and a method invocation specification that in-
dicates in which method the execution should start from, the corresponding
effective parameters (which will often contain logical variables or partially in-
stantiated terms, which should be interpreted as the set of all their instances)
of the method and a heap. Both interpreters rely on the following execute
function.

Definition 4 (execute). Let P ∈ jvmlβ Prog be a program to be executed
and S ∈ StateJVM be a state. We define the execution of this program as
execute(P, S) = (S′, T) with S

T−→
∗
P S′.

The following definition of jvmlβ int computes, in addition to the return value
of the method called, also the trace which captures the computation history. This
will allow observing a good number of interesting properties about the program.

Definition 5 (jvmlβ int). Let M be a method invocation specification that
contains a method signature, parameters for the method and a heap. We define
a general interpreter jvmlβ int(P,M) = (R, T) with

– S = initialState(P,M) where initialState builds a state S ∈ StateJVM
from the program P and the method invocation specification M ,

– execute(P, S) = (S′, T),
– finalState(S′), which checks that S′ is a valid final state, that is to say

that the program counter points to a return instruction and the call stack is
empty, and

– R = result of(S′) is the result of the execution of the method specified by
M (the value on top of the stack of the current frame of S′).

If the state computed by execute is not a final state, then jvmlβ int fails.
When we can prove non failure, it means the initial state built from the provided
method invocation specification is guaranteed to be consistent.

This definition of jvmlβ int returns the trace and the result of the method
but it is straightforward to modify the definitions of jvmlβ int and execute
(and the corresponding code) to return less information or to add, for example,
the list of all the states if needed (to prove properties which may require a deeper
inspection of execution states).

4 Automatic Generation of Residual Programs

Partial evaluation (PE) [13] is a semantics-based program optimization technique
which has been deeply investigated within different programming paradigms and
applied to a wide variety of languages. The main purpose of partial evaluation is
to specialize a given program w.r.t. the static data, i.e., the part of its input data
which is known—hence it is also known as program specialization. The partially
evaluated (or residual) program will be (hopefully) executed more efficiently
since those computations that depend only on the static data are performed—at
partial evaluation time—once and for all. We use the partial evaluator for LP
programs of [21] written in Ciao and which is part of CiaoPP. We represent
it here as a function partial evaluator: Prog × Data → Prog which, for a
given program P ∈ Prog and static data S ∈ Data, returns a residual program
PS ∈ Prog which is a specialization [13] of P w.r.t. S.

The development of partial evaluation, program specialization and related
techniques [8, 14, 13, 9, 3] has led to the now established approach to compilation
(known as the first Futamura projection) based on specializing an interpreter
with respect to a fixed object program. The overhead of parsing the program,
fetching instructions, etc., can often be completely eliminated, leading to a resid-
ual program whose operations mimic those of the object program. This can also
be seen as a translation of the object program into another programming lan-
guage, in our case Ciao. The residual program is ready now to be, for instance,
executed in such language or, as in our case, analysed by tools for the language
in which it has been translated. In the LP context, this interpretative approach
has been applied to analyse high-level imperative languages [19] and also the
PIC processor [10] by relying on CLP tools.

The application of this interpretative approach to compilation from jvml to
LP within our framework consists in partially evaluating the jvmlβ int with
respect to a method invocation specification M (see Definition 5 above) and a
program P = class reader(C1, . . . , Cn). This results in a residual LP program,
IP .

Definition 6 (LP residual program). Let jvmlβ int ∈ Prog be a jvmlβ in-
terpreter, M a method invocation specification and C1, . . . , Cn ∈ Classes be a set
of classes. The LP residual program, IP , for jvmlβ int w.r.t. C1, . . . , Cn and M
is defined as IP = partial evaluator(jvmlβ int, (class reader(C1, . . . ,
Cn), M)).

Note that, alternatively to the interpretative approach, we could have imple-
mented a compiler from Java bytecode to LP. However, the interpretative ap-
proach has the advantages that it is simpler to implement, provided that a partial
evaluator for LP programs is available, and more flexible in the sense that it is
easy to modify the interpreter in order to observe new properties of interest.

Example 3. We show in Figure 4 the result of the automatic partial evaluation
of an implementation of the interpreter which does not output the trace (see
Section 3) w.r.t. the LP translation of the program in Example 1, an empty

:- module(_, [exp/2]).

exp(args(B,C), A) :-

C>0, E is B, F is-1+C,

execute(B,E,A,F) .

exp(args(_1,A), 1) :-

A=<0 .

execute(A,C,E,G) :-

G>0, H is C*A, I is-1+G,

execute(A,H,E,I) .

execute(_A,C,C,D) :-

D=<0 .

Fig. 4. Residual Exponential Program

heap, the signature of the exp method and two variables as parameters. The
partial evaluator has different options for tuning the level of specialization. In
particular, the so-called local control decides when to stop derivations and the
global control when to generalize a new term resulting from a previous unfolding.
For this example, we have used the local control strategy based on homeomorphic
embedding which is described in [21]. For the global control, we have also used
homeomorphic embedding in order to flag when generalization is required. The
most relevant point to notice about the residual program is that our PE tool
has achieved an optimal specialization by transforming a rather large interpreter
into a small residual program (where all the interpretation overhead has been
removed). It can also be seen that partial evaluation has done a very good job
since the residual program basically corresponds to the Ciao version one would
have written by hand.
Example 4. The program in Figure 4 provides a very satisfactory translation
from the Java bytecode method exp. In fact, the second argument of predicate
exp/2 computes the same value as the result value of the original exp method.
While the availability of a LP program which computes the same result as a
bytecode method can be of a lot of interest when reasoning about functional
properties of the code, it is also of great importance to have augmented the in-
terpreter with an additional argument which computes a trace (see Definition 5)
in order to capture the computation history. This will allow observing a good
number of interesting properties about the program. The residual program which
additionally computes execution traces can be seen in Figure 5. Now, we have a
predicate exp/3 whose third argument, on success contains the execution trace
at the level of Java bytecode.

5 Verification of Java Bytecode using LP Analysis Tools

Having obtained an LP representation of a Java bytecode program, the next
task is to use existing analysis tools for LP in order to infer and verify properties

:- module(_, [exp/3]).

exp(args(B,C),A,[const_step_ok,istore_step_ok,iload_step,istore_step_ok

goto_step_ok,iload_step,if0_step_jump,iload_step,

iload_step,ibinop_step_ok,istore_step_ok,iinc_step|D]) :-

C>0, E is B, F is-1+C,

execute(D,B,E,A,F).

exp(args(_,A),1,[const_step_ok,istore_step_ok,iload_step,istore_step_ok,

goto_step_ok,iload_step,if0_step_continue,

iload_step,normal_end]) :-

A=<0.

execute([iload_step,if0_step_jump,iload_step,iload_step,

ibinop_step_ok,istore_step_ok,iinc_step|F],A,C,E,G) :-

G>0, H is C*A, I is-1+G,

execute(F,A,H,E,I).

execute([iload_step,if0_step_continue,iload_step,normal_end],_,C,C,D) :-

D=<0.

Fig. 5. Residual Exponential Program with Trace

about the original bytecode program. The analysis tools we use are based on the
technique of abstract interpretation [6] and are part of the CiaoPP system [11].
Abstract interpretation provides a general formal framework for computing safe
approximations (i.e., abstractions) of program behaviour. Programs are inter-
preted using abstract values instead of concrete values. An abstract value is a
finite representation of a, possibly infinite, set of concrete values in the concrete
domain D. The set of all possible abstract values constitutes the abstract do-
main, denoted Dα, which is usually a complete lattice or cpo which is ascending
chain finite. We rely on a generic analysis algorithm (in the style of [12]) defined
as a function analyzer: Prog×AAtom → AApprox which for a given program
P ∈ Prog and an abstract domain Dα returns Approxα ∈ Dα. Correctness of
analysis ensures that Approxα safely approximates the semantics of P .

In order to verify the program, the user has to provide the intended seman-
tics (or program specification) as a semantic value Assertα ∈ Dα

7 in terms of
assertions (these are linguistic constructions which allow expressing properties
of programs) [23]. This intended semantics embodies the requirements as an
expression of the user’s expectations. The verifier has to compare the (actual)
inferred semantics Approxα w.r.t. Assertα.8 We use the abstract interpretation-
based verifier integrated in CiaoPP. It is dealt here as a function ai verifier:
Prog×ADom×AAssert → boolean which for a given program P ∈ Prog, an ab-
7 We denote that Assertα is a specification given as abstract semantic values of Dα

by using the same subscript α.
8 Comparison between actual and intended semantics of the program is most easily

done in the same domain, since then the operators on the abstract lattice, that are
typically already defined in the analyzer, can be used to perform this comparison.

class Np{

public static void main(java.lang.String args[]){

Np o = new Np();

o.m2(null);

}

public void m2(Np o){

o = new Np();

o.m();

}

public void m(){}

}

Fig. 6. Example for run-time-error freeness

stract domain Dα ∈ ADom and an intended semantics Assertα ∈ Dα succeeds
if the abstraction analyzer(P,Dα)=Approxα entails that P satisfies Assertα,
i.e., Approxα v Assertα.

Definition 7 (verified bytecode). Let IP ∈ Prog be an LP residual program
for jvmlβ int w.r.t. C1, . . . , Cn ∈ Classes and a method invocation specification
M . Let Dα ∈ ADom be an abstract domain and Assertα ∈ Dα be the abstract
intended semantics. We say that (C1, . . . , Cn, M) is verified w.r.t. Assertα in
ADom if ai verifier(IP , Dα, Assertα) succeeds.

In principle, any of the considerable number of abstract domains developed for
abstract interpretation of logic programs can be applied to residual programs,
as well as to any other program. In the next sections, we show by means of two
Java bytecode examples the kind of properties that we can verify about them.

5.1 Run-time Error Freeness Analysis
Our first example corresponds to the verification of the .class file associated
to the Java program in Figure 6. As new features, we have included in this
example objects and several methods (which demonstrates that our approach is
not restricted to intra-procedural analysis). The use of objects could in principle
issue exceptions of type NullPointerException. Clearly, the execution of class
Np will not produce any exception. However, the JVM is unaware of this and
has to perform the corresponding run-time test. We illustrate that by using
our approach we can statically verify that the above code cannot issue such an
exception (nor any other kind of run-time error). Since the program in Fig. 6
corresponds to the execution of a public static void main method with all
input data statically available, partial evaluation of the interpreter w.r.t. the
execution of this method can be fully evaluated. As we are using the interpreter
which captures execution traces, the trace computed by partial evaluation is:
[new step ok,dup step ok,astore step ok,aload step ok,aconst null,
invokevirtual step ok,new step ok,dup step ok, astore step ok,

aload step ok, invokevirtual step ok,return step ok, return step ok,
normal end].

Now, we want to specify in Ciao the property “goodtrace” which ensures
that the program is run-time error free. This includes the safety issue of not issu-
ing NullPointerException nor any other kind of run-time error (e.g., ArrayIn-
dexOutOfBoundsException, etc). As it is not a predefined property in Ciao, we
have to declare it as a regular type using the regtype declarations in CiaoPP.9

The following regular type goodtrace defines this notion of safety for our ex-
ample (for conciseness, we omit the bytecode instructions which do not appear
in our program):

:- regtype goodtrace/1.

goodtrace(T) :- list(T,goodstep).

:- regtype goodstep/1.

goodstep(aconst_null). goodstep(aload_step_ok).

goodstep(astore_step_ok). goodstep(dup_step_ok).

goodstep(invokespecial_step_here_ok). goodstep(invokespecial_step_ok).

goodstep(invokevirtual_step_ok). goodstep(new_step_ok).

goodstep(return_step_ok). goodstep(normal_end).

Next, we use the following “success” assertion as a way to provide a partial
specification of the program.
:- checked success main(args(A),B) => goodtrace(B).

This assertion should be interpreted as: for all calls to main(args(A),B), if
the call succeeds, then B must be a goodtrace on success.

Now, the residual program corresponding to the Java program in Figure 6
is extended with its partial specification and the entry assertion below which
describes the valid external queries to predicate main/2:
:- entry main(args(A),B) : (term(A), var(B)).

Now, CiaoPP performs regular type analysis using, for example, the eterms
domain [26]. This allows computing safe approximations of the success states
of all predicates. After this, CiaoPP performs compile-time checking [24] of the
success assertion above, comparing it with the assertions inferred by analysis,
and produces as output the following assertion:

:- checked success main(args(A),B) => goodtrace(B).

Thus, the provided assertion has been marked as checked, i.e., it has been
validated. When all assertions (in this case only one) have been moved to this
checked status, the program has been verified.

5.2 Termination Analysis
Program termination is obviously a desirable property in many contexts. Unfor-
tunately, and as it is well known, this is an undecidable property, and therefore
we can only expect termination analysis to compute approximate results. In spite
9 Formally, we define this property as a regular unary logic program, see [7].

of this, powerful static analyzers are available which can ensure termination for
an important subset of terminating programs. In the termination analysis area,
it can be argued that the state of the art in LP is more advanced than that in
imperative programming. Some well-known termination analysis systems for LP
are TerminWeb [5] and cTi [17]. Either of these systems can be used in order to
prove termination of the residual exponential LP program.

Let us consider again the program in Fig 4. Let us also consider the following
entry declaration:
:- entry exp(args(B,C),A) : (int(B), int(C), var(A)).

which describes the valid external queries to the predicate exp/3. The argument
for proving termination of all calls satisfying the entry declaration above is as
follows. Non-termination can only occur in loops. If (1) we can find an argument
whose size decreases in every iteration of the loop w.r.t. some norm which assigns
values always greater or equal than zero for any term, and (2) the program is
rigid w.r.t. the size of the corresponding argument (all instances of the term
have the same size) and, hence, the program terminates. In Example 3, the only
loop we have is for predicate execute 3/4. We can conclude termination by
reasoning on the last argument. This argument can be inferred to be bound to
an integer for all computations originating from the entry assertion above. Since
in the recursive path this last argument is decreased before making the recursive
call, the program is guaranteed to terminate.

6 Discussion and Ongoing Work

We have implemented our framework within the CiaoPP preprocessor [11], where
we have a generic analysis engine with a good number of abstract domains.
The generic analyzer allows inferring very rich information about LP programs,
including data structure shape (with pointer sharing), bounds on data struc-
ture sizes, and other operational variable instantiation properties, as well as
(global) procedure-level properties such as determinacy, termination, non-failure,
and bounds on resource consumption (time or space cost). This work attempts
to transfer such advanced features available in LP analysis to the verification of
Java bytecode. With this aim, we first partially evaluate a Java bytecode inter-
preter in LP w.r.t. (a LP representation of) a Java bytecode and then analyze
the residual program using such LP analysis tools. Our examples show that we
are able to reason about non-trivial properties of Java bytecode programs such
as termination and run-time error freeness.

We are not aware of any other attempts to use the interpretative approach
to the automatic verification of Java bytecode. In our preliminary experimen-
tation we have been able to infer global properties of the computation of the
residual LP programs. Thus, the proposed approach is very promising in order
to bring the analysis power of LP programs to low-level, imperative code such
as Java bytecode. However, the practical uptake of our proposal still depends on
a number of open issues which are the subject of our current and future work.
In particular, we are not able to properly handle recursive methods by using the
traditional partial evaluation technique since it loses too much accuracy and the

result is not a useful specialization. We believe the problem could be solved by
making use of an advanced partial evaluator which integrates the technique of
abstract interpretation (e.g., [22, 15, 19]).

By now, we have only applied our tools to achieve accuracy on a set of ex-
amples for run-time error freeness and termination. We still have not applied
the remaining existing domains in CiaoPP to reason about Java bytecode. More
concretely, we expect that we will be able to obtain bounds on resource con-
sumption from the traces that the residual program contains. Also, we are now
in the process of studying the scalability of our approach to the verification of
medium Java bytecode programs. The analysis tools in CiaoPP are designed with
support for incrementality and modularity. We hope that these features will fa-
cilitate the scalability of our approach. On the other hand, we also want to assess
efficiency issues and, in particular, which is the overhead introduced by the PE
process and compare it with existing analysis tools for Java bytecode. These are
the lines of ongoing work.

The verification of Java bytecode has received even more attention after the
influential Proof-Carrying Code (PCC) idea of Necula [18]. PCC is a general
technique for mobile code safety which proposes to associate safety information
in the form of a certificate to programs. The certificate is created at compile time
by relying on a verifier on the code supplier side, and it is packaged along with
the code. More recently, Abstraction-Carrying Code (ACC) has been proposed
as a framework for PCC in which the abstraction, automatically computed by
a fixed-point analyzer, plays the role of certificate. ACC relies on LP analysis
tools (the same ones used in the present work) which are always parametric
on the abstract domain with the resulting genericity, which is one of the main
advantages of ACC w.r.t. other PCC frameworks. The main limitation of ACC
is that it has only been applied by now to source LP programs while, in a
realistic implementation, the code supplier typically packages the certificate with
the object code. We believe that our approach here to the verification of Java
bytecode by relying on the same tools could help overcome such limitation.
However, there are still a number of open issues which have to be studied. For
instance, without further improvements, the consumer would have to use the
partial evaluator in order to generate the LP representation of the bytecode
and then validate the certificate w.r.t. it. Therefore, the partial evaluator would
become part of the trusted base code. Also, the resources needed to produce such
LP representation can make this approach impractical for devices with resource
limitations and a deeper study is required for a practical application.

Acknowledgments This work was funded in part by the Information Soci-
ety Technologies program of the European Commission, Future and Emerging
Technologies under the IST-15905 MOBIUS project, by the Spanish Ministry of
Education under the TIN-2005-09207 MERIT project, and the Madrid Regional
Government under the S-0505/TIC/0407 PROMESAS project.

References

1. B. Barras, S. Boutin, C. Cornes, J. Courant, J. Filliatre, E. Gimenez, H. Herbe-
lin, G. Huet, C. Munoz, C. Murthy, C. Parent, C. Paulin-Mohring, A. Saibi, and
B. Werner. The Coq proof assistant reference manual : Version 6.1. Technical
Report RT-0203, 1997. citeseer.ist.psu.edu/barras97coq.html.

2. G. Barthe, D.Naumann, and T. Rezk. Deriving an information flow checker and
certifying compiler for java. In Proceedings of Symposium of Security and Privacy
’06. IEEE Press, 2006. to appear.

3. M. Bruynooghe, D. De Schreye, and B. Krekels. Compiling Control. Journal of
Logic Programming, 6(1 & 2):135–162, January 1989.

4. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and
G. Puebla (Eds.). The Ciao System. Reference Manual (v1.13). Tech-
nical report, School of Computer Science (UPM), 2006. Available at
http://clip.dia.fi.upm.es/Software/Ciao/.

5. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. The Journal of Logic Programming, 41(1):103–123, 1999.

6. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. of POPL’77, pages 238–252, 1977.

7. T. Früwirth, E. Shapiro, M.Y. Vardi, and E. Yardeni. Logic programs as types for
logic programs. In Proc. LICS’91, pages 300–309, 1991.

8. Yoshihiko Futamura. Partial evaluation of computation process - an approach to
a compiler-compiler. Systems, Computers, Controls, 2(5):45–50, 1971.

9. J. Gallagher. Transforming logic programs by specializing interpreters. In Proc. of
the 7th. European Conference on Artificial Intelligence, 1986.

10. Kim S. Henriksen and John P. Gallagher. Analysis and specialisation of a pic
processor. In SMC (2), pages 1131–1135. IEEE, 2004.

11. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1–2):115–140,
October 2005.

12. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis
of Constraint Logic Programs. ACM TOPLAS, 22(2):187–223, March 2000.

13. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-
gram Generation. Prentice Hall, New York, 1993.

14. J. Komorovski. An Introduction to Partial Deduction. In A. Pettorossi, editor,
Meta Programming in Logic, Proceedings of META’92, volume 649 of LNCS, pages
49–69. Springer-Verlag, 1992.

15. M. Leuschel. A framework for the integration of partial evaluation and abstract
interpretation of logic programs. ACM TOPLAS, 26(3):413 – 463, May 2004.

16. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 1996.

17. F. Mesnard. Inferring left-terminating classes of queries for constraint logic pro-
grams. In Michael J. Maher, editor, Proceedings of the Joint International Con-
ference and Symposium on Logic Programming, pages 7–21, Bonn, Germany, 1996.
The MIT Press.

18. G. Necula. Proof-Carrying Code. In Proc. of POPL’97, pages 106–119. ACM
Press, 1997.

19. J.C. Peralta, J. Gallagher, and H. Sağlam. Analysis of imperative programs
through analysis of constraint logic programs. In G. Levi, editor, Static Anal-
ysis. 5th International Symposium, SAS’98, Pisa, volume 1503 of LNCS, pages
246–261, 1998.

20. D. Pichardie. Bicolano (Byte Code Language in cOq). http://www-
sop.inria.fr/everest/personnel/David.Pichardie/bicolano/main.html.

21. G. Puebla, E. Albert, and M. Hermenegildo. Efficient Local Unfolding with An-
cestor Stacks for Full Prolog. In Proc. of LOPSTR’04, pages 149–165. Springer
LNCS 3573, 2005.

22. G. Puebla, E. Albert, and M. Hermenegildo. Abstract Interpretation with Special-
ized Definitions. In The 13th International Static Analysis Symposium (SAS’06),
LNCS. Springer, August 2006. To appear.

23. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In Analysis and Visualization Tools for Constraint Programming,
pages 23–61. Springer LNCS 1870, 2000.

24. G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Logic-based Pro-
gram Synthesis and Transformation (LOPSTR’99), number 1817 in LNCS, pages
273–292. Springer-Verlag, March 2000.

25. Brian J. Ross. The partial evaluation of imperative programs using prolog. In
META, pages 341–363, 1988.

26. C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic
programs. In Proc. of SAS’02, pages 102–116. Springer LNCS 2477, 2002.

A jvmlβ syntax

Figure 7 shows the grammar of jvmlβ . In this grammar, words beginning with
an uppercase represent non-terminals (except Int, Bool, UnsignedInt and String,
which have the usual meaning), while words in lowercase represent terminals
which could be constants, functor or predicate names in first order logic. Thus,
for instance, we can see that a program in jvmlβ consists in a fact with program
as predicate name, and two lists as arguments, the first one being a list of Class
terms, and the second one a list of Interface terms. The bytecode instructions are
represented separately as a set of Bytecode facts all together inside a same file. In
order to differentiate them, they include both the method and the class which the
bytecode instruction belongs to (see Example 1 for details). It is interesting to
note that a full Class term will store all information relative to the compilation
of a Java class (except the bytecode instructions) as it is specified by the jvmlβ ,
as well as the .class file stores all information relative to the compilation of a
Java class as it is specified by the jvml.

B Sun specification of bipush

Figure 8 is an extract of Sun’s Java Virtual Machine Specification that describes
the bipush instruction. sipush and iconst <i> instructions are also discribed
in the JVM Specification and the three of them are very similar and have been
factorized to the const instruction in jvmlβ .

Program ::= program(Classes|Interfaces).
Classes ::= [] | [Class|Classes]
Interfaces ::= [] | [Interface|Interfaces]
Class ::= class(ClassName,OptionClassName,SuperInterfaces,Fields,Methods,

final(Bool),public(Bool),abstract(Bool))
Interface ::= interface(InterfaceName,SuperInterfaces,Fields,Methods,

final(Bool),public(Bool),abstract(Bool))
ClassName ::= className(packageName(String),shortClassName(String))
OptionClassName ::= none | ClassName
InterfaceName ::= interfaceName(packageName(String),shortClassName(String))
SuperInterfaces ::= Interfaces
Fields ::= [] | [Field|Fields]
Field ::= field(FieldSignature,final(Bool),static(Bool),

Visibility,initialValue(InitialValue))
FieldSignature ::= fieldSignature(FieldName,Type)
Visibility ::= package | protected | private | public
InitialValue ::= undef | null | int(Int)
FieldName ::= fieldName(ClassName,ShortFieldName)
ShortFieldName ::= shortFieldName(String)
Type ::= primitiveType(PrimType) | refType(RefType)
PrimType ::= boolean | byte | short | int
RefType ::= classType(ClassName) | interfaceType(InterfaceName) | arrayType(Type)
Methods ::= [] | [Method|Methods]
Method ::= method(MethodSignature,OptionBytecodeMethod,

final(Bool),static(Bool),Visibility)
MethodSignature ::= methodSignature(MethodName,Parameters,OptionType)
MethodName ::= methodName(ClassName,ShortMethodName)
ShortMethodName ::= shortMethodName(String)
Parameters ::= [] | [Type|Parameters]
OptionType ::= none | Type
OptionBytecodeMethod ::= none | bytecodeMethod(StackSize,LocalVarSize,FirstAddress,

methodId(ModuleName,MethodIndex),ExceptionHandlers)
StackSize ::= UnsignedInt
LocalVarSize ::= UnsignedInt
FirstAddress ::= Pc
ModuleName ::= String
MethodIndex ::= UnsignedInt
Instructions ::= [] | [Instruction|Instructions]
ExceptionHandlers ::= [] | [ExHandler|ExceptionHandlers]
ExceptionHandler ::= exceptionHandler(OptionClassName,StartPc,EndPc,HandlerPc)
StartPc ::= Pc
EndPc ::= Pc
HandlerPc ::= Pc

Bytecode ::= bytecode(ModuleName,Pc,MethodIndex,Instruction,Offset).
Pc ::= UnsignedInt
MethodIndex ::= UnsignedInt
Offset ::= Int
VariableIndex ::= UnsignedInt
Instruction ::= aaload | aastore | aconst null | aload(VariableIndex) | areturn |

arraylength |anewArray(refType(RefType)) | astore(VariableIndex) |
athrow | baload | bastore | checkcast(refType(RefType)) |
const(primitiveType(PrimType),Int) | dup | dup x1| dup x2 |
getfield(FieldSignature) | getstatic(FieldSignature) | goto(Offset) | i2b |
i2s | ibinop(BinOpType) | iaload | iastore | if acmpeq(Offset) |
if acmpne(Offset) | if icmp(Offset,CompType) | if0(Offset,CompType) |
ifnonnull(Offset) | ifnull(Offset) | iinc(VariableIndex,Int)|
iload(VariableIndex) | instanceof(refType(RefType)) |
invokestatic(MethodSignature) | invokevirtual(MethodSignature) |
ireturn | istore(VariableIndex) | multianewarray(refType(RefType)) |
new(ClassName) | newarray(primitiveType(PrimType)) | nop |
pop | pop2 | putfield(FieldSignature) |
putstatic(FieldSignature) | return | saload | sastore | swap |ineg |

BinOpType ::= addInt | andInt | divInt | mulInt | orInt | remInt |
shlInt | shrInt | subInt | xorInt

CompType ::= eqInt | neInt | ltInt | leInt | geInt | gtInt

Fig. 7. jvmlβ syntax

Operation
Push byte

Format

bipush

byte

Forms
bipush = 16 (0x10)

Operand Stack
... ⇒ ..., value

Description
The immediate byte is sign-extended to an int value. That value is
pushed onto the operand stack.

Fig. 8. Sun specification of bipush

