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Abstract

Static analysis is a powerful technique used traditionally fooptimizing programs,
and, more recently, in tools to aid the software developmentrpcess, and in partic-
ular, in nding bugs and security vulnerabilities. More concetely, the importance
of static analyses that can infer information about the costs afomputations is well
recognized since such information is very useful in a large nuerbof applications.
Furthermore, the increasing relevance of analysis applicatis such as static debug-

ging, resource bounds certi cation of mobile code, and gratauity control in parallel

Vi



computing makes it interesting to develop analyses for resoeraiotions that are ac-
tually application-dependent. This may include, for examie, bytes sent or received
by an application, number of les left open, number of SMSs seor received, energy

consumption, number of accesses to a database, etc.

In this thesis, we present a resource usage analysis that aims ateiming upper
and lower bounds on the cost of programs as a function of its dasize for a given
set of user-de nable resources of interest. We use logic programm as our basic
paradigm since it subsumes many others and this allows us treagi the problem at

a considerable level of generality.

Resource usage analysis requires various pre-analysis steps. Apdrtant one
is Set-Sharing analysis which attempts to detect mode informtion and which vari-
ables do not point to the same memory location, providing essegit information to
the resource usage analysis. Hence, this thesis also investigates phoblem of ef-
cient Set-Sharing analyses presenting two di erent alternéives: (1) via widening

operators, and (2) de ning compact and e ective encodings.

Moving to the area of applications, a very interesting class imles certi cation
of the resources used by mobile code. In this context, Java bgtede is widely
used, mainly due to its security features and the fact that it iplatform independent.
Therefore, this thesis nally presents a resource usage analy®sl for Java bytecode
that includes also a transformation which provides a block-el view of the bytecode,
and can be used as a basis for developing analyses. We have alsolajesd for
this purpose, a generic, abstract interpretation-based xpaoit algorithm which is
parametric in the abstract domain. By plugging appropriate bstract domains into
it, the framework provides useful information that can impree the accuracy of the

resource usage information.
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Chapter 1

Introduction

Static program analysis is the process of inferring informath at compile-time on
the runtime behavior of the program. Static program analysi®as many important
applications. It has traditionally been used primarily for opimizing programs so
that they will run faster. More recently, program analysis isncreasingly being used
in tools to aid the software development process and it is extreely useful in nding

bugs and security vulnerabilities in software.

Although many promising advancements have been achieved, thare still many
challenges in software reliability and development in the e world. One of the
biggest issues is the lack of more practical tools but the fact tkat static program
analysis is a very hard task. The current complexity of softwarmakes sometimes ex-
isting static analysis tools unable to infer information in a rasonable amount of time.
On the other hand, most problems in static program analysis arendecidable, which
means the use of approximate algorithms is needed. To make skeapproximated

algorithms work well on real programs is also a challenge.

The importance of static analyses that can infer information laout the costs of

computations is well recognized since such information is ugkfn a large number
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of applications. The kinds of costs which have received most atition so far are
related to a xed set of resources such as execution steps as weal] aometimes,
execution time or memory (see, e.g., [69, 104, 101, 108, 45, 45| for functional
languages, [111, 14, 40, 119] for imperative languages, and, [36, 38] for logic

languages).

These and other types of cost analyses have been used in the cantéxapplica-
tions such as granularity control in parallel and distributedcomputing (e.g., [80, 24]),
resource-oriented specialization (e.g., [32, 100]), or, neorecently, certi cation of
the resources used by mobile code (e.g., [8, 25, 4, 51]). Sdbcia these more re-
cent applications, the properties of interest are often higidevel, user-oriented, and
application-dependent. Examples of such programmer-de bée resources are bits
sent or received by an application over a socket, number of ldeft open, number
of SMSs sent or received, number of accesses to a database, eneoggumption,

monetary units spent, disk space used, etc.

Some recent work does deal with less restricted sets of resourf@46], [1]).
However, while the approaches proposed can conceptually beaptid to infer some
application-dependent resources in addition to the more tdational costs, the number
of resources of interest may be unbounded since it depends onheagplication.
Therefore, for each analysis developed the set of measured reseus xed and

changes in their implementations are needed to develop aysés for other resources.

Among existing programing paradigms, in an important part of tls thesis we use
logic programming [65] as our basic paradigm since it subsumesnyathers and
this allows us treating the problem at a considerable level gfenerality. Moreover,
languages based on logic programming are considered well slifta program analysis
due to their very high abstraction level and higher separationf control issues from
the logical speci cation of the problem. This observation waexpressed by Kowalsky

in the following equation [66]:
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Algorithm = Logic + Control

Regarding the object of certi cation, in the case of mobile ate we do not have
access to the source code, but only to compiled code. Therefaitee certi cation
and checking processes are often performed at the bytecodeelesgince, in addition
to other reasons of syntactic convenience, bytecode is whatnwst often available
at the receiving (checker) end. In this context, Java byteate [75] is widely used
because of its security features and its condition of platfornmdependent. Due to

these reasons, we also cover in this thesis analysis of Java bytexod

1.1 Thesis Objectives

The nal objective of the work presented in this thesis is the deslopment, imple-
mentation, and experimental evaluation of a set of advancedagic analysis-based
compilation techniques with special emphasis on resourceateld properties. We
believe that they contribute to the state of the art of this resarch area and can

potentially improve the program development process.

In order to achieve the objectives mentioned above, the thesdevelops a fully
automated resource bounds analysis for logic programs whichduite independent
of the particular resource of interest, based on the philosophy'write once run
for any resource” To do this, the analysis uses a resource notion that is actually
application-dependent. In our context a resource is easily ded by the user through
a exible and powerful assertion language which, for each extal or built-in called
by a procedure in the program to be analyzed, provides its cost terms of that
particular resource. The objective of our method is to statidly derive from these
elementary assertions upper and lower bounds on the amount bbe resources that

each of the procedures in the program (and the program as a wlpwill consume
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or provide. This approach allows us to infer almost any kind ofesource without

changes in the implementation.

The automatic inference of resource usage information relies other analyses
and the accuracy and e ciency of these analyses have a deep ingpan it. An
important issue in resource usage analysis of logic programs igtltertain program
information must be rst automatically inferred by other (abstract interpretation-

based) analyzers. Such analyses must, for example:

Determine which argument is input or output. This is called he mode of an

argument.

Infer the type of each argument, since Prolog is an untyped (orather, dy-

namically typed) programming language.

Optionally, if lower bounds are to be inferred, detect whiclprocedures fail or

not, which can improve considerably the precision of the resslt

Set-Sharinganalyses aim to detect which variables do not point transitiig to
the same memory location. This information can provide veryceurate input/output
modes to the resource usage analysis. However, traditional S&é@a8ng analyses can
also be quite ine cient and they are not good choices when analing large programs.
Because of this, this thesis also aims at the development of e ¢ie Set-Sharing

analyses presenting two practical solutions.

We rst present a more e cient Set-Sharing analysis viawidening operators. Tra-
ditionally, widening operators are used in the context of absdct interpretation [31]
to ensure, in some cases, the termination of the analysis. In our ¢ext, we use
widening to speed up the xpoint computation. We de ne the abstact functions re-

quired by standard analysis frameworks, and also de ne severaldening operators.
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We then evaluate the e ciency and precision of the resulting aalyses, and discuss

the interactions between thresholds, precision, e ciency andost of the widenings.

In our second proposal, we present an alternative approach: we de a new
representation that leverages the complement (or negativesharing relationships of
the original sharing relationships, without loss of accuracy. RAe intuition is that
switching to the complement representation can dramaticallyeduce the number
of elements that need to be represented during the xpoint coputation when the

number of relationships becomes large.

Since this thesis is focused on the design and implementationtobls that help
the development of real-life programs, it cannot omit the faahat in numerous real
applications the source code is not available, but only its lbycode version. In this
context, Java bytecode has become very popular because of seeurity features and
its platform-independent nature. Therefore, the thesis alsdevelops a tool for the
inference of resource usage information for Java bytecode.should be also noticed
that, although this work is clearly inspired by the proposal fo logic programs, an
adaptation from logic programs to Java programs is requirebdecause of issues such

as virtual method invocation, exceptions, unstructured combl ow, assignment, etc.

To Il all these gaps, the thesis presents the architecture of amalysis tool which
takes a Java bytecode program and, a set of resources of interastl attempts to
compute an upper bound of its resource usage as a (closed forngression depending
on the input data size. The inference of resource usage infornuat requires rst the
construction, from the program, of an intermediate represeation representing the
Control Flow Graph (CFG) of the original program. This provides a uniform high-
level representation which allows us to reason compositionathbout the cost. The
tool also includes an abstract interpretation-based xpoint &orithm for analysis of
Java bytecode which is parametric on the abstract domain. Thepoint algorithm

receives a CFG of the original program, and computes a safe aggmation of the
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state of the program in terms of the abstraction chosen. The xpat is e cient (due
to memoization techniques and dependency tracking) and mmiee (because of the
top-down, context sensitive approach adopted). By pluggingpgropriate abstract
domains such as class hierarchy analysis and nullity into the point algorithm, our
framework can provide useful information that may improve tke accuracy of the

resource usage information.

1.2 Main Contributions

We now enumerate the main contributions of this thesis. Sinceenhave completed
some parts of the work in collaboration with other researchersje also mention their
names and institutions to which they belong to, and the levelfoour contribution.

We also mention the publications resulting from each part of # work.

Regarding the problem of resource usage inference for logic programs:

We propose a novel resource bounds analysis for logic prograntgch allows
automatically inferring both upper and lower bounds on the sage that a logic
program makes of a set of application programmer-de nable seurces of inter-
est. This work has been done in collaboration with Prof. Pedrtbpez-Garca
(Technical University of Madrid) and Edison Mera (Complutense Uiversity of
Madrid) and has been published at the 23rd International Coefence on Logic

Programming (ICLP) in 2007 [95]. | am the main contributor tothis work.

We have studied the problem of scalable Set-Sharing analysesichhplay a

pivotal role in resource bounds analysis of logic programs masing:

{ A Set-Sharing analysis via widening that accelerates the >qnt compu-

tation. This work has been done in collaboration with Prof. Fancisco
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Bueno (Technical University of Madrid) and has been published ¢he 8th
International Symposium on Practical Aspects of Declarative anguages
(PADL) in 2006 [93]. | am the main contributor to this work.

{ A Set-Sharing analysis using a novel encoding that compactsethiepre-
sentation of sharing relationships among variables by workingith the
complement (or negative) set of the original relationships. Tik work has
been done in collaboration with Eric Trias and Elena S. AckleyUniv.
of New Mexico) and Prof. Stephanie Forrest (Univ. of New Mexico)
and has been published at the 24th International Conferencend.ogic
Programming (ICLP) in 2008 [112]. | am the main contributor b this
work. Eric Trias and Elena S. Ackley contributed to the formakation

and implementation.

Regarding the problem of inference of resource usage inform ation for Java

bytecode:

We present the architecture of a tool for inference of resouragage information

for Java bytecode. The tool includes:

{ An intermediate language representing the Control Flow GrapfCFG) of

the original Java bytecode program.

{ An abstract interpretation-based xpoint algorithm which is parametric

on the abstract domain.

{ A resource usage analysis that takes the CFG of a Java bytecod@gram
and a set of resources of interest and tries to compute an upperumal of
its resource usage. In addition, by plugging appropriate abstct domains
into the xpoint algorithm, the tool may improve the accuracy of the

resource usage functions.
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This tool has been developed in collaboration with Mario Madez (Univ. of
New Mexico). The intermediate language has been published atth In-
ternational Symposium on Logic-based Program Synthesis and afrsforma-
tion (LOPSTR) in 2007 [84]. The xpoint algorithm has been piblished at
the ETAPS 2nd Workshop on Bytecode Semantics, Veri cation, Anaisis and
Transformation (BYTECODE'07) in 2007 [85] and at the ECOOP 9thWork-
shop on Formal Techniques for Java-like Programs (FTfJP) alsm 2007 [94].
Finally, the resource usage analysis is submitted for publicam at the time of
writting this thesis. Mario Mendez and | have contributed in approximately

equal amounts to this work.

1.3 Structure of the Work

The structure of the rest of this thesis is as follows:
Chapter 2 provides background about logic programming reqed to under-
stand an important part of this thesis.

Chapter 3 gives background about abstract interpretation tat will be required

to understand several chapters of this thesis.

Chapter 4 describes the resource bounds analysis for logic peogs and presents

some experimental results of the implementation completed sfich analysis.

Chapter 5 provides background information regarding the $&haring analysis

that will be required to understand Chapters 6 and 7.

Chapter 6 describes our rst approach to Set-Sharing analysising widening

operators. It also shows experimental results which allow evalting the im-
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provement obtained with respect to the original Set-Sharingnalysis and other

e cient approaches.

Chapter 7 presents the alternative approach to Set-Sharingonking with the
negative of the sharing relationships. The chapter also shows amtial experi-
mental evaluation of the approach and compares it with respeto the original

Set-Sharing analysis.

Chapter 8 describes the intermediate language and the absttaaterpretation-

based xpoint algorithm that we propose. Both components willbe used by
the analyzer shown in Chapter 9. We also show some experimentasuks
for standard benchmarks, which further support the feasibilityof the solution

adopted.

Chapter 9 presents the generic resource usage analysis for Jaygetode pro-
posed. This chapter also presents experimental results that supp the prac-

ticability of the approach.

Finally, Chapter 10 presents our main conclusions and proposddections for

future work.



Chapter 2

Logic Programming

This chapter gives a brief review of basic notions of logic pgramming based mainly
on [71], [48], [49], and [35]. For a more extensive introducti to general aspects of
logic programming, the reader is referred to VanEmdem and Kwalski [115], Kowal-

ski [66], Lloyd[76], and Apt [6].

2.1 De nitions: First-Order Logic and Syntax of

Logic Programs

De nition 2.1.1. (Alphabet). An alphabetconsists of:

a possible empty set ofunction symbols They are denoted by lower case letters

starting from the letter f, for examplef ,g,h, ...

predicate symbolsThey are denoted by lower case letters beginning with p, for

instancep,qyr, ...

10
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variables They are denoted by upper case letters selected from the endtlo¢

alphabet, such asX,Y ,Z, ...

connectives : , A, $.

quantiers: 8, 9.

punctuation symbols, such as brackets and comma.

Functions and predicate symbols have an associatedlity that represents the

number of arguments. Constant symbols are a special case of functions when the

arity is zero. They are denoted by lower case letters startingdm a,b.c, ...On the

other hand, a predicate with arity of zero is called groposition.

In the case of logic programs, the following notation is used:

All variables are quanti ed universally. Therefore, quanti ers are omitted.
The conjunction operator” is replaced by a comma.

Lists are represented as in Prolog such that[jT] denotes the distinguished
functor :(H; T) whereH is the head element of the list andr is the tail. The

empty list, nil, is denoted by [ ].
A don't care variable is denoted by the symbo?°.
We can refer to functions or predicates using their functor gpredicate symbols
and arity. For instance, the predicatep(X;Y ) is denoted byp=2.

De nition 2.1.2. (Term). The set ofterms over some alphabet is de ned recur-

sively as:

11
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a variable is a term.

a constant is a term.

f(ty;:::;t,) is aterm.
]
De nition 2.1.3. (Atom). The set ofatoms over some alphabet is de ned as:
a proposition is an atom.
a predicate symbolp of arity n > 0 applied to the sequencey;:::;t, of n
terms, denoted byp(ty;:::;ty) is an atom.
]
De nition 2.1.4. (Ground). A term or atom is ground if it does not contain any
variable. m
De nition 2.1.5. (Formula). A formula over some alphabet is recursively de ned

as:

an atom is a formula.

if A and B are formulas then: A, A*B,A _B,A B,andA $ B are also

formulas.

if X is a variable and A is a formula, then8XA and 9XB are also formulas.

12



Chapter 2. Logic Programming

De nition 2.1.6. (Literal) If A is an atom then the formulasA and: A are called

literals. A is called apositive literal and : A is called negative literal In this thesis,

we will only use positive literals. n
De nition 2.1.7. (Clause) . A clauseis a formula of the form8(H,; _:::;Hny_
BiN:::"By)werem O,n OandHg;:::;Hy;By;:::; By are all literals.

The left hand side of the formulaH4;:::; Hy, is called thehead of the clause, and
the right hand sideB;;:::; B, is called thebody of the clause. m
De nition 2.1.8. (Horn Clause) . A Horn clauseis clause in which there is at

most one positive literal in the head of the clause.

A fact is a clause with an empty body.
A goal is a clause with an empty head and a non-empty body.

A clause with only atoms containing no variables is called ground instance

De nition 2.1.9. (Substitution). Let X; 7! t; be abinding between a variable

Xi and a termt; such that X; 6 t;. A substitution is a nite set of bindings,

De nition 2.1.10. (Interpretation). Given a rst-order languagel, an interpre-

tation | for L consists of:

a non-empty setD called the domain of interpretationD.

an assignment for each constant ih of an element inD.

13
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an assignment for eact-ary function in L of a mapping fromD" ! D.

an assignment for eacim-ary predicate inL of a subset ofD".

De nition 2.1.11. (Herbrand Universe). The Herbrand Universefor the lan-
guagel is the set of all ground terms that can be formed from the funain symbols

including constants. n

De nition 2.1.12. (Herbrand Base). The Herbrand Basefor the languageL is
the set of all ground atoms that can be formed using predicate sywols and where

their arguments are in the Herbrand Universe. n

If L is associated with a prograni, we denote the Herbrand universe and base as
Ur and Bp, respectively. For instance, letP = fp(f (X)) p(X): p(a): g(a): qb):g

be a program, then for the languagé& associated withP, we can de ne

Up

fa;b;f(a);f (b);f (f(a);f(f(b);:::g

Br = fp(a); p(b); a(a); a(b); p(f () ; p(f (0); a(f (a));:::9

De nition 2.1.13. (Herbrand interpretation). The Herbrand interpretation for

a languagelL is the interpretation de ned by:

The domain of the interpretation isUp.

Constants inL are mapped to themselves itUp .

14
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Thus, a Herbrand interpretation is uniquely determined by a sufet of Bp.

De nition 2.1.14. (Model). A model of a formula (over a domainD) is an inter-

pretation in which the formula has the valuetrue assigned to it.

The concept of a model of a formula can be extended to sets ofrfmias. A
model of a setS of formulas is an interpretation which is a model of all formias
in S. Two formulas arelogically equivalentif they have the same set of models. A
formula Q is alogical consequencef a setS of formulas if Q is assigned the value

true in all models ofS and it is denoted byS F Q.

De nition 2.1.15. (Herbrand model). A Herbrand modelof a program P of
the languageL is any Herbrand interpretation of L that is also a model ofP. A
Herbrand modelM Bp for a program P is a least Herbrand modelif no other

H® H is also a Herbrand model oP.

The least Herbrand model captures the meaning of a program. lonotains all
the atomic logical consequences of the program. A formula this true in the least

Herbrand model is true in all Herbrand models. m

2.2 Semantics of Logic Programs

The semantics of a program is the meaning assigned to this progra For a logic
program P, its semantics is equivalent to the least Herbrand model d?, and it

de nes the set of atomic logical consequences Bf

15
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2.2.1 Declarative Semantics

The least Herbrand model can be obtained as the least xpoint ohe function Tp.
The theoretical foundation of this semantics is based on amonther things, complete
lattices and monotone functionsover complete lattices. We postpone the de nitions
of these concepts to the next chapter.

De nition 2.2.1. ( Tp). Let P be a program, theimmediate consequence operator

Tp : 287 2B¢ is de ned as follows:
Tp(l)=fH 2 Bp j9C 2 ground(P);C=H By;::;ByandBy;:i;Br 2 1g

whereground(C) = fC j is a valid substitution for C and var(C ) = ;g

n
De nition 2.2.2. (Transfer function). Let T be a mapping 2 ! 2°, we de ne
S
T"0=?andT"i+1= T(T"Ti). WealsodeneT"1 as _, T"i.
n

Theorem 2.2.1. (Fixpoint characterization of the least Herbrand model).
Let P be a program, thenlfp(Tp) = Tp "1 = Hp wherelfp is the least xpoint

and Hp is the least Herbrand model of.

Proof. Proved by Van Emdem and Kowalski in [115].

2.2.2 Operational Semantics

The operational semanticsof a logic program is based on top-down (or ‘goal ori-
ented’) resolution and is namedLD-resolution. This SLD-resolution can be de ned

by the following algorithm whereP is a logic program andQ is a goal:
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SLD(P,Q)

1: Initialize the setR to be f Qg

2. while R 6 ;

3: Take a literal A in R

4: Choose a renamed clausg® Bj;:::; B, from P, such that A and A°
unify with uni er

5: if no such clause can be founthen

return fail ; explore another branch.

6: else

7: RemoveA from R, add B;:::;;Bn to R
8: R R

9 Q Q

10: if R =; then

11. return Q and succeed

Note that lines 3 and 4 do not specify the ordering of clauses withthe program,
and the ordering of the goals in the bodies of the clauses, resipesty. Di erent logic
programming systems may de ne di erent strategies for each casdn this thesis,
we concentrate onProlog (PROgramming in LOGic). It was the rst practical logic
programming language and it still is the most widely used and e ently implemented
today. It was devised by the group led by A. Colmenauer at the U. dflarseille. They
chose for Prolog an extremely simplienplicit control strategy. The following two rules

determine Prolog'scontrol strategy.

Search rule line 3: given a goal, the rst clause whose head uni es with the
goal, scanning from top to bottom of the program, is selected.HEn the goals in
the body of the clause are executed in the order determined byecomputation

rule below. If the choice does not lead to a solution (i.e. it lead®tfail ), all

17
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resolution steps and variable substitutions (i.e. all 'binding’) done since the
last such choice are undone, the next clause whose head matcheth the
goal is selected, and execution continues from there. Thisctenique is called

backtracking

Computation rule line 4: once a clause is selected (using teearch ruleabove),

the goals in the body of the clause are executed one by one in-tetright order.

De nition 2.2.3. (Success set). The success sefts the set of all grounds atoms
Suce = fbj SLD(P; Q) = b; Q is a goah. Then, Suce corresponds to the least

Herbrand model ofP.

2.3 Uni cation

In the SLD-resolution algorithm explained above, we omittedeliberately one of the
its basic mechanisms calledni cation and de ned by Alan Robinson [103] (line 4).
Two atoms pa(tay;:::;tayn) and py(thy;:::; th,) are said to beuni able, if they have
identical predicate symbols (i.e.pa = pp), they have the same arity (i.e.,n = m),
and all their terms are pairwise (i.e.,ta; vs. tby;ta, vs. th, etc.) uniable. Two

terms, ta and tb are uni able if the following recursive algorithm succeeds fahem:

1. if ta is a variable which appears irtb fail !; else

2. if ta is a variable, andtb is not, then succeed, and substitute tb for all

occurrences ofa; else

1This \check" (referred to as the occurs checR is sometimes omitted in practical im-
plementations because of the overhead involved in performp it.
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3. if both ta and tb are variables, thensucceed , keeping them as variables, but
giving them the same name. These variables are saidgbare if a substitution

is done for one of them it will also be done for the othekelse

4. if ta is a constant then,if tb is a constant and both constants are identical,

succeed , else fail ; else

5. ta is a structure (compound term); then,if tb is also a structure, they have
identical functors and arity, and all their respective termsare uni able (using

this algorithm recursively), succeed ; else

6. fail .

2.4 Non-Determinism

At this point, it should be fairly clear from all descriptions gven above that there

are two distinct components during the execution of a logic pgram:

1. The programP, i.e., the set of rules and facts, provided by the user (includin

the query goal Q).

2. An evaluator of the program, which is in charge of answerindié query using

the SLD-resolution algorithm given above.

It should also be clear from that description that there are two ccasions, lines
3 and 4 in the SLD-resolution algorithm, in which the next stepa be taken by the
program evaluator is not uniquely determined. This is the agin of the two basic

types of non-determinism present in Logic programs [66]:
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non-determinisny: if several clause heads unify with the selected goal, tpel-
icy used by the program evaluator for performing this selection isalled the
search rule. The search rule also determines whether the remagchoices will
also be eventually tried or not. This results in two subtypes ofhondetermin-

ismyq:

{ 'Don't care' non-determinismy: once a choice is made the systecommits

to that choice.

{ 'Don't know' non-determinism;: more than one of the possible choices

may eventually be tried in the search for a solution.

non-determinisny: if the current query goal contains several goals (procedure
calls) the policy used by the program evaluator for performinthis selection is

called the computation rule.

It is important to note that modifying the search rule a ects the order and number
of solutions which can be obtained from the system: although SLD-resolutiotioes
not impose a particular order in the choices made by the searchle, completeness
(i.e., the guarantee of nding all possible solutions) is only mserved if afair rule
is chosen, i.e., one which will ensure that all possible paths ihdg search spacewill
eventually be explored. Systems which use only \don't care" medeterminism, are
therefore incomplete (also, they can only provide at most one solution path for a
given query goal). Systems which use 'don't know' non-determism, can provide
more than one solution to a given query. Their degree of compdaess depends on
the type of search rule being used. Since most computation rulae exhaustive(i.e.,
they will eventually invoke all goals in the body of a clause)hte choice of one or
another will only a ect the behavior of the system, but not the umber of solutions

found.
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2.5 Modes in Logic Programming

One of the distinctive features of logic programs is that predates can run in di erent
modes, i.e., there is no priori notion of input and output. Thé allows a form of code
reuse that is not available (or supported) in other programmig languages. For
instance, consider the quicksort algorithrhimplemented by the followingqgsort/2

program:

gsort([].[])-

gsort([X|L],R) :-
partition(L,X,L1,L2),
gsort(L2,R2),
gsort(L1,R1),
append(R1,[X|R2],R).

partition([],_,[.[])-

partition([E|R],C,[E|Left1],Right):-
E < C |
partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):-
partition(R,C,Left,Rightl).

append([],X,X).
append([H|X],Y,[H|Z]):- append(X,Y,Z).

This program can be used to answer questions of di erent kinds:

Given an arbitrary list, return all its elements sorted:

2|t is written using Constraint Logic Programming [62] to avoid an instantiation error
during the execution of </2 when its arguments are not instantiated.
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| ?- gsort([2,1,4,3],L).
L =[1,2,34] ?

yes

but also, given a sorted list, return all its possible permutatios:

| ?- gsort(L,[1,2,3,4]).
L =[1,2,34] ;
L =[1,243];

These di erent ways of using a logic program are usually refedeo by saying
that the programs is used in di erentmodes Mode information is important mainly
for compiler optimizations. Mode analysisdeals with analyzing the possible modes
in which a predicate may be called within a particular progren in order to obtain
information that may be useful for specializing the predicatand thus helping the

compiler to implement it more e ciently.

In this thesis, mode information is also essential since it has a geienpact on the
correctness of the resource usage analysis for logic programscdeed in Chapter 4.
In particular, the same predicate with di erent modes may hae di erent complexi-
ties. For instance, suppose we would like to infer an upper bound the number of
resolution steps during the execution ofjsort/2 . If we run the program with the
rst argument instantiated to a list, then the upper bound on the number of steps
is O(n?) wheren is the length of the list. However, if the rst argument is free (ot
instantiated) and the second argument is a sorted list, then thepper bound on the

number of resolution steps is factorial.

Therefore, a precise inference of predicate modes is very ongant for the re-

source usage analysis. In Chapters 6 and 7, we will propose two deat analyses
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that can be used for inferring precise mode information with sp&l emphasis on

e ciency.

2.6 The Ciao Prolog System

In this section, we provide a brief description of the Prolog sysin used in this thesis,
Ciao, and its preprocessorCiaoPR that contains a number of program analyzers, and
into which all the analyses presented in this thesis have beertagrated. Finally, we

also describe a subset of the assertion language use@iaoPPthat will be necessary

to understand the Prolog examples shown in this thesis.

Ciao [21, 27, 53] is a multiparadigm programming language with aadvanced
programming environment that relies on a high-performanc@rolog-based engine.
Its modular approach allows both restricting and augmentinghe language through
libraries in a well-controlled fashion. This allows providig signi cant extensions
which make Ciao a next-generation logic-programming language as well as aulti
paradigm programming system. These advanced features togeathath the capabil-
ities already known of standard Prolog engines persuaded usdbooseCiao as the

main program development system in this thesis.

CiaoPP[52, 54], the preprocessor of th€iao system, is a novel programming
framework which uses extensively abstract interpretation asfandamental tool in the
program development process to obtain information about thprogram. Then, this
information is used to verify programs, to detect bugs with rest to partial speci-
cations written using assertions (in the program itself and/orin system libraries),
to generate run-time tests for properties which cannot be chiked completely at
compile-time and simplify them, and to perform high-level pygram transformations
such as multiple abstract specialization, parallelization, rad resource usage control,

all in a provably correct way. The usage ofCiaoPPin this thesis is twofold. On one
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hand, the tools available inCiaoPPsuch as e cient and precise xpoint algorithms,
static analysis algorithms, abstract veri cation code, etc. a taken as starting point
for the analyses developed in this thesis; on the other hand, ihis thesis we provide

new analyses which have been integrated into the preprocessor.

One of these advanced features is the assertion language [22j®®&hich (partial)
speci cations are written for program validation and debugog. Such assertions are
simply linguistic constructions which allow expressing propeds of programs. One
of the most useful characteristics of the assertions used @iaoPPis that they may
be used in di erent contexts and for many di erent purposes. Fist, any assertions
present in programs can be processed by an autodocument@doc [50]) in order to
generate useful documentation. Also, assertions are usedsgsci cations which are
then compared byCiaoPPinteractively during program development with the results
of analysis in order to nd bugs statically, verify that the program complies with the
assertions, or even generate automatically proofs of correess that can be shipped
with programs and checked easily at the receiving end (usingélproof/abstraction
carrying codeapproach [4]). Even if a program contains no user-provided assens,
CiaoPPcan check the program against the assertions contained in théraries used
by the program, thus potentially catching additional bugs & compile time. For
homogeneity, and to ease information exchange among the adé@wumenter and the
di erent checkers and analyzers, analysis results are repodt@sing also the assertion
language |which, since it is readable by humans, can be inspeatieby a programmer,
for example to make sure that the results of the analyses agreettwthe intended

meaning of the program.

Assertions also allow programmers to describe the relevant propes of modules
or classes which are not yet written or are written in other langages. This is also
done in other languages but often using di erent types of asséwnhs for each purpose.

In contrast in Ciao the same assertion language is used again foisthask. This,
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interestingly, makes it possible to run checkers / veri ers / deumenters against
code which is only partially developed: the traditional \stbs", which have to be
changed later on for a working version, can be replaced by an atie& declaring

how the predicate should behave, with the advantage that thisleclared behavior
can e ectively be checked against its uses. Finally, assertionarcbe used to guide

analysis when precision is lost.

It is beyond the scope of this thesis to present the complete assert language.
Instead, we concentrate on a subset of it which su ces for illustring the main
concepts involved in further chapters. The assertions that weilvuse adhere to the

following schema:

":- pred Pred: PreCond =>PostCond+ Comp.prop .'

which should be interpreted as

\for any call of the form Pred for which PreCond holds, if the call succeeds

then on succes®ostCond should also hold."

Properties which refer to the whole computation of the predate, rather than the
input-output behavior can also be expressed by means of tG®mp prop eld. These

properties should be interpreted as

\for any call of the form Pred for which PreCond holds, Comp_prop

should also hold for the computation ofPred.”
We will illustrate this subset of the assertion language with thedllowing example

that presents (part of) the previously introducedCiao quicksort program implement-

ing the algorithm for sorting lists in ascending order. Predida gsort/2 is annotated
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with a predicate assertion which expresses properties that theser expects should

hold for the program.

.- pred gsort(A,B) : list(A) * var(B)
=> list(A) * list(B)
+ not_fail.
gsort([X|L,R) :-
partition(L,X,L1,L2),
gsort(L2,R2),
gsort(L1,R1),
append(R1,[X|R2],R).
gsort({l.[)-

In gsort/2 , examples ofPreCond and PostCond are type and instantiation dec-
larations such as, e.glist(A) , list(B) , andvar(B) . list(A) denotes the variable
Ais instantiated to a polymorphic list. var(B) expresses that B is a free variable,
i.e., unbounded variable. An example of &omp prop property is not _fail which
expresses that if the predicate is called with the rst argumeninstantiated to a list
then the predicate should not fail. Another example of &omp_prop property is the
resource usage of a predicate which we will describe in ChapterMote also that a
property may be one out of a prede ned set, including extra-fical properties such
as, e.g.var, gnd(ground term), atm (atoms), etc, or, in principle, predicates de ned
by the user, using the full underlying logic programming langage (but which must

satisfy some properties such as, e.g., terminating for any possilkl).

Finally, a predicate assertion may be extended to the follominschema:

':- pred Tag Pred: PreCond =>PostCond+ Compprop .'

Having at most one of the following tags in front of the assertion:
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check used to mark the corresponding assertion as expressing an expected

property of the nal program (intended property).

true indicates that the property holds for the program at hand (atual prop-
erty).

trust . The property holds for the program at hand. The di erence wh the
above is that this information is given by the user and it may nbbe possible

to infer it automatically.

checked. A check assertion which expresses an intended property is rewritten
with the status checked during compile-time checking when such property is
proved to actually hold in the current version of the programdr any valid

initial query.

false . Similarly, a check assertion is rewritten with the statusfalse during
compile-time checking when such property is proved not to hilin the cur-
rent version of the program for some valid initial query. In addion, an error

message will be issued by the preprocessor.
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Abstract Interpretation

Most program models are in nite such as e.g., thdp semantics in Section 2.2.1.
Thus, the least xed point of Tp cannot be computed in general in a nite amount of
time. Fortunately, there are some formal techniques that prade safe approximations
(i.e., so that the success set of the program is included in the apgimation) which
are computable in nite time. In this section, we provide some &ckground on
abstract interpretation, a technique used for approximating the concrete semantics

of programs in this thesis.

Abstract interpretation [31] is a theory of approximation of nathematical struc-
tures, in particular those involved in the semantic models of pgrams. The idea
behind abstract interpretation is to "mimic" the execution of a program using an
abstraction of the concrete semantics of the program to appriomate undecidable or
very complex properties. The abstraction of the semantics equged with a structure
(e.g., ordering) may involve a simpler abstraction of the dataalues that variables

may take.
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3.1 De nitions

De nition 3.1.1. (Partial ordered set, poset). A partial order set is a set and
a binary relation such that the relation is:

1. Re exive: x v x is in the relation.

2. Transitive: if xv yandyv zthenxv z.

3. Antisymmetric: if x v yandy v x thenx = vy.

]
De nition 3.1.2. (Lower bound). GivenasetSandT, asubsetofS,z2 Sisa
lower boundof T if and only if forall x 2 T, zv x. m
De nition 3.1.3. (Upper bound). Given a setS and T, a subset ofS, z2 S'is
a upper boundof T if and only if forall x 2 T, x v z. n
De nition 3.1.4. (Greatest Lower bound). Given a setS and T, a subset ofS,
z is the greatest lower boundf T if and only if:
1. z is a lower bound ofT, and
2. for all x a lower bound ofT, x v z.
]
De nition 3.1.5. (Least Upper bound). Given a setS and T, a subset ofS, z

is the least upper boundof T if and only if:

1. z is an upper bound ofT, and

2. for all x an upper bound ofT, zv x.
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n
De nition 3.1.6. (Chain). For a posetT, a subsetS T is achain if for all
S$1;5,2 Sthens;v s, 0rs, v sy n
De nition 3.1.7. (Ascending Chain Condition). A poset S has the Ascending

Chain Condition if every ascending chairs; v s, v ::: of elements inS is eventually
stationary. A chain is stationary if there exists ann 2 N such that s, = s, for all

m>n. |

De nition 3.1.8. (Completely partially ordered set, cpo). A completely par-
tially ordered setS, also called acomplete lattice is a poset with the further restric-

tions that:

1. Every subset ofS has a unique greatest lower bound.

2. Every chain ofS has a unique least upper bound.

3.2 Galois Connections

An abstract semantic object is a nite representation of a, possiplin nite, set of
actual semantic objects in the concrete domairX). The set of all possible abstract
semantic values represents aabstract domain (D ) which is usually a complete
lattice or cpo which is ascending chain nite. In this thesis, weestrict ourselves
to complete lattices over sets both for the concretéD; vi and abstract D ;vi
domains. An abstraction function describes elements dD in terms of elements in
D :

D7D

30



Chapter 3. Abstract Interpretation

Similarly, a concretization function de nes the mapping from elements oD to D:

:D 7' D

The concrete and abstract domains are related bgalois Connections

De nition 3.2.1. (Galois Connection). hD; ; ;D i is a Galois Connection

between the latticeshD; vi and hD ;vi if and only if:

1. and are monotonic.

2.82D: ( (X)) wx

3.8y2D : (()vy

]

De nition 3.2.2. (Galois Insertion). A Galois Insertion is a Galois Connection

satisfying: 8y 2 D : ( (y)) = y. Therefore,hD; ; ;D i is a Galois Insertion
between the latticeshD; vi and hD ;vi if and only if:

8x2D: ( xX))wx and 8y2D : ((y)=y: (3.1)

]

The abstract domainD is usually constructed with the objective of computing
approximations of the semantics of a given program. Thus, allperations in the
abstract domain also have to abstract their concrete counterpig. In particular, if
the semantic operatorSp can be decomposed in lower level operations, and their
abstract counterparts are locally correct w.r.t. them, thenan abstract semantic op-

erator S, can be de ned which is correct w.r.t.Sp. This means that (Sp( (X)) is
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an approximation of Sp(x) in D, and consequently, (Ifp (Sp)) is an approximation
of the meaning of the progranP, denoted by [P]. We will denotelfp (S;) as [P] .

The fundamental theorem of abstract interpretation provids the following result:

Theorem 3.2.1. Let hD; ; ;D i be a Galois Insertion and letSp : D 7! D and
S, : D 7! D be monotonic functions such tha8x 2 D : (Sp( (X)) w Sp(x),

i.e., Sp approximatesSp. Then:

(TPT ) w [[P] equivalently [P] w (IPT)

i.e., [P] approximates[P].

Proof. Proved by P.Cousot and R.Cousot in [31].

Therefore, the art of abstract interpretation can be descrilzk as involving the

following steps:

1. Choose an appropriate concrete semantics.
2. Provide good approximations of the basic operations in trencrete semantics.

3. Compute the abstract least xed point.

In practice, the abstract domains should be su ciently simple toallow e ective
computation of semantic approximations of programs. For exapte, Herbrand in-
terpretations of some alphabet may be mapped into an abstracbdhain where each
element represents a typing of predicates in some type system.r ogiven program
P the abstract operatorS, would allow then to compute a typing of the predicates

in the least Herbrand model ofP.

Example 3.2.1. A simple example of abstract interpretation in logic programnmg

can be constructed as follows. The concrete semantics (least Harid model) of a
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program P is [P] = Ifp(Tp). So the concrete domain i = } (Bp) (where Bp is

the Herbrand base of the program).

We consider over-approximating the set of \succeeding predies", i.e., those
whose predicate symbols appear inP[[]. A possible abstraction is as follows. The
abstract domain isD = } (By), where By is the set of predicate symbols oP.
Let pred(A) denote the predicate symbol for an atonA. We de ne the abstraction

function:

:D! D suchthat (I)= fpred(A)jA2Ilg:

Similarly, the concretization function is de ned as:
:D ! D suchthat (I )= fA2Bpjpred(A)21 g
For example,

(fp(a;b); p(c; d); a(a); r(a)g) = fp=2;9=1,r=1g

Note that D ; ; ;D i is a Galois Insertion. The abstract semantic operator
T, :D ! D isdened as:

SinceD is nite and T, is monotonic, the analysis (applyingT, repeatedly until
xpoint, starting from ;) will terminate in a nite number of steps n and [P] =

T, " n approximates [P]. For example, for the following progranP,

p(X,Y) :- a(X), r(Y).

t(X) - 1(X).
m(X) :- s(X).
qa(@). a(b).

r@@). r(c). r(X).
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we haveB, = fp=2; g, r=1,; s=1;t=1; |=1; m=1g, and:
T,"0="7
To"1=T,(?)= fqg=,r=1g
Tp "2 =Ty (fg=1r=1g) = fg=1,r=1; p=2g9
Tp "3 =Ty (fg=lr=1, p=20) = fq=l;r=1; p=2g
SoT,"2=T,"3=1q=,;r=1;p=29=[P]

3.3 Widening

Widening is a technique often used to approximate the least xed point af program.
Widening can be used to construct chains that converge to a xegoint much faster
than the direct application of a monotonic operator over coplete lattices (such as

the transfer function in De nition 2.2.2).

Widening is implemented throughwidening operators How these operators are
constructed will a ect the precision of the approximated xedpoint, and the com-
putational cost of nding the approximation. In general, there is a trade-o between
precision and e ciency in the process of accelerating the coaekgence of the xpoint

computations.

De nition 3.3.1. (Widening operator).

Letl3;1, 2 L be lattices, then an operatorO: L L!L is a widening operator
|10|2 if:

1. (soundness) It is an upper bound operator:l; v 1,0l, and |, v [,0l,.

2. (stationary) For any increasing chainag v a; v a, v ::: the chain by =

should be a stationary sequence.
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3.4 Abstract Functions Required by Logic Progra-

mming-based Analysis Frameworks

In this section, we outline the two main approaches for analysiof logic programs
based on abstract interpretation, and we also describe their @abstract operations.

This background is required to understand Chapters 5, 6, and 7

Di erent semantics de nition styles lead to di erent approaches to program anal-
ysis. There are mainly two approaches in the analysis of logicqgrams: top-down
and bottom-up analysis. The top-down (e.g., [117, 18, 88]) approach propags the
information in the same direction asSLD-resolution does. Alternatively, bottom-up
(e.g., [81]) analyses propagate the information as in the cquoration of the least x-
point of the immediate-consequences operatdp. The main di erence between the
top-down and bottom-up approaches is related tgoal dependenceThe top-down
analyses start with a particular (abstract) goal, and they are lale to determine call
pattern information, i.e., information about specic procealure calls. On the other
hand, bottom-up analyses determine an approximation of the saess set, which is

goal independent.

In top-down frameworks, the analysis of a clausdead:- Body proceeds as fol-
lows (we follow the description and {at a high level{ the algathm of [89, 88,
91]). There is a goalGoal for the predicate of Head, which is called in a con-
text represented by abstract substitutionCall on a set of variables (distinct from
vars(Head) [ vars(Body)) which contains those ofGoal. Then the success oGoal
by executing the above clause is represented by abstract substitun Succgiven in

Figure 3.1.
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Succ = extend(Call; Goal; Prime)
Prime = exitToSucdqproject(Head;Exit); Goal; Head)

Exit = entryT oExit (Body; Entry)
Entry = augment(F;callT oEntry (Proj; Goal; Head))
Proj = project(Goal;Call)

Figure 3.1:. Abstract functions required by top-down analyses

In Figure 3.1, F is any term with the variablesvars(Body) n vars(Head). Call,

Prime, and Successare abstract substitutions ( ) of the form = fx; 7! d; 2

extend(Call; Goal; P rime) makes the framework inter-procedural updating the
caller's context, Call, with the callee's context,P rime, yielding a substitution
for the success oGoal when it is called in a context represented by substitution
Call on a set of variables which contains those d@boal, given that in such
context the success o6oal is already represented by substitutionP rime on
the variables ofGoal. The domain of the resulting substitution is the same as

the domain of Call.

project(Goal; Call) removes all bindings x; 7! d, ) of a substitution Call =
fxy 7' d;;: 0%, 7! d,g such that the variablex;; 1 i n does not appear in

Goal.

augment(Goal; Call) extends the domain of an abstract substitutionCall to
the variables of a given termGoal. Thus, for each variablex; 2 vars(Goal),

the binding x; 7! > is added intoCall, where> is the top abstract value.

entryT oEXxit (Body; Entry) is given by the framework, and basically traverses
the body of a clause, analyzing each atom in turn. The exit abstct substitu-

tion is the abstract substitution after the last literal in Body, starting the rst
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literal with Entry .

callToEntry (P roj; Goal; Head) ("procedure entry") yields a substitution on
the variables ofHead which represents the e ects of uni cationGoal = Head

in a context represented by substitutionP roj on the variables ofGoal.

exitT oSucdExit % Goal; Head) ("procedure exit") yields a substitution on the
variables ofGoal which represents the e ects of uni cationGoal = Head in a

context represented by substitutionExit ° on the variables ofHead.

All these operations need to be de ned speci cally for a given afract domain.
However,callT oEntry and exitT oSucccan be de ned from the abstract uni cation

operation (unify )* as follows:

callT oEntry (ASub; Goal; Head
exitT oSucqASub; Goal; Head

unify (ASub; Head; Goa)
unify (ASub; Goal; Head

Given an operationamgu(x; t; ASub) of abstract uni cation for equation x = t,
wherex is a variable,t;t,; and t, are terms, andASub an abstract substitution (the
domain of which contains variablevars(t) [ f xg), then abstract uni cation, unify ,

for equationt; = t,, is given by:

unify (ASub; t;;t,) = project(t:; Amgu(solve(t; = t,); augment(t;; ASub)))
8
< ASub if Eq=;

Amgu(Eq; ASub =
- Amgu(Eq% amgu(x;t; ASub)) if Eq= EQ°[f x = tg
such that solve(t; = t,) denotes the solved form of uni cation equatiort; = t,, i.e.,

the left hand side of the equation is a variable.

Finally, in addition to these operations, top-down framework also require the

de nition of:

Lunify is also domain-dependent.
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init (Goal) generates an initial abstract substitution,Call = fx; 7! > ;:::x, 7!
>qg, for all x; 2 vars(Goal).
equivalenc€ ASub,; ASub,) succeeds if and only iASub, is equivalent toASub,.
join (ASuby; ASub,) merges the two abstract substitutionsASub, and ASub,.
In the case of bottom-up frameworks the analysis is simpler thanp-down analy-

ses since only the following operations are requirethit , equivalence join, project,

augment, and amgu, and they can be de ned as above.
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Chapter 4

Resource Usage Analysis for Logic

Programs

This chapter presents the foundations of one of the major cormapents and main
motivation of this thesis, a static analysis that infers both uper and lower bounds
on the usage that a logic program makes of a set of user-de nabkesources. The
inferred bounds will in general be functions of input data se&s. A resource in our
approach is a quite general, user-de ned notion which assoaata basic cost function
with elementary operations. The analysis then derives the @kd upper- and lower-
bound resource usage functions for all predicates in the pregn. This chapter
also presents an assertion language which is used to de ne both suebources and
resource-related properties that the system can then check bdsen the results of the
analysis. Finally, this chapter also shows some experimental &yation with some
concrete resources such as execution steps, bytes sent or reddbyean application,
number of les left open, number of accesses to a database, numioé¢ calls to a

predicate, heap memory usage, etc.
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4.1 Motivation

The importance of inferring information about the costs of amputations for a variety
of applications is well recognized. These costs are usuallyateld to execution steps
and, sometimes, time or memory. We propose an analyzer whichoalis automatically
inferring both upper and lower bounds on the usage that a loggrogram makes of
user-de nable resources Examples of such user-de nable resources are bits sent or
received by an application over a socket, number of calls to aealicate, humber
of les left open, number of accesses to a database, energy congtiom, monetary
units spent, disk space used, etc., as well as the more traditidrexecution steps,
execution time, or memory. We expect the inference of thisrd of information to
be instrumental in a variety of applications, such as resource uga veri cation and
debugging, certi cation of resource consumption in mobile cle, resource/granularity

control in parallel/distributed computing, or resource-orented specialization.

In our approach aresourceis a user-de ned, application-dependent notion which
associates a basic cost function with elementary operations ihe base language
and/or to some predicates in libraries. In this sense, each resoaris essentially a
user-de ned counter. The user gives a name (such as, e.duts ) to the counter
and then de nes via assertions how each elementary operatianthe program (e.g.,
uni cations, calls to builtins, external calls, etc.) incremats or decrements that
counter. The use of resources obviously depends in practice dw tsizes or values
of certain inputs to programs or predicates. Thus, in the asseamns describing el-
ementary operations the counters may be incremented or deanented not only by
constants but also by amounts that ardunctions of input data sizes or values. The
objective of our approach is to statically derive from these @nentary assertions and
the program text functions that yield upper and lower boundson the amount of
those resources that each of the predicates in the program (atite program as a

whole) will consume or provide. The input to these functions Wialso be the sizes or

40



Chapter 4. Resource Usage Analysis for Logic Programs

value ranges of the topmost input data to the program or predate being analyzed.

The structure of the rest of this chapter is as follows. Section2 provides more
details about the size and resource usage functions inferreddbgh a worked ex-
ample. In the following, Section 4.3.1 rst presents in detasl the assertion lan-
guage proposed for de ning resources and annotating elemenmytaoperations. Sec-
tion 4.3.2 shows how size relationships among program variablare determined,
and Sections 4.3.3 and 4.3.4 describe how the resource usagetions are inferred.
Section 4.4 shows some experimental results with concrete reses. Section 4.5
compares our approach with respect to the current state of therta and nally,

Section 4.6 summarizes our conclusions.

.- pred client(Opts, [Buf, OBuf)

. list(gnd) * list(byte) * var. [* SOCKET LIBRARY */

.- trust pred connect(Host,Port,S)
client([Host,Port],IBuf,OBuf) :- L oam **num **Vaf
connect(Host,Port,Stream), => aim * hum = atm

exch_buffer(IBuf,Stream,OBuf), + cost(ub,bits,0).
close(Stream).

trust pred close(Stream)

exch_buffer([],_,[]). :atm => atm

exch_buffer([B|Bs],Id,[BO|Bs0]) :- + cost(ub,bits,0).
exch_byte(B,Id,B0),
exch_buffer(Bs,Id,Bs0).

trust pred exch_byte(B,Id,BO)
byte * atm * var

- head_cost(ub,bits,0). => byte * atm * byte.

- literal_cost(ub,bits,0). + cost(ub,bits,8).

Figure 4.1: A simple client application.
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4.2 Worked Example

Consider a client application written in Ciao in Figure 4.1 that sends a data bu er
(a list of bytes) through a socket and receives another (possiblyansformed) data
bu er. In this section, we will provide an overview of our appoach with that pro-

gram.

A resourceis a user-de ned, application dependent notion which assoces a ba-
sic cost function with some user-selected predicates in the pragr. This is expressed
by adding annotations using our assertion language (SectiorB4l) to the code. The
objective of the analysis is to safely approximate the usage thidne program makes
of the resource. In the example, assume that we would like to olaan upper
bound on the number of bits received by the application that & will call bits . We
assume that the program receives 8 bits each time thaixch_byte/3 is called. This
fact is re ected by the user by adding theComp prop assertion‘cost(ub,bits,8)'
which will increment the counter associated with the upper-tnd on the number
of bits received by 8. Similarly, we assume that open and close ksetcconnec-
tions (connect/3 and close/1 ) do not imply any exchange of bits, as indicated by
‘cost(ub,bits,0)’ . In addition, the types and modes of the socket operations must
be given to the analysis by other analyses or by user-provided aggms. In this ex-
ample, we assume that the analysis does not have access to the cofdthe socket
operations and hence, the user provides this information ugjitrust assertions. For
now, we will omit deliberately the directives':- head _cost(ub,bits,0)’ and ":-
literal _cost(ub,bits,0)' . The rest of this section describes the main steps ap-
plied by the analyzer to approximate the number of bits receed of the program

depicted in Figure 4.1.

Step 1. Size metrics and mode inference. In the rst step, the approach

needs to infer for each argument in the program the notion ofz@ metrics. For
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instance, the length of a list, the depth of a term, the size of a te, etc. In addi-
tion, the analysis also needs to infer if each argument is inputr output (i.e., the
modes) in order to perform properly the size and resource usagealses described
in Sections 4.3.2, 4.3.3, and 4.3.4. Input/output and size rnr&s information can
be required by the language (typed language), given by the ug@ia assertions), or,
as in our implementation, inferred automatically via analgis. In the example this
information is asserted by the user in case of the socket librarggnnect/3 , close/l ,
and exch_byte/3 ) and inferred automatically from the program for the prediates
client/3 and exch_buffer/3 .

Step 2: Inference of data dependencies and size relationshi  ps. In the sec-
ond step, the analysis rstly yieldsargument dependency gragfor the clauses within
a strongly connected component, through a data ow analysis. se graphs will be
used for inferringsize relationshipsfor each literal argument between the input and
output head arguments of every clause. The goal of this phasetiien to describe
the sizes of each body or head argument in terms of the size of soimgut head
argument. In the example, assume thexch_buffer/3 predicate. The analysis will
infer from the rst clause that the size of the third argument is Q i.e. empty list,
if the rst argument is also an empty list. We denote this size rel@onship by the

equation:

2xch,buffer (O; 7) =0 (4-1)

where 3 . e describes the size of the third argument for the predicaexch buffer/3 .
The idea is that for eachk-output argument of a predicatep, the analysis de nes
its size as a function ‘5 which takes as arguments the sizes of the input head argu-
ments ofp. Note that the size of the third argument does not depend on the send

argument. We denote this by using the don't care symbol" Similarly, the analysis
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will infer from the second clause the following equation:

2xch,buffer (X; 7) = gxch,buffer (X 1; 7) +1 (4-2)

Since the clause is recursive the analysis describes the sizesgusirsymbolic ex-
pression (a recurrence equation). This symbolic expression meahat the size of
the third argument is one plus the resulting size of calling recsively the predicate
exch_buffer/3 where the size of the rst input argument has been decreased byean
Finally, the recurrence equation system shown above (Equatisert.1 and 4.2) must
be approximated by a recurrence solver in order to obtain a ded form solution. In

this case, our analysis yields the solution:

3 . -
exch_buffer (X1 7) =X

i.e. the size of the third argument is proportional to the sizefahe rst argument.

Step 3: Resource usage analysis. In this step, the analysis will use the size
metrics, modes, the data dependencies, and the size relationshipferred in previ-
ous steps, and also the user-de ned resource-related assertionider to infer a
resource usage equation for each clause and further simplify tfesulting obtaining
upper/lower bound closed form solutions. The resource analysislivstatically de-
rive safe upper/lower bounds on the amount of resources that@&@aof the predicates
consumes or provides. The result given by our analysis for an updeound on the

number of bits received byexch_buffer/3 in the case of the rst clause is:
Cos(exch buffer; ub; bits; h0; i) =0

that is interpreted as "the upper bound of the number of bits eceived when the size
of the rst input argument is zero results zero". Note that the sizs of the input
arguments is given by the tupleh0; i where the size of second input argument is

irrelevant since it does not a ect the resource usage of the clseL Similarly, the

44



Chapter 4. Resource Usage Analysis for Logic Programs

analysis infers a resource usage equation for the second clause:
Costexch. buffer; ub; bits; hx; _i) = 8 + Cos{exch_buffer; ub;bits; hx  1; i)

that is interpreted as "the upper bound of the number of bits eceived when the size
of the rst input argument is X results in a symbolic expression formed by 8 (i.e.,
the resource usage oéxch_byte/3 ) plus the resource usage of the recursive call to
exch_buffer/3 in which the size of the rst input argument has been decreased by
one. Again, the size of the second input argument afxch_buffer/3 s irrelevant.
Finally, this equation system is solved by a recurrence solvegsulting in the closed

form:
Cost(exch buffer; ub; bits; hx; i) =8 x

Note that since we know from the user-de ned assertions thabnnect/3 and close/1

receive no bits, then

Cos{(client; ub; bits;h;;ni) =8 n

4.3 A Framework for Inference of Resource Usage

We can now describe in detail our framework, outlined in Seam 4.2, for inferring
upper and lower bounds on the usage that a program makes of a setiser-de nable
resources. Our basic approach is as follows. Given a predicatdl galet ( p;r;n)
denote the exact units of resource consumed or produced during the computation of
p for a tuple of argument size$. Note that, in general, the computation of (p;r;n)
will be undecidable or very complex. Therefore, an expressidos{p,ap,r,n) is
determined at compile-time that approximates (p;r; M) with approximation ap (i.e.,
upper-bound or lower-bound). For assuring the correctness afroapproach, we must
always generate resource usage bounds functions suclCast(p,ap,r,n) that hold the

following conditions:
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If the analysis computes an upper-bound approximation, i.eap = ub, then:

( p;r;m)  Cost,ubr,n) (4.3)

Conversely, if the analysis computes a lower-bourap = Ib, then:

Costplb,r,m)  ( p;r;N) (4.4)

Note that the analysis can always generate trivial upper and \eer bounds, 1
and 1 , in those cases where it cannot infer resource equations or ndciosed

form. Of course, the analysis should infer bounds as precise asgible.

Certain program information is rst automatically inferred by other abstract
interpretation-based analyzers included ilfCiaoPPand then provided as input to the

size and resource analysis:

1. Inference of modes, i.e., determine which arguments arein or output.

2. Inference of types for each predicate argument.
3. Inference of size metrics for predicate arguments based tie type information.
4. Inference of non-failure information, i.e., determine lch predicates should

fail.

The techniques involved in inferring this information are lpyond the scope of this

thesis |see, e.g., [54] and its references for some examples.

The size of an output argument in a predicat@ call depends in general on the size
of the input arguments in that call. For this reason, for eaclk-output argument we
infer an expression which yields its size as a function of the infpdata sizes (i.e., g).
Argument sizes are described in terms of size metrics. Typical sipetrics are the ac-

tual value of a number, the length of a list, the size (number ofomstant and function
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symbols) of a term, etc. To this end, and using the input-output gument infor-
mation, argument dependency graphs are used to set up recurcerequations whose
solution yields size relationships between input and output guments of predicate
calls. This information regarding argument sizes and other sa@s resource-related
assertions are then used to set up another set of recurrence eqoiasi whose solution
provides resource usage bound functions. Both the size and res@wmsage recurrence
equations must be solved by a recurrence equation solver. Althghuthe operation
of such solvers is beyond the scope of the thesis our implemerntatidoes provide a
table-based solver (an evolution of the solver of the Caslog systi@®]) which covers
a reasonable set of recurrence equations such as rst-order angher-order linear
recurrence equations in one variable with constant and polgmial coe cients,divide
and conquer recurrence equations, etc. In addition, the systeatiows the use of ex-
ternal solvers (such as, e.g. [12], Mathematica, Matlab, etc.Note also that, since
we are computing upper/lower bounds, it su ces to compute uppelower bounds
on the solution of a set of recurrence equations, rather than amaet solution. This

allows obtaining anapproximate closed form when the exact solution is not possible.

In further sections, we will describe each main component of ofiramework.
In Section 4.3.1 we will rst present the assertion language praoged for de ning
resources and annotating elementary operations. Section £3hows how size rela-
tionships among program variables are determined, SectiorB4 describes how the
resource usage bound functions are inferred, and nally, Semt 4.3.4 shows how

users can de ne resources using our assertion language.

4.3.1 The Resource Assertion Language

We start by describing the assertion schema. This language is usex €lescribing

resources and providing other input to the resource analysis, @is also the language
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in which the resource analysis produces its output. This assegti language is used
additionally to state resource-related speci cations which an then be proved or
disproved based on the results of analysis following the scheme[®], as already

mentioned in Chapter 2, allowing nding bugs, verifying the pogram, etc.

The rules for the assertion language grammar are listed in Figar4.2. In this
grammar V ar corresponds to variables written in the syntax for variablesfahe un-
derlying logic programming language (i.e., normally nonrepty strings of characters
which start with a capital letter or underscore). Similarly, Num is any valid number
and Pred_name any valid name for a predicate in the underlying programmindan-
guage, normally non-empty strings of characters which startith a lower-case letter
or are quoted. State_prop corresponds to otherstate propertiessuch as modes and
types, and Comp_prop stands for any other valid computational property see [54]

and its references.

Predicates can be annotated with zero or more assertions. Thesgseartions
can refer to properties of the execution states when the predite is called Pre-
Cond), properties of the execution states when the predicate telimates execution
(PostCond), and properties which refer to the whole computation of theredicate
(Comp.prop), rather than the input-output behavior, which herein will be used only
for resource-related properties). The assertion schema that@lls de ning the Pre-
Cond, PostCond and Comp_prop parts together in a compact way vigored assertions
which was already described in Section 2.6. In addition, themay be a set of global
head cost and literal _cost declarations (i.e., directives), one for each resource
and approximation direction. TheResname elds determine which resource the as-
sertion refers to. TheseRes names are user-provided identi ers which give a name
to each particular resource that needs to be tracked. Resouscdo not need to be
declared in any other way, i.e., the set of resources that the sgst is aware of is

simply the set of such names that appear in assertions which are imet scope. The
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hprogram _assrti

—_——

.- bstatus _flag i hpred_assrti.
.- head _cost (happroxi,Resname, ™).

- literal  _cost (happroxi,Resname, ).
hstatus flag i = trust | check j true j checked j false |
hpred_assrti .=  pred hpred_desad hpre_cond hpost.cond hcomp.cond.
hpred_desad = Pred _namej Pred_name(argsi)
hargsi := Var j Var, hargsi
hpre_cond = . hstate_propsi j
hpost cond = = > Istate_propsi j
hcomp_cond =  + hcomp.propsi |
hstate_propi = size (Var, happroxi,hsz_metric i ,harith _expri) j State_prop
hstate_propsi .=  bstate_propi j hstate_propi, hstate _propsi
hcomp_propi = size _metric (Var,hsz_metrici) j hcosti j Comp_prop
hcomp_propsi .= hcomp_propi j hcomp_propi, hcomp_propsi
hcost :=  cost (happroxi,Resnameharith _expri)
happroxi .= ubjlb joubjolb
hsz_metric i = value j length jterm_size j depth j void
harith _expri = h arith _expri j harith _expri ! j hquantifier i harith _expri
i harith _expri hbin_opi harith _expri
J exp(harith _expri,Num) j log (Num, harith _expri)
i Num j hsz_metric i (Var)
hbin_opi = |+5j -('b* il
hguantifier i = i

Figure 4.2: Syntax of the resource assertion language

happroxi elds state whether harith _expri is providing an upper bound or a lower
bound (with oub meaning it is a \big O" expression, i.e., with only the order inbr-

mation, and olb meaning it is an asymptotic lower bound). For instance, given
the upper and lower bound€JB =2 n+5and LB =2"+ n?+1, the O(UB) = n

(oub)and ( LB)=2" (olb).

The rst and most fundamental use of assertions in our context is talescribe
how the execution of some predicates increments or decrensetbe usage of the
resources de ned in the program. The purpose of analysis is thaninfer the resource
usage of all predicates in the program. Thehead.cost (happroxi, Resname, H)"

declarations are used to describe how predicates in generaldage the value for
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those resources that are applicable to predicate heads such asrging the number
of arguments passed or total execution steps {see Section 4.3The de nition of
H(cl_head; arith_expr) ! B is provided by means a user-de ned (or imported)
predicate, written in the source language, and which will beatled by the analyzer
when the clause head is analyzed. This code gets loaded inte tompiler in a similar
way to, e.g., macro expansion code. Thditeral _cost (happroxi, Resname, )"
declarations describe how predicate bodies update the valoé certain resources
which are applicable to body literals such as, for example, ndrar of uni cations.
In this case, ‘(bodylit;arith _expr) ! B is also user- (or library-)provided code
which will be executed when the body literals of di erent prdicates are analyzed.
The actual resource usage bound functions for each builtin axternal (e.g., de ned in
another language) predicate used in the program are providégt a kind of Comp_prop
property expressed by tost (happroxi, Resname, harith _expri)". Additionally, size
metrics ("size _metric (Var,hsz_metrici)") information can be provided by users if
needed, but note that in practice size metrics can often be deed automatically
from the inferred types. Finally, assertions can also be used, wiae PreCond and
PostCond elds, to declare relationships between the data sizes of thepats and
outputs of predicates ('size (Var,happroxi ,h,sz_metrici,harith _expri)"), which may

be needed by our analysis in case of external or builtins predies.

Therefore, as mentioned in Section 4.1, users should descrilmevheach predicate
increments or decrements the counters associated with eackaerce by de ning two
assertions: head cost and literal _cost. Additionally, for each builtin or exter-
nal predicate p an assertion of type - trust pred p : PreCond => PostCond
+ Comp.prop ." should be also de ned. PreCond will contain typically type dec-
larations, PostCond also type declarations and properties such asize . Finally,
Comp_prop will include properties such as e.gsize _metric and cost. Optionally,
users also can guide the analysis (i.e., improve its precisiony de ning a similar

schema for other predicates. In this case, the analysis will cootp the most precise
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approximation between the information provided by the asseidn and the informa-

tion inferred by analysis.

4.3.2 Size Analysis

We will now explain the foundations behind the argument depelency-based method
for inferring bounds on the sizes of output arguments in the ke of a predicate as a
function of the sizes of input arguments to the predicate. Bea$es this, as a result of
the size analysis, we have bounds on the size of each input argubterbody literals
in a clause as a function of the size of the input arguments to theead of that clause.
The size of the input arguments to body literals will be used lat to infer functions
which give bounds on the resource usage of body literals in tegrof the sizes of the
input arguments to the head. We adopt the approach of Debrayt al. [36, 37] for

the inference of upper bounds on argument sizes and [38] fowvéos bounds.

The size of an input is de ned in terms of metrics. Bysize metricswe refer to
a total function that, given a term, returns an arithmetic expression or an unde-
ned value ?, possibly in terms of other input argument sizes. One of the di @nce
with respect to Debray's approach is that our analysis is paraetric on size met-
rics, which can be de ned by the user througtsize _metric and size assertions.
For concreteness, several size metrics are de ned in our system. Wene here a
siz€hsz_metrici;t) operation which returns the size of a termt under the metric

hsz_metrici for those prede ned metrics:

If size metrics is the integer value and let be an arithmetic operator (+; ;
...) then:
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8

E t if t is an integer
sizgvalug t) = 5 (sizdvaluety);:::;sizévalugt,)) if t= (t;;::::t,)

: ? otherwise.

If size metrics is the length of a list, then:

8

5 0 ift=1[]
sizdlength t) = 5 1+ sizélength T) ift=[H j T]

. ? otherwise.

If size metrics is the size of a term, then:

1 if t is a constant

: . P
sizdterm sizet) = _ 1+ [, sizdtermsizet;) if t=f(ty;:11;tn)

"W AW o

? otherwise.

If size metrics is the depth of a term, then:

8

E 0 if t is a constant
sizgdeptht) = 5 1+ max sizddepth t;)g if t=f(ty;:::;t,)

- ? otherwise.

Some examplessizélength [X;Y ]) = 2, sizélength [XjY]) = ?, sizdvalue3 +7) =
10, sizterm_size f (g(a); b) = 4, and sizddepth f (2;f (3; nil; nil ); nil) = 2.

Since our approach assumes the general case in which the inpubgmam is not

normalized (i.e., functor and predicate symbols may have argents that are not
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atoms or variables), sometimes we need to establish size relasbips as the di er-
ence between the sizes of two terms. This relationship is proeid by the function
di (hsz_metrici;t;;t,) operation, which returns an approximation of the di erene
between the size of; and the size oft, under the metric hsz_metrici. We de ne it
again for our prede ned metrics:

If size metrics is the int%ger value, then:

< . .
t t; if t; andt, are integers
di (valuet;ty) = 2 ! 2 9

? otherwise.

If size metrics is the length of a list, then:

8
% ifty  t
3 ¢

di (lengtht;t;) 1 ifty =[jt] for some term t
i (lengthty;t)+1 if t, =[_jt] for some term t

? otherwise.

di (lengthty;ty) =

For instance,di (length [XjXs];Xs)= 1anddi (lengthYs;[YjYg)=1

If size metrics is the size of a term, then:

8
0 ifty to
(sAty(i)) sizdterm _size;t;))+1 if ty = f(s1;:::;Sn)
: . si t,9;1 1 n
di (term_sizety;t,) =

(sAt.(i)) + sizdterm _size;t;)) 1 ifto="f(sg;:::;S)
s t1,9:;1 i n

’ ? otherwise.

where sZt(i)) is a symbolic expression that represents the size of theth
argument position of thet term. For example, di (term_size g(X;Y );Y) =

s4g(2)) 2, and similarly, di (term_size B;h(A;B;C)) = sZAh(2)) + 3.
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If size metrics is the depth of a term, then:

0 ift; to
maX di (depth;s;to)g 1 ifty=f(sy;:::;8)
maxX di (depth;s;t))g+1 if t,=f(sy;:::;S)

di (depthts;ty) =

W AR 00

? otherwise.

where the maximum betweer? and a numbem isn. For example,di (depth tree-
(X; Left;Right ); Right) = max? ;?;0g 1= 1, andconverselydi (depth Left -
;tree(X; Left; Right )) = max? ;0;?g +1=1.

De nition 4.3.1. (Argument dependency graph). . An argument dependency
graph G = (V; E) is a directed acyclic graph such tha¥V denotes argument positions
of a clause, and there is an edge from a node to a noden,, (ny;n,) 2 E if the

variable bindings generated by; are used to construct the term occurring ah;. u

Argument dependency graphs are used to represent the data degency between

argument positions in a clause body, and between them and thosetlhe clause head.

De nition 4.3.2. (Predecessor, predec). Let G = (V;E) be an argument depen-
dency graph, and fi;; n,) and edge ofg, then the noden, is said to be apredecessor
of the noden,. We will assume gorededunction that takes an argument dependency

graph, a literal, and a parameter position and returns its neast predecessor in the

graph. n

Figure 4.3 shows the argument dependency graph@tch_buffer/3 for its recur-
sive clause. Solid rectangles and arrows denote input argunteeand dependencies
between input arguments, respectively. Similarly, dashed reamgles and arrows rep-

resent output arguments and dependencies between input andtput arguments.
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( head[l]] ( head[Z]]

7 Vd
[ exch_Qyt(7{1] exch_bytg[2] - Pyh_byte[sg -

oh.. o P

’

Figure 4.3: Argument dependency graph for the recursive clauséexch_buffer/3

Using the sizeand di functions and the argument dependency graph for every
clause, the analysis will traverse each strongly-connected geoment in reverse topo-
logical order in order to set up size relations for expressing tlseze of each argument
position in terms of the sizes of its predecessors for every clauket sZi) denote the
size of the term occurring at an argument positiom. For convenience, we will omit
the argument hsz_metrici in the sizeand di functions in the rest of the chapter.

Then, the size relationships can be obtained as follows:

predicatep, and let E be a function that represents the size of thke-th (output)

argument position of the predicatep in terms of the size of its input argument

positionsiy;:::;i,. Then the following size relation is set up:
sak)  §(sZin);iii;sZin)) (4.5)
1. If pis arecursive literal de ned in the body of a clause, then ',f,(sz(i 1);::1:84in))

is a symbolic expression. For instance, the size of the output argent of
the recursive call ofexch_buffer/3 in the second clause should be de ned

as 3. urrer (SZEXChbuffer ;); sgexch buffer ,)).

2. Otherwise, if p is a non-recursive literal in the body of a clause then

the function E has been recursively computed, and thus we replace
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of the output argument of the call to exch_byte/3 should be de ned as
ﬁxchfbyte(sz(exchbytel); sZexch byte)), and this equation can be simpli-
ed to 1 (given by user assertion). Therefore, we can obtain a ded form

solution in that case.

Input arguments Assume now thati is an input argument position in a body
literal | in a clauseC, and i° the term occurring at an argument positioni.
Let G be also the argument dependency graph &. We have the following
possibilities:

1. Computesizdi9. If sizé€i®% 6 ? then set up the size relation:
sKi)  sizdi9 (4.6)

2. Letr = prede€G;l;i), if the size metrics corresponding to and i are the

same andd = di (r;i) 6 ?, then set up the size relation
sqi) sAr)+d (4.7)

3. Otherwise,s7i) = ?.

Size relations can be propagated to transform a size relationrcesponding to an
input argument in a body literal or an output argument in the dause head into a
function in terms of the sizes of the input arguments of the hela The basic idea here
is to repeatedly substitute size relations for body literals o size relations for head

arguments. This is the purpose of the normalization algorithndescribed in [36].

Example 4.3.1. Consider again the program described in Figure 4.1. We will dete

by pred_-name the name of a predicate, and bpred_name the i-th argument position

56



Chapter 4. Resource Usage Analysis for Logic Programs

Size relation equations for rst clause of exch_buffer/3 :
1: sZhead) sizd[ ]) and sizd[]) =0
2: sZhead) 1
3 : sZAhead) siz€[ ]) and sizé[]) =0
Size relation equations for second clause of  exch_buffer/3 :

4 : szZexchbyte) siz¢B) and sizéB) = 1
5: sZexchbyte) sZhead,) + di (Id;Id)
sZhead)
6 : sZexch.byte) gxchfbyte(sz(exchbytet); sZexch.byte))
2xch,byte(l; Sz(headl))
1
7 . sZexch.buffer ;) sZAhead,) + di ([BjBs];Bs)
sZhead) 1
8 : sZexch buffer ;) sZAhead,) + di (Id;Id)
s head)

9 : szZexch.buffer 3) 3 chbutfer (SZE€XChbuffer 1); sgexch buffer ,))

gxch,buffer (Sz(headl) 1; sz(headg))
10 : sZAhead) sZexch buffer 3) + di (BsO;[B0jBs0])

2xch,buffer (Sz(headl) 1; Sz(headZ)) +1
Closed form for the output argument of the head:

11: gxch,buffer (0; y) =0 2
120 Senbutter (X3Y) = exchobutfer (X Ly)+1
13: 2xch,buffer (X; y) = X

Figure 4.4: Size relation equations foexch_buffer/3

in literal with predicate name pred_.name in the body of a clause. Lethead denote

the i-th argument position in the clause head.

The Figure 4.4 shows all equations needed to establish the sizetloé output
argument in exch_buffer/3 . First, the system sets up its size in the rst clause.
Since this argument (third) is an empty list, its size based on #length metrics is
zero. Note also that it is straightforward for the analysis to inér the sizes of the
rst and second input arguments. The size of the rst argument is z® because
it is also an empty list, and the size of the second argument is inite since the

variable is unbounded. The next step is the size inference ofetloutput argument
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for exch_buffer/3 in the second clause. In this case, the size of the third argument
of the head depends on the size of some body literal argument. ugh the system
needs rst to determine the size relations for each input and ¢put argument of the
body literals (inequalities 4 10):

4 By Equation 4.6.
5 By Equation 4.7.

6 By Equation 4.5. Note that exch_byte/3 is not recursive and has been previ-
ously computed. In particular, the size of its third argument las been given

by the user through assertions.
7 By Equation 4.7.
8 By Equation 4.7.

9 By Equation 4.5. In this case, there is a recursive call texchangebuffer/3 .
Thus, the size of the third argument is a symbolic expression whichill be

further solved by the recurrence solver.

10 By Equation 4.7.

Note that the size of the output argument ofexch_buffer/3 can be denoted
by sZhead;). Note also that since it is an output argument, that expression is
equivalent to 3., e - Therefore, the system can then establish the recurrence
system formed by inequalities 11 and 12, whepe and y represent the sizes of the
rst and second input argument, respectively. In the next step, e system obtains

a closed form function (inequality 13) by calling the recurnece equation solver.

Finally, it is important to notice that although the main obj ective of this method

is to infer the sizes of each output argument in a clause head. Bgnstruction, the
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method can also infer the sizes of each body literal argument., size relationships
at each program point. This information will be also requiredy the resource usage

analysis in the next section.

4.3.3 Resource Usage Analysis

In order to infer the resource usage functions all predicates the program are pro-

cessed in a single traversal of the call graph in reverse topoladiorder. Consider

each element corresponds to the size of an input argument positito predicate p.
Then, the resource usage expressed in units of resourceith approximation ap of

a call to p, for an input of sizen, can be expressed as:

K
Coshred(p; ap; r;n) = (@ap)1 i mfCostiause(Ci; p; ap;r;n)g (4.8)

whereJ (ap) is a function that takes an approximation identi er ap and returns a
function which applies over allCost.use(Ci; p; ap;r;n), forl i m. For example,
if ap is the identi er for approximation \upper bound" ( ub), then a possible conser-
vative de nition for ) (ap) is the P function. In this case, and since the number
of solutions generated by a predicate that will be demanded generally not known
in advance, a conservative upper bound on the computationabst of a predicate
is obtained by assuming that all solutions are needed, and thatl &lauses are exe-
cuted, thus the cost of the predicate is assumed to be the sum of thests of all of
its clauses. However, the analysis can take mutual exclusion ind@count, which is
inferred by CiaoPPand is available to our analysis, to obtain a more precise estingat

of the cost of a predicate, using the maximum of the costs of mutilxa exclusive
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groups of clauses. If ap is the identi er for approximation \lower bounds" (Ib),

J
then (ap) is the min function.

Let us see now how to compute the resource usage of clauses. Considdause
C of predicate p of the form H : Lj;:::;Lx whereL;, 1 j k, is a literal
(either a predicate call, or an external or builtin predica¢), and H is the clause
head. Assume thatn; is a tuple with the sizes of all the input arguments to literal
L;, given as functions of the sizes of the input arguments to thdatise head. Note
that these n; size relations have previously been computed during size ars$yfor

all input arguments to literals in the bodies of all clauses.

Then, Costause(C; ap;r;n), the resource usage expressed in units of resource
r with approximation ap of clauseC of predicate p, is given by the expression
Costyause(C; ap; r;n) = solve(Cos(C; ap;r;n)). That is, it is expressed as the solved
form function of the following expression which, in generalof recursive clauses yields

a recurrence equation:

Cos(C;ap;r;m) = (ap;r)(headC)) +
lim pp;C) Q (4-9)
(= Solg, (M))( (ap;r)(L;) + Cosk (L;;ap;r;m))
=11

wherelim (ap; C) is a function that takes an approximation identi er ap and a clause
C and returns the index of a literal in the clause body. For exanlg, if ap is the
identi er for approximation \upper bound" ( ub), then lim (ap;C) = k (the index
of the last body literal). If ap is the identi er for approximation \lower bounds"
(Ib), then lim (ap; C) is the index for the rightmost body literal that is guaranteel

not to fail. (ap;r) is a function that takes an approximation identi er ap and a

INote that the problem of detecting predicates whose clausedsts are mutually exclusive
is far from being trivial. Since the inference of mutual exclsion among predicate clauses
is external to our analysis, it is beyond the scope of this theis to explain it (see [79] for
details).
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resource identi err and returns a function " (cl_head; arith_expr) ! B which takes
a clause head and returns an arithmetic resource usage expressioarith _expr >
as de ned in Figure 4.2. Thus, (ap;r)(headC)) represents " (headC)). On
the other hand, (ap;r) is a function that takes an approximation identi er ap
and a resource identierr and returns a function “(bodylit;arith _expr) ! B
which takes a body literal and returns also an arithmetic resaoe usage expression
< arith _expr >. Inthis case, (ap;r)(L;)represents -(L;). Section 4.3.4 illustrates
di erent de nitions of the functions (ap;r) and (ap;r) in order to infer di erent
resources.Solg, is the number of solutions that literall; can generate, wheré |
denotes that L, precedesl; in the literal dependency graph for the clause. The
inference of upper bounds on the number of solutions given telal is far from being

trivial. We take the approach of [36].

Finally, Cost; (Lj;ap;r;n;) is:

If L; is recursive, i.e., calls a predicatgwhich is in the strongly-connected com-
ponent of the call graph being analyzed, thei€ost; (L;;ap;r;n;) is replaced

by a symbolic expressiorCos{(q; ap; r;m;).

If L; is not recursive, assume that it is a call tay (where g can be either a
predicate call, or an external or builtin predicate), theng has been already an-
alyzed, i.e., the (closed form) resource usage function fphas been recursively
computed as and Cost; (L;ap;r;n;) can be expressed explicitly in terms
of the function , and it is thus replaced with (m;), i.e., the resource usage
function is updated with the sizes at that particular program point whch is

given by m;.

Note that in both cases, if there is a resource usage assertion éprcost(ap,-
r, harith _expri)" , then Cost; (L;;ap;r;m;) is replaced by the most precise between

the arithmetic resource usage expression in closed form and itesgd form resource
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usage function inferred previously by the analysis, provided @y are not incompati-

ble, in which case an error is agged.

It can be proved by induction on the number of literals in the lbdy of clauseC that:

1. If clause C is not recursive, then, expression (4.9) results in a closed form

function of the sizes of the input argument positions in the clese head;

2. If clauseC is simply recursive, then, expression (4.9) results in a recurran
equation in terms of the sizes of the input argument positionsiithe clause
head;

3. If clauseC is mutually recursive, then expression (4.9) results in a recu@nce
equation which is part of a system of equations for mutually reesive clauses

in terms of the sizes of the input argument positions in the clage head.

If these recurrence equations can be solved, including appiroating the solution
in the direction of ap, then Cos{p; ap;r;n) can be expressed in a closed form, which
is a function of the sizes of the input argument positions in theead of predicatep
(and henceCostjause (C; ap; r;n) = solve(Cos{(p; ap;r;n))). Thus, after the strongly-
connected component to which p belongs in the call graph hagdn analyzed, we
have that expression (4.8) results in a closed form function of éhsizes of the input

argument positions in the clause head.

Finally, note that our analysis is parameterized by the fungons (ap;r) and
(ap;r) whose de nitions can be given by means of assertions of typwead cost
and literal _cost, respectively. These functions make our analysis parametriativ

respect to any resource of interest de ned by users.
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4.3.4 De ning the Parameters (Functions) of the Analysis

In this section we explain and illustrate with examples how théunctions that make
our resource analysis parametric, namely, (which includes the de nition of "),
and (which includes the de nition of ') are written in practice in our system.
Both H(cl_head;arith_expr) ! B and ‘(bodylit;arith _expr) ! B will be imple-
mented as predicates of two arguments. The rst one takes theatlse head if " or

the body literal, otherwise. The second argument is the resowaisage function.

Assume for example that the resource we want to measure is an uppeubnd
on the number of resolution stepsdteps) performed by a program. This can be
achieved by adding one unit each time a clause head is travers&ince the assertion
head cost is applied each time a clause head is analyzed, it is straightizard to
measure the number of resolution steps by providing the follomg assertion and

de nition of the delta _one/2 predicate:

.- head_cost(ub,steps,delta_one).
delta_one(_,1).

Note that the predicatedelta _one/2 is the de nition of " and it will return one for
any value in its rst argument. If the resource usage function is constant expression
and it does not depend on the clause head or body literal, the sgst also allows

writing the following shortcut:?
.- head_cost(ub,steps,1).

In order to simplify the process of de ning interesting and usefu " and ' func-

tions, our implementation provides a library with predicate that perform syntactic

2In the worked example in Figure 4.1 thehead.cost and literal _cost assertions are
written following this style.
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operations on clauses, such as, for example, getting the numbéraoguments in a
clause head or body literal, getting a clause head, getting aadlse body, accessing
an argument of a clause head or body literal, getting the maimufictor and arity of a
term in a certain position, etc. In this context it is important to remember that the
dierent " and ' function de nitions perform syntactic matching on the progam

text.

Assume now that the resource we want to measure is the number of angent
passings Qumargs) that occur during clause head matching in a program. This is
achieved by the following code:

:- head_cost(ub,num_args,delta_num_args).

delta_num_args(H,N) :- functor(H, ,N).

functor/3 is a predicate de ned in any Prolog system and it receives a teriand
returns the functor symbol and the arity in the second and thirdargument, respec-

tively.

As another example, if we are interested in decomposing arbityauni cations
performed while unifying a clause head with the literal beingolved into simpler
steps, we can de ne a resourceumunifs , and ahead cost assertion which counts
the number of function symbols, constants, and variables in eadiause head as

follows:
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:- head_cost(ub,num_unifs,

delta_num_unifs).

delta_num_unifs(H,S) :-
functor(H,_,N),

num_fun_vars(N,H,S).

num_fun_vars(0, _H,0).

num_fun_vars(N,H,S) :-
N > 0,
arg(N,H,Arqg),
nfun_vars(Arg,S1),

nfun_vars(Arg,1) :-
var(Arg).

nfun_vars(Arg,1) :-
atomic(Arg).

nfun_vars(Arg,S) :-
nonvar(Arg),
functor(Arg,_, N),
num_fun_vars(N,Arg,S1),
Sis S1 + 1.

N1 is N-1,
num_fun_vars(N1,H,S2),
S is S1 + S2.

var/l , atomic/1 , nonvar/1, arg/3 are additional built-in predicates in 1ISO-Prolog
similarly to functor/3 . var/l succeeds if the input argument is a free variable.
atomic/l succeeds if the input argument is instantiated to an atom.nonvar/1
succeeds if the input argument is a term which is not a free vable. Finally,

arg(Index,Term,Arg) returns in Arg argument numberindex from Term

If in addition to the number of uni cations performed while unifying a clause
head we are also interested in the cost of term creation for thédrals in the body of
clauses, we can de ne a resour¢erms_created , and include aliteral _cost ( 1)
assertion which keeps track of the number of function symbols donstants in body

literals:
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.- literal_cost(ub, nfun(Arg,0) :-
terms_created, var(Arg).
beta_terms_created). nfun(Arg,1) :-

beta terms_created(L,S) :- atomic(Arg).
functor(L,_,N), nfun(Arg,S) :-

num_fun(N,L,S). nonvar(Arg),
functor(Arg,_,N),
num_fun(0,_L,0). num_fun(N,Arg,S1),

num_fun(N,L,S) :- Sis S1 + 1.

N > 0,

arg(N,L,Arg), - head_cost(ub,
nfun(Arg,S1), terms_created,

N1 is N-1, delta_terms_created).
num_fun(N1,L,S2),

S is S1 + S2. delta_terms_created(_L,0).

Note that in this case we also de ne éhead cost assertion which returns O for

every clause head.

More interestingly, our implementation provides a library vith predicates that
perform semantic checks of properties. These properties aréeimed by the available
analyzers. Some of the analyses are always performed as pathefresource analysis,
such as mode and type analysis, and others are performed on dedhadepending
on the properties that need to be checked in the™ and ' function de nitions or

depending on the type of approximation to be performed by theesource analysis.

For instance, suppose that for debugging purposes we would like generate
heap space cost relations to de ne an upper bound on the heap samption of the
program as a function of its input data sizes. In order to inferlte heap consumption

of the program, we will assume for example purposes a simple meynaorodel. We

66



Chapter 4. Resource Usage Analysis for Logic Programs

de ne a resource modelM peqp, that counts the number of bytes allocated in the
heap as follows. We assume that input arguments are ground andnige, no heap
allocation is required. Therefore, we only consider the heagsage of the output

arguments using the following formula:

8
2 4 if t is output and constant or variable
P
M heap(t) = : 4+ TN M peap(ti) if tis output and t = f (ty;:::;ty) (4.10)
- 0 otherwise

Then, we can implement Equation 4.10 through &eap usage function/2 pred-
icate, de ned as:

heap_usage_function(Litinfo,Cost) :-
get_literal(LitInfo,Head),
get_modes(Litinfo,Modes),
usage_func(Modes,Head,1,0,Cost).

usage_func([],_Head, Ind,Cost,Cost).
usage_func([in|Modes],Head,Ind,Acc,Cost):-
Nind is Ind + 1,
usage_func(Modes, Head,NInd,Acc,Cost).
usage_func([out|Modes],Head,Ind,Acc,Cost):-
arg(Index,Head,Term),
term_heap_usage(Term,Cost),
NAcc is Acc + Cost,
NInd is Ind + 1,
usage_func(Modes, Head,NInd,NAcc,Cost).

term_heap_usage(Term,4):- var(Term).
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term_heap_usage(Term,4):- atm(Term).
term_heap_usage(Term,N):-
functor(Term,F,_A),
Term =.. [F|Ts],
term_heap_usage (Ts,N1),
N is N1 + 4.

term_heap_usage_([],0).

term_heap_usage_([T|Ts],N):-
term_heap_usage(T,N1),
term_heap_usage_(Ts,N2),

N is N1 + N2.
where Term =.. List means that the functor and arguments of the term Term
comprise the list List. For instance,f(a,b) =.. [f,a,b]

It is important to notice that heap.usage function/2 not only operatessyn-
tactically on the program text but alsosemantically since the argument modes are
considered. Further, since the creation of terms can occur lbotn the clause head
and in the body literals, we need to applyheap.usage function/2 to both cases.

The user makes this explicit through the assertions:

.- head_cost(ub,heap_usage,heap_usage_function).

.- literal_cost(ub,heap_usage,heap_usage_function).

Assume now that we want to separate the counting of uni cations wére one of
the terms being uni ed is a variable and thus behaves as an \agsiment,” and the
counting of full uni cations, i.e., when both terms being unied are not variables,

and thus uni cation performs a \test" or produces new terms, at.

For this purpose, we can de ne a resource, as for example_unif , which counts

68



Chapter 4. Resource Usage Analysis for Logic Programs

the number of variables in the clause head which correspond toutput” argument
positions throughhead cost assertions. This describes a component of the execution
time that is directly proportional to the number of cases whex both a goal argu-
ment and the corresponding head argument are variables. Thisalid boil down to

assignment (maybe with trailing). This is achieved by the fotlwing code:

:- head_cost(ub,vo_unif,

delta_vo_unif). num_vo_unif(N,H,S) :-
delta_vo_unif(H,S) :- N1 is N-1,
functor(H,_,N), num_vo_unif(N1,H,S).

num_vo_unif(N, H, S).

nvo_unif(Arg,1) :-

num_vo_unif(0,_H,0) :- . var(Arg).
num_vo_unif(N,H,S) :- nvo_unif(Arg,0) :-
arg(N,H,Arqg), atomic(Arg).
free(Arg), nvo_unif(Arg,S) :-
1 nonvar(Arg),
nvo_unif(Arg,S1), functor(Arg,_, N),
N1 is N-1, num_vo_unif(N,Arg,S1),
num_vo_unif(N1, H, S2), Sis S1 + 1.
S is S1 + S2.

Similarly, we could de ne resources for counting:
The number of variables in the clause head which correspond tgout argument
positions

The number of function symbols and constants in the clause headhiwh appear

in output arguments.

The number of function symbols and constants in the clause headhieh appear
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in input arguments.

Example 4.3.2. Consider the same program de ned in Figure 4.1 and the size re-
lations computed in Example 4.3.1. We now show the correspondiresource usage
equations for each clause for the resourtés . Although the functions (ap;r)(H)
and (ap;r)(L) take as arguments a clause hedd and a body literal L respectively,

in our examples we will only write the predicate name ofl and L for the sake of
simplicity. Since the program is analyzed in a single traversaf the call graph in re-
verse topological order, the system starts by analyzing the predte exch_buffer/3 .
Note that the resource usage for external predicates (whose cdadenot available)

connect/3 , exch_byte/3 and close/l is already given by user assertions:

.- pred connect(Host,Port,S) ... + cost(ub,bits,0)
.- pred close(Stream) ... + cost(ub,bits,0)
.- pred exch _byte(B,ld,BO) ... + cost(ub,bits,8)

which express that:

Cos{connect;ub; bits ; h; i)
Cos{(close;ub; bits ; hi)
Cos(exch byt;ub; bits ;h;_i)

For simplicity, we have omitted the sizes of the input argumerst (don't care
symbols) since the resource usage functions do not depend on thesiaf the input

arguments.

The system rst infers the resource usage of the rst clause axch_buffer/3
applying formula 4.9. Recall that the and functions applied to each clause
head and body literal respectively return zero, as providedylthe user through the
head cost and literal _cost assertions. Additionally, the body of the clause is

empty. Hence, no resource usage is provided by the clause. Thdre system yields
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the following resource usage equatioh:

Costexch buffer; ub;bits ;h0; i) =0

For the recursive clause ofexch_buffer/3 , the system follows the same for-
mula 4.9. For this clause, there is a call to a predicateexch_byte/3 ) that receives
8 bits, and also a recursive call teexch_buffer/3 . In this case, the system estab-
lishes a symbolic expression of the foriBos{exch buffer; ub;bits ;i 1;_.i) that
expresses the resource usage of the recursive call. Note that thes 2t the rst
input argument has been updated at this particular program pint, n 1, wheren
represents the size of the rst argument to this predicate. Thefore, the analysis

sets up the following recurrence equation:

z } {
Cost(exch buffer; ub;bits ;m;_i) =  (ub;bits )(exch buffer)+

Z

Y { z } {
(ub; bits )(exch.byte) + Cos{exch byte;ub; bits ;h; i)+

Z

} {
(ub; bits )(exch.buffer ) + Cos{exch buffer; ub;bits ;n 1; i)
=8+ Costexch buffer; ub;bits ;i 1; )

Then, the analysis calls a recurrence solver with the recurrem equation system

inferred:

Cost(exch buffer; ub;bits ;H0; i) = 0
Cost(exch buffer; ub;bits ;m;_i) = 8+ Cos{exchbuffer; ub;bits ;m 1;.)

yielding the following closed form resource usage function:

Costexch buf; ub; bits ;n; i)=8 n

Finally, the system analyzes the main predicate of the prografie., client/3 ).

3Again the size of the second input argument is omitted sincetiis irrelevant for the
resource usage of the predicate.
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This predicate has only one clause which is not recursive. Moker, the resource
usage functions of all body literals have been previously imfed by the analysis
(e.g., exch_buffer/3 ) or given by the user through assertions (e.gconnect/3 and

close/l ). Then, the system sets up the following expression whekeexpresses the

size of the input bu er, i.e., the second argument to this prediate:

Resource usage equations for client/3

| | o — {
Cos{client; ub; bits ;h;ki) =  (ub;bits )(client) + (ub;bits )(connec) +
z N — { z—— {
Cos{connect;ub; bits ;h;_i)+ (ub;bits )(exchbuffer)+
k

Z _ { z—}N {
Cos(exch buffer; ub;bits ;hk; i)+ (ub;bits )(close +

z }H — -{
Cos{close;ub; bits ;hi)=8 k

i.e., the result of the analysis is that an upper bound of the bstreceived by the client
application is eight times the size of the second input argumgrwhich is a bu er of

bytes.

4.4 Experimental results

In this section we study the feasibility of the approach analyng a set of representa-
tive benchmarks which include de nitions of resources usindnis language and used
the system to infer the resource usage bound functions. In order to this, we
have completed a prototype implementation of the analyzewritten in the Ciao lan-
guage, using a number of modules and facilities fro@iaoPPR including recurrence
equation processing. We have also written @iao language extension (a \package"

in Ciao terminology) which when loaded into a module allows writinghe resource-
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related assertions and declarations proposed heréin.

First, we show the actual resource for which bounds are being énfed by the
analysis for a given benchmark together with a brief descrifn. In addition, we also
show the size metric used for the relevant arguments. While any tife resources
de ned in a given benchmark could then be used in any of the ottewe show only
the results for the most natural or interesting resource for eachne of them. We
have tried to use a relatively wide range of resources: number lmftes sent by an
application, number of calls to a particular predicate, robt arm movements, number
of les left open in a kernel code, number of accesses to a databaheap memory
usage, etc. We also cover a signi cant set of complexity functisrsuch as constant,
polynomial, and exponential using relevant data structuresii Prolog programs such

as lists, trees, etc.

bst is a program that illustrates a typical operation, insertion,over binary
search trees, and we measure the heap usage in terms of number tédwns a

function on the depth of the input argument.

client is the program depicted in Fig. 4.1 and we measure the number lmfs

received by the application as a function on the length of theaput argument.

color _-map performs map coloring and we measure the number of uni catig

as a function that depends on the term size of one of the inputguments.

fib : computes the bonacci function and infers the number of atiimetic op-

erations in terms of the integer value of the input argument.

hanoi: is the Towers of Hanoi program and we assume that this programfter

computing the movements, sends these to a robotic arm that willceually be

4The system also supports adding resource assertions spefifg expected resource us-
ages which the system will then verify or falsify using the results of the implemented
analysis.
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moving the disks. We want to measure the energy consumption of tmebot

movements as a function in terms of the integer value of the pat argument.

eight _queen plays the 8-queens game and we measure the number of queens

movements as a function in terms of the length of the input argnent.

eval _polynom evaluates a polynomial function and we measure the oating
point unit time usage as a function in terms of the length of thahe list of

coe cients.

grammar represents a simple sentence parser and we measure the number of
phrases generated by the parser as a function in terms of the nersize of the

input argument.

insert _stores : is a database transaction that adds a new entry into thE TORE
relation. We measure the number of updates as a function in tes of the

relation size, i.e. number of records.

merge is a program that merges the content of a set of input les intaan
output le, and we measure the number of les left open as a fution in terms

of the length of the list of les.

powerset: generates the powerset of a list and we measure the number of

output elements as a function in terms of the input list length

gsort : implements the quicksort algorithm and we measure the numbef lists

parallelized as a function in terms of the input list length.

sendfiles : is a program that sends the content of a set of les through a
stream. We measure the number of bytes read as a function in tesnof the

input list length.
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| Program | Usage Function | Exact Function| Time |

bst x: 20 x+16 184
client X: 8 x 186
color _-map 104691 31686 176
eight _queen 19173961 304
eval _polynom | x: 2:5x 44
. x: 2:17 161+

fib 0:82 ( 0:61F 3 116
grammar 24 16 227
hanoi x: 2 1 100
insert _stores | n;m:n + k 292

n; m:n

merge X:X 180
power set x5z 21 119
gsort 24 2 2x 4 X: 2 X? 144
send files X y:X Yy 179
subst _exp X;y: 2xy + 2y XY Xy 153
zebra 30232844295713061 6869 292

Table 4.1: Accuracy and e ciency in milliseconds of the analysi

subst _exp: substitutes a list of variables in a mathematical expression. We
measure the number of replacements as a function in terms ofetlist length

and also the term size of the input arguments.

zebra: based on the classic zebra puzzle we measure the number of resmiut

steps as a function in terms of the term size of the input.

The results from the analysis of these benchmarks are shown in Talt.1. For
brevity, we report only results for upper-bounds analysis. Theolumn Usage Func-
tion shows the actual resource usage function (which depends on theesif the input
arguments) inferred by the analysis, given as a lambda term. Tlw®lumn Exact Func-

tion shows the exact resource usage function, given also as a lambdanteFinally,

5The system infers a resource usage function considering gilossible solutions. The
exact function shown in Table 4.1 considers only one solutio.
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the column labeledTime shows the resource analysis times in milliseconds, on a
medium-loaded Pentium IV Xeon 2.0Ghz with two processors, 4Gb &AM mem-
ory, running Fedora Core 5.0. Note that these times do not inctle other analyses

such as types, modes, etc.

4.5 Related Work

As mentioned previously, most previous work is speci ¢ to the amgsis of execution
steps and, sometimes, time or memory. The ACE system [69] can autatically
extract upper bounds on execution steps for a subset of funct@rprogramming. The
system is based on program transformation. The original prograimtransformed into
a step-counting version and then into a composition of a cost bodrand a measure
function. Rosendahl de nes in [104] another automatic uppdrsound analysis based
on an abstract interpretation of a step-counting version. Theraalysis measures both
execution time and execution steps. However, size measures carawgomatically
be inferred and the experimental section shows few details altdhe practicality
of the analysis. Debray et al. presents in [36, 37] a semi-autontatnalysis which
infers upper-bounds on the number of execution steps. These ds are functions
on the sizes or value ranges of input data. This seminal work dms to a large
class of logic programs and presents techniques in order to begh the generation
of multiple solutions via backtracking. The authors also showdw other specic
analyses could be developed, such as for, e.g., time or memorlhis approach
was later fully automated and extended to inferring upper- r@d lower-bounds on
the number of execution steps(which is non-trivial because of the possibility of
failure) in [38, 54]. Our method builds on this work but genetizes it in order to
deal with a much more general class of user-de ned resourcespwihg thus the

coverage of dierent analyses within a single implementation Grobauer presents
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in [47] a method for automatically extracting cost recurrenes from rst-order DML
(dependent ML) programs, a conservative extension of ML. The nmafeature is
the use of dependent types to describe a size measure that abstsatbm data to
data size. In [96], and inspired by [13] and [82], a complexitynalysis is presented
for Horn clauses, also fully automating the necessary calculat®nin [60], Igarashi
et al. presents a method for modeling problems such as memory magement, lock
primitive usage, etc., and a type-based method is proposed assian to the inference
problem. In [116] a cost model is presented for inferring costueions for recursive,
polymorphic, and higher-order functional programs. Whiletiis claimed that the
approach can be modi ed in order to infer a reduced set of resa@s such as execution
time, execution steps, or memory, no details are given. Worst & execution time
(WCET) estimation has been studied for imperative languagesnd for di erent
application domains (see, e.g., [111, 14, 40] and its referers). However these and
related methods again concentrate only on execution time. #d, they do not infer
cost functions of input data sizes but rather absolute maximumxecution times,
and they generally require the manual annotation of loop itation bounds. In [25]
a method is presented for reserving resources before their adtuse. However, the
programmer (or program optimizer) needs to annotate the pgyam with \acquire”
and \consume" primitives, as well as provide loop invariants rad function pre- and
post-conditions. Interesting type-based related work has alseén performed in the
GRAIL system [9], also oriented towards resource analysis, but it Baconcentrated

mainly on ensuring memory bounds.

In comparison with previous work our approach allows dealingith a class of
resources which is open, in the ample sense that such resourcesrafact de ned by
programmers using an assertion language, which we also consitiglf an important
contribution of our work. Another important contribution of our work because of its
impact in the scalability and automation of the analysis is thaour approach allows

de ning the resource usage of external predicates, which can bieed for modular
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composition. In addition, assertions also allow describing by hd the usage of
any predicate for which the automatic analysis infers a valuthat is not accurate
enough, and this can be used to prevent inaccuracies in the autatic inference from

propagating.

4.6 Summary

Research about resource usage analysis goes back to the semingk \wp Wegbreit
in 1975 [118], which proposed to analyze the performance of @gram by deriving
closed form expressions for its execution behavior. Since thémere has been a good
number of cost analysis frameworks for a wide variety of prograning languages,
including functional [69, 104, 101, 108, 45, 15, 47], impékee [111, 14, 40, 119], and
logic languages [37, 36, 38].

In spite of such large amount of work in the area, there is a lack tesource usage

analysis tools that:

deal with a generic user-de nable notion of resources allovgrthus the coverage

of di erent analyses within a single implementation.

analyze programs with a realistic size and complexity in a fyllautomated way.

In this chapter, we have presented a resource bounds analysianfiework that
infers upper and lower bounds on the usage that a logic programakes of a quite
general notion of user-de nable resources. The inferred boundre in general func-
tions of input data sizes. We have also presented the assertion laage which is
used to de ne such resources. The analysis then derives the rethteipper- and
lower-bound) resource usage functions for all predicates ine program. Our exper-

imental evaluation is encouraging because it shows that intesting resource bound
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functions can be obtained automatically and in reasonablentie, for a representative
set of benchmarks with a good variety of resources such as bitstsamnreceived by an
application over a socket, number of les left open, number @fccesses to a database,
energy consumption, etc., as well as the more traditional exation steps, execution
time, or heap memory. While clearly further work is needed tassess scalability
we are cautiously hopeful in the sense that our approach allowg ding via asser-
tions the resource usage of external predicates, which can thiee used for modular
composition. These includes also predicates for which the codenot available or
which are written in a programming language that is not suppded by the analyzer.
In addition, assertions also allow describing by hand the usage afiy predicate for
which the automatic analysis infers a value that is not accuta enough, and this can
be used to prevent inaccuracies in the automatic inferenceofn propagating. Our
expectation is that the automatic analysis will be able to dote bulk of the work
for large applications, even if the cost of some specially comypleredicates may still
need to be given by the user. Finally, we expect the applicatis of our analysis
to be rather interesting, including resource consumption vedation and debugging
(including for mobile code), resource control in parallel/gtributed computing, and

resource-oriented specialization.
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Set-Sharing Analysis

In the automatic inference of resource bounds functions cai program information

is rst automatically inferred by other analyzers. In particular, the input/output
modes of the predicate arguments represent essential infornost for the resource
usage analysis. Set-Sharing analyses aim to detect which variables do not point
transitively to the same memory location. This information ca provide very accurate
input/output modes to the resource usage analysis. While otheethniques exist for
inferring modes (such as, e.gdef analysis [7]) we choose the sharing domain because
it is also useful for many other optimizations in compilers (ira similar way to points-

to and shape-sharing analyses in imperative languages). Howeveaditional Set-
Sharing analyses can also be quite ine cient and they are trationally not considered

good choices when analyzing large programs.

In this chapter, we provide the background information abouthe Set-Sharing
abstract domain introduced by Jacobs and Langen in 1990 [618]6that will be
necessary to understand our two practical Set-Sharing solutisrpresented in this

thesis, in Chapters 6 and 7, respectively.
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5.1 Overview

De nition 5.1.1. (Sharing). Two or more variables in a logic program are said
to shareif in some possible execution of the program they are bound to tas that

contain a common variable. m

Recall that a variable in a logic program is said to beground if it is bound to
a term that does not contain free variables.Set-Sharingis an important type of
combined sharing and groundness analysis. It was originally mduced by Jacobs
and Langen [61, 68] and its abstract values are sets of sets ofiahles that keep

track of the sharing relationships among variables.

Example 5.1.1. (Set-Sharing abstraction). LetV = fX;Y;Zg be a set of variables
of interest. A substitution = fX 7! f (Ug; Uy Vi Vo, W)Y 71 g(Va; Vo, W), Z 7!
g(W)g, depicted in Figure 5.1, will be abstracted in Sharing & X g;fX;Y g;fX;Y;Zgg.
Sharing groupf X g in the abstraction represents the occurrence (i.e., the possbl
occurrences of run-time variables within the terms to whicprogram variables will be
bound) of run-time variablesU; and U, in the concrete substitution,fX;Y g repre-
sentsV; and V,, and f X;Y; Zg representsW. Note that the number of (occurrences

of) run-time variables shared is abstracted away.
X — f(lil,Uf,V;’l,V%,W)‘

Figure 5.1: Memory Representation for

De nition 5.1.2. (Independence). Several program variables are said to bhade-

pendentif the terms they are bound to do not have (run-time) variable in common.
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Variable independence is the counterpart of sharing: progravariables share
when the terms they are bound to do have run-time variables inommon. When
we are talking of only two variables then we refer tdPair-Sharing [109], and when
we track relations among more than two variables we refer t8et-Sharing Sharing
abstract domains are used to infemay sharing i.e., the possibility that shared
variables exist, and thus, in the absence of such possibilitgde nite information

about independence.

Example 5.1.2. (Notion of independence). LetV = fX;Y;Zg be the variables
of interest. A Set-Sharing abstract substitution such agf X g;fYg;fZgg (which
denotes the set of the singleton sets containing each variablepresents that all

three variables are independent.

Sharing analysis has been used to infer several interesting peojes and perform
optimization and veri cation of programs at compile-time, most notably but not
limited to: occurs-check reduction (e.g., [109]), automatiparallelization (e.g., [92,
91, 23]), and nite-tree analysis (e.g., [11]). In additionand as mentioned before,
the resource usage analysis described in Chapter 4 requires tlcattain program
information (such as, for example, input/output modes, types, an-failure informa-
tion, etc.) be rst automatically inferred by other (abstract interpretation-based)
analyzers. Set-Sharing analyses can provide very accurat@ut/output modes to
the resource usage analysis and improve the accuracy of othershsas e.g., types

and non-failure which are also required by the resource usageabssis.
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5.2 Preliminaries

Let } (S) denote the powerset of se§, and } °(S) denote the proper powersebf set
S,i.e.,}°%S)= }(S)nfg. Let alsojSj denote the cardinality of a setS. Let V be

a set of variables of interest; e.g., the variables of a program

Let F and P be sets of ranked (i.e., with a given arity) functors of inters;
e.g., the function symbols and the predicate symbols of a pr@an. We will use
Term to denote the set of terms constructed fronv and F [ P. Although somehow
unorthodox, this will allow us to simply write g 2 Term whether g is a term or a
predicate atom, since all our operations apply equally welbtboth classes of syntactic
objects. We will denotef'the set of variables of 2 Term. For two elementss 2 Term
andt 2 Term, §t =4[ f. We will also denote by fly the number of occurrences of

the variabley in the term t.

Analysis of a program proceeds by abstractly solving uni catioequations of the
formt, = t,, t; 2 Term, t, 2 Term. Let solvgt; = t,) denote the solved form
of uni cation equation t; = t,. The results of analysis are abstract substitutions
which approximate the concrete substitutions that may occur @ring execution of
the program. LetU be a denumerable set of variables (e.g., the variables that yna
occur during execution of a program). Concrete substitutionshat occur during

execution are mappings fronV to the set of terms constructed fromU [V andF.

5.3 The Set-Sharing Domain

The Set-Sharing abstract domain was rst presented in [61]. Absict uni cation for
bottom-up analyses was rst de ned and proved correct in [68].The presentation
here and in Chapters 6 and 7 follows that of [120, 30], since thetation used and

the abstract uni cation operation obtained are rather intuitive. A complete set of

83



Chapter 5. Set-Sharing Analysis

abstract functions for top-down analysis (as well as a top-dowanalysis framework)

was de ned and proved correct in [92], and presented in [91,]90

A sharing groupis a set containing one or more of the variables of interest, aitt
represents a possible sharing among them (i.e., that they mighetbound to terms

which have a common variable).

De nition 5.3.1. (Set-Sharing abstract domain, SH). Let SG = }%V) be
the set of all sharing groups. Asharing setis a set of sharing groups. The Sharing
domain isSH = } (SG), the set of all sharing sets, ordered by . n
De nition 5.3.2. (Occur). Let be a substitution andV 2 V a variable of interest,

the sharing groupoccur( ;V ) is de ned as:

occur(;V)=fX 2V jV 2var( (X))g

For instance, if =fX 7! f(V;U);y 7! g(V);Z 7! h(U; W)g then:

occur(;U)=1X;Zg
occur(;V)=fX;Yg

occur( ;W)= fZg

The abstract function sy isdenedas sy( )= foccuryd ;V)jV 2 range( )g.
Jacobs and Langen proved that Set-Sharing enjoys a Galoisértion into the domain
of concrete substitutions, and in particular, a concretizatio function sy exists. We
now show the de nition of the abstract uni cation which also wasproved by Jacobs

and Langen as a safe approximation of the concrete uni cation

De nition 5.3.3. (Relevant sharing rel(sh;t) and irrelevant sharing irrel (sh;t)).
Given termss and t, and sh 2 SH, we denote byrel : SH Term! SH the set of

sets insh which have non-empty intersection withf, the set of variables ot.
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rel(sh;t) = fsjs2 sh;(s\ f) 6 ;g

Also, irrel (sh;t) is the complement ofrel(sh;t), i.e., shnrel(sh;t). n

De nition 5.3.4. (Cross-union sh; [ shy). For two elementssh; 2 SH, sh;, 2
SH, letsh; [ sh,: SH SH ! SH be their cross-union i.e., the result of applying

union to each pair in their Cartesian productsh;  sh,.

shy[ shy = fsjs=s[ S;81 2 shy;s, 2 shyg

De nition 5.3.5. (Up-closure, sh). Let sh 2 SH be a sharing set, then the
up-closure(:) : SH! SH is de ned as its closure under union that represents the

smallest superset oéh such thats; [ s, 2 sh whenevers;;s, 2 sh :

sh =fsj9n  19ty;:::;ty 2sh,s=t[ :::[ thg

"
De nition 5.3.6. (Abstract uni cation, amgu). The abstract uni cation is a
functionamgu:V Term SH'! SH dened as:
amgu(x;t;sh) = irrel (sh;x = t) [ (rel(sh;x) [ rel(sh;t))
"

Example 5.3.1. (Abstract uni cation, amgu). Let V = fX;X5; X3; X409 be the
set of variables of interest and lesh = ff X g;f X,g; f X30;f X499 be a sharing set.
Consider the analysis oKX, = f (X;; X3):
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A = rel(sh; X,) = ff X199

B = rel(sh;f (X2; X3)) = ff X209, X309

A[ B = ff X1;X20;fX1; X309

(A[ B) = ff X1, X20:f X1; X30;
fX1;X2; X309

C = irrel (sh; X1 = f (X2; X3)) = ff X409

amgu(X q;f (X2, X3);8h)= C [ (A[ B)

ff X1;X,0;fX1;X30;
f X1, X2, X390, f X499

Finally, we de ne the rest of the abstract operations requiredby a top-down

Set-Sharing analysis which have been proved sound in [91, 90]:

De nition 5.3.7. (Extend, extend). Let shy;sh, 2 SH be two abstract substitu-
tions andt 2 Term then extend updates all sharing groups irsh; relevant to t that

appear insh, and it is de ned as follows:

extend(shy; t;shy) = irrel (shy;t) [f sjs2rel(shy;t) ; (s\ f)2sh, g

n
De nition 5.3.8. (Projection, project). Let sh2 SH be an abstract substitution
andt 2 Term, the projection of sh onto the variables oft is de ned as:
project(t;sh) = fs\ fjs2 shgnfg
n

De nition 5.3.9. (Augment, augment). Let sh2 SH be an abstract substitution

andt 2 Term, sh can be augmented with the variables dof as follows:

augment(t;sh) = sh[ff xgjx 2 fy
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5.4 The Sharing+Freeness Domain

The inclusion of freeness information, i.e., which variablese free, into the Sharing
domain and the bene ts it could report to sharing analysis wasleeady discussed
in [68] but the rst proposal of a domain was in [90]. The presenteon here follows
that of [57].

Example 5.4.1. Let sh2 SH be an abstract substitution de ned assh = ff X g;-
fW;Yg;fY;Zgg Assume the following abstract uni cationamgu(X = f (W;Y); sh)
which returns (by De nition 5.3.6) the new abstract substitution sh; = ff X; W;Y g;-
fX;Y;Z2g;fX;W;Y;Zgg.

Suppose now thatX is a free variable. Then, it is not possible thatv and Y can
share throughX sinceX is a free variable. In this case, the Up-closure operation
can be avoided on the relevant sharing groups & and Y. Thus, the result would
besh, = ff X;W;Y g;fX;Y;Zgg. Sincesh, sh; it is shown that the inclusion of

freeness can improve the original Set-Sharing.

De nition 5.4.1. (Sharing+Freeness domain, SHF). The Sharing+Freeness
domain isSHF = SH V , i.e., the Sharing domain,SH, augmented with a new

component which tracks the variables which are free. n

De nition 5.4.2. (Abstract uni cation, amgu’ ). The abstract uni cation de-
nedasV Term SHF ! SHF anditis given byamgu (x;t; (sh;f)) = (sh%f9,
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wherel

irrel (sh;x = t)[ (rel(sh;x) [ rel(sh;t)) if x2f ort2f

irrel (sh;x = t) [ (rel(sh;x) [ rel(sh;t) ) if x 6X; t 6X; butf f
and lin (t)

n
E

amgu(x; t; sh) otherwise

and lin (t) holds if for all y 2 £ [t]l, = 1 and for all z 2 f such thaty 6 z,
rel(sh;y) \ rel(sh;z)= ;.

8
% f ifx2ft2f
fo_ f n([ rel(sh;x)) if x2 f:t 62X
3 1 n(l rel(sh;t) it x 62t 2 f

f n([ (rel(sh;x) [ rel(sh;t))) if x6ZX;t 6

Note that, for implementation, the second condition in the diect de nition of
lin (t) might be rather expensive to compute:rel(sh;y) has to be calculated for
everyy 2 f'to check that each pairwise intersection is empty. Instead, argaivalent
condition to checking pairwise intersections, which is more eient, can be used: for
all s 2 rel(sh;t) js\ fj = 1.

Finally, we show how the functionsextend, project, and augment are lifted for

the inclusion of freeness information:

De nition 5.4.3. (Extend, extend). Let (shy;f1);(shy;f,) 2 SHF be two ab-
stract substitutions andt 2 Term then extend is de ned as follows:
extend ((shy;f1);t; (shz;f2)) = (sh%f9
sh%= extend(sh; t; sh,)
fO0=f,[f xjx2 (fynf);(([rel(sh®x)) \ ) f.g
"

INote that t is not necessarily a variable:t 2 f means \t is a variable and is known to
be free".
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De nition 5.4.4. (Projection, project’). Let (sh;f) 2 SHF be an abstract
substitution and t 2 T erm, the projection of (sh;f) onto the variables oft is de ned

as:
project’ (t; (sh;f)) = ( project(t;sh);f \ f)

De nition 5.4.5. (Augment, augment ). Let (sh;f) 2 SHF be an abstract
substitution and t 2 Term, (sh;f) can be augmented with the variables of as

follows:

augment (t; (sh;f)) = (augment(g;sh);f [ f)

5.5 Previous Work

Due to all applications described in Section 5.1, the accuna®f the Set-Sharing
domain has received a lot of attention in the literature in tke past. In particular, it
has been improved by extending it with other kinds of informigon, the most relevant

being:

Extension with linearity was rst proposed by Jacobs and Langen [61]. Exten-
sion with freenesswas proposed by Muthukumar and Hermenegildo [90, 91].
These extensions have been further studied by Codish et al. [28)hd Hill,

Za anella, and Bagnara [57].

Combination with term structure information such as depthk was proposed
preliminarily in in [88, 90] and developed fully as deptlk sharing by King and
Soper [64], in the abstract equation systems by Mulkers et al.1B and in the

composite domains for deriving sharing by Bruynooghe et al.q[L
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Finally, combination with other abstract domains has been posed in [28, 43,
30].

However, Set-Sharing has a key computational disadvantageietabstract uni -
cation implies potentially exponential growth in the number of shang groups due
to the closure operation which is the heart of that operation. Therefore,lie study

of reducing the impact of the complexity of this operation ha been also essential:

In [92, 91], Muthukumar and Hermenegildo presented the rst coparatively
e cient algorithms for performing the basic operations needd for implement-

ing set sharing-based analyses.

In [30], Codish, S ndergaard, and Stuckey showed that the Jabs and Lan-
gen's sharing domain is isomorphic to the dual negative &fos [7], denoted
by coPos This insight improved the understanding of sharing analysis, @h
led to an elegant expression of the combination with groundnegependency
analysis based on the reduced product of Sharing and Pos. In ailh, this

work pointed out the possible implementation otoP osthrough Reduced Or-
dered Binary Decision Diagrams(ROBDDs) [20], although this point was not

investigated further therein.

In [120], Za anella et al. extended the Set-Sharing represetion for inferring

pair-sharing from a set of sets of variables to a pair of sets of sefsvariables in
order to support widening. A new component is added to abstrasubstitutions
that represents sets of variables, the powerset of which wouldveabeen part of
the original abstract substitution. Such sets are calledliques The precision
and e ciency of using cliques for the case of inferring pair-shiang were reported
in [120]. In [121], cliques were incorporated into the origal Sharing domain,

but precision and e ciency are again studied for the case of infeng pair-
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sharing. Although signi cant e ciency gains were achieved, tls approach

loses precision with respect to the original Set-Sharing.

Other relevant work was presented in [74] in which the closurgeration was
delayed and full sharing information was recovered lazily. kever, this in-
teresting approach shares some of the disadvantages of Za an&lwidening.
Therefore, the authors re ned the idea in [73] reformulatig the amgu in terms
of the closure under unionoperation, collapsing those closures to reduce the
total number of closures and applying them to smaller descrigths without

loss of accuracy.

In the next two chapters, we will present two new, alternative,and practical
solutions to the problem of Set-Sharing analysis. The rst appiach, in Chapter 6,
is inspired by Za anella et al. [120] and the idea behind this @proach is to de ne
di erent widening operators to accelerate the xpoint computation. Although, as
we will show, relevant e ciency gains are achieved, this is &geved at the expense of
losses in accuracy. Our second approach, in Chapter 6, is based@oresenting the
complement of the sharing relationships. This alternative repsentation may imply
important e ciency gains when the number of relationships isrelatively large, and

has the advantage of doing so without any loss of accuracy.
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Widening Set-Sharing Analysis

In this chapter, we study the problem of improving the e ciengy and scalability of
Set-Sharing analysis of logic programs for top-down analysasing a form ofcliques
We provide a brief overview of the approach in Section 6.1. Elrepresentation based
on cliques and the clique-domains for set-sharing and set-stmayiwith freeness are
presented in Sections 6.2 and Section 6.3, respectively. Incten 6.4 the required
functions for top-down analysis are de ned. In Section 6.5 aagorithm for detecting
cliques is presented and, in Section 6.6 the use of the represgioin based on cliques
as widening is shown. Section 6.7 shows an experimental evéilua of the proposed

analyses. Finally, Section 6.8 summarizes this chapter.

6.1 Overview

Our starting point is Za anella's idea [120] of representing sring information as
a pair of abstract substitutions, one of which is a worst-case shagrrrepresentation
called a cliqgue set, which as mentioned previously, was propdstor the case of

inferring pair-sharing. Our other starting point is the orighal set-sharing. The
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main goal is to reduce the running time and memory consumptioof the traditional

Set-Sharing domain.

We use the clique-set representation for:

1. Inferring actual set-sharing information, and

2. Analysis within a top-down framework.

In particular, we de ne the new abstract functions required kg standard top-down
analyses, both for sharing alone and also for the case of includingeness in addition
to sharing. Such functions were not de ned in [120, 121], sint®ttom-up analyses
were used there. The analysis uses the PLAI/CiaoPP framework [b2vhich, as
mentioned before, includes an e cient implementation of adp-down analyzer using
the xpoint algorithms and optimizations described in [89, 9, 55]. We use cliques
both as an alternative representation and as a widening, deimg several widening

operators.

6.2 The Clique-Sharing Domain

When a sharing setsh 2 SH over a set of variables of interesV includes the proper
powerset of some subsef V of variables, the representation can be made more
compact since the powerset of does not provide any useful information, i.e., all
variables of C may share each other. This situation is illustrated in the follwing

example:

Example 6.2.1. (Useless sharing groups). Le¥ = fX; X,; X3; X409 the set of vari-
ables of interest. Letsh 2 SH be an abstract substitutionff X 1g;f X 1; X,0;f X 1; X2; X30;-
fX1; X30;fX20;fX5; X30;f X1; X2; X30;f X499 A key observation is that nothing is

known of the subset of variable€ = f X 1; X,; X 39 since any aliasing may be possible
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in C. Therefore, we may de ne a more compact representation to grp the powerset
of C.

De nition 6.2.1. (Clique). A clique is a set of variables of interest, much the
same as a sharing group, but a cliqu€ represents all the sharing groups i °(C).
For a cligue C, we will use#C = }°(C). Note that #C denotes all the sharing that

is implicitly represented in a cliqueC. n

De nition 6.2.2. (Clique set). A clique setis a set of cliques. LetCL = SH
denote the set of all clique sets. For a clique set2 CL we de ne ficl= f# CjC 2
clg. Note that ffcl denotes all the sharing that is implicitly represented in a djjue
setcl. For a pair (cl; sh) of a clique setcl and a sharing setsh, the sharing that the

pair represents isffcl [ sh. n

Example 6.2.2. (Cligue-Sharing representation). Assume the same set of variable
of interest as in Example 6.2.1. Assume also the same set-sharsig= ff X,g;-

f X1 X209 F X1; X2, X30; £ X1 X30; f X20; f X2, X30; f X1, X2; X 30; f X499 Then, we can
representsh as a pair l; sh% wherecl = ff X1; X,; X3gg and sh®= ff X,go.

De nition 6.2.3. (The Clique-Sharing Domain, SHW). The Clique-Sharing
domain isSHW = f(cl;sh) j cl 2 CL;sh 2 SHg, i.e., the set of pairs of a clique set

and a sharing set [120]. n

An abstract uni cation operation amgu"V is de ned in [121] which uses a function

irrel : CL Term ! CL (complement ofrel), de ned as:
irrel (cl;t)=f CnfjC2clgnfg

which approximates the sharing not related to variables in.
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In [121], the following operation$ are de ned as counterparts inSHW of the
corresponding ones in Sharing, and proved correct with respéztheir corresponding
counterparts (Theorem 9.8, page 239). Letc(;sh) 2 SHY, (cl;;sh;) 2 SHW,
(cly; shy) 2 SHW:

rel((cl; sh);t) = (rel(cl;t); rel(sh;1))

irrel ((cl; sh);t) = (irrel (cl;t);irrel (sh;t))

(cly;shy) [ w (clp;shy) = (cly [ cly;shy [ shy)

(chishy) [ (clo;shy) = ((clx[ cl) [ (chi[ sho) [ (sha[ ck);shy [ she)
< (;;sh) if ol = ;

(cl;sh)y =
(f[ (cl[ sh) g;;) otherwise

De nition 6.2.4. (Abstract uni cation, amgu"V). The abstract uni cation is a

function amguV’ : v Term SHW! SHW de ned in [121] as:

amgu”V(x; t; clsh) = irrel (clsh;x = t) [W (rel(clsh; x) [ rel(clsh;t))

In [121] the correctness camgu” is also shown, which is reproduced here.

Theorem 6.2.1. Let (cl;ss) 2 SHW, sh 2 SH, equationx = t, x 2 V andt 2

Term, and amguV(x; t; (cl;ss)) = ( cl°; ss°). If Fcl[ ss sh then:

Fcl°[ s amgu(x = t;sh)

Proof. See Appendix A.

By using the above de nitions of the operations and a case analg, amgu”’ can

be also de ned as:

Note that the operations lifted to SHW are named with the same symbol as their
counterparts in Sharing, and also the same namatrel as de ned before is used. Thus, we
are overloading all symbols excepf{ .
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: ( cl ;amgu(x;t; sh)) if rel(cl;x) = rel(cl;t) = ;
% (irrel (cl;x = 1)) ; if rel(cl;x) = rel(sh;x) = ;
irrel (sh;x = 1)) or rel(cl;t) = rel(sh;t) = ;
amguV(x;t; (cl;sh)) = _ (irrel (cl;x = t) [ otherwise
fl (rel(cl;x) [ rel(cl;t) [
rel(sh;x) [ rel(sh;t))g

;irrel (sh;x =t))

which is the abstract uni cation operation implemented andt is of course equivalent

to the one in [121] as proved also in Appendix A.

6.3 The Clique-Sharing+Freeness Domain

Similarly to the Set-Sharing domain described in Section 5hé Clique-Sharing do-
main can also improve its accuracy by adding some freeness infation about the
set of variables of interest. Freeness can be introduced to théidtie-Sharing domain
in the usual way [90], by including a component which tracks #variables which are

known to be free.

De nition 6.3.1. (Clique-Sharing+Freeness domain, SHFW). The Clique-
Sharing+Freeness domain iISHFW = SHW Vv | i.e., the Clique-Sharing domain,

SHW, augmented with a new component which tracks the variableshich are free.

A method to de ne an abstract uni cation function for SHW with freeness and
linearity is outlined in [121]. We have used an abstract uni ciion operation amgu®
for SHW with freeness which is a simpli cation of the corresponding opation which

results from the application of such method.
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The method in [121] is basically the one used above famgu’: de ne the
counterparts for the basic operations and prove them corrector freeness we will
need the following: Letclsh 2 SHW, cIsh = (cl;sh), t 2 Term,

W(clsh) = [ (cl [ sh)

lins(ty . 8 y2f:[t,=1 n
8z2f:y6z! rel(cly) \ rel(cl;z)=; ~
rel(sh;y) \ rel(sh;z) = ;

Note again that checking emptiness of each pairwise intersectio the de nition
of lin5(t) (as in lin (t)) can be reduced to a more e cient equivalent condition: gien
rel(clsh;t) = (rel(cl;t);rel(sh;t)), for all s 2 rel(cl;t) [ rel(sh;t) js\ fj = 1.

Now amgu®’ is de ned simply by lifting amgu’ by substituting each original

operation by its counterpart.

De nition 6.3.2. (Abstract uni cation, amgu®). Abstract uni cation is a func-
tion amgu’ : V. Term SHFEW 1 SHFW given by amgu® (x;t; (clsh;f)) =

(clsh® f 9, where:
8
E amgu* (x;t;clsh) if x2f ort2f

clsh’®= _ amgus' (x;t;clsh) if x 62; t 6% but £ f andlins(t)

amguV(x;t;clsh)  otherwise
amgu™ (x;t;clsh) = irrel (clsh;x = t) [ W (rel(clsh;x) [ rel(clsh;t))

amgu™ (x;t; clsh) = irrel (clsh;x = t) [ W (rel(clsh;x) [ rel(clsh;t) )
8

% f ifx2ft2f
Fo_ f n(W(rel(clsh;x))) if x2 f;t 6%
E f n(W(rel(clsh;t))) if x6X;t 2f

f n(W(rel(clsh;x) [ Wrel(clsh;t))) if x 6X;t 6
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so that by using the above de nitions of the operations the faliwing is obtained:

amgus™ (x;t; (cl;sh)) = ( irrel (clix=1) [
((rel(cl;x) [ rel(sh;x)) [ rel(cl;t)) [
(rel(cl;x) [ rel(sh;t))
irrel (sh;x =1t) [ (rel(sh;x) [ rel(sh;t)) )

: ( irrel (cl;x=1t) [ (rel(cl;x) [ rel(sh;t) ) if cly = ;
% , irrel (sh;x=1t) [ (rel(sh;x) [ rel(sh;t) ) )
( irrel (chbx=1)[ otherwise
amgu® (x;t; (cl; sh)) = ((rel(cl;x) [ rel(sh;x)) [
f[ (rel(cl;t) [ rel(sh;t))g)
[ (rel(cl;x) [ rel(sh;t))
© o drrel (sh;x=1) )
Theorem 6.3.1. Let ((cl;ss);f) 2 SHFEW, (sh;e) 2 SHF, and equationx = t, x 2
V, t 2 Term. Letalsoamgu® (x;t; ((cl;ss);f)) = (( cI°; ss°); f °) andamgu (x;t; (sh; €) =

(sh%f9. If fFcl[ ss shandf ethen:

Fcl°[ s sh®andf°® f°

Proof. See Appendix A.

6.4 Abstract Functions for Top-Down Analysis in

the Cligue Domains
Functions call2entry and exit2succ have usually been de ned in a way which is
speci ¢ to the domain and for top-down analysis (see, as mentied before, [91] for a

de nition for Set-Sharing). We have chosen instead to presenehe a formalization of

a way to use theamgu in top-down frameworks. Thus, the de nitions ofcall2entry
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and exit2succ based onamgu given above. Our intuition in doing this is that the
results should be (more) comparable to goal-dependent botteup analyses, where

amgu is used directly.

Note, however, that such de nitions imply a possible loss of presion. Using
amgu in the way explained above does not allow to take advantage tife fact that
all variables in the head of the clause being entered during a@wgsis are free. Al-
ternative de nitions of call2entry can be obtained that improve precision from this
observation? The overall e ect would be equivalent to using theamgu function for
the Sharing domain coupled with freeness, with the head varikds as free variables,
and then throwing out the freeness component of the result. Faxample, for the
Clique-Sharing domain a functioncall2entry® that takes advantage of freeness infor-
mation can be de ned as follows, wherenify S is the version ofunify that uses

amgu® :

ASulf
unify f ((ASub;;); Head; Goal)

call2entry*(ASub; Goal; Head
where ASul’ Free)

However, for the reasons mentioned above, we have used the dgams of call2entry
and exit2succ based onamgu. The rest of the top-down functions are de ned be-
low. For the Clique-Sharing domain, letg 2 Term, and (cl; sh) 2 SHW. Functions

project® and augment are de ned as follows:

project®(g;(cl; sh)) = ('project(g; cl); project(g; sh)

augment(g;(cl; sh)) = ( cl; augment(g; sh))

Function extend®(Call; g; Prime) is de ned as follows. LetCall = (cly; shy) and

Prime = (cly;shy). Let normalize be a function which normalizes a pair ¢l; sh)

2For example, one such de nition (developed independently)can be found in [5].
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so that no powersets occur irsh (all are \transferred” to cliques in cl; Section 6.5
presents a possible implementation of such a function). L&rime be already nor-

malized, and:

(cl® sh% = normalize((rel(cl;;g) [ (rel(cly; ) [ rel(shy; ) );rel(shy; Q) ))

The following two functions lift the classicalextend [91] respectively to the cases
of the two clique sets (clique groups of th€all allowed by the clique component
of the Prime) and of the two sharing sets (sharing groups belonging to th€all

allowed by the sharing part of thePrime):

extsh(shy; g;shy) = irrel (shy;g) [ f sjs2sh® (s\ @) 2shy,g
extcl(cly;g;ch) = irrel (cli;g) [f (s°\ s) [ (s°n@)js®2 cl®s 2 chg

The following two functions account respectively for the sharg sets belonging
to the cligue component of theCall allowed by the sharing part of thePrime, and
the sharing sets of the sharing component of th€all allowed by the clique part of

the Prime:

clsh(cl®g;shh)=f sjs c2cl® (s\ g 2sh,g
shcl(sh®g;ch)=f sjs2sh® (s\ § <c2clg

The extend function for the Clique-Sharing domain is thus:

extend®((cly; shy); g;(clz; shy)) =
( extcl(cli; g; ch)
; extsh(shy;g;shy) [ clsh(cl® g;shy) [ shcl(sh®g;ck) )

Example 6.4.1. (Extend for the Clique-Sharing domain). LetCall = (cly;sh;) =
(ff X;Y;Zgg; ff U;Vgg), Prime = (cly;shy) = (ff Xgg; ff U;Vgg),andg = fX;U;Vg.
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Then we have €1%sh® = (ff X;Y;Z;U;Vgg;;). The extend® function is computed

as follows:

extsh(ff U;Vgg, g;ff U;Vgg) =

extcl(ff X;Y;Zgg, g;ff Xgg) ff X;Y;Z2g;fY;Zgg

clsh(ff X;Y;Z;U;Vgg, g;ff U;Vgg) ff Y;Z;,U;Vg;
fY;U;Vg;
fZ;U;Vg;fU;Vgg

shel(; ; g;ff X gg) =

extsh(shy; g; shp)

extcl(cly; g; ch)
clsh(cl® g; shy)

shcl(sh® g; cb)

Thus, extend®(Call;g; Prime) = (ff X;Y;Zqg;fY;Zggff Y;Z;U;Vg;fY;U;Vg;fZ;-
U; Vg; f U; Vgg), which after normalization yields ff X;Y;Zgg; ff Y;Z;U;Vg;fY; U; Vg;-
fZ;U; Vg fU;Vgg).

Note how the result is less precise than the exact resulif (X; Y; Z gg; ff U;Vgg).
This is due to the overestimation of sharing implied by the cliges; in particular,
for the case ofextend, overestimations stem mainly from the necessary worst-case
assumption given by €1% sh9, which is then \pruned" as much as possible by the func-
tions de ned above. The resulting operation, however, is cact: the sharing implied
by extend® on two abstract substitutions Call and Prime is an over-approximation
of that given by extend on the sharing set substitutions corresponding t€all and

Prime.

Theorem 6.4.1. Let Call 2 SHW, Prime 2 SHW, and g 2 Term, such that the
conditions for the extend function are satis ed. Let Call = (cly;ss;), Prime =
(cly; ss,), extend®(Call; g; Prime) = (cl;ss), Fclh [ ss;  shy, and ffcl, [ ss,

sh, then:

Fcl [ ss  extend(shi;g;sh)

Proof. See Appendix A.
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For the Clique-Sharing+Freeness domain, lety 2 Term, ands 2 SHFW, s =

((cl; sh); f). Functions project’ and augment' are de ned as follows:

project™' (g; s) = ( project’(g;(cl;sh));f \ @)
augment” (g;s) = (augment(g;(cl;sh));f [ @)

Function extend® (Call; g; Prime) is de ned as follows. LetCall = ((cly;shy);f)
and Prime = (( cly; shy);f>), extend® (Call; g; Prime) = (( ¢l®sh%;f9, where:

(cl® sh% = extend®((cly; shi); g;(cly; shy))
fO=f, [ fxjx 2(fi n@); (([ (rel(shSx) [ rel(clSx)) \ @) fzg

Theorem 6.4.2. Let Call 2 SHEW, Prime 2 SHFW, andg 2 Term, such that the
conditions for the extend function are satis ed. Let Call = (( cly; shy);f1), Prime =
((cly; shy); f2), and extend™” (Call; g; Prime) = (( cl%sh9;f9. Let alsos; = fcly [
shy, s, = ffcly[ shy, and extend ((s1;f1); 9;(S2;f2)) = (sh;f). Then ( ffcl[ sh9

sh and f° f .

Proof. See Appendix A.

Therefore, the operationextend® is correct: it gives safe approximations. The
resulting sharing it implies when applied on two abstract substittions Call and
Prime is no less than that given byextend on the sharing set substitutions corre-
sponding toCall and Prime; and the freeness is no more than whatxtend” would

have computed.

6.5 Detecting Cligues
Obviously, to minimize the representation inSHW it pays o to replace any setS of

sharing groups which is the proper powerset of some set of varie®C by including C

as a clique. Once this is done, the s& can be eliminated from the sharing set, since
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the presence ofC in the clique set makesS redundant. This is the normalization
mentioned in Section 6.4 when de ningextend for the Clique-Sharing domain, and
denoted there by anormalize function. In this section we present an algorithm for

such a normalization.

Given an element €l;sh) 2 SHW, sharing groups might occur insh which are
already implicit in cl. Such groups are redundant with respect to the sharing repre-
sented by the pair. We say that an elementd(; sh) 2 SHW is minimal if Fcl\ sh=;.
An algorithm for minimization is straightforward: it should delete from sh all sharing
groups which are a subset of an existing clique 1. But normalization goes a step
further by \moving sharing” from the sharing set of a pair to the t¢ique set, thus

forcing redundancy of some sharing groups (which can thereddoe eliminated).

While normalizing, it turns out that powersets may exist whichcan be obtained
from sharing groups in the sharing set plus sharing groups impdidy existing cliques
in the clique set. The representation can be minimized furthef such sharing groups
are also \transferred" to the clique set by adding the adequatelique. We say that
an element ¢l; sh) 2 SHW is normalized if whenever there is ars ~ ( Frcl[ sh) such

that s =#c for some setc then s\ sh= ;.

Our normalization algorithm is presented in Figure 6.1. It stas with an element
(cl;sh) 2 SHW, which is already minimal, and obtains an equivalent elemexw.r.t.
the sharing represented) which is normalized and minimal. FSt, the numberm is
computed, which is the length of the longest possible clique. &h the sharing set
sh is traversed to obtain candidate cliques of the greatest possblengthi (which
starts in m and is iteratively decremented). Existing subsets of a canditiaclique S
of length i are extracted fromsh. If there are 2 1 [S] subsets ofS in sh then
S is a clique: it is added tocl and its subsets deleted fronsh. Note that the test
is performed on the number of existing subsets, and requires thentputation of a

number [S], which is crucial for the correctness of the test.
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Let n = jshj; if n< 3, stop
Compute the maximumm such thatn 2™ 1
Leti=m
if i =1, stop
LetC=1fsjs2sh;jsj=ig
if C=; then decrementi and goto 4
Take S 2 C and delete it fromC
Let SS=fsjs2sh;s Sg
Compute B]
if j(SS§j=2' 1 [S]then
Add S to cl (regularizecl)
Subtract SS from sh
11: goto 6

=
e

Figure 6.1: Algorithm for detecting cliques

The number [S] stands for the number of subsets 0% which may not appear
in sh because they are already represented ol (i.e., they are already subsets of
an existing clique). In order to correctly compute this numbeit is essential that
the input to the algorithm be already minimal; otherwise, redndant sharing groups
might bias the calculation: the formula below may count as riopresent in sh a
(redundant) group which is in fact present. The computation D[S] is as follows. Let
| =fS\CjC2clgnf,g andAj=f\ AjA I; jAj=ig. Then:

X X
[S]= (Dt @Y
10j1j A2A;
Note that the representation can be minimized further by elinmating cliques
which are redundant with other cliques. This is the regularation mentioned in step
10 of the algorithm. We say that a clique setl is regular if there are no two cliques

ct2cl,c 2cl suchthatc;  ¢,. This can be tested while adding cliques in step 10

above.

104



Chapter 6. Widening Set-Sharing Analysis

Finally, there is a chance for further minimization by considring as cliques can-
didate sets of variables such that not all of their subsets exist ithe given element
of SHW. Note that the algorithm preserves precision, since the sharingpresented
by the element of SHW input to the algorithm is the same as that represented by
the element which is output. However, we could set up a threshofdr the number
of subsets of the candidate clique that need be detected, andtims case the out-
put element may in general represent more sharing. This might ifact be useful in
practice in order to use the normalization algorithm as a wideng operation. Note
that, although the complexity of this algorithm is exponential since it is actually the
problem of solving all the maximal cliques of an undirected gph (NP-complete), it

iS not a practical problem due to the small size of these graphs.

6.6 Widening Set-Sharing

A widen function for SHW is based on an unary widening operator : SHW |
SHW, which must guarantee that for eachclsh 2 SHW, clsh clsh®. The

following theorem is necessary to establish the correctness oé tiidenings used:

Theorem 6.6.1. Let clsh2 SHW and equationx = t, x 2 V, t 2 Term, we have

h
amguV(x;t; clsh) amgu?¥(x;t;clsh)

For our experiments we start using two widenings already de e The rst of

them, by [43], is of an intermediate precision and it is as folvs:

i
(cl;sh)y=(cl[ sh;;)

3Note that this de nition of widening for sharing is slightly dierent from original
De nition 3.3.1.
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The second widening was de ned in [120] as a cautious widenifecause it did
not introduce new sharing sets, although obviously informatiowas lost as soon as
the operations for the Clique-Sharing domain were used) antld idea was to de ne
an undirected graph from an elementish 2 SHW and compute the maximal cliques

of that graph:

tP

the experimental evaluation in [120] a version of this cautits widening ¢ was used
which is equivalent to the previous one but disregarding the regletons. It is easy
to see that our normalization process is totally equivalent tahe computation of

the maximal cliques of a graph and thus we will use the normaéiion process as a

cautious widening "

N

. In the same way as [120], we use a more precise version of

which is based on disregarding the singletons called".

Since cliques should only be used when it is strictly necessary telp the analysis
from running out of memory, its application is guarded by a awdition. We use the
simplest possible condition based on cardinality of the sets iBHY, imposing a
threshold n on cardinality which triggers the widening. We have tuned thk threshold
in order to be able to achieve a reasonable trade-o0 betweendlobjective of triggering
widening only when strictly required and preventing runningout of memory in all

cases. For each widening, the triggering condition is de nedsdollows:

8

) P
< . ..
clysh) if sj) > n
widen(cl; sh) = ( ) 1O sanlsi)
(cl;sh)  otherwise

106



Chapter 6. Widening Set-Sharing Analysis

6.7 Experimental Results

We have measured experimentally the relative e ciency and mcision obtained with
the inclusion of cliques both as an alternative representatioin the Set-Sharing and
Set-Sharing+Freeness domains and as a widening in the SetaBhg+Freeness do-
main. Our rst objective is to study the implications of the change in representation
for analysis: although the introduction of cliques does not byself imply a loss of pre-
cision, the abstract operations for cliques are not precise. Wt want to measure

such loss in practice. Second, to minimize precision loss, theqok representation
should ideally be used only whenever necessary, i.e., when thasslcal representa-
tion cannot deal with the analysis of the program at hand. In tis case, we will be
using the clique representation as a widening to guarantee (sotb) termination of

the analysis, i.e., that analysis does not abort because of rungi out of memory. It

turns out that this is not a trivial task: it is not easy to determine beforehand when

analysis will need more memory than is available.

Benchmarks are divided into three groups.

The rst group, append (app in the tables) through serialize (seal), is a set of
simple programs, used as a testbed for an analysis: they have onlsedt recur-
sion and make a straightforward use of uni cation (basically, foinput/output

of arguments i.e., they are moded).

The second group, aiakl through zebra, are more involved: thenake use of
mutual recursion and of elaborate aliasing between argumertts some extent;
some of them are parts of \real" programs (aiakl is part of an alyzer of the

AKL language; prologread (plread) and rdtok are Prolog parsers).

The benchmarks in the third group are all (parts of) \real" programs: ann

is the &-prolog parallelizer, peephole (peep) is the peedbeooptimizer of the
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SB-Prolog compiler, gplan is the core of the Chat-80 applitan, and witt is a

conceptual clustering application.

Our results are shown in Tables 6.1, 6.2 and 6.3. Columns lalel€ show anal-
ysis times in milliseconds, on a medium-loaded Pentium IV Xeon@®5hz with two
processors, 4Gb of RAM memory, running Fedora Core 2.0, and avgirag several
runs after eliminating the best and worst values. Ciao version11#326 and CiaoPP
1.0#2292 were used. Columns labeleB (precision) show the number of sharing
groups in the information inferred and, between parenthesithe number of sharing
groups for the worst-case sharing. Columns labelédV show the number of widen-
ings performed and columns labeletdC show the number of clique groups. Since
our top-down framework infers information at all program pots (before and after
calling each clause body atom), and also several variants forchgorogram point, it
is not trivial to provide a good absolute measure of precisionhanges in precision
may cause more variants during analysis, which in turn a ect thg@recision measure.
Instead, we have chosen to provide the accumulated number of shg groups in all
variants for all program points, in order to be able to compareesults in di erent

situations.

6.7.1 Cliques as Alternative Representation

Tables 6.1 and 6.2 show the results for Set-Sharing, Clique&img and Sharing+Freeness,
and Clique-Sharing+Freeness, respectively for the cases in walhicliques are used as

an alternative representation.

In order to understand the results it is important to note an exsting synergy
between normalization, e ciency, and precision when cliqueare used as an alterna-
tive representation. If normalization causes no change in trgharing representation

(i.e., sharing groups are not moved to cliques), usually becaupewersets do not
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Sh SHY
T P T P #C
app 11 29 (60) 8 44 (60) 4
deriv 35 27 (546) 27 27 (546) 0
mmat 13 14 (694) 11 14 (694) 0
gsort 24 30 (1716) 25 30 (1716) 0
query 11 35 (501) 13 35 (501) 5

serial || 306 | 1734 (10531)| 90 | 2443 (10531)| 88

aiakl || 35 | 145 (13238) || 42 | 145 (13238) | O
boyer || 369 | 1688 (4631) | 267 | 1997 (4631) | 158
brow || 30 69 (776) 29 69 (776) 0
plread || 400 | 1080 (408755)| 465 | 1080 (408755)| 10
rdtok || 325 | 1350 (11513)| 344 | 1391 (11513) | 182
wplan || 3261| 8207 (42089) || 1430| 8191 (26857) | 420
zebra | 25 | 280 (67107) || 34 | 280 (67107) | O

ann 2382| 10000 (3110%) || 802 | 19544 (3110%) | 700
peep || 831 | 2210 (12148)| 435 | 2920 (12118) | 171
gplan 1 860 | 4210 (38 10°) | 747
witt 405 | 858 (451CF) || 437 | 858 (4510F) | 25

Table 6.1: Precision and Time-e ciency for Sharing and Clige-Sharing

really occur during analysis, then the clique part is empty. Anlgsis is the same as
without cliques, but with the extra overhead due to the use of tb normalization
process. Then precision is the same but the time spent in analyzitige program
is a little longer. This also occurs often if the use of normabtion is kept to a
minimum: only for correctness (in our implementation, normbeation is required for
correctness at least for theextend function and other functions used for comparing
abstract substitutions). This should not be surprising, since the fa that powersets
occur during analysis at a given time does not necessarily medmat they keep on
occurring afterward: they can disappear because of groundnessother precision

improvements during subsequent analysis (of, e.g., builtins).

When the normalization process is used more often (like for axale at every
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Shfr SHWfr

T P T P #C
app 6 7 (30) 6 7 (30) 0
deriv 27 21 (546) 27 21 (546) 0
mmat 9 12 (694) 11 12 (694) 0
gsort 25 30 (1716) 27 30 (1716) 0
query 12 22 (501) 14 22 (501) 0
serial 61 545 (5264) 55 736 (5264) 41
aiakl || 37 | 145 (13238) | 43 | 145 (13238) | O
boyer || 373 | 1739 (5036) || 278 | 2074 (5036) | 163
brow | 29 69 (776) 31 69 (776) 0
plread | 425 | 1050 (408634)| 481 | 1050 (408634)| O
rdtok || 335 | 1047 (11513)|| 357 | 1053 (11513) | 2
wplan || 1320| 3068 (23501)| 1264| 5705 (25345) | 209
zebra || 41 | 280 (6710) | 42 | 280 (6710) | O
ann | 1791] 7811 (401220)] 968 | 14108 (3910%) | 510
peep || 508 | 1475 (9941) | 403 | 2825 (12410) | 135
gplan || 1 - 2181| 2310* (31 10°) | 529
witt 484 | 813 (4545594)| 451 | 813 (4510F) | 0

Table 6.2: Precision and Time-e ciency for Sharing+freenesand Clique-Sharing+-
freeness

call to call2entry as we have done), then sharing groups are moved more often
to cliqgues. Thus, the use of the operations that compute on cligusets produces
e ciency gains, and also precision losses, as it was expected. Hoesmvprecision
losses are not high. Finally, if normalization is used too ofterthen the analysis
process su ers from heavy overhead, causing too high penalty éciency that it
makes the analysis intractable. Therefore it is very clear #t a thorough tuning

of the use of the normalization process is crucial to lead analg to good results in

terms of both precision and e ciency.

As usual in top-down analysis, theextend function plays a crucial role. In our
case, this function is a very important bottleneck for the usefamormalization. As we

have said, we use the normalization for correctness at the beging of the extend
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function. Additionally, it would be convenient to use it also atthe end of such
function, since the number of sharing groups can grow too muchdowever, this is
not possible in practice due to theclsh function, which can generate so many sharing
groups that, at the limit, the normalization process itself canot run. Alternative

de nitions of clsh have been studied, but because of the precision losses incurred,

they have been found impractical.

Tables 6.1 and 6.2 shows that there are always programs whoselgsis of which
does not produce cliques. This occurs in some of the benchmackke all of the
rst group but serialize and some of the second one such as aiaklotise (brow),
prolog read, and zebra). In this case, precision is maintained as exped but there
is a small loss of e ciency due to the extra overhead discussed al@ovThe same
thing happens with benchmarks which produce cliques (app&nquery, prologread,

and witt, in the case of Sharing without freeness), but this doesot a ect precision.

On the other hand, for those benchmarks which do generate alieg (like serialize,
boyer, warplan (wplan), ann, and peephole) the gain in e ciacy is considerable at
the cost of a small precision loss. As usual, e ciency and precisionrcelate inversely:
if precision increases then e ciency decreases and vice versa.special case is, to
some extent, that of rdtok, since precision losses are not coupleih e ciency gains.
The reason is that for this benchmark there are extra success suhgions (which
do not convey extra precision and, in fact, the result is less prse) that make the

analysis times larger.

In general, the same e ects are maintained with the addition fofreeness, al-
though the e ciency gains are lower whereas the precision ga are a little higher.
The reason is that theamgu®' function is less e cient than amgu® (but more pre-
cise). Overall, however, the trade-o between precision andagency is bene cial.
Moreover, the more compact representation of the cliqgue domamakes possible

to analyze benchmarks (e.g., gplan) which ran out of memoryith the standard
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representation.

6.7.2 Widening Set-Sharing via Cliques

As mentioned before, the intention of the widening operatorsito limit the use of
cliques only to the cases where it is necessary in order to avoidadysis running
out of memory. This is not a trivial task, as explained below. able 6.3 shows
results from our experiments for Sharing+Freeness, Clique-&fing+Freeness using
widening. The widenings have been applied before each abstrani cation and at
the end of theextend function, and they are guarded by the condition discussed in
Section 6.6.

The choice of a suitable value of the threshold is a key issue, sinhes threshold
is responsible for triggering widening only for the cases wheiteis needed. In a
top-down framework the choice of threshold is further commated by the extend
function. As commented above, this function and, in particur, the clsh function
de ned in Section 6.4 can make the number of sharing groups grexcessively after
every call, since that function generates powersets of the givcliques. In order to

solve this problem we studied two di erent alternatives.

First, we tried a more e cient version of the clsh function, which moved some
extra sharing groups to cliques. This, however, resulted in exssve precision losses
which reduced the usefulness of the analysis. Given this, we alsveleped a hybrid

approach for the case of " where "isusedin uni cations but the more aggressive

F nF

is used after callingclsh. We call this version

As for practical thresholds, we have concluded experimentalligat an appropriate
value for the guard for the widenings in our test platform is 26. This is the highest
value that prevents analysis from running out of memory. Howey, as we will see,

it also triggers widening for a few cases where it is not needeBor the additional
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nF

threshold used in the operations (Section 6.5) we have determined that 40%

is an appropriate value since, although low, it gives surprisyly good results.The

results in Table 6.3 thus correspond to 5, and D) o

SHY fr+ 550 SHY fr+ ggo 40

T P #W T P #W
app 11 7 (30) 0 10 7 (30) 0
deriv 48 21 (546) 0 35 21 (546) 0
mmat 16 12 (694) 0 16 12 (694) 0
gsort 40 30 (1716) 0 43 30 (1716) 0
query 23 22 (501) 0 25 22 (501) 0
serial 74 722 (5264) 6 70 703 (5264) 10
aiakl 63 145 (13238) 6 61 145 (13238) 33
boyer || 561 1744 (5036) 2 || 536 1743 (5036) 4
brow 44 69 (776) 0 42 69 (776) 0
plread || 3419 | 24856 (1754310)| 198 || 593 1050 (408634) | 103
rdtok 472 1047 (11513) 0 466 1047 (11513) 0
wplan | 1878 5376 (21586) 42 || 1394| 5121 (20894) 60
zebra 42 280 (6710") 1 56 280 (6710 48
ann 751 16122 (394800) | 17 726 | 16122 (394800) | 34
peep 453 2827 (12410) 8 512 2815 (12410) 16
gplan || 1722| 238426 (3141556) 26 | 1897| 233070 (3126973) 55
witt 2333 | 259366 (23378597) 110 || 736 813 (4545594) | 140

Table 6.3: Precision and Time-e ciency with Widening

As expected, the use of widening allows executing programs walhithe Shfr do-
main could not due to exceeded memory capacity. However, asmhened in the
discussion of the threshold, we do also widen for some benchmarksavtthe origi-

nal domain could handle. Fortunately, the precision losses alienited.

: . nF . F
Widening operator 5, 4, results at least as precise as ,5, and, for most of

the cases, better. In fact, the results obtained for prolagead and witt using 5,

are remarkable since the information obtained is very poor. he di erence in time

e ciency between 5., and ), ,, is acceptable, and in fact for some programs
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Tty 40 IS More e cient than feo- Note that for prolog_read and witt the di erence

is considerable in favor of Jc, ,.. There appears to be a clear correspondence

between number of widenings and e ciency gains. This holds ew if the widening

operations are expensive, such as with);, ,,, because the widening expense is o set

by e ciency gains in the abstract operations due to the redudbn in the size of the

abstract substitutions being processed.

6.8 Summary

We have studied the problem of e cient, scalable Set-Sharingralysis of logic pro-
grams using cliques both as alternative representation and asdenings. We have
concentrated on the previously unexplored case of inferringtsharing information
in the context of top-down analyses. To this end, we have propasall the operations
required for top-down analyses for the cases of combining cleg with both Shar-
ing and Sharing+Freeness. We have also proposed and studied selveraenings,

providing di erent levels of precision and e ciency tradeo .

Our experimental evaluation supports the conclusion that, fanferring set-sharing,
the use of cliques as an alternative representation results iimited precision losses
(due to normalizations) while e ciency gains are obtained. V& have also derived
interesting conclusions regarding the interactions betwedhresholds, precision, e -
ciency and cost of widening which have resulted in the proposdlahybrid widening
which resulted quite useful in practice. In fact, the new repsentations allowed an-
alyzing some programs that exceeded memory capacity usingsdecal sharing rep-
resentations. Thus, we believe the results of this chapter coiiiute to the practical

application of top-down analysis of Set-Sharing.
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Negative Set-Sharing Analysis

In Chapter 6, a new approach for improving the e ciency (in tems of memory
and running time) of the process of inferring set-sharing inforation in top-down
frameworks was presented. The technique relied on the use ofesalwidenings which
provided di erent levels of precision and e ciency tradeo. However, sometimes
there are situations where the loss of accuracy is not allowedg khe application

and/or more substantial e ciency gains are required.

In this chapter we introduce another novel approach to impnang the e ciency of
Set-Sharing, both in terms of memory and running time, in the case without any loss
of accuracy. In the remainder of this chapter we rst introdue the basis of the new
approach in Section 7.1, rede ne the Set-Sharing domain, stgibed in Chapter 5,
adapting it to a binary string representation (Section 7.2) wkth we then extend in
Section 7.3 to use a more compact representation through a tery encoding. In
Section 7.4, we use the encoding of the complement (or negajiwf the original Set-
Sharing. Finally, results from an experimental evaluation fothese representations

are reported in Section 7.5 and summary in Section 7.6.
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7.1 Introduction

The new approach for inferring set-sharing information e ciatly without loss of
accuracy is described as follows. We de ne a new representatitmat leverages
the complement (or negative) sharing relationships of the @inal sharing set, and
allows more compact representations for cases where there arany sharing sets
without loss of accuracy. Intuitively, given an abstract statesh, over the nite
set of variables of interestV, its negative representation is} (V) nshy. Using this
encoding during analysis dramatically reduces the number efements that need to be
represented in the abstract states and during abstract uni cabn as the cardinality
of the original set grows toward 2. To further compress the number of elements, we
express the set-sharing relationships through a set of ternary stgs that compacts

the representation by eliminating redundancies among the stiag sets.

It is important to notice that our work is not based on [30]. Although they
de ne the dual negated positive Boolean functions¢oP osdoes not represent the
entire complement of the positive set. Moreover, they do not usmP osas a means
of compressing relationships but as a way of representing Shayithrough Boolean
functions. We also represent Sharing through Boolean functisnbut that is where

the similarity ends.

Example 7.1.1. (Negative sharing relationships). LetV = fX;X;; X3g be a set
of variables of interest. Letsh 2 SH be an abstract substitution such thatsh =

ff X10;fX1; X5, X30;FX1; X30;fX20;fX1;X5; X3gg, jshj = 5. Since that the set
of variablesV is nite, the computation of the set complement, i.e.} (V) nsh, is
always possible. Therefore, the negative (or complement) ige of sh, sh, will be
ff X 1;X»0;fX2; X399 and its cardinality jshj = 2. Then, it is easy to see that, in
certain cases, the size of the sharing relationships can be redliby encoding their

complement.
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7.2 Set-Sharing Encoded by Binary Strings

In this section, we adapt the Set-Sharing abstract domain desbed in Chapter 5 for
handling binary strings rather than sets of variables. Unless og¢hwise stated, here
and in the rest of this chapter we will represent the Set-Sharjndomain using a set

of strings rather than a set of sets of variables.

De nition 7.2.1. (Binary sharing domain, bSH). Let alphabet = f0;1g, V
be a xed and nite set of variables of interest in arbitrary order, and ' the nite
set of all strings over with length I, 0 | jVj . Let bSH' = }°( ') be the proper
power set(i.e., } ( ') nf;g ) that contains all possible combinations over with

S
length |. Then, the binary sharing domainis de ned asbSH = bSH'. n
0 1jVj

Example 7.2.1. (Binary encoding of sharing relationships). LeV = fX; X2; X3; X490
be the set of variables of interest and lesh = ff X,0;fX;X20;fX1; X,; X399 be
a sharing set. Assume the following order among variableX; X, X3z Xg.
Then, we can encode each sharing group into a binary string usitige algorithm
described in Figure 7.1. In this example, the result of mappirgh into a set of binary
strings isbsh= 10001100 111@.

BinaryEncodin¢sh; V)
bsh ;
foreach sg2 sh
foreach i-th variable of V
if the i-th variable of V appears insg then

sli] 1
else
sli] O
bsh  bsh[f sg
return bsh

Figure 7.1. Simple algorithm for encoding binary sharing rationships
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In this chapter, we will denote byf'the binary representation of the set of variables
of t 2 Term according to a particular order among variables. Sindewill be always
used through a bitwise operation with some string of length the length off must be
l. If not, f'is adjusted with 0's in those positions associated with variablespresented
in the string but not in t. For instance, if V = fX;X5; X3;X40 and t contains
fX,: X 30, then £ = 0110.

The following de nitions are an adaptation for the binary representation of the

standard de nitions for the Set-Sharing domain:

De nition 7.2.2. (Binary relevant sharing rel(bsh;f) and irrelevant sharing
irrel (bsh;1). Givent 2 Term, the set of binary strings inbsh2 bSH' of length| that
are relevant with respect tot is obtained by a functionrel(bsh;t) : bSH' Term!
bSH' de ned as:

. V
rel(bsh;f) = fsjs2 bshy(s f)60'g

\%
where  represents the bitwise AND operation and'ds the all-zeros string of length
|. Consequently, the set of binary strings irbsh 2 bSH' that are irrelevant with
respect tot is a function irrel (bsh;?) : bSH' Term! bSH' whereirrel (bsh;t) is

the complement ofel(bsh; 1), i.e., bshnrel(bsh;?). n

De nition 7.2.3. (Binary cross-union, [ ). Given bsh;bsh, 2 bSH', their

cross-unionis a function [ :bSH' bSH'! bSH' de ned as
_ W
bshy[ bshh=fsjs=s; ;8 2 bsh;s, 2 bshg

w
where  represents the bitwise OR operation. n

De nition 7.2.4. (Binary up-closure, () ). Let | be the length of strings in
bsh 2 bSH', then the up-closure of bsh denotedbsh is a function () : bSH' !
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W
bSH' that represents the smallest superset dfshsuch thats; s, 2 bsh whenever

S1:Sp 2 bsh:
, W W
bsh = fsj9n 19t;;:::;t,2bshs=1t; ::: tyg

n

De nition 7.2.5. (Binary abstract uni cation, amgu). The abstract uni cation

is a functionamgu:V Term bSH'! bSH' de ned as

amgu(x; t; bsh) = irrel (bsh;x=t) [ (rel(bsh;X) [ rel(bsh;?1)

n

Example 7.2.2. (Binary abstract unication). Let V = fXq;X,; X3;X4g be the
set of variables of interest and letsh = ff X,0;fX,g;fX3g;f X409 be a sharing
set. Assume the following order among variablesX; X, Xz X4 Then,
sh is encoded as the following set of binary stringssh = f100Q 010Q 0010 000%.
Consider the analysis oK1 = f (X5; X3):

A = rel(bsh; X;) = f100@

B = rel(bsh; f(X2; X3)) = f0100001Qy

A[ B = £1100101Q

(A[ B) = {1100101Q111Q
C = irrel (bsh; Xy = f (X2; X3)) = f000Q

amgu(X 1;f (X2;X3);bsh= C [ (A[ B) f000% 1100 1010 1110y

As described in Sec. 3.4 in Chapter 3, the design of a bottom-upadysis must be
completed by de ning the following abstract operationsinit (initial abstract state),
equivalence(between two abstract substitutions),join (de ned as the union), and

project.
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De nition 7.2.6. (Binary initial state, init ysy). The initial state init : V!
bSH describes an initial substitution given a set of variables. Assumedhan initial
substitution sh 2 SH is given byinit sy : V! SH, de ned in [61]. Then, the binary

initial state can be de ned using the algorithm shown in Fig. 7.1as:

init sy (V) = BinaryEncodingnit sy (V); V)

]
De nition 7.2.7. (Binary equivalence, ). Given bshy;bsh, 2 bSH, they are
equivalent(i.e., bshy  bsh) if and only if 8s; 2 bshy; 8s, 2 bshy;s; = s, (syntactic
equivalence). -
De nition 7.2.8. (Binary join, t ). Given bsh;;bsh, 2 bSH, the join function

t :bSH bSH! } (bSH)is de ned as union (i.e.,bsh, t bsh, = bsh, [ bsh). &

De nition 7.2.9. (Binary projection, bsh). The binary projection is a function
bsh:: bSH"  Term! DbSH* (k 1) that removes thei-th positions from all strings
(of length 1) in bsh2 bSH', if and only if the i-th positions of ' (denoted by fli]) is

0, and it is de ned as
bsh; = fs?j s2 bsh; €= (s;t)g

where (s;t) is the binary string projection de ned as

; if s= , the empty string
(s®t); if s=s% andfli]=0
(s®t)a;; if s=s% andfli]=1

(sit) =

W AW 0

and s%; is the concatenation of characten to string s°at position i.
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7.3 Ternary Set-Sharing

In this section, we introduce a more e cient representation fothe Set-Sharing do-
main de ned in Sec. 7.2 to accommodate a larger number of vables for analy-
sis. We extend the binary string encoding discussed above to therary alphabet
= f0;1; g, where the symbol denotes both 0 and 1 bit values. This repre-
sentation e ectively compresses the number of elements in thet $eto fewer strings
without changing what is represented (i.e., without loss of @tiracy). To handle the

ternary alphabet, we rede ne the binary operations covereth Sec. 7.2.

De nition 7.3.1. (Ternary sharing domain, tSH). Let alphabet = 1f0;1; g,
V be a xed and nite set of variables of interest in an arbitrary ader as in Def. 7.2.1,
and ' the nite set of all strings over with length |, O | jVj . Then,

S
tSH' = }9( ') and hence, theternary sharing domainis de ned astSH = tSH'.
0 1jVj

Prior to de ning how to transform the binary string representation into the corre-
sponding ternary string representation, we introduce two corde nitions, Def. 7.3.2
and Def. 7.3.3, for comparing ternary strings. These operatisnare essential for
the conversion and set operations. In addition, they are used tdiminate redun-
dant strings within a set and to check for equivalence of two teary sets containing

di erent strings.

De nition 7.3.2. (Match, M). Given two ternary strings,x;y 2 ', of length|,

matchis a functionM : ! 1B ,suchthat8i 1 i |,
8
B S trueif (x[i]= yiil) _ (x[1= )_ (ylil= )
XMy =
false otherwise
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0 Convertbsh; k)

1 tsh ;

2 foreach s 2 bsh

3 y  PatternGeneratgsh; s; k)
4 tsh  ManagedGrowitish;y)
5 return tsh

10 PatternGeneraigsh; x; k) 30 ManagedGrowitish; y)
11m  SpeciedXx) 31S,=fsjs2tsh;s yg
12i O 32if S, =; then

13x°  x 33 if yj tsh then

141  length(x) 34 appendy to tsh
15while m>k andi<| 35 else

16  Leth be the value ofx°at positioni | 36  removeS, from tsh
17 if h=0o0r h =1 then 37  appendy to tsh

18 x° x°h 38 return tsh

19 if X% tsh then

20 x0  x0

21 else

22 x% x°% b

23 m  Speciedx?

24 i i+l

25return  x°

Figure 7.2: A deterministic algorithm for converting a set of mary strings bshinto
a set of ternary stringstsh, wherek is the desired minimum number of speci ed bits
(non- ) to remain.

De nition 7.3.3. (Subsumed By and Subsumed _In j ). Given two ternary
stringss1;8,2 ', ¢! "1 B is a function such thats; s, if and only if
every string matched bys; is also matched bys,. More formally,s; s, (8 s2
tSH'; if s ;M s then s,Ms. For convenience, we augment this de nition to deal with

sets of strings. Given a ternary strings 2 and a ternary sharing settsh 2 tSH',

j © ' tSH'!B is a function such thatsj tsh if and only if there exists some

elements®2 tsh such thats s° -

Figure 7.2 gives the pseudo code for an algorithm which contea set of binary
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strings into a set of ternary strings. The functionConvertevaluates each string of the
input and attempts to introduce symbols usingPatternGeneratewhile eliminating

redundant strings usingManagedGrowth

PatternGenerateevaluates the input string bit-by-bit to determine where the
symbol can be introduced. The number of symbols introduced depends on the
sharing set represented and, the desired minimum number of speci ed bits, where
1 k | (the string length). For a given set of strings of lengthl, parameter
k controls the compression of the set. Fok = | (all bits specied), there is no
compression andish = bsh For k = 1, the maximum number of symbols is
introduced. For now, we will assume thak = 1, and some experimental results in
Section 7.5 will show the best overalk value for a givenl. The Speci edfunction

returns the number of speci ed bits (0 or 1) inx.

ManagedGrowtlthecks if the input stringy subsumes other strings fromsh. If
no redundant string exists, theny is appended totsh only if y itself is not redundant

to an existing string in tsh. Otherwise, y replaces all the redundant strings.

Example 7.3.1. (Conversion from bSH to tSH). LetV be the set of variables of
interest with the same order as Example 7.2.2. Assume the followirsharing set
of binary strings bsh = 1000, 1001, 0100, 0101, 0010, 0§01Then, a ternary
string representation produced by applyingConvertis tsh =f 100*, 0010, 010*, *00d.
There can be a certain level of redundancy in the representati, a subject that will

be discussed further in Section 7.5.

The example above begins witlConver{bshk = 1).

1. Sincetsh = ; initially (line 1), the rst string 1000 is appended to tsh, so
tsh = 1 100Qy.

2. Next, 1001 frombsh is evaluated. InPatternGeneratewith x° at iteration i
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(denoted asx?), i = 3 and b; = 1, we test x§ = 1000 if the i position of x can
be replaced with a (line 15-24). In this case, sinc&dj tsh (line 19), x$ =
100* is returned (line 25). Next,ManagedGrowtlevaluates 100* and since it
subsumes 10009, = f100@), 100* replaces 1000 leavintsh = f100%g (line
38).

3. The process continues withPatternGeneratg 100%9,0100) (line 3). In Pat-
ternGeneratesince x3j tsh, x9j tsh, x3j tsh, and x$j tsh, we reset each
i bit to its original value (line 22) and x° = x = 0100 is returned. Next,
ManagedGrowttf 100*g,0100) is called and since 0100 is not redundant to any
string in tsh, it is appended totsh resulting in tsh = f 100*,010@.

4. The process continues witlPatternGeneraig 100*,010@,0101). InPatternGenerate

when x§ = 0100 and sincex3j tsh, then x§ = 010* is returned. Managed-
GrowtH f100* 010@, 010*) is called next and since 010* subsumes 0100 in
tsh, it is replaced leavingtsh =f 100*,0107 (line 38).

5. The process continues similarly, for the remaining input sings in bshobtaining
the nal result of tsh = f100%* 0010, 010*, *00d.

Next, we rede ne the binary string operations to account for te symbol in
a ternary string. Note that since the ternary representation exnds the binary
alphabet (i.e., binary is a subset of the ternary alphabet), fary operations can
also operate over strictly binary strings. For simplicity, we wil overload certain

operators to denote operations involving both binary and mary strings.

W \%
De nition 7.3.4. (Ternary-or and Ternary-and ). Given two ternary
strings, x;y 2 ! of lengthl, ternary-or and ternary-and are two bitwise-or functions
WV W Vv . .
denedas ; : ‘! 't lsuchthatz=x yandw=x vy, 81 i I,

where:
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8
8 if (x[i]= ~ ylil= )
i (xlil= A viil=
il 2o O 1 if(x[l=1"yli]=1)
z[I] = 0 if(x[i]=0~"y[i]=0 , . .
N O LS SRR
otherwise . .
% _ (x[il= "~ yli]=1)
0 otherwise
[]
De nition 7.3.5. (Ternary set intersection, \). Given tshy, tsh, 2 tSH',
\ :tSH' tSH'! tSH'is de ned as
. \/
tshy \ tsh,=frjr=s1 s2;s1IMs2;s1 2 tshl;s2 2 tsh2g
[]

For convenience, we de ne two binary patternspD-maskand 1-mask in order to
simplify further operations. The former takes ari-length binary string s and returns
a set with a single string having a O wherg[i] =1 and 's elsewhere8i 1 i |I.

The latter takes also anl-length binary string s, but returns a set of strings with a

1 wheresg[i] = 1 and 's elsewhere8i 1 i |. For instance, 0-mask0110) and
1-mask0110) returnf 00g andf 1 ; 19, respectively.
De nition 7.3.6. (Ternary relevant sharing rel(tsh;t) and irrelevant sharing

irrel (tsh;t)). Given t 2 Term with length | and tsh 2 tSH' with strings of length |,
the set of strings intsh that are relevantwith respect tot is obtained by a function
rel(tsh;t) : tSH' Term! tSH' dened as

rel(tsh;t) = tsh \ 1-maskf)

In addition, irrel (tsh;t) is de ned as
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irrel (tsh:;t) = (tsh \ 1-maskf)) \ 0-maskf)

Ternary cross-union[ , and ternary up-closure, () , operations are as de ned
in Def. 7.2.3 and in Def. 7.2.4, respectively, except the binaversion of the bitwise
OR operator is replaced with its ternary counterpart de nedin Def. 7.3.4 in order
to account for the symbol. In addition, the ternary abstract uni cation (amgu)
is de ned exactly as the binary version, Def.7.2.5, using theooresponding ternary

de nitions.

Example 7.3.2. (Ternary abstract uni cation). Let tsh = f100* 010* 0010, *004

as in Example 7.3.1. Consider again the analysis ¥f; = f (X;; X3), the result is:

A = rel(tsh; X ) = f100g

B = rel(tsh; f (X2; X3)) = {010 ;001Q

A[ B = f110;101g

(A[ B) = £110;101:;111g

C = irrel (tsh; X1 = f (X3; X3))
amgu(Xy1;f (X2, X3);tsh)= C [ (A[ B)

0001
f000% 110 ;101 ; 111g

De nition 7.3.7. (Ternary initial state, init ). The initial state init :V | !
tSHVI describes an initial substitution given a set of variables of ietest. Assuming
the binary initial state operation de ned asinit ,sy : V! bSHVi, the ternary initial

state can be de ned using theConvertalgorithm in Fig. 7.2 as:

init (V; k) = Convertinit psy (V); k)

De nition 7.3.8. (Ternary equivalence, ). Given tshy, tsh, 2 tSH', the sets

are equivalentif and only (8t; 2 tshq, 8s; t1, s;j tshy) ~ (8t, 2 tsh,, 8s, t,,
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S ] tshy).

The ternary join is de ned as its binary counterpart, i.e., nion. Finally, the ternary
projection, tshj, is de ned similarly as binary projection, see Def. 7.2.9. Hower,
the projection domain and range is extended to accommodatee symbol. So, the
function de nition remains the same except thatternary string projection is now
de ned as a function (s;t): ' Term! K k |. For example, lettsh = f100*,
010*, 0010, *00% as in Example 7.3.1. Then, the projection ofsh over the term
t = f (Xq;X5; X3) is tshj; = £100, 010, 004. Note that since all zeros is meaningless

in a set-sharing representation, it is not included here.

7.4 Negative Ternary Set-Sharing

In this section, we describe a further step using the ternary repsentation discussed
in the previous section. In certain cases, a more compact repnatsgion of sharing
relationships among variables can be captured equivalentlyy working with the
complement (or negative) set of the original sharing set. A teery string t can
either bein or not in the settsh 2 tSH. This mutual exclusivity together with the
niteness of V allows for checkingt's membership intsh by asking ift is in tsh, or,
equivalently, if t is not in its complement, tsh. Given a set ofl-bit binary strings, its
complement or negative set containall the I-bit ternary strings not in the original
set. Therefore, if the cardinality of a set is greater than halbf the maximum size
(i.e., 2V 1), then the size of its complement will not be greater than'® 1. It is this
size di erential that we exploit. In Set-Sharing analysis, as @ consider programs
with larger numbers of variables of interest, the potential amber of sharing groups

grows exponentially, toward 21, whereas the number of sharing groups not in the
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NegConve(sh; k) NegConvertMissir{gsh; K)
thsh U tnsh
foreach t 2 sh bnsh Un bsh

foreach t 2 bnsh
tnsh  Inser{(tnsh;t; k)
return tnsh

tnsh  Deletdtnsh;t; k)
return tnsh

A WNPEFO
aa s~ wWNEFO

10 Deletdtnsh; x; k)

11Dy, f tjt2tnsh;xMtg

12 tnsh®  tnsh with D, removed

13 foreach y 2 Dy

14  foreach unspeci ed bit position g of y

15 if b (the i bit of x) is speci ed, then
16 y* vy (a=h)
17 tnsh®  Inser(tnsh® y© k)

18 return tnsh?

20 Inser{tnsh; x; k)

21m  SpeciedXx)

22 if m<k then

23 P select Kk m) unspecied bit positions in x

24  foreach possible bit assignmendp of the selected positions

25 y X W
26 tnsh®  ManagedGrowttinsh;y)
27 else

28 'y PatternGeneratgnsh; x; k)
29 tnsh® ManagedGrowtfinsh;y)
30 return tnsh®

Figure 7.3: NegConvert NegConvertMissingDelete and Insert algorithms used to
transform positive to negative representationk is the desired number of speci ed
bits (non-*'s) to remain.

sharing set decreases toward 0.

The idea of a negative set representation and its associated alguns extends
the work by Esponda et al. in [41, 42]. In that work, a negative $& generated from
the original set in a similar manner to the conversion algoriths shown in Figs. 7.2

and 7.3. However, they produce a negative set with unspeci edtbiin random
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positions and with less emphasis on managing the growth of thestdting set. The
technique was originally introduced as a means of generajirBoolean satis ability
(SAT) formulas where, by leveraging the di culty of nding solutions to hard SAT
instances, the contents of the original set are obscured withousing encryption [41].
In addition, these hard-to-reverse negative sets are still abte answer membership
gueries e ciently while remaining intractable to reverse (ie., to obtain the contents
of the original set). In this paper, we are not interested in tts security property,
however, and use the negative approach simply to address the éncy issues faced

by the traditional Set-Sharing domain.

The conversion to the negative set can be accomplished using tetalgorithms
shown in Figure 7.3. NegConveruses theDeleteoperation to remove input strings
of the set sh from U, the set of all I-bit strings U = f 'g, and then, the Insert
operation to return U nsh which represents all stringsnot in the original input.
Alternatively, NegConvertMissingses thelnsert operation directly to append each
string missing from the input set to an empty set resulting in a representation oéll
strings not in the original input. Although as shown in Table 7.1 both algathms
have similar complexities, depending on the size of the originaput it may be
more e cient to nd all the strings missing from the input and tra nsform them with
NegConvertMissingather than applying NegConverto the input directly. Note that
the resulting negative set will use the same ternary alphabet de#red in Def. 7.3.1.

For clarity, we will de ne it as:

De nition 7.4.1. (Ternary Negative Sharing Domain, tNSH). The ternary
negative sharing domain is de ned as its positive counterparin Def. 7.3.1, i.e.
tNSH  tSH.

We describe onlyNegConversince NegConvertMissingses the same machinery.
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Assume a transformation frombshto tnsh calling NegConvertwith k = 1. We begin
with tnsh = U=f g (line 1), then incrementally Deleteeach element obsh
from tnsh (line 2-3). Deleteremoves all strings matched by from tnsh (line 11-
12). If the set of matched stringsDy, contains unspeci ed bit values (* symbols),
then all string combinationsnot matching x must be re-inserted back intansh (line
13-17). Each stringy® not matching x is found by setting the unspeci ed bit to the
opposite bit value found inx[i] (line 16). Then, Insertensures stringy® has at least
k speci ed bits (line 22-26). This is done by specifying m unspeci ed bits (line
23) and appending each to the result usiniylanagedGrowtl{(line 24-26). If string
x already has at leastk specied bits, then the algorithm attempts to introduce
more symbols usingPatternGeneratéline 28) and appends it while removing any

redundancy in the resulting set usinglanagedGrowtffline 29).

Example 7.4.1. (Conversion from bSH to tNSH). Consider the same sharing set as
in Example 7.3.1:bsh= 1000, 1001, 0100, 0010, 0101, 0G0JA negative ternary
string representation is generated by applying thé&legConvertalgorithm to obtain
f 0000, 11**, 1*1* *11* **11g. Since a string of all 0's is meaningless in a set-sharing

representation, it is removed from the set. Thustnsh = f11**, 1*1* *11* **11 g.

1. The rst string 1000 is deleted fromU =f g . So,Dy=f g (line
11) andtnsh®=; (line 12). For eachi™ bit of x, a newyM x is evaluated for
insertion into the result set. So,Insert(;, y; = 0***, k =1) is called (line 17).
SinceSpeciedy®) k and tnsh® = ;, the result returned istnsh® =f0*** g
(line 27-30). For all other unspeci ed positions (line 14) of/, a new string is
created with a bit value opposite tox;'s value, [@). So, Insert(f 0*** g, y9 =
*1**, k = 1) is called next andy? is appended totnsh® The process continues

with y2 and yJ resulting in tnsh = fQ***, *1x* *x1* %=1 g
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2. Next, 1001 frombsh s deleted (line 2) resulting inD, =f***1 g and tnsh® =
f O, *1%% 1% g (line 11,12). Then, Insert(f 0%, *1**, **1* g, y0= 0*1,
k = 1) is called. Since 0**1 j tnsh® then tnsh® remains unchanged. The
process continues withy9 =*1*1, y9 =**11 being subsumed bytnsh® so the

result returned istnsh = fQ***, *1** **1* g
3. Next, 0100 is deleted resulting iinsh = f00**, 0**1, 11**, *1*1, **1* @.

4. Next, 0010 is deleted resulting itnsh = f000*, 0**1, 11** 1*1* *11* *1*1,
**119.

5. Next, 0101 is deleted resulting itnsh = f000*, 00*1, 11**, 1*1* *11* **11q.
6. Finally, 0001 is deleted resulting irtnsh = 0000, 11**, 1*1* *11* **11g9.
7. Removing the string with all 0Os, we get the naltnsh = f11** 1*1* *11*

**119_1

An alternative conversion algorithm usedNegConvertMissingBut, rst the miss-
ing strings must be calculated from the given set. For Example 4.1, the missing
strings aref 0011, 0110, 0111, 1010, 1011, 1100, 1101, 1110,d.111

1. The NegConvertMissingegins with the rst string 0011 andtnsh = ; resulting
in tnsh =f0011.

2. Then, Insert(f 0011, y°= 0110, k = 1) resulting in tnsh =f0011, 0110.

3. Next, Insert(f 0011, 0116, y°= 0111, k = 1) resulting in tnsh =f011*, 0*11g.

4. Next, Insert(f011*, 0*11g, y°= 1010, k = 1) resulting in tnsh =f011*, 0*11,
101@.

INotice that tnsh = U n(bsh[f 000Qy).
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Transformation Time Complexity Size Complexity
bSH! tSH O(jbsh 1) O(jbsh)
bSH=tSH! tNSH | O(jbsh ( 2 +1)) O(jtnshj(I  m)2)
tNSH ! tSH O(jtnshj ( 2 +1)) O(jtshj( m)2)
bSH! tNSH O( + jbnsh( 2 +1)) | O(jbnsh2)
Table 7.1: Summary of conversiond-length strings; = jResultj I; if m <k then

=k melse =0, where m = minimum specied bits in entire set, k = number
of speci ed bits desiredjobnsh= U nbshh = O(2') time to nd bnsh

5. Next, Insert(f011*, 0*11, 101@, y°= 1011, k = 1) resulting in tnsh =f011*,
0*11, 101*, *01D.

6. Next, Insert(f 011*, 0*11, 101*, *018, y°= 1100, k = 1) resulting in tnsh =f011*,
0*11, 101* 1100, *014.

7. Next, Insert (f011*, 0*11, 101*, 1100, *01g, y° = 1101, k = 1) resulting in
tnsh =f011* 0*11, 101*, 110*, *01d.

8. Next, Insert (f011*, 0*11, 101*, 110*, *018, y° = 1110, k = 1) resulting in
tnsh =f011* 0*11, 101* 110* *011, *114.

9. Finally, Insert(f011*, 0*11, 101*, 110*, *011, *11@, y°= 1111,k = 1) resulting
in tnsh =f11*, 1*1* *11* **11 g.

Notice that NegConvertMissingvould return the same result for Example 7.4.1,

and, in general, an equivalent negative representation.

Table 7.1 illustrates the di erent transformation functions and their complex-
ities for a given input. Transformation bSH ! tSH can be performed by the
Convertalgorithm described in Fig. 7.2. TransformationdSH=tSH! tNSH and
bSH! tNSH are done byNegConveriand NegConvertMissingespectively. Both

transformations show that we can convert a positive representat into negative with
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corresponding di erence in time and memory complexity. Depeling on the size of
the original input we may prefer one transformation over andter. If the input size is
relatively small, less than 50% of the maximum size, theNegConveris often more
e cient than NegConvertMissingOtherwise, we may prefer to insert those strings
missing in the input set. In our implementation, we continuoushtrack the size of
the relationships to choose the most e cient transformation. Fnally, transformation
tNSH ! tSH is performed byNegConvertallowing comming back to the positive

from a negative representation.

Consider now the same set of variables and order among them as waBple 7.4.1
but with a slightly di erent set of sharing groups encoded absh= f 1000, 1100, 11k
or tsh = f1*00, 111@. Then, a negative ternary string representation produced by
NegConverts tnsh =f00**, 01**, 0*1*, 0**1, 1**1, *01* g. This example shows that
the number of elements, or size, of the negative resujtnshj = 6 > jbsh = 3 and
jtshj = 2. However, in Example 7.4.1 whenbsh = 6, jtnshj = 4 < jbsh. This is
because wherjbsh is less than 1 1, i.e., jbshj = 3 < 23, then its complement set
must represent (! j bsh) = 13 elements. Depending on the strings in the positive
set, the size of the negative result may indeed be greater. Thssa good illustration
of how selecting the appropriate set-sharing representation liva ect the size of the
converted result. Thus, the size of the original sharing set at specprogram points
will be used by the analysis to produce the most compact workingtsé&'he negative
sharing set representation allows us to represent more variablef interest enabling

larger problem instances to be evaluated.

We now de ne certain operations on the negative representati in order to per-
form abstract uni cation and the other abstract operations rguired by our engine

to use the negative representation.

De nition 7.4.2. (Negative intersection, \). Given two negative sets with

same length strings,ns; and ns,, the Negative Intersectionreturns a negative set
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representing the set intersection ofis; \' ns,, and is de ned in [42] as:

ns; \' ns; = fxjx 2 ns;g[f yjy 2 ns,g:

De nition 7.4.3. (Negative relevant sharing rel(tnsh; t) and irrelevant shar-
ing irrel (tnsh;t)) Given t 2 Term and tnsh 2 tNSH' with strings of length I, the
set of strings intnsh that are negative relevantwith respect to t is obtained by a
function rel(tnsh;t) : tNSH' Term! tNSH' de ned as:

rel(tnsh;t) = tnsh I 0-maskf),
In addition, irrel (tnsh;t) is de ned as:

irrel (tnsh;t) = tnsh " 1-maskf).

Because the negative representation is the complement, it istnronly more com-
pact for large positive set-sharing instances, but also, and pegmmore importantly,
it enables us to use inverse operations that are more memory-cacomputationally
e cient than in the positive representation. However, the negtive representation
does have its limitations. Certain operations that are straigtforward in the positive
representation areN P -Hard in the negative representation [41, 42]. A key observa-
tion given in [41] is that there is a mapping from Boolean forolae to the negative
set-sharing domain such that nding which strings are not represged is equiva-
lent to nding satisfying assignments to the corresponding Boodéen formula. This
is known to be anNP -Hard problem. As mentioned before, this fact is exploited

in [41] for privacy enhancing applications. The mapping is deed as follows.
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Let tnsh = f11** 1*1* *11* **11 g be the same sharing set as in Example 7.4.1.

Its equivalent Boolean formula not [(x; and x,) or (x; and x3) or (X and Xz)

or (x3 and Xx4)] is de ned over the set of variables X1; X5; X3; X49. The formula

is mapped into a negative set-sharing instance where each clagseresponds to a
string and each variable in the clause is represented as a O if p@ears negated,
as a 1 if it appears un-negated, and as a * if it does not appear the clause. By
applying DeMorgan's law, we can convert to an equivalent formula in conjunctive
normal form. Then, it is easy to see that a satisfying assignment dfi¢ formula such
asfx; = true;x, = false;x3 = false; x4 = trueg corresponding to the string 1001

is not represented in the negative set-sharing instance.

Theorem 7.4.1. A polynomial time algorithm for computing negative cross-uon, [,

impliesP=NP.

Proof. See Appendix A.

Due to the interdependent nature of the relationship betweethe elements of a
negative set, it is unclear how a precise negative cross-uniomdae accomplished
without going through a positive representation. Thereforewe accomplish the nega-
tive cross-union by rst identifying the represented positive stings and then applying

cross-union accordingly.

Rather than iterating through all possible strings inU and performing cross-union
on strings not in tnsh, we achieve a more e cient negative cross-unionf , by con-
verting tnsh to tsh rst, i.e., using NegConverfrom Table 7.1 and performing ternary
cross-union on stringg 2 tsh. In this way, the ternary representation continues to
provide a compressed representation of the sharing set. Note thdiet negative up-
closure operation, , su ers the same drawback as cross-union. Therefore, we handle

it in the same way as the negative cross-union.

De nition 7.4.4. (Negative union, [ ). Given two negative sets with same length
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strings, ns; and ns,, the Negative Unionreturns a negative set representing the set

union of ns; [ ns,, and is de ned in [42] as:

AN

ns; [ ns,=fzj(xMy)) z=Xx y;Xx2ns;;y 2 Nns,Q;

\
where is the ternary AND operator.

]
De nition 7.4.5. (Negative abstract uni cation, amgu). The negative abstract
uni cation is a functionamgu:V Term tNSH'! tNSH'dened as
amgu(x; t; tnsh ) = irrel (tnsh;x = t) [ (rel(tnsh;x) [ rel(tnsh;t)) ,
]

Example 7.4.2. (Negative abstract unication). Let tnsh = f11* 1*1* *11*
**119g be the same sharing set as in Example 7.4.1. Consider the analydixXe =
f (X2; X3):

A = rel(tnsh; X ;) = f11 ;1 1;11; 110 g
B = rel(tnsh;f (X2; X3)) = f11 ;1 1; 11; 11, 00g
AT B = foo ;01 ;0 0O; 00g
(AT B) = fol ;0 1 :;100g
C = irrel (tnsh; X 1 = f (X2; X3)) = f11 ;1 1;11:; 111
1 ; 1g
= f1 1,  1g

fol ;0 1:0 0:;100g

amgu(X 1;f (X2; X3);tnsh) = C [ (A B)

De nition 7.4.6. (Negative initial state, init ). The negative initial stateinit :
V1 * 1 tNSHM describes an initial substitution given a set of variables of ietest.

Assuming as in Def. 7.3.7 the binary initial state operatiomit ,sy : V! bSHVI, the
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negative initial state can be de ned using eitheMegConvertor NegConvertMissing

described in Fig. 7.3 and denoted both b onvertas follows:
init (V; k) = Converinit psy(V); k)

De nition 7.4.7. (Negative set equivalence, ). Given tnshy;tnsh, 2 tNSH',
they are equivalentif and only if (8t; 2 tnshy;8s, ty;sij tnshy,) ~ (8t 2

tnsh,;8s, t,;s,j tnshy). .

De nition 7.4.8. (Negative join, ). Giventnshy;tnsh, 2 tNSH', the negative
join function T :tNSH' tNSH'! }°(tNSH')is de ned as the negative set union

of the two sets, i.e.,tnsh; [ tnsh,. n
De nition 7.4.9. (Negative project, 7). Given a negative sens and the desired
bit positions to project , Negative Projectis de ned in [42] as

— (ns) = fxj(xMw)~ (8w 22U ;822 U—; 9y 2 ns(y[] Mw * y[] M2))g;

e.g., the resulting negative set will contains strings that haa bit value projected in
column(s) speci ed by if and only if all possible binary combination of all strings
created with the projected column(s) appear in the negative seFor example, given
ns = f000, 011, 10% 11y, the —-; .»(ns) = 10, 11.

De nition 7.4.10. (Negative projection, tnshj;). The negative projectionis a
function tnshj;: tNSH!'  Term ! tNSHX (k 1) that selects elements otnsh

projected onto the binary representation of 2 Term and is de ned as

tnshj, = —(tnsh; ),
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where  is equal to alli-bit positions of f wheref]i] = 1.

Example 7.4.3. (Negative projection). Lettnsh = f11** 1*1* *11* **11 g be the
same sharing set as in Example 7.4.1. The negative projectiontogh over the term
t = f (X1; X2; X3) is tnshj; = f11*, 1*1, *11g. String **1 is not in the result because
it represents the following strings when fully speci ed 001, 011, 101, 1idand not
all these strings are in the complement, e.g., 001 is in the pasé result of the same

projection over bsh

7.5 Experimental Results

We developed a proof-of-concept implementation in order tmeasure experimentally
the relative e ciency in terms of running time and memory usag obtained with

the two new representations described earlietSH and tNSH . The prototype uses
tries [86] to handle e ciently binary and ternary strings, and is comected to a naive

bottom-up xpoint analyzer.

Our rst objective is to study the implications of the conversims in the repre-
sentation for analysis. Note that although bothtSH and tNSH do not imply a loss
of precision, the sizes of the resulting representations and theonversion times can
vary signi cantly from one to another. An essential issue is to detenine experimen-
tally the best overall k parameter for the conversion algorithms. Second, we study
the core abstract operation of the traditional set-sharingamgu, under two di erent
metrics. One is the running time to perform the abstract uni cdion. The other

metric expresses the memory usage through the size of the reprégsgon in terms
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Figure 7.4: Level of compression after conversions frdn$H to tSH and tNSH for
k=1,4,7, and 10.

of number of strings during key steps in the uni cation. All expeéments have been
conducted on an Intef Core™ Duo CPU T2350 at 1.86GHz with 1GB of RAM
running Ubuntu 7.04, and were performed with 12-bit strings site we consider this
value large enough to show all the relevant features of our agach. In general,
within some upper bound, the more variables considered the et the expected

e ciency.

The rst experiment determines the bestk value suitable for the conversion algo-
rithms, shown in Figs. 7.2 and 7.3. We proceed by submitting a set d2-bit strings
in random order using di erent k values. We evaluate size for the smallest output
(see Fig. 7.4) for a giverk value. As expected,bSH (x = y line) results in no
compressiontSH slowly increases with increasing input size, remaining beldv&H

(for k = 7 and k = 10) due to the compression provided by the symbol and by
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having little redundancy; tNSH , the complement set, starts larger tharbSH but
quickly tapers o as the input size increases past 50% @fj. Since thek parameter
helps determine the minimum number of speci ed bits in the setthere is a direct
relationship between thek parameter and the size of the output due to compression
by the symbol. A smallerk value, i.e.,k = 1, introduces the maximum number of
symbols in the set. However, for a given input, a small value does not necessarily
result in the best compression factor (sek = 1 of Fig. 7.4). This result may be
counter-intuitive, but it is due to the potentially larger number of unmatched strings
that must be re-inserted back into the set determined by all the sings that must be
represented by the converted result, see line 13-17 of Fig. 7I8.addition, a small k
value may result in a set with more ternary strings than the numbreof binary strings
represented. This occurs when multiple ternary strings, nond which subsumes any
other, represent the same binary string. This redundancy in th&ernary representa-
tion is not prevented by ManagedGrowthand is apparent in Fig. 7.4 whentSH|j and
JINSH | exceed the maximum size of binary sharing relationships (i.e4096). One
way to reduce the number of redundant strings is to sort the bimg input by Ham-
ming distance before conversion. In the subsequent tests, sorting was perfornted
maximize compression. We have found empirically that k& setting near (or slightly
larger than) 1=2 is the best overall value considering both the result size andrte
complexity. We usek = 7 in the following experiments. It is interesting to note that
a k value oflog,(l) results in polynomial time conversion of the input (see the Com
plexity column of Table 7.1) but it may not result in the maximum compression of
the set (see&k = 4 of Fig. 7.4). Therefore,k may be adjusted to produce results based
on acceptable performance level depending on which paramets more important

to the user, the level of compression (memory constraints) or exgion time.

Our second experiment shows the comparison in terms of memory gedFig. 7.5,
left) and running time (Fig. 7.5, right) of the conversion algrithms for transforming

an initial set of binary strings, bSH, into its corresponding set of ternary strings,
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Figure 7.5: Memory usage (avg. # of strings) and time normalizetbr conversions
with k = 7.

tSH, or its complement (negative),tNSH. We generated random sets of binary
strings (over 30 runs) usingk = 7 and we converted the set of binary strings using
the Convertalgorithm described in Fig. 7.2 fotSH, and NegConvertMissing Fig. 7.3
for tNSH . We also reduced the number of redundant strings by sorting themmsing
the Hamming distance before conversion. The plot on the left shewhat the number
of positive ternary stringsjtSH j, used for encoding the input binary strings always
remains belowjbSHj, and this number increases slowly with increasing input size. It
important to notice that for large values offbSHj, tSH compacts worse than expected
and the compression factor is lower. The main cause is the use oé tharameter
k = 7 that implies only the use of 5 or less symbols for compression. Conversely,
the number of negative sharing relationshipsjtNSH j, is greater thanjbSHj and
JtSHj up to between 40% and 50%, respectively. However, when the loaxteeds
those thresholdtNSH compresses much better than its alternatives. For instance,
for the maximum number of binary sharing relationshipstNSH compresses them to
only one negative string. On the other hand, the rightmost ploshows the average
time consumed over 30 runs for both conversion algorithms. AgaitNSH scales
better than the positive ternary solution, tSH, after a threshold established around

50% of the maximum number of binary sharing relationships. Ourrpof-of-concept
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Figure 7.6: Memory usage (avg. # of strings) and time normalizetbr amgu over
30 runs withk = 7.

implementation is not really optimized, since our objectivas to study the relative
performance between the three representations, and thus tismare normalized to the
range [Q1]. We argue that comparisons that we report between represatibns are
fair since the three cases have been implemented with similar @ency, and useful

since the absolute performance of the base representation islwelderstood.

Finally, our third experiment shows also the e ciency in termsof the memory
usage (in Fig. 7.6, left) and running time (in Fig. 7.6, right)\when performing the
abstract uni cation for k = 7. Several characteristics of the abstract uni cation
in uence the memory usage and its performance. Given an arbgiry set of variables
of interest V (jVj = 12), we constructedx 2 V by selecting one variable and 2
Term as a term consisting of a subset of the remaining variables, i.¥.,n fxg. We
tested with di erent values of t. Another important aspect is the input sharing set,
bSH. Again, we reduced the in uence of this factor by generatingandomly 30
di erent sets. In the leftmost plot, the x-axis illustrates the number of input binary
strings considered during theamgu. In the case of the positive and negative ternary
amgu, the input binary strings were rst converted to their correspamding compressed
representations. The y-axis shows the number of strings afterdhuni cation. The

plot shows that exceeding a threshold lower than 500 in the nurabof input binary
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sharing relationships, bothtSH and tNSH vyield a signi cant smaller number of
strings than the binary solution after uni cation. Moreover, when the number of the
input binary strings is smaller than 50% of its maximum valuetSH compresses more
e ciently than tNSH . However, if this value is exceeded then this trend is reversed
the negative encoding yields a better compression as the canality of the original set
grows toward 2Y1. The rightmost plot shows the size of the random binary input sets
in the x-axis, and the average time consumed for performing ttadbstract uni cation

in its y-axis, normalized again from 0 to 1. This graph shows tliahe execution
times behave similarly to the memory usage during abstract untation. Both tSH
and tNSH run much faster thanbSH. The di erences are signi cant (a factor of
10) for most x-values, reaching a factor of 1000 for large vatief joSHj. When
the load exceeds a 50 60%-threshold,tNSH scales better thantSH by a factor of
10. The main di erence with respect to the memory usage depiatan the leftmost
plot is that for a smaller load, tSH runs as fast astNSH during uni cation. The
main reason is that the ternary relevant and irrelevant sharig operations are less
e cient than their negative counterparts: intersection is anexpensive operation in
the positive ternary representation whereas the negative ietsection is very e cient

(positive union).

/7.6  Summary

We have presented a novel approach to Set-Sharing that levges the complement or
negative sharing relationships of the original sharing set, wibut any loss of accuracy.
In this work, we based the negative representation on ternaryrgaigs. We also showed
that the same ternary representation can be used as a positive eding to e ciently
compact the original binary sharing set. This provides the useor the analyzer

the option of working with whichever set sharing representatiois more e cient for
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a given problem instance. The capabilities of our negative ppach to compress
sharing relationships are orthogonal to the use of the ternargpresentation. Hence,
the negative relationships may be encoded by any other reprasaion such as, e.g.,
Binary Decision Diagrams. ConcretelyZero-suppressed Binary Decision Diagrams
(ZBDDs) [59] are patrticularly interesting because ZBDDs wereedigned to represent
sets of combinations (i.e., sets of sets). In addition, this appach may be also

applicable to similar sharing-related analyses in object-amted languages (e.g., [83]).

Our experimental evaluation has shown that our approach mayeduce signi -
cantly the memory usage of the sharing relationships and the ramg time of the
abstract operations, including the abstract uni cation. Our &periments also show
how to set up key parameters in our algorithms in order to conti the desired com-
pression and time complexities. We have shown that we can obtainraasonable
compression in polynomial time by tuning appropriately those grameters. Thus,
we believe our results show another approach that can contriteuto the practical,

scalable application of Set-Sharing.
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Chapter 8

A Generic Analysis Framework for

Java Bytecode

Chapter 4 presented a practical resource usage analysis for éogiograms. However,
there are situations, e.g., mobile code, where the source codenot accessible but
only compiled code. For example, the receiver of the code mamgnt to infer resource
information in order to decide whether to reject code whichds too large cost require-
ments in terms of computing resources (number of bytes sent @aeived, number of
SMSs, energy consumption, heap usage, time, etc.), and to adcepde which meets
the established requirements. In this context, Java bytecod&3] is widely used,

mainly due to its security features and the fact that it is platorm-independent.

This chapter presents a generic framework for analysis of Jagtecode programs
based on abstract interpretation which can improve the accucy of the resource
usage analysis further shown in Chapter 9. In Section 8.2, we riatluce an inter-
mediate representation which generates a Control Flow Graghom the bytecode of
each method. In Section 8.3, a generic xpoint algorithm baskeon abstract interpre-

tation is described. Section 8.4 shows the feasibility of theaimework. Section 8.5
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Figure 8.1: Pipeline of transformation and analysis

reviews the state of the art in abstract interpretation-basedrameworks, and nally,

Section 8.6 summarizes this chapter.

8.1 Motivation and Proposal

Analysis of the Java language (either in its source version or itsompiled byte-
code [75]) using the framework of abstract interpretation habeen the subject of
signi cant research in the last decade (see, e.g., [78] and itdeeences). Most of this
research concentrates on nding new abstract domains that btetr approximate a
particular concrete property of the program analyzed in orer to optimize compila-
tion (e.g., [17, 105]) or statically verify certain propertes about the run-time behavior
of the code (e.qg., [44, 70]). In contrast to this concentratioand progress on the de-
velopment of new, re ned domains there has been comparatiydittle work on the
underlying xpoint algorithms. In fact, many existing abstract interpretation-based
analyses use relatively ine cient xpoint algorithms. In other cases, the xpoint
algorithms are speci c to a particular source language or anais and cannot easily

be reused in other contexts.
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The proposed framework (see Figure 8.1) is generic in terms dfet abstract
domain, and analysis is a two-step process that starts with a progm transformation;
this phase is language dependent and results in a control ow aph (CFG)-style
representation where the operational semantics is made exli For example, a
virtual call is replaced by a non-deterministic call to all tre possible implementations
it can be resolved to. This encoding allows transforming di emt related idioms of a
given language (or from several languages) into a highly unifo representation. We
argue that this preliminary (de)compilation process greayl simpli es the burden of

designing new analyses and abstract operations.

A second, pivotal piece of the framework is an e cient xpoint algorithm. The
e ciency of the algorithm relies on keeping dependencies tveeen di erent methods
during analysis so that only the really a ected parts need to beevisited after a
change during the convergence process. The algorithm dealsighe ciently with
mutually recursive call graphs. In addition, recomputation $ avoided usingmem-
oization which remembers the results corresponding to some set of spechputs.
The proposed algorithm is alsgparametric with respect to the abstract domain,
specifying a reduced number of basic operations that it must inlgment. Another
characteristic is that it is context sensitive{abstract calls to a given method that
represent di erent input patterns are automatically analyzd separately { and fol-
lows a top-down approach, in order to allow modeling propeds that depend on the

data ow characteristics of the program.

8.2 Intermediate Program Representation

Analysis of a Java bytecode prograr® normally requires its translation into an inter-
mediate representation that is easier to manipulate. In partular, our decompilation

assisted by the Soot [114] tool involves elimination of stack vables, conversion to
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three-address statements, static single assignment (SSA) transfation, and gen-
eration of a Control Flow Graph (CFG) that is ultimately the subject of analysis.
In the framework, the decompilation process from Java bytede to the nal CFG
involves two steps. The rst one is based on the Soot tool that retas a Shimplé
CFG(P), which has all the described characteristics. In a second phasiee compiler
maps that graph into another oneCF GY{P), which represents the same information

in a format that is more suitable for analysis.

The following grammar describes the intermediate represetian:

CFG = BlockMethod*

BlockMethod ::= (id:N,sigSig,fparsid®,annotexpr ,bodyStmt )
Sig == (classTypenameld,parsType)

Stmt = (id:N,sigSig,aparsfldjCt)")

V ar = (nameld; typeType

The Control Flow Graph is formed byblock methods A block method is similar

to a Java method, except that:
1. If the program ow reaches it, every statement in it will be &ecuted, i.e, it
contains no branching;

2. Its signature might not be unique: the CFG might contain seval block meth-

ods in the same class sharing the same name and formal parametgrety;

3. It always includes as formal parameters the returned vaduet and, unless it is

static, the instance self-referencthis;

4. For every formal parameter hput formal parameter) of the original Java

method that might be modied, there is an extra formal parameer in the

1Shimple is an SSA variant of Soot's Jimple internal represetation which is a 3-address
code, and is the representation of choice for Java analyses.
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public class Vector f
Element first;
add(int

public void value)f

Element e = new Element();

e.value = value;

Vector v = new Vector();
v. first = e;
append(v);
g
g
class SubVector extends Vectorf
public void append(Vector v) f
...
g
g

public void append(Vector v) f
Element e = first;
if (e = null)
first = v.first;
elsef
while (e.next != null )
e = e.next;
e.next = v. first;
g

(a) Source

Vector.add(this,i0,ret)

Element.new(rl)
Element.init(r1,_)
Builtin.asg(r1,r2)
Builtin.stf(i0,value,r2)
Vector.new(r4)
Vector.init(r4,_)
Builtin.asg(r4,r3)
Builtin.stf(r2,first,r3)

code of theVector class

[Vector.dyn_append(this,r3,ret)

Builtin.iof(this,[Vector])
Vector.append(this,r3,ret)
I

{

r Vector.append(this,rl,ret) W

Builtin.gtf(this, first,r2)
Vector.append_1_2(this,r1,r2,r3,r4,r5,ret)

" ;,:,.5:11 ,,,,,,,,,

Vector.dyn_append(this,r3,ret)
\

[E/ector.appendiliz(thls,rl,r2,r3,r4,r5,ret)

T
Wvgctor.appendiliz(this,rl,rz,r3,r4,r5,rel)

Builtin.eq(r2,null)
Builtin.gtf(r1,first,r3)
Builtin.stf(r3,first,this)

I Vector.dyn_append(this,r3,ret)
Builtin.iof(this,[SubVector])

Builtin.ne(r2,null)
Builtin.gtf(r2,next,r4)
Vector.append_3_4(this,r1,r2,r3,r4,r5 ret)

SubVector.appenq(this,r3,ret)

l ﬁ/ector.append7374(this,r1, r2,r3,r4,r5 ret)

W ﬁ/ector,append_3_4(this.rl,r2,r3.r4,r5,ret) W

(SubVector.append(this,rl,ret) ]

Builtin.eq(r4,null)
Builtin.gtf(r1,first,r5)
Builtin.stf(r5,next,r2)

Builtin.ne(r4,null)
Builtin.gtf(r2,next,r2")
Vector.append_1_2(this,r1,r2',r3,r4,r5 ret)

(b) Control Flow Graph

block method that contains its nal version in the SSA transfomation (output

formal parameter);

5. Every statement in a block method is an invocation, incluaig builtins (assign-

ment asg eld dereferencegtf, eld accessstf, etc.), which are understood as

block methods of the clas8uiltin.

As mentioned before, there is no branching within a block metid. Instead,

each conditionalif cond stmt; else stmt, in the original program is replaced with

an invocation and two block methods which uniquely match itsignature: the rst
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block corresponds to thestmt, branch, and the second one tetmt,. To respect
the semantics of the language, we decorate the rst block metavith the result of
compiling cond while we attach condto its sibling. A similar approach is used in
virtual invocations, for which we introduce as many block métods in the graph as

possible receivers of the call were in the original program.

Example 8.2.1. (CFG transformation). Figure 8.2(a) shows an alternative vesion
of the JDK Vector class, and Figure 8.2(b) depicts its corresponding Control Rio
Graph. An entry method corresponds in the original program to the rst clause B

of the Java method of the same name and shares its signature, gxct®r two ex-
tra parameter that represents the the instance self-referencthis, and the value
returned, ret. The other clauses present in the Java method are compiled infoom-
ponents of)internal methods which share the same set of variables: all the formal
parameters and local variables they reference. Examplesaainstructions converted
into internal clauses aref, while or for loops. In the example, we can see how the
if (e==null)...else conditional in the Vector implementation of appendis con-
verted into two di erent clauses, one for each branch, which &eally share the same
nameVector.appendl 2. In this case, the internal method is composed of two clauses
which are indistinguishable from the caller's point of view, Hus causing invocations
to the method to be non-deterministic (i.e., causing the exetion of one clause or
another). Entry clauses are marked in grey, internal ones inhite; dotted arrows
denote non-deterministic ows while the continuous ones synalize deterministic

calls.

Another ow transformation, extra clauses, tries to expose the internal structure
of some complex Java features, which sometimes encode sophistitaoperations.
That is the case of the virtual invocations. Note that the call toappendwithin
add is polymorphic: it might execute the implementation inVector or the one in

SubVector We make this semantics explicit by inspecting the applicatio hierarchy
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and replacing the virtual invocation with a set of resolved cé&, one for each possible
implementation. The method acting as a \hub" is called anextra clause; in the
example we have twoVector.dynappend marked in black. They behave in a very
similar way to the conditional discussed previously, since the pgoam ow might go
through two alternative paths (clauses), one for each implemtation of append Each
branch contains a guardjof, see the rst statement in each of thevector.dynappend

clauses, listing the acceptable types for the callee.

It is interesting how, in an analogous way to the clause case, werbduced extra
statements to further simplify analysis. For example, the mentinediof builtin Iters
the execution of subsequent statements when the class of the ingta is not listed
in the set of possibilities; guard statements have a similar goal tlauses that come
from conditional constructions. In Figure 8.2(b) theeq call at the beginning of
the leftmost Vector.append. 2 clause refers to the condition for executing the rst
branch, while thenecall contains its negated version, for the second alternativélso,
those methods that areentry but not extra contain assignments to shadow variables
that simulate the call-by-reference semantics. They are omét in Figure 8.2(b) for

clarity.

8.3 The Top-Down Analysis Algorithm

We now describe our top-down analysis algorithm, which calaites the least xed
point given a control ow graph and an initial abstract state. Intermediate results
are stored in a memo table, which contains the results of compiions already
performed and is typically used to avoid needless recomputati. In our context it
is used to store results obtained from an earlier round of iteri@in and also to track
whether a certain entry represents nal, stable results for thélock, or intermediate

approximations obtained half way during the convergence afpoint computations,
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topDownAnalyz€C F G; method; dom; in; mt; set)
mflag := classifyCF G; method)
case mflag of
not_recursive:
return analyzeNonRecMeth¢@F G; method; dom; in; mt; set)
recursive:
return analyzeRecMethd@F G; method; dom; in; mt; sef)
builtin :
return dom:analyzeBuiltiimethod;in; mt)
external
return dom:analyzeExternéinethod;in; mt)

Figure 8.2: The top-down xpoint algorithm

and also it keeps track of the implicit abstractand-or graph. An entry in the memo
table has the following elds: block name, its projected calstate ( ), its status,
its projected exit state ( ) and a unique identi er. Along with the memo table we
assume operations which allow to query the status of an entry,treeve the projected

exit state, and add or update an entry.

The pseudocode for the main procedure of the xpoint algoritim is shown in
Figure 8.2. Builtins are treated directly by each domain; tb same happens for
external invocations since we are making, in the current impmentation, aworst-
case assumptionn which any reference to an external method returns the topiost

element in the domain for all the variables involved in the dha

Invocations of non-recursive methods are handled kgnalyzeNonRecMethoith
Figure 8.3. It rst checks if there is an entry in the memo tablefor the name of
the invoked method and its . In that case, we reuse the previously computed

value for °. Otherwise, the variables of its are renamed to the set of variables

is built of. The results are then merged through the lub operatn, renamed back
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analyzeNonRecMeth¢dF G; method; dom; in; mt; set)

name:= getNamémethod)
actP ars:= getActualParam@nethod)
:= dom:projec(in; actP ars)

if mt:isCompleténame; i) then

*:= mt:getOutpu{mame; i)
else

h % mt; seti:= analyzeNonRecBlodGF G; name; dom; actP ars;
; completemt; set)

out:= domextendin; actPars; °)
return hout; mt; seti

analyzeNonRecBIlodi3F G; name; dom; actP ars; ; st; mt; set)
fres;ro;irmg
factPar;:;actPar mg
blocks= getNonRecBlocksame)
0
=7
foreach block2 blocks
body= getBodyblock
h °; mt; seti := analyzeBodCF G; ; dom; body; mt; set)
v:= domzprojec( °;fres;ro;:::;rmg)
0._ ot 0
0, oO.factParg;:;actParmg
fres;ro;iirmg 0
mt:inser{lmame; ; ;sti)
return h °;mt; seti

analyzeBod{CF G; ; body; dom; mt; sef)
in:=
foreach stmt 2 body
hout; mt; seti := topDownAnalyz€CF G; stmt; dom; in; mt; set)
in:= out
0
= out
return h °;mt; seti

Figure 8.3: The top-down xpoint algorithm: non-recursive nethods

to the scope of the callee, and inserted as an entry in the memdota characterized
as complete Finally, °is reconciled with the calling state through theextend[85]

operation, yielding the exit state.
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analyzeRecMethd@@ F G; method; dom; in; mt; sef)

name:= getNamémethod)
actP ars:= getActualParam@nethod)
:= dom:projec(in; actP ars)
if mt:isCompleténame; i) then
*:= mt:getOutpu(mame; i)
elseif mt:isFixpoin{fhname; i) then
*:= mt:getOutpu{ame; i)
set= set[f getUniquel@Pname)g
elseif mt:isApproximaténame; i) then
mt:updatdhname; i; xpoint)
h ° mt; seti:= analyzeRecBlock& F G; method; dom; ; mt; set)
else
h % mt; seti:= analyzeNonRecBIlodi3F G; name; dom; actP ars;
; Xpoint; mt; set)
set= set[f getUniquelPname)g
h % mt; seti:= analyzeRecBlock8 F G; method; dom; ; °;mt; set)
out:= domextendin; actPars; °)
return hout; mt; seti

Figure 8.4: The top-down xpoint algorithm: recursive methals

When a method is recursive, theanalyzeRecMethogdrocedure in Figure 8.4 re-
peats analysis until a xpoint is reached for the abstract exadion tree, i.e., until it
remains the same before and after one round of iteration. Inaer to do this, we keep
track of a ag to signal the termination of the xpoint computation. The procedure
starts the analysis in the non-recursive blocks of the invokedethod, thus accelerat-
ing convergence since the initial ®is di erent from ?. An entry in the memo table
is inserted with that tentative abstract state and characteried as xpoint. The re-
maining, recursive blocks are analyzed withianalyzeRecBlocka Figure 8.5, which
repeats their analysis until the value of ° does not change between two consecutive

iterations.

This basic scheme requires two extra features in order to worksa for mutually

recursive calls. One is the addition of new possible values foetstatus eld in memo
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analyzeRecBlockS8F G; method; dom; ; ;mt; set)

name:= getNamémethod)
actP ars:= getActualParam@nethod)

fres;ro;iirmg
factParg;::;actPar mg
blocks= getRecBlockame)

S€lmethod = ;
fixpoint := true
repeat
foreach block2 blocks
body= getBodyblock
h ° mt; Selpoqyl := analyzeBodyCF G; ; dom; body; mt;; )
d(())m:prczjec'( *actP ars)

old"=
0-—

0 t o.factParo;::;actPar mg
*—  old

fres;ro;iirmg
if °46 °then
fixpoint := false
mt:updatghN; i; °)
S€lmethod 1= S€lmethod [ S€tbody
until ( fixpoint = true)
hmt; seti:= updateDep@nethod; mt; S€tyethoq ; SEL)
return h % mt; seti

Figure 8.5: The top-down xpoint algorithm: recursive methals (continuation)

table entries. If the xpoint has not been reached yet for a emy (my; ), we saw that

it is labeled as xpoint; if it has been reached, but by using a possibly incomplete
value of ° of some other methodn; (i.e., a value that does not correspond yet to a
Xpoint), we tag that entry as approximate The second required artifact is a table
with dependencies between methods. Note that the xpoint comyation can involve
two or more mutually recursive methods, which will inde netey wait for the other
to be completebefore reaching that status. This deadlock scenario can be aved
by pausing analysis in methodn, if it depends of a call to a methodm; which is
already in xpoint state; we will use the current approximation ° for m; and wait

until it reaches completestatus and noti es, via updateDepsn Figure 8.6, all the

155



Chapter 8. A Generic Analysis Framework for Java Bytecode

updateDep@nethod; mt; Setyethod ; SET)
id:= getUniquel@®method)
if Setmethog Nfidg = ; then
status:= complete
foreach id° such that id° depends on id
remove dependence betweed® and id
if id%is independentthen
let namego; o be associated withid®
mt: updaté mame,yo; ?doi ;completg
else
status:= approximate
make id dependent fromsetyetnog N fidg
mt; updatéhname; °i; status)
set:= set[ Setnethog N Fidg
return hmt; seti

Figure 8.6: The top-down xpoint algorithm: optimization

methods depending on it.

Computation of that xpoint can be sometimes computationaly expensive or
even prohibitive, so in order to speed it up we use a combinatior ®chniques. The
rst is memoization[39] since the memo table acts as a cache for already computed
tuples. E ciency of the computation can be further improved by keeping track of the
dependencies between methods. In the above scenario, duringsgguent iterations
for my, the subtree form, is explored every time and its entry in the memo table
labeled asapproximate After the last round of iteration for my, its entry in the memo
table will be tagged ascompletebut the row for m, remains asapproximate The
subtree form, has to undergo an unnecessary exploration, since it has alreassed
the completevalue of the exit state ofm;. In order to avoid this redundant work,
after each xpoint iteration all those methods depending ol on another m that

just changed its status tocompleteare automatically tagged with the same status.

Another major feature of our algorithm is its accuracy. Althogh precision re-
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mains in general a domain-related issue, our solution possessesieht character-
istics that help yield more precise results. First, the algorithno ers results of the
analysis at each program point due to its top-down condition.Second, and more
relevant, the algorithm is fully context sensitive: every newencountered abstract
state for the set of formal parameters is independently stored ithe memo table.
Moreover, di erent caller contexts will use the same entry asohg as the state of

their actual parameters is identical.

Although not present in the pseudo-code, our current implemeation also sup-
ports path-sensitivity [34], which allows independent reasamg about di erent branches.
Since theextendoperation is usually computationally expensive and may intrduce
further imprecision, it is desirable to avoid it whenever possib. For that reason, the
analysis can take advantage of some compiler invariants, suchthe equal signature
shared by all the internal methods contained in the same Java ithed. Because
of having the same number and naming of formal parameters, tlextendoperation
turns out to be unnecessary when the call is invoked from an inteal method and

targets an internal method.

Example 8.3.1. (Computation of a xpoint). We show how an example of mu-
tual recursion, Vector.appendn Figure 8.2(b), is handled by the xpoint algorithm
de ned in Section 8.3. For simplicity, the abstract domain useds nullity, capable
of approximating which variables are de nitely null and whth ones de nitely point
to a non-null location. The objective is not to fully understand each of the entries
of the memo table in Figure 8.7, which would require a compleantary explanation
of the domain transfer functions and going through a vast amotirof intermediate
states, but to illustrate how some interesting dependencies andasiis change in a
very speci ¢ subset of those states. The method names have been séoed to t

into the tables.

In step 1 it is assumed that the non-recursive blocks f@pps, and app,, have al-
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step | method state | dependencies
appz | 1| 11| X fappi2g

1| appu | 2| p| X fappug
app2 | 3| 31| X fappi2g
appe | 1| 11| X fappg

2 | appa | 2| x| X fapps.g
apP2 | 3| 3 | @pp | fapp; appug
appiz 1] | X fappi2g

3 apRa | 2| | COM ;
app2 | 3| 3| app fappig
appiz 1] 2| X fappog

4 app4 2| 22| COM :
app2 | 3| 3 | com ;
app o| o | com ;

5 | appz | 1| 3| com ;
appsa 2 22 com ;
appi2 3| 32| cCOM ,

Figure 8.7: Fixpoint calculation for Vector.append

ready been analyzed. Both entries for these blocks are markasl xpoint since they
correspond to recursive methods whose analyses have not conedrgp a xpoint
yet. Note that there exist two di erent entries corresponding b methodapp,, which
has been analyzedwice with di erent abstract call patterns: one when called from
appand another when called fromapps, yielding happ,; 1; ili and happo; 3; gli,
respectively. In step 2, the analysis corresponding to the enttyapps; 3; gli has
converged to a xpoint but using the incomplete value ofrapps; 2; gli. There-
fore, the entry is forced toapproximate changing its exit state to 032. In step 3,
the analysis for the methodapp:s reaches a xpoint and since it does not depend
on other methods, the entryhappss; 2; gli is marked ascompleteand updated to
happs; 2; gzi. After this step, the algorithm notices that happi,; s; gzi iS approx-
imate and waiting for a complete value ofrapps; »; 022i which has been already

produced. Thus, the entryhapp; 3; 032i is marked directly ascompleteand no
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extra iteration is required. This change is illustrated in stp 4. Finally, the analysis
characterizes also the entryappio; 1; izi ascompleteand terminates the semantics

computation of app.

8.4 Experimental Results

We have completed a preliminary implementation of the franwork, and performed
two experiments with the framework using the benchmarks casponding to the
JOIden suite [63]. The rst experiment is summarized in Table 8 and shows the
scalability of the transformation phase. The rst three columnsontain basic metrics
about the application: number of classek{, methods (m) and instructions (i). Since
the latter corresponds to the bytecode representation of the we, we also list how
many program points fp) are present in the Horn clause program analyzed. This
metric slightly di ers from the number of instructions in the sense that extra clauses
and builtins make it somewhat largerpp also provides a better approximation of the
size and complexity of the program analyzed because the semastpf the object-
oriented program is made explicit. The fth column (t) shows the time invested
(given in seconds) in transforming the input program and producg the Horn clause

version.

The second experiment shown in Table 8.2 illustrates the scaléty, e ciency,
and precision of the analysis component of our framework. West use a simple
abstract domain, Nullity, capable of approximating which vaiables are de nitely null
and which ones de nitely point to a non-null location. The seand abstract domain is
a Class Hierarchy Analysis [10], which uses the combination of tettically declared
type of an object and the class hierarchy of the program to detaine the set of

possible targets of a virtual invocation. The use of a Class Hiedry Analysis shows

159



Chapter 8. A Generic Analysis Framework for Java Bytecode

| Program | k| m | i| pp| ct]
Health 8| 30| 637| 933| 1.1
BH 9| 70| 1208| 1739| 3.2
\oronoi 6| 73| 988| 1340| 2.2
MST 6| 36| 445| 665| 0.1
Power 6| 32|1017| 1270| 2.1
TreeAdd 2| 12| 193| 274| 2.0
4

Em3d
Perimeter| 10| 45| 543| 814| 0.1
BiSort 2| 15| 323| 476| 0.1
All 50| 317 | 5839| 7251| 11.0

22| 447 669| 0.1

Table 8.1: Statistics of the transformation phase.

the scalability of our framework for a domain with non-lineamworst-case complexity
in its operations. The columns labeledo® show the number of program points
reachable by the analyses. Thereforggp® may dier from pp because the number
of analyzed program points is not always the total number of rpgram points in
the program: some commands are found to be unreachable. Simee framework
is multivariant and can thus keep track of di erent contexts at each program point,
at the end of analysis there may be more than one abstract state assded with
each program point. Thus, the number of abstract states is typadly larger than
the number of reachable program points. Columnast provide the total number of
these abstract states inferred by analyses. The level of multivance is the ratio
ast=pp, presented in columnsst. In general, such a larger number fost tends to
indicate more precise results. Running times are listed in colurapt (time invested
in preprocessing the program and the construction of the classemarchy) and at

(analysis time); both are also given in seconds.

The benchmarks have been tested in both experiments on a Pemti M 1.73Ghz
with 1Gb of RAM , and averaging several runs after eliminatinghe best and worst

values. We chose to show separately the total times of the two phag&ransformation
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Nullity CHA

pt || pP | ast | st | at pf® | ast | st | at
Health 21| 921| 5836| 6.3 9.6| 933| 3542| 3.8| 52.1
BH 22| 1739|12384| 7.1 | 50.1| 1739| 4757| 2.7| 59.4

Voronoi | 2.2| 1277| 5492| 43| 11.5| 1340| 5147|3.8| 81.3
MST 2.1\ 496| 1503| 3.0 11| 665 1609| 2.4| 11.6

Power 2.1 1270| 10560| 8.3 | 29.9| 1270| 2908| 2.3| 32.7
TreeAdd | 2.0 274 880| 3.2 06| 274 729] 2.6 6.1
Em3d 20| 669| 5565| 8.3 09| 669| 3320 4.9| 495
Perimeter| 2.1 | 814| 2653| 3.2 1.7 814| 3731 45| 25.0
BiSort 2.1\ 476| 3353|7.0 5.8 476| 1614| 3.4| 156
All 2.6 || 7188 | 48476| 6.7 | 145.9| 7251| 29586| 4.1 | 391.2

Table 8.2: Statistics for the Nullity and Class Hierarchy (CHA) donains.

and analysis) because we expect the transformation process to biyfrun only once.
Later executions can use incremental compilation for thoseek that changed, so that
the overhead of the preprocessing phase should be almost neglegih medium and
large programs. Although the same approach can be taken for thaaysis [99], the

current implementation is not incremental.

8.5 Related Work

Most published analyses based on abstract interpretation for Jawor Java bytecode
do not provide much detail regarding the implementation oftie xpoint algorithm.
Also, most of the published research (e.g., [17, 26]) focuses ontjgatar properties
and therefore their solutions (abstract domains) are tied to ttm, even when they
are explicitly multipurpose, like TVLA [72]. In [97] the authas mention a choice of
several context insensitive and sensitive computations, but norther information is
given. The more recent and quite interesting Julia frameworKL10] is intended to be

generic and targets bytecode as in our case. Their xpoint teaiques are based on
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prioritizing analysis of non-recursive components over thogsequiring xpoint com-
putations and using abstract compilation [56]. However, few iplementation details
are provided. Also, this is abottom-up framework, while our objective is to develop
a top-down, context sensitive framework. While it is well-knan that bottom-up
analyses can be adapted to perform top-down analyses by subjegtthe program to
a \magic-sets"-style transformation [102], the resulting analers typically lack some
of the characteristics that are the objective of our proposaknd, specially, context
sensitive results. Finally, Cibai [77] is another generic stat@nalyzer for the modular
analysis and veri cation of Java classes. The algorithm presentas top-down and
only a naive version of it (which is not e cient for mutually re cursive call graphs) is

presented.

8.6 Summary

This chapter has presented a novel abstract interpretation &mework, which is
generic in terms of abstract domain in use. The framework makese of a de-
compilation phase that results in a control ow graph (CFG) whee the operational
semantics is made explicit, and an analysis phase based on an eui, precise x-
point algorithm which has been concisely described in this cpger. This algorithm
bene ts from acceleration techniques like memoization oreghendency tracking, con-
siderably reducing the number of iterations. We also claim thathe analysis has the
potential to be very accurate because of the top-down, contiegensitive approach
adopted. Our experimental evaluation shows the feasibilityfahe approach with

medium-size programs using the benchmarks corresponding tetbOlden suite.
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Resource Usage Analysis for Java

Bytecode

This chapter presents a resource usage analyzer for Java bytgeo The starting

point of this analysis is the analysis described in Chapter 4. Hsin, we develop
based on it an analysis suitable for Java bytecode. The resultinngol takes a Java
bytecode program, a set of resources of interest given by the ysend computes an
upper bound of its resource consumption as a (closed form) exgsen depending on

the input data sizes. Its main components as depicted in Figu®1 are as follows:

1. The left side of the gure represents the construction, stamig from the in-
put bytecode program, of an intermediate representation, agescribed in Sec-
tion 8.2, which provides a uniform high-level encoding whicallows us to reason

compositionally about the cost.

2. The top right side of the gure shows the various pre-analysisteps which are
instrumental for the resource usage analysis. We use the xpointgdrithm

de ned in Section 8.3 and "plug" into it two domains which resit in two
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Transformation Analysis

Java Source
0

'
' javac

Java bytecode

i

Java parser

Horn clauses
(iCFG)

Class analysis

Fixpoint
algorithm
(Al-based)

Pre/Post pairs
Prog. Point Info

soot + Ciao

transform.

Resource Usage

Figure 9.1: Architecture of Resource Usage Analyzer

di erent analyses: nullity, which is aimed at keeping track of null variables,
and class hierarchy analysis (CHA)10, 83], which attempts to resolve dynamic

dispatching at compile time by transforming dynamic calls irb static calls.

3. The bottom right side of the gure shows the resource usage agais which

will be discussed in the rest of this chapter.

Our approach can be used in the context of Java source and Javadgode in the

following elds:

Resource Bound Certi cation [33, 8, 58, 25]: It proposes the use of safety
properties involving cost requirements, i.e., that the untreted code adheres to
speci ¢ bounds on resource consumption. Our approach shows, fdwet rst

time, that it is possible to automatically generate arbitrary resource bounds
certi cates for user de ned resources in a realistic mobile lguage. Previous

work was restricted to linear bounds [33, 8, 58], to semi-auta@tic techniques

[25], or to source code [54].

Performance Debugging and Validation [54]This is a direct application of re-
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source analysis, where the analyzer tries to verify or falsify aatations about
the e ciency of the program which are written by the programmer. Annota-
tions can possibly refer to the source code level, but it is trial to translate

them to be understandable by the bytecode analyzer.

Resource Granularity Control [36]: Parallel computers have currently become
mainstream with multicore processors. In parallel systems, knowlge about
the cost of di erent procedures in the object code can be usedander to guide

the partitioning, allocation and scheduling of parallel proesses.

In the rest of this chapter, Section 9.1 presents a running exante and introduces
the basic components of the resource usage analysis. In Sectich19a practical
size analysis and its main sub-components are shown. In Sectio2.2 the main
algorithm for inferring resource usage information is presesd, and Section 9.3 shows

the feasibility of the approach. Finally, Section 9.5 summazes our conclusions.

9.1 Overview of the Approach

We start by illustrating the overall approach, whose sub-compamts are shown in
Figure 9.2, through a working example. The Java program in Bi 9.3 emulates
the process of sending of text messages within a cell phone. Therseucode is
provided here just for clarity, since the analyzer works dirgly on the corresponding
bytecode. The phone (clas€ellPhone)eceives a list of packets§msPacket each
one containing a single SMS, encodes ther&r(code), and sends them through a
stream (Strean). There are two types of encoding:TrimEncodey which eliminates
any leading and trailing white spaces, antdnicodeEncodewhich converts any special
character into its Unicodefuxxxx ) equivalent. The length of the SMS which the

cell phone ultimately sends through the stream depends on thezsiof the encoded
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Horn clauses
(iCFG)

Blocks

Annotations

N

Data Dependency
Analysis

Resource Analysis

Size
Analysis

Closed-form Size Rel.

Data Dep. Graph (DDG) Recur. Equation

Solver

Resource Egs.

—

Size Rels.
Annotation
Processing
Resource
Analysis

Resource Functions

Closed-form Resource Functions

Figure 9.2: Sub-components of the resource usage analysis

message.

A resourceis a fundamental component in our approach. A resource is a user
de ned notion which associates a basic cost function with some usslected elements
(class, method, statement) in the program. This is expressed by@dg Java annota-
tions to the code. The objective of the analysis is to approxiate the usage that the
program makes of the resource. In the example, the resourcehg ttost in cents of a
dollar for sending the list of text messages, since we will assume fangilicity that
the carrier charges are proportional (2 cents/character) tthe number of characters
sent. This domain knowledge is re ected by the user in the methbthat is ulti-
mately responsible for the communication§tream.senygd by adding the annotation
@Cosf("cents","2*size(data)"g). Similarly, the formatting of an SMS done in any
implementation of Encoder.formats free, as indicated by the@Cosf("cents","0") g)
annotation. The analysis understands these resource usage espiens and uses

them to infer a safe upper bound on the total usage of the program

Step 1: Constructing the Control Flow Graph. In the rst step, the analysis

translates the Java bytecode into an intermediate represeritan building a Control
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import java.net.URLEncoder;

public class CellPhone f

SmsPacket sendSms(SmsPacket smsPk,
Encoder enc,
Stream stm) f
if (smsPk != null) f
String newSms = enc.format(smsPk.sms);
stm.send(newSms);

interface  Encoderf
String format(String data);

g

class TrimEncoder implements
@Cost(f "cents","0" g)
@Size("size(ret)<=size(s)")
public String format(String s) f

return  s.trim();

Encoderf

g

smsPk. next=sendSms (smsPk. next,enc,stm);

smsPk.sms = newSms; class UnicodeEncoder implements Encoderf

@Cost(f "cents","0" g)

return  smsPk; @Size("size(ret)<=6 size(s)")
¢} public String format(String s) f
return URLEncoder.encode(s);
class SmsPacketf g

String sms; g
SmsPacket next; abstract class  Streamf
9 @Cost(f "cents","2 size(data)" g)
native void send(String data);
9

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

Builtin.ne(r1,null,void)
Builtin.gtf(r1,sms,r6)
Encoder.format(r2, rGW
Stream.send(r3,r7,voi
Builtin.gtf(r1,next,r8) TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)
—CellPhone.sendSms(r0,r8,r2,r3,r9,r10| | |
Builtin.stf(rl,next,r10,r1_1) * *
Builtin.stf(rl_1,sms,r7,r4)
Builtin.asg(r4,r5)

Stream.send(r0,r1,r2) |

»
/\" @Cost({"cents","2*size(r1)"}) ‘

Encoder.format(r0,r1,r2)

Encoder.format(r0,r1,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

@Cost({"cents","0"})
@Size("size(r2)<=6*size(r1)")

@Cost({"cents","0"})
@Size("size(r2)<=size(rl)")

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

Builtin.eq(r1,null,void)
Builtin.asg(null,r5)

java.net.URLEncoder.encode(rl,r3)
Builtin.asg(r3,r2)

java.lang.String.trim(r1,r3)
Builtin.asg(r3,r2)

Figure 9.3: Motivating example: Java source code and Contrélow Graph

Flow Graph (CFG). Edges in the CFG connecblock methodsand describe the possi-
ble ows originated from conditional jumps, exception handhg, virtual invocations,
etc. A (simpli ed) version of the CFG corresponding to our codexample is also

shown in Fig. 9.3.

The original sendSmsanethod has been compiled into two block methods that
share the same signature: class where declared, nai@el(Phone.sendSiand num-
ber and type of the formal parameters. The bottom-most box repsents the base

case, in which we return null, here represented as an assignmeftrull to the
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return variable rs; the sibling corresponds to the recursive case. The virtual invo
cation of format has been transformed into a static call to a block method named
Encoder.format There are two block methods which are compatible in signatar
with that invocation, and which serve as proxies for the intanediate representations
of the interface implementations inTrimEncoder.formatind UnicodeEncoder.format
Note that the resource-related annotations have been carriedrough the CFG and

are thus available to the analysis.

Step 2: Inference of Data Dependencies and Size Relationshi ps. The algo-
rithm infers in this phasesize relationshipsbetween the input and the output formal
parameters of every block method. For now, we can assume thatesaf (the contents
of) a variable is the maximum number of pointers we need to tvarse, starting at
the variable, until null is found. The following equations are inferred by the analysi
for the two CellPhone.sendSnidock methods :

i r . N .
SlzessendSms (Sro’ O! Srz ' SI’3) 0
SizegsendSms (Sfo; Sfl; sz; srs) 7 Sfl 6+ SiZegsendSms (Sfo; Sfl 1; Srz; Sl’s)

The size of the returned values is independent of the sizes of the input param-
etersthis, enc and stm (s;,;Sr, and s;, respectively) but not of the sizes,, of the
list of text messagesmsP k (r; in the graph). Such size relationships are computed
based ondependency graphswhich represent data dependencies between variables
in a block, and user annotations if available. In the exampleniFig. 9.3, the user
indicates that the formatting in UnicodeEncoderesults in strings that are at most
six times longer than the ones received as inp@Size("size(ret) 6*size(s)"), while
the trimming in TrimEncoderreturns strings that are equal or shorter than the input
(@Size("size(ret) size(s)"). The equation system shown above must be approxi-
mated by a recurrence solver in order to obtain a closed form soan. In this case,

our analysis yields the solutiorSizes (Sre;SriiS,;Ss) 35 82, 25 s,

sendSms
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Step 3: Resource Usage Analysis. In the this phase, the analysis uses the CFG,
the data dependencies, and the size relationships inferred iregious steps in order
to infer a resource usage equation for each block method in théG and further
simplify the resulting obtaining closed form solutions (in gemal, approximated {
upper bounds). Therefore, the objective of the resource analy is to statically
derive safe upper bounds on the amount of resources that eachhed block methods
in the CFG consumes or provides. The result given by our analysisrfthe monetary

cost of sending the message€¢llIPhone.sendSins

Costsendsms (Sro; 05 Sty Sry) 0

COStsendSms(Sro; Srl; Srz; SI‘3) 12 Srl 12 + COStsendSms(sro; Sr1 1; Srz; Sl‘g)

i.e., the cost is proportional to the size of the message listrisPkin the source,r,
in the CFG). Again, this equation system is solved by a recurrenclver, resulting

in the closed formulaCosStsengsms(Sro; Sry; Sr,iSrs) 6 srz1 6 S.

9.2 A Framework for Resource Usage Analysis

We now describe our framework for inferring upper bounds on ¢husage that a Java
bytecode program makes of a set of application programmer-dable resources. The
algorithm in Fig 9.4 takes as input a Control Flow Graph in theformat described
in the previous section, including the user annotations thatssign elementary costs
to certain graph elements for a particular resource. The usetsa indicates the set
of resources to be tracked by the analysis. Without loss of genktyawe assume for

conciseness in our presentation a single resource.

A preliminary step in our approach is a nullity and class hierahy analysis,
aimed at simplifying the CFG and therefore improving overalprecision. Then, an-

other analysis is performed over the CFG to extract data depeéencies, as described

169



Chapter 9. Resource Usage Analysis for Java Bytecode

resourceAnalygiSF G; res)
CFG classAnalysi€F G)

mt initializ CF G)
SCCs stronglyConnectedComponef@d- G)
dg dataDependencyAnaly§&F G; mt)

foreach SCC 2 SCCsin reverse topological order
mt  sizeAnalys{SCC; mt; CF G; dg)
mt  resourceAnalygiSCC;res; mt; CFG)
return mt
end

Figure 9.4: Generic Resource Analysis Algorithm

below. The next step is the decomposition of th€ FG into its strongly-connected
components. After these steps, two di erent analyses are run sep&ly on each
strongly connected component: a) the size analysis, which estites parameter size
relationships for each statement and output formal parameteras a function of the
input formal parameter sizes (Sec. 9.2.1); and b) the actuatésource analysis, which
computes the resource usage of each block method in terms alsahef input data

sizes (Sec. 9.2.2). Each phase is dependent on the previous one

The data dependency analysis a data ow analysis' that yields position depen-
dency grapls for the block methods within a strongly connected componenEach
graph G = (V;E) represents data dependencies between positions correspogdo
statements in the same block method, including its formal paraeters. Vertexes in
V denote positions, and edges({; s,) 2 E denote thats; is dependent ors;. We say
that s, is apredecessoinof s,. We will assume gpredecfunction that takes a position
dependency graph, a statement, and a parameter position andtuens its nearest
predecessor in the graph. The following gure shows the positiatependency graph

of the TrimEncoder.formablock method:

1This analysis is similar to the one explained in Chapter 4.
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(ro) (r1) (r2)

TrimEncoder.format( 0, 1, % )

java.langstrwyﬁ)
(r1) (r3)
Builtin.asg( 0, 1)

(r3) (r2)

9.2.1 Size Analysis

We now show our algorithm for estimating parameter size relatis based on the data
dependency analysis. This method is inspired by the ideas of [36] but adapting
them to the case of Java bytecode. Our goal is to represent inpahd output size
relationships for each statement as a function in terms of the@fmal parameter sizes.

Unless otherwise stated, whenever we refer to a parameter we mdéarposition.

The size of an input is de ned in terms of measures. Byneasurewe mean a
function that, given a data structure, returns a number. Our nethod is parametric
on measures, which can be de ned by the user and attached via amatons to
parameters or classes. For concreteness, we have de ned hereino measuresjnt
for integer variables, and thelongest path-lengti{1] ref for reference variables. The
longest path-length of a variable is the cardinality of the Ingest chain of pointers
than can be followed from it. More complex measures can be ded to handle other
datatypes such as cyclic structures, arrays, etc. The set of meassiwill be denoted
by M .

The size analysis algorithm is given in pseudo-code in Figure$99.6, and 9.7;

its main steps are:

1. Assign an upper bound to the size of every parameter position dif statements,
including formal parameters, for all the block methods withhe same signature
(genBlockSizeReFigures 9.6 and 9.7).
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sizeAnalys{(SCC; mt; CFG; dg)
Egs ; iSCCj
foreach sig 2 SCC
Eqgsig] genBlockSizeR@ig; mt; SCC; CFG;dg
Sols recEqgsSolvésimplifyEgQ6EQS))
foreach sig 2 SCC
inser{mt; size sig; Solgsig])
return mt
end

genBlocksSizeRslig; mt; SCC; CFG; dg)
Eqgs ;
BMs  getBlock¢CF G; sig)
foreach bm2 BMs
Eqgs Eqgs[ genBlockSizeR@m; mt;SCC;dg
return normalizéEqs)
end

Figure 9.5: The size analysis algorithm

2. For a given signature, take the set of size inequations retwed by (1) and
rename each size relation in terms of the sizes of input formaanameters

(normalization Figure 9.7).

3. Repeat steps (1) and (2) for every signature correspondingttte same strongly-

connected componentgizeAnalysjg-igure 9.5).

4. Simplify size relationships by resolving mutually recursiveunctions, and nd

closed form solutions for the output formal parameterss{zeAnalysjg=igure 9.5).

Intermediate results are cashed in a memo tabtat, which stores measures, sizes,
and resource usage expressions for every parameter position. IBsize and resource

usage expressions are de ned in the language:
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hexpri = hexprihbin_ophexpri j hquantifier ihexpri
j  hexpri™® j logym hexprij h expri
j  hexpri! j1j num

] size(jmeasurd ]Jarg((rj ij ¢) num))

hbin_op = +tjjj =%
P

hguantifier i = ]

hmeasure m=int jref j...

The size of the parameter at position in statement stmt, under measurem, is
referred to assize (m;stmt;i). We consider a parameter position to beénput if it
is bound to some data when the statement is invoked. Otherwisd,i$ considered
an output parameter position In the case of input parameter and output formal
parameter positions, an upper bound on that size is returned lgetSize(Figure 9.6).
The upper bound can be a concrete value when there is a constamtthe referred

position, i.e., when theval function returns a non-in nite value:

De nition 9.2.1. (Concrete Size, val ) The concrete size value for a parameter
position under a particular measure is returned byal : M S tmt N!L , which

evaluates thesyntactic content of the actual parameter in that position:

, and m=int
val (m;stmt;i) =

8

% n if stmt:apars is an integern

E 0 if stmt:apars is null and m=ref
1

otherwise

If the content of that input parameter position is a variable, the algorithm
searches the data dependency graph for its immediate predes@r. Since the in-

termediate representation is in SSA form, the only possible s@aios are that either
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genBlockSizeR@m; mt; SCC; dg
body bm:body
Egs ;
foreach stmt 2 body
Let | be the input parameter positions instmt
Eqs Eqgs[ genSizeRé&tmt;|; mt; dg )
Eqs Egs[ genOutSizeR&ttmt; mt; SCC)
Let K be bm output formal parameter positions
Eqs Egs[ genSizeR@m; K; mt; dg)
return Eqgs
end

genSizeRétlem; P os; mt; dg

Eqgs ;
foreach pos2 Pos
m lookug{mt; measurgelemsig pos

S getSizém; elem:id; pos; dg
Eqs Egs[f size (m;elemid;pog sg
return EQs
end

getSizém; id; pos; dg
result  val (m;id;i)
if result 6 1 then
return result
elseif 9 (elem; posg) 2 prede¢dg;id; pog then
m,  lookugmt; measurgelemsig pos,)
if (m = mp) then
return size (my; elemid; pos,)
return 1
end

Figure 9.6: The size analysis algorithm: input arguments

there is a unique predecessor whose size is assigned to that inputpaeter position,

or there is none, causing the input parameter size to be unbousdl (1 ).

Consider now an output parameter position within a block methd, case covered
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genOutSizeR&tmt; mt; SCC)

Let | = fiq;:::;i,g be the input positions instmt
sig  stmt:sig
fmi;:::;myg f lookugmt; measurgsig;ip); :::; lookugmt; measuresig;i;)g
];ESil;:::;Si'g f size (m; ;stmt:id;iq); :::, size (m;,; stmt:id;i;)g
gs ;

Let O be the output parameter positions instmt
foreach 02 O

mo lookugmt; measurgsig; 0)

if sig 2 SCC then

Sizeygo maxlookudmt; size sig; 0))
Sizeyq Sizeqgo(Si,; 1 Si,)
Size, MIN(Sizeyser; Siz€ag)

else

Eqgs Eqs[f size (m,;stmt:id;0) Size,g
return Egs
end

normaliz¢EQs)
foreach size relationp e; 2 EqQs
repeat
if subexpressiors appears ine;
and s e, 2 Egsthen
replace each occurrence afin e; with e,
until there is no change
return Egs
end

Figure 9.7: The size analysis algorithm: output arguments andormalization

in genOutSizeRe(Figure 9.7). If the output parameter position corresponds ta
non-recursive invoke statement, either a size relationship fation has already been
computed recursively (since the analysis traverses each stropgbnnected compo-

nent in reverse topological order), or it is provided by the usethrough size anno-
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tations. In the rst case, the size function of the output parameer position can be
retrieved from the memo table by using théookupoperation, taking the maximum in
case of several size relationship functions, and then passing thpuhparameter size
relationships to this function to evaluate it. In the second scwrio, the size function
of the output parameter position is provided by the user throuly size annotations,
denoted by theA function in the algorithm. In both cases, it will able to returnan

explicit size relation function.

Example 9.2.1. (Builtin class). We have already shown in theCellPhoneexample
how a class can be annotated. ThBuiltin class includes the assignment methaakg

annotated as follows:

public class Builtin f
@Sizd"size (ret)<=size(0)"g
public static native Object asg(Object 0);

/Il ...rest of annotated builtins

which results in equation:

Agsg(ref, size (ref,asg;0)) size (ref, asg;0)

If the output parameter position corresponds to a recursive ilmke statement, the
size relationships between the output and input parameters arbuilt as a symbolic
size function. Since the input parameter size relations havéready been computed,
we can establish each output parameter position size as a functidescribed in terms

of the input parameter sizes.

At this point, the algorithm has de ned size relations for allparameter positions

within a block method. However, those relations are either cstants or given in
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terms of the immediate predecessor in the dependency graph. eTalgorithm rewrites
the equation system such that we obtain an equivalent system in wdli only formal

parameter positions are involved. This process is calletbrmalization shown in

Figure 9.7. After normalization, the analysis repeats the sam@rocess for all block
methods in the same strongly-connected component (SCC). Oneeery component
has been processed, the analysis further simpli es the equatsm order to resolve
mutually recursive calls among block methods within the sameC& in the simplifyEqs

procedure.

In the nal step, the analysis submits the simpli ed system to a rectrence equa-
tion solver, recEqsSolvercalled from sizeAnalys)sin order to obtain approximated

upper-bound closed fornts

Example 9.2.2. (Size Relationships). We now illustrate the de nitions and alg-
rithm with an example of how the size relations are inferred fahe two CellPhone.-
sendSmdblock methods (Fig. 9.3), using theaef measure for reference variables. For
simplicity, we omit the measures in the equations. We will refeto the k-th occur-
rence of a statemenstmt in a block method asstmt,, and denoteCellPhone.sendSms
Encoder.formgtand Stream.sendy sendSmsformat, and sendrespectively. Finally,
we will refer to the size of the input formal parameter position, corresponding to

variabler;, assy, .

The main steps in the process are listed in Figure 9.8. The rst bk of rows
contains the most relevant size parameter relationship equatis for the recursive
block method, while the second block of rows corresponds to thase case. These size
parameter relationship equations are constructed by the anais by rst following
the algorithm in Figures 9.6 and 9.7 , and then normalizing tam (expressing them
in terms of the input formal parameter sizes;,). Also, in the rst block of rows we

observe that the algorithm has returned 6 size (ref,format; 1) as upper bound for

2The analysis uses the same recurrence solver mentioned in pter 4.
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Size parameter relationship equations (normalized)

size (gtf1;0) size (ne;0) s
size (gtf 1;2) A Gy (size (gtf150);) s1 1
size (format; 1) size (gtf1;2) s1 1
size (format; 2) max(lookup(mt; size format; 2))(sizgformat; 2))
maxsr1;6  sra)(sr, 16 (s 1)
size (send;1) size (format; 2) 6 (s1 1)
size (gtf ; 0) size (gtf1;0)  s1
size (gtf »; 2) A Gy (size (gtf2;0); ) s1 1
size (sendSms;1) size (gtf2;2) s1 1
size (sendSms;5) S ize2,4sms (L Size (sendSms;1); ;)
S iz€3sngsms (SroiSr1 1iSr2;Sr3)
size (stf 1;0) size (gtf2;0) s1
size (stf 1;2) size (sendSms;5) S ize2, ysms(SroiSr1 1Sr2;Sr3)
size (stf 1;3) A gtf (size (stf 1;0); _; size (stf 1;2))
Sr1+ Siz€3ygsms(SroiSr1 15 Sr2;Sr3)
size (stf »;0) size (stf1;3) s+ SizegendSms(sro;srl 1,sr2;Sr3)
size (stf »;2) size (format; 2) 6 (s;1 1)
size (stf »; 3) A gtf (size (stf »;0); _; size (stf 2; 2))
7 s1 6+ SizegendSms(SrO; Sr1 1,Sr2;Sr3)
size (asg;0) size (stf2,3) 7 s1 6+ Sizedyysms(SroiSr1 1Sr2;Sr3)
size (asg;1) A g\sg(Size (asg;0))7 s1 6+ SizegendSms(SrO; Sr1 1,Sr2;Sr3)
size (eq;0) size (sendSms;1l) s;
size (eq;1) val (eq;1) O

size (asg;0) val (asg;0) O
size (asg;l) A %Sg(size (asg;0)) O

Output param. size functions for builtins (through annotations)

AZy (size (gtf; 0);.) size (gtf; 0) 1

AZsq(size (asg;0)) size (asg;0)
A3 (size (stf; 0); _; size (stf; 2)) size (stf; 0) + size (stf; 2)
Simpli ed size equations and closed form solution
8
Sizelygsms(Sr0iSr1;Sr2;S3) . 7 Sr1 6+ if ;1> 0

SizegendSms (STO; Sr1 1’ Sr2; SI’3)

Figure 9.8: Size equations example

the size of the formatted string,maxlookugmt; size format; 2)). The result is the

maximum of the two upper bounds given by the user for the two inlpmentations
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for Encoder.formasinceTrimEncoder.formatliminates any leading and trailing white
spaces (thus the output is at most as bigger as the input), wheagUnicodeEncoder.-
format converts any special character into its Unicode equivalenti{us the output is
at most six times the size of the input), a safe upper bound for theutput parameter

position size is given by the second annotation.

In the particular case of builtins and methods for which we doat have the code,
size relationships are not computed but rather taken from theser @ Sizennotations.
These functions are illustrated in the third block of rows. Finby, in the fourth block
of rows we show the recurrence equations built for the outputgpameter sizes in the

block method and in the nal row the closed form solution obtaied.

9.2.2 Resource Usage Analysis

The core of our framework is the resource usage analysis, whose geecode is
shown in Figures 9.9 and 9.10. It takes a strongly-connectednsponent of the CFG,
including a set of annotations which describapplication programmer-de nablecost
functions on a given set of resources, and calculates an exprassihich is an upper
bound on the resource usage made by the program. The algorithmampulates the
same memo table described in Sec. 9.2.1 in order to avoid recangbions and access

the size relationships already inferred.

The algorithm is structured in a very similar way to the size anaisis (which also
allows us to draw from it to keep the explanation within spaceirits): for each ele-
ment of the strongly-connected component the algorithm wilkonstruct an equation
for each block method that shares the same signature represeqgtithe resource us-
age of that block. To do this, the algorithm will visit each invde statement. There
are three possible scenarios, covered by tgenStmsRUEXxptunction. If the signa-

tures of caller and callee(s) belong to the same strongly-comted component, we
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resourceAnalygiSCC; res; mt; CFG)
Egs ; jSCCj
foreach sig in SCC
Eqgsig] genBlocksRUEXfsig; res;mt; SCC; CFG)
Sols recEqgsSolvésimplifyEqQ6EQS))
foreach sig in SCC
inser{mt; cost max Solgsig]))
return mt
end

genBlocksRUEXfsig; res; mt; SCC; CFG)
Eqgs ;
BMs  getBlock¢CF G;sig)
foreach bm2 BMs
body bmbody
Costyoqy O
foreach stmt 2 Body
CoStgmt genStmtRUEXistmt; res; mt; SCC)
Costyogy  COStyogy + COStsyme
Costy,  genBlockRUEXxgbm; res; mt)
Eqs Eqgs [f Costyn  COStyegyd
return Egs
end

Figure 9.9: The resource usage analysis algorithm

are analyzing a recursive invoke statement. Then, we add to thmdy resource usage
a symbolic resource usage function, in an analogous fashion te tbase of output

parameters in recursive invocations during the size analysis.

The other scenarios occur when the invoke statement is non-uesive. Either
a resource usage functioilCostyy for the callee has been previously computed, or
there is a user annotationCost,s that matches the given signature, or both. In the
latter case, the minimum between these two functions is chosere(, the most precise

safe upper bound assigned by the analysis to the resource usage efrtbn-recursive
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genStmtRUEXxistmt; res; mt; SCC)

maxlookugdmt; size stmt:sigix))g
if stmt:sig2 SCC then

Costygo  lookugmt; cost res; stmt:sig)
Costyyg Costygo(Si,; 05 Si,)
return min(Costyg ; COStyser)

else

Figure 9.10: The resource usage analysis algorithm (continua)

invoke statement).

Example 9.2.3. (Resource annotations). Consider the same block method as in the
previous example and the invocation oStream.sendThe resource usage expression
for the statement is de ned by the functionAgenq($; ;6 (sr1 1)) since the input
parameter at position one is at most six times the size of the secomgput formal
parameter, as calculated by the size analysis in Figure 9.8. Moalso that there is

a resource annotation@Cosf("cents","2*size(rl)"g) attached to the block method
describing the behavior ofA s¢ng and yielding the expressiorCostyser =12 (S;1  1).
On the other hand, the absence of any callee code to analyze tlriginal method

is native{ results in Costyy = 1 . Then, the upper bound obtained by the analysis
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Resource usage equations

Cost(sendSms;$; s0; Sr1; Sr2; Sr3)
@Cost("cents","0") =0
z~

Z
min(lookugmt; cost $;ne); Ane($; Sr1;-))
@gost("cints","O“) =0

Z
+min(lookugmt; cost $; gtf ); Agi ($;Sr1;-) )
z 3 {2

+min(lookugmt; cost $;format )(_;sr1 1); Aformat (3,581 1))

5 @C073t("cents","2*siﬁ(rl)") =12 (s;g 1)

+min(lookugmt; cost $;send); Agenda($;;6 (Sr1 1))
@gost("cints","O“) =0

Z
+min(lookugmt; cost $; gtf ); Age ($;S1;-) )
+Cost(sendSms;$; s10;Sr1 1, Sr2; Sr3)
@Cost("cints","O") =

Z
+min(lookugmt; cost $; stf ); Asy ($;Sr1;-52))
@Cost("cints","O") =

Z
+min(lookugmt; cost $; stf ); Asys ($;Sr1;-52))
@Cc;st("c nts","0") =0

Z —
+min(lookugmt; cost $;asg); Aasg($; )

12 (s;1 1)+ Cost(sendSms;$; sr0;Sr1 1 Sr2;Sr3)

Cost(sendSms;$; Sro0; 0; Sr2; Sr3)
@Cost(" cents ";"07)=0
p A

Z —
min(lookup (mt; cost ;$;eq) ; Aey($;,0,)) +
min(lookup (mt; (Z:ost 'S, asg}; asg&$; O)? 0

{ —
1 @Cost(" cents ";"0")=0
Simpli ed resource usage equations and closed form solutio n
8
Cost(sendSms;$; Sro; Sr1; Sr2;Sr3) . 12 s 12+ if 551> 0

Cost(sendSms;$;s10;Sr1 1;Sr2; Sra)

Cost(sendSms:$; s0; Sr1; Sr2; Sr3) 6 s 6 s

Figure 9.11: Resource equations example

for the statement is min(Costyg; COStyser) = COStyser

At this point, the analysis has built a resource usage functiondénoted by
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Costyody) that re ects the resource usage of the statements within the btk. Fi-
nally, it yields a resource usage equation of the forr@ostyock Costyogy Where
Costyock IS again a symbolic resource usage function built by replacingah input
formal parameter position with its size relations in that blok method. These re-
source usage equations are simplied by callingimplifyEgsand, nally, they are
solved callingrecEgsSolveboth already de ned in Sec. 9.2.1. This process yields an
(in general, approximate, but always safe) closed form uppeobnd on the resource
usage of the block methods in each strongly-connected compuaineNote that given a
signature the analysis constructs a closed form solution for eydnlock method that
shares that signature. These solutions approximate the resourasage consumed in
or provided by each block method. In order to compute the totaresource usage of
the signature the analysis returns the maximum of these solutisnyielding a safe

global upper bound.

Example 9.2.4. (Resource usage equations). The resource usage equations gener-
ated by our algorithm for the CellPhone.sendSnmsock methods and the resource
denoted by $ (i.e., monetary total cost of sending the SMSs thugh a cell phone)
are listed in Figure 9.11. The computation is in part based on # size relations
for each output parameter position in Figure 9.8. The resourcasage of each
block method is calculated by building an equation such thathe left part is a
symbolic function constructed by replacing each parameter pition with its size
(i.e., Cost(sendSms;$; si0; Sr1; Sr2; Sr3) and Cost(sendSms;$; sro; 0; Sr0; S3) ), and
the rest of the equation consists of adding the resource usage @ thvoke statements
in the block method. These are calculated by computing the mimum between the
resource usage function inferred by the analysis and the funmti provided by the
user. The equations corresponding to the recursive and non-uesive block methods
are in the rst and second row, respectively. They can be simpli@ (third row) and
expressed in closed form (fourth row), obtaining a nal upper hund for the charge

incurred by sending the list of text messages of 6s?, 6 s;.
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9.3 Experimental Results

We have completed an implementation of our framework, and ¢éed it for a repre-
sentative set of benchmarks and resources. Our experimental rksare summarized
in Tables 9.1 and 9.2. ColumrProgramprovides the name of the main class to be
analyzed. ColumnResource(sshows the resource(s) de ned and tracked. Column
Size T.shows the time (in milliseconds) required by the size analysis tomstruct the
size relations (including the data dependency analysis andask hierarchy analysis)
and obtain the closed form. ColumrRes. T.lists the time taken to build the resource
usage expressions for all method blocks and obtain their closednh solutions. Total
T. provides the total times for the whole analysis process. Fingllcolumn Resource
Usage Func.provides the upper bound functions inferred for the resourcesage.
For simplicity, we only show the most important (asymptotic) conponent of these

functions, but the analysis yields concrete functions with ewstants.

Regarding the benchmarks we have covered a reasonable set da-gdructures
used in object-oriented programming and also standard Java tdries used in real
applications. We have also covered an ample set of applicatidependent resources
which we believe can be relevant in those applications. In p&tilar, not only have
we represented high-level resources such as cost of SMS, bytegived (including
a coarse measure of bandwidth, as a ratio of data per program stepnd les left
open, but also other low-level (i.e., bytecode level) reso@x such as stack usage
or energy consumption. The resource usage functions obtaineancbe used for
several purposes. In prograntriles(a fragment characteristic of operating system
kernel code) we kept track of the number of le descriptors lefopen. The data
inferred for this resource can be clearly useful, e.g., for dedging: the resource
usage function inferred in this cased(n)) denotes that the programmer did not close
O(n) le descriptors previously opened. In programloin (a database transaction

which carries out accesses to di erent tables) we decided to nsese the number of
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| Program | Resource(s) | Size T.| Res. T.| Total T. |

BST Heap usage 250 22 367

CellPhone | SMS monetary cost 271 17 386

Client Bytes received and 391 38 527
\Bandwidth" required

Dhrystone | Energy consumption 602 47 759

Divbytwo | Stack usage 142 13 219

Files Files left open and 508 53 649
Data stored

Join DB accesses 334 19 460

Screen Screen width 388 38 536

Table 9.1: Times in ms of di erent phases of the resource analgson a Pentium M
1.73Ghz with 1Gb of RAM.

accesses to such external tables. This information can be usedy.efor resource-
oriented specialization in order to perform optimized chegoints in transactional
systems. The rest of the benchmarks include other de nitions ofesources which
are also typically useful for verifying application-speci ¢ poperties: BST (a generic
binary search tree, used in [3] where a heap space analysis foraléytecode is
presented),CellPhongextended version of program in Figure 9.3)Client (a socket-
based client application),Dhrystone (a modi ed version of a program from [67] where
a general framework is de ned for estimating the energy consuntion of embedded
JVM applications; the complete table with the energy consumpdin costs that we
used can be found there)DivByTwo (a simple arithmetic operation), and Screen
(a MIDP application for a cellphone, where the analysis is use® make sure that
message lines do not exceed the phone screen width). The bendatk®ialso cover a
good range of complexity functions@(1); O(log(n); O(n); O(n?) :::;O(2");:::) and

di erent types of structural recursion such as simple, indiregtand mutual.
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] Program | Resource Usage Func. ‘

BST o(2") n tree depth
CellPhone | O(n?) n packets length
Client O(n) n stream length
O(1) |
Dhrystone | O(n) n int value
Divbytwo | O(log,(n)) n int value
Files O(n) n number of les
O(n m) m stream length
Join O(n m) n;m records in tables
n

Screen O(n) stream length

Table 9.2: Resource usage functions for programs described eble 9.1.

9.4 Related Work

We start by noting that while the analysis described in Chapter 4vas also parametric
it was designed for Prolog and works at the source code leveldathus cannot be ap-
plied to Java bytecode, at least directly, due to issues like \tiral method invocation,
unstructured control ow, assignment, the fact that statementsare low-level byte-
code instructions, etc., as well as the absence of backtrackifrghich had a signi cant
impact on the method presented in Chapter 4). Also, the presentahn of Chapter 4
is descriptive in contrast to the concrete algorithm providedn this chapter. With
respect to related work, in [2], a cost analysis is described (ddoped independently
from the one described herein) that does deal with Java bytede and is capable of
deriving cost relations which are functions of input data size However, while the
approach proposed can conceptually be adapted to infer di ent resources, for each
analysis developed the measured resource is xed and changethaimplementation
are needed to develop analyses for other resources. In contrasty approach allows
the application programmer to de ne the resources through amtations in the Java

source, and without changing the analyzer in any way. In addin, the presentation
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in [2] is again descriptive, while herein we provide a concestmemo table-based

analysis algorithm, as well as implementation results.

9.5 Summary

This chapter has presented a fully-automated analysis for efring upper bounds on
the usage that a Java bytecode program makes of a set of applicat programmer-
de nable resources. The analysis presented derives a vectorwidtions, one for each
de ned resource. Each of these functions returns, for each giveet of input data
sizes, an upper bound on the usage that the whole program (and kadadividual

method) make of the corresponding resource. Important novekpects of our ap-
proach are the fact that it allows the application programmeto de ne the resources
to be tracked by writing simple resource descriptions via sourdevel annotations, as
well as the fact that we have provided a concrete analysis aligbm and report on

an implementation. The current results show that the proposedralysis can obtain

non-trivial bounds on a wide range of interesting resources reasonable time.

Another important aspect, because of its impact on the scalalii precision,
and automation of the analysis, is that our approach allows usinthe annotations
also for a number of other purposes such as stating the resource @saf external
methods, which is instrumental in allowing modular compositio and thus scalabil-
ity. In addition, our annotations allow stating the resource sage of any method for
which the automatic analysis infers a value that is not accuta enough to prevent
inaccuracies in the automatic inference from propagatingdnnotations are also used
by the size and resource usage analysis to express their outputndly, the anno-
tation language can also be used to state speci cations related tesource usage,
which can then be proved or disproved based on the results of aysé following,

e.g., theCiaoPPscheme of [54] thus nding bugs or verifying (the resource usag®
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the program.
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Chapter 10

Conclusions and Future Work

10.1 Conclusions

Resource usage analysis is increasingly important in the contet applications such
as granularity control in parallel and distributed computing, resource-oriented spe-
cialization, or, more recently, certi cation of the resoures used by mobile code.
Specially in these more recent applications, the propertie$ioterest are often higher-
level, user-oriented, and application-dependent rather #&n (or, better, in addition
to) the prede ned, more traditional costs. Note that traditional cost analyses with

a xed set of resources are not su cient.

This thesis has covered two main lines. The rst one consists of Cbizrs 4, 6,
and 7, and it has been devoted to several analyses associated \ifitd inference of

resource usage information for logic programs, presenting ttaléwing contributions:

Chapter 4 has presented a resource bounds analysis that infetgamatically
lower- and upper-bounds on the usage that a logic program makef a set

of user-de nable resources within a single implementation. Ehchapter has
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also presented the assertion language which is used to de ne suchotgces.
The resource usage functions are, in general, functions in nes of the sizes
of the input data. Moreover, the chapter discussed the implemg&tion com-
pleted of such analysis and experimental results. The experintahevaluation
is encouraging because it shows that interesting resource bouigictions can
be obtained automatically and in reasonable time, for a repsentative set of
benchmarks with a good variety of resources such as bits sent eceived by
an application over a socket, number of les left open, numbeasf accesses to a
database, energy consumption, etc., as well as the more tradital execution
steps, execution time, or heap memory. To the best of our knowlgel this is

the rst user-de nable resource analysis proposed in the literate.

Regarding the automatic inference of resource usage infornwat, Chapter 4
pointed out that the inference at compile-time of which vaables do not share
provides an invaluable source of information for the resouragsage analysis
among other things because it implies the determination of put/output modes
(Set-Sharing). In Chapters 6 and 7 we have presented two di ent approaches

to mitigating the ine ciencies of the Set-Sharing analysis:

{ Chapter 6 has described a Set-Sharing analysis for top-dowmrneworks
based on the de nition of several new widening operators in oed to
accelerate the xed point computation to converge, providig di erent
levels of precision and e ciency tradeo . The approach has ab included
the case of combining with freeness information in order to ingase the
precision of the analysis. The analysis has shown, in general,engnt
e ciency gains with limited precision losses. More interestingl some
benchmarks that ran out of memory with the original Set-Shang analysis

on our test platform have been analyzed by our approach.

{ Chapter 7 has presented another novel approach to improvindné e -
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ciency of Set-Sharing that leverages the complement or néiga sharing
relationships of the original sharing set. Our experimental eluation has
shown that our approach may reduce signi cantly the memory usagof
the sharing relationships and the running time of the abstracterations,
including the abstract uni cation. Our experiments have alssshown how
to set up key parameters in our algorithms in order to controltie desired
compression and time complexities. We have shown that we can oiota
reasonable compression in polynomial time by tuning approptely those

parameters.

We believe that our results have shown that both approaches caontribute
to the practical, scalable application of Set-Sharing. Note that both of the
approaches are most advantageous when the size of the sharingtienships
is considerably large. Otherwise, the traditional Set-Sharg behaves properly
and alternative approaches are not required. Moreover, thehoice of one or
another will depend on each application. In some cases, some losg@gcuracy
may be tolerable. If this is the case, our widening-based ap@a@h may t
perfectly. In other situations, the lack of accuracy may be ure@eptable. Then,
our negative approach should be considered rather than the weiding-based

one.

The fact that the source code of many applications and tools Bometimes not
available led us in the second part of this thesis (consisting ofh@pters 8 and 9)
to concentrate on the development of an analysis tool for th@ference of resource

usage information for bytecode. This work resulted in the faiving contributions:
Chapter 8 presented a novel abstract interpretation framew&r which is generic

in terms of the abstract domain in use. The framework makes use afdecom-

pilation phase that results in an analysis-friendly intermedige representation
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which can be also used for other non abstract interpretation-sad analyses of
Java bytecode, and an analysis phase based upon an e cient andegise Xx-
point algorithm. The experimental evaluation has shown theeasibility of the
approach with medium-size programs, using the benchmarks inghrequently

used JOIlden suite.

Chapter 9 presented a generic resource usage analysis for Jaedyde. This
work has been inspired by the analysis for logic programs, butgeired adap-
tations from logic programs to Java bytecode related to vittal method invoca-
tion, exceptions, unstructured control ow, assignment, etc. Mreover, other
pre-analysis steps were required to generate more precise laginThe analysis
framework described in Chapter 8 helped us to solve many of thgseblems.
We have used its intermediate language in order to obtain a uorm represen-
tation that is easier for the resource usage analysis to handle.urthermore,
we plugged in some abstract domains into the analysis framewaid improve
the precision of the bounds. We have also shown some experimenedulits
which show that our technique can obtain non-trivial bounds o a wide range
of interesting resources in reasonable time, supporting the mticability of the

solution adopted.

10.2 Future Work

Finding an upper bound on the cost of computations is an undefable [113] problem
because it can be reduced to solving the halting problem. GivenTuring-equivalent
program, we infer its upper bound cost function. If this cost faction is 1 then
the program does not halt. Otherwise, the program halts. A sinmar reasoning can
be established for lower bounds. Therefore, we can only hope tevdlop resource

usage analysis that succeed for larger and larger classes of pmotg, even if there
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will always be some resource-usage bounded programs which cdrire proved to be
bounded.

The set of programs for which the resource usage analysis can finfen trivial
bounds can be extended if more information at compile-times iknown. Set-Sharing
analysis can only abstract information relative to the varialkes themselves. A more
sophisticated model is to consider the shape of data structures tile memory at a
program point. Having a more precise vision of the actual graphrsicture of the heap,
not only the resource usage analysis could detect cyclic struods but also reasoning
about other type of data structures, e.g., choosing more approgte metrics. In Java
bytecode, we could do that by applying some of the numerous assdccessful shape
analyses, see [107, 16, 106] and their references. In logic pmogning, it could be
more interesting since we may need to develop more accurate shdype analyses
than the current state of the art. Moreover, analysis of largeprograms could raise
other issues related to e ciency. Therefore, the study of more @ent shape-type

analysis seems to be also a future line of research.

On the other hand, we feel that the solution to e cient and pregse Set-Sharing
analyses may rely on the de nition of more compact and e ect® encodings rather
than the use of widening operators. In particular, the encodgof negative sharing
relationships on the top of (or in addition to) other e cient r epresentations such as,
e.g., Binary Decision Diagrams seems to be another very promgifuture investiga-

tion.

An important challenge for the future is being able to infer tle resource usage
information of larger and larger, real programs. We have seehndt the undecidability
of the problem restricts us to a limited subset of programs. In adkibn, programmers
may use complex, intertwined, non-monotonic loops (i.e., d@s in which argument
sizes may increase or decrease), and complex data structuresolvimay make it very

complex to reason about them in terms of the resource usage consdgnor provided.

193



Chapter 10. Conclusions and Future Work

At rst sight this would imply that such future work (and, ultima tely, the ultimate
objective of this thesis) is unachievable. However, in fact, ware rather optimistic
and of the opinion that while analyzing automatically 100% fbsome programs will
obviously always remain impossible, automatic resource analysian be made to be
of great help in practice and in large, real program. Thus, weoasider an essential
part of future work to work towards the previously stated objetive of improving the
scalability of the analysis for large programs. Our vision towas reaching this goal

is based on a number of ideas:

We believe, based on our experience, that between a large pamnt of the pro-

grams consists of linear code and relatively simple loops whidr resource
usage analyses can easily deal with. Therefore, the programnecan be liber-
ated from the painful task of working out the complexity of thae parts. While
for the remaining percentage we do not expect, in the short+t@, an automatic

solution, the assertion language de ned in Chapter 4 can clegrmitigate the

problem. This language, which we used for de ning the resouresage of ex-
ternal procedures (i.e., libraries), also allows programmeto describe by hand
the resource usage of any procedure for which the automatic &mss infers a
value that is not accurate enough. This can be used to prevemtaccuracies in
the automatic inference from propagating. Thus, the manual erk is reduced

to a hopefully small part of the program.

Moreover, we are also working currently on making our inferee of resource
usage more modular, taking advantage of the compositional nae of the cost
of computations. We think that a modular approach is requiredo deal with

large programs.

Finally, we also plan to work on improving the intrinsic power 6the solver
and enlarging the class of loops for which accurate bounds cha obtained,

relaxing a number of the requirements of our current analysis.
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In conclusion, while it is probably true that totally automatic resource analysis
of very large programs may be far in the future, this is not a re@ssary condition for
our analyses to be very useful in practice. The real practicakine t will come from
the fact that the tool typically will take care of the a large portion of the analysis
tasks required, even if a few of the more complex parts will ahys still be better
analyzed by the user. These results from manual analysis can thbe fed to the
compiler via assertions, which will then compose them with the &matic analysis
results for the other, generally much larger parts of the pragm, thus relieving the
programmer from large amounts of work, and obtaining resultsom the complete

program.
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Proofs

Lemma 1. Letcl2 CL, sh2 SH, ss2 SH, fcl[ ss sh,andt2 Term. Then:

Frel(cl;t) [ rel(ss;t) rel(sh;t)

(A.2)
irrel (Fcl;t) [ irrel (ss;t) irrel (sh;t) (A.2)
[ (rel(cl;t) [ rel(ss;t)) [ (rel(sh;t)) (A.3)

Proof. Since fFcl[ ss  sh, we have thatrel( Fcl [ ss;t) rel(sh;t). Also
Frel(cl;t) [ rel(ss;t) rel( ffcl [ ss;t) (A.8). Thus, (A.1) follows.

For (A.2), the following is straightforward:

Fcl[ ss sh) irrel (ffcl [ ss;t) irrel (sh;t) )
irrel (frcl;t) [ irrel (ss;t)  irrel (sh;t)

To see (A.3), note that[ (rel(cl;t) [ rel(ss;t) = [ (Frel(cl;t) [ rel(ss;t)),
since both expressions represent the same set of variables. ButpfrfA.1),

Frel(cl;t) [ rel(ss;t) rel(sh;t)
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so that the result follows directly. O

The following results have been already proved or are straigbtward from set

theory:

Lemma 2. Let ss;, SSp, and ss; be sets of sets:

(ssi[ ss2) =SS, [ SS, (A.4)
(ssi[fig ) =ss [fig (A.5)
ssi[ (ss2[ sss) =(ssi[ ss2) [ (ss1] sS3) (A.6)

If both ss; 6 ; and ss, 6 ; then:

[(ss1] ss2) = [(ss1[ SS2) (A7)

The following result characterizes operationd|; sh) for (cl;sh) 2 SHW with an
equivalent expression, which makes more amenable the proofcofrectness of the

extend® function:
Lemma 3. Let (cl;sh) 2 SHW and (cl; sh) = (cl®sh9:

frel®= F(cl [ (cl [ sh))

Proof. By de nition, if cl = ; thencl®= ;, otherwisecl’= f[ (cI[ sh)g. If cl = ; the
result is trivial, since both expressions in the equality reduc® ;. Let thencl 6 ;.
We now have thatcl®= f[ (cl[ sh)g so that fcl°=#[ (cl[ sh). Sincecl 6 ; and

alsosh|[f;g 6= ;, we can apply (A.7), so that we can write:

(A8)

F(cl [ (sh [f,g ) ®  F(cl [ (sh[fig ))
F(cl[ (shlfig ) *© #(cI[ (sh[fig ))
“ o #(c[ sh[f,g ) = #(cl[ sh)

= fcl®

which proves the result. O

FF(cl [ (cl [ sh))

(A4)
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Lemma 4. Let | ((cl;sh)) = fcl[ sh. Let clsh 2 SHW, clsh; 2 SHW, clsh, 2
SHW. Then:

rel(l (clsh);t) 1 (rel(clsh;t)) (A.8)

irrel (1 (clsh);t) = 1 (irrel (clsh;t))
| (clshy) [I (clshy) = 1 (clshy [ W clshy)
I (clshy) [ 1 (clshy) 1 (clshy [ clshy)

(I (cl;sh)) I ((cl;sh) )

Theorem 6.2.1 Let cl;ss) 2 SHW, sh2 SH, equationx = t, x 2V andt 2 Term,

and amguV(x: t; (cl; ss)) = ( cl°; s). If Fcl[ ss  sh then:

Fcl°[ ss°  amgu(x;t;sh)

Proof. Direct from the de nition of amgu”’ and Lemma 4. O

Note that the previous result holds even for the case in whiclffcl [ ss = sh.

That is, amgu" is neccessarily imprecise.

Proposition 1. Let (cl;ss) 2 SHW, sh2 SH, equationx = t, x 2V andt 2 Term,
and amgu(x; t; (cl; ss)) = (¢l ss°). If fcl[ ss= sh then:

Fcl°[ s® amgu(x;t;sh)
but not in general ffcl°[ ss° = amgu(x;t; sh).
Proof. The general statement is a direct corollary of Theorem 6.2.1To see that

equality does not hold in general, taked];ss) = (ff X;Y gg;;) and sh = ff Xg;-
fX;Y g, fYgg We have ffcl[ ss = sh. Take alsot = y. Then (cl°ss°) =
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(ff X;Y gg;;), so that Fclo[ ss° = ff Xg;fX;Y g;fYgg But amgu(x;t;sh) =
irrel (sh;x=1t) [ (rel(sh;x) [ rel(sh;t)) = ff X;Y gg, which is a proper subset of
Felo[ ss°. O

The optimization of amguV that we present here is similar to that presented
in [120] for the case of inferring pair-sharing. The followingwo results will be
instrumental. In the proofs the baselineof a set of setsSS is denoted by the set of
elements in sets belonging t8S, i.e.,[ SS= SSZSS S. Note that the rst one allows
to safely replace star-union on clique sets simply by set union (wh is precisely the
observation behind the de nition of (cl; sh) in [121]):

Lemma 5. For everycl2 CL:!

Fcl = # cl (A.9)

Proof. First, ffcl #[ cl. Note that #[ cl Fcl, since[ cl is baseline ofcl,
and therefore the maximal element that can belong tol (which gives the maximal
powerset possible forffcl). Also, [ cl = [ cl, since the baseline ofl and ofcl is the
same. Thus, ffcl # cl = # cl.

Also, #[ cl Fcl . To see this, takes 2 #[ cl, we also have that, ifcl 6 ;,
[cl2cl (]clisthe maximal element ofcl ; however, ifcl = ;, cl = ;, too). Thus,

from the de nition, s2 fcl . If cl = ;, the result follows directly. O
Lemma 6. For everycl2 CL ands2 }°(V). If cI6 ;:

F(fsg[ cl )= Pf cl[ sy (A.10)

!Note that ffcl = F(cl ).
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Proof.

F(fsg[ cl) F(fsg [ cl) sincefsgis a singleton set
F(fsg[ cl) by (A4)
# (fsg[ cl) by (A.9)

#[ cl[ s) since the baseline ofsg[ clis, if cl 6 ;;

that of cl plus the elements ins

P cl[ sg since[ cl[ s is a singleton set

Let (cl; sh) = clsh 2 SHW. By de nition:
amgu”V(x; t; clsh) = irrel (clsh;x = t) [W (rel(clsh; x) [ rel(clsh;t) )

so that using the de nitions of [ W and [ , and considering that there are two cases

in rel(clsh; x) and another two inrel(clsh;t) :

amguV(x; t;clsh) = (irrel (cl;x = t) [ cl®irrel (sh;x=1t) [ sh9

(ff (rel(cl;t) [ rel(sh;t))g[ rel(sh;x) ;;) if rel(cl;x) = ;;rel(cl;t) 6 ;
(f[ (rel(cl;x) [ rel(sh;x))g[ rel(sh;t) ;;) if rel(cl;x) 6 ;;rel(cl;t) = ;
(f[ (rel(cl;x) [ rel(cl;t) [ rel(sh;x) if rel(cl;x) 6 ;;rel(cl;t) 6 ;
[ rel(sh;1))g;;)

8
% (;;rel(sh;x) [ rel(sh;t) ) if rel(cl;x) = rel(cl;t) = ;
(cl®sh9 = %

However, the second and third cases can be reduced to the last ohmte that,
in the second case, ifel(sh;x) 6 ; then, by (A.10), we havecl® = f[ (rel(cl;t) [
rel(sh; x)[ rel(sh;t))g. Since in this caseel(cl;x) = ;, we can writecl®= f[ (rel(cl; x)[

rel(cl;t)[ rel(sh;x)[ rel(sh;t))g. However, ifrel(sh;x) = ; thencl®= ;. The same
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reasoning can be applied to the third case. Thus:

;srel(sh;x) [ rel(sh;t) ) if rel(cl;x) = rel(cl;t) = ;

§ if rel(cl;x) = rel(sh;x) = ;

(cl®sh% = or rel(cl;t) = rel(sh;t) = ;
% (f[ (rel(cl;x) [ rel(cl;t)[ otherwise

rel(sh;x) [ rel(sh;t)g;;)

Finally, note that in the rst case, since rel(cl;x) = rel(cl;t) = ;, we have
that irrel (cl;x = t) = cl, which gives the abstract uni cation operation we have

implemented.
Now, it is proved that the lifted linearity \operator" lin*® is correct w.r.t. lin .

Lemma 7. Let (cl;ss) 2 SHY, sh2 SH, sh Fcl[ ss, andt 2 Term. Then:

lin®(t) for (cl;ss) ) lin(t) for sh

given that:

lins(t) , 8 y2f:[t, =1 A
8z2f:y6 z! rel(cliy)\ rel(cl;z) = ;
rel(sh;y)\ rel(sh;z) = ;

lin(t),8 y2f:[t},=178z2f:y6 z! rel(sh;y)\ rel(sh;2) = ;

Proof. Let linS(t) hold. Then, for ally 2 f, [t], = 1. Also, forall z2 f'st. y 6 z
we haverel(cl;y)\ rel(cl;z) = ;, rel(ss;y)\ rel(ss;z) = ;. Assume in what follows

that y 6 z.

We also have thatrel( fcl;y) \ rel( ffcl;z) = ;, rel( Fel;y) \ rel(ss;2) = ;, and
rel(ss;y)\ rel( ficl; z) = ; (see below). Hencerél( frcl; y)[ rel(ss; y)\ (rel( Fcl; z)[
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rel(ss;2) = rel( fel [ ss;y)\ rel(ffcl[ ss;2z) = ;. But sh  Fcl[ ss, so that
rel(sh;y)\ rel(sh;z) = ;. Thus, lin (t) holds.

To see thatrel( fFcl;y) \ rel( ffcl;z) = ; we reason by contradiction. Lets 2
rel( ffcl;y) \ rel( Fel; z). We have thats 2 ffcl,y 2's,z 2 s. Then, there isc 2 cl
such thats ¢,y 2 c z2 c. Therefore,c 2 rel(cl;y) and ¢ 2 rel(cl; z), so that

rel(cl;y)\ rel(cl;z) 6 ;.

To see thatrel( ffcl;y) \ rel(ss;z) = ; we also reason by contradiction. Let
s 2 rel( ficly) \ rel(ss;2). We have thats 2 ffcl, s2 ss, y 2 s, z 2 s. Therefore,
s 2 rel(ss;y) and s 2 rel(ss; z), so that rel(ss;y) \ rel(ss;z) 6 ;. The proof of

rel(ss;y) \ rel( frcl;z) = ; is the same, exchanging and z. ]

Theorem 6.3.1 Let ((cl;ss);f) 2 SHFW, (sh;e) 2 SHF, and equationx = t, x 2
V,t 2 Term. Letalsoamgu® (x;t; ((cl; ss);f)) = (( cl°; ss?); f ©) and amgu (x;t; (sh;e) =
(sh%f9. If Ffcl[ ss shandf ethen:

Fcl°[ s shPandf® f°

Proof. That ffcl°[ ss°  sh?follows directly from the de nition of amgus using
Lemma 4 and the following observation based on Lemma 7:digus" is used then
x2f eort2f e sothatthe rst case ofamgu would have also been used
in Sharing+Freeness. Also, if it isamgu that is used then we have thaf® f e
and lin 5(t), which implies lin (t) (Lemma 7); so that the second case @imgu’ would

have also been used.

We show thatf® 9 giventhatf e and the rest of conditions of the theorem,
in particular, ffcl[ ss sh. From the de nition of amg®" we have four cases. We
will also have four more subcases of the last case. Note that in evelgsef© f

(by de nition of amgu®'). Thus:
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x2f andt2f

In this case, sincef e, we havex 2 eandt 2 e so that f° = e (by
de nition of amgu). Also, f° = f (by de nition of amgu*"). Thus, the result

is straightforward.

x2f andt2f

Now, we havet 2 e, but either x 2 eorx 2 e. If x 2 e, we havef °= e. Thus,

the result is straightforward, sincef© f andf e

If x 2 e, we havef °= en[ rel(sh;t). Also, f°=f n[ (rel(cl;t) [ rel(ss;t)), so

that what we have to prove is:
f n[ (rel(cl;t) [ rel(ss;t)) en]rel(sh;t)
which holds becausé e, and [ (rel(cl;t) [ rel(ss;t)) [ rel(sh;t) (A.3).

x2f andt2f

This case is symmetric to the previous one, witlk for t and vice versa.

x2f andt2f

In this case,f° = f n[ (rel(cl;x) [ rel(cl;t) [ rel(ss;x) [ rel(ss;t)), but we

may or may not havex 2 eandt 2 e, so we have four more cases.

x2f, t2f,x2e andt2e

We now havef °= f n[ (rel(sh;x) [ rel(sh;t)). Thus what we have to prove

is:
f n[ (rel(cl;x)[ rel(cl;t)[ rel(ss;x)[ rel(ss;t)) en[ (rel(sh;x)[ rel(sh;t))
which holds becausé e and also:

[ (rel(cl;x) [ rel(cl;t) [ rel(ss;x)[ rel(ss;t)) [ (rel(sh;x)[ rel(sh;t))
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since we havd (rel(cl;t) [ rel(ss;t)) [ rel(sh;t) (A.3) and the same forx:
[ (rel(cl;x) [ rel(ss;x)) [ rel(sh;x).

x2f,t2f,x2e andt2e

In this case,f = f n[rel(sh;x). The result then follows from the previous

case, sincg rel(sh;x) [ (rel(sh;x)[ rel(sh;t)).

x2f,t2f,x2e andt2 e

In this case,f °= f n[ rel(sh;t). As before, the result follows becauderel (sh;t)
[ (rel(sh;x) [ rel(sh;t)).

x2f, t2f,x2e andt2 e

Now, f °= e, and the result follows becausé® f andf e= 9

]

Theorem 6.4.1 LetCall 2 SHY, Prime 2 SHY, and g 2 Term, such that the
conditions for the extend function are satis ed. Let Call = (cly;ss;), Prime =
(cly; ss), extend®(Call;g; Prime) = (cl;ss), ffcli[ ssi  shy, and fela[ s, sh,
then:

Fcl[ ss extend(shi;g;sh)

Proof. The following two results, proved in (9.7) and (9.11) of [121]page 240),

respectively, will be used. Foc2 CL and term t:
F(irrel (c;t) = irrel ( fic;t) (A.11)

Fc =( fel) (A.12)
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Now, we simplify the (notation of the) de nitions of extend® and extend:
(cl;ss) = (irrel (cly;g) [ extcl; irrel (ss;;0) [ extsh[ clsh[ shcl)

extcl=f (s\ ¢)[ (sn@)js2cl®c2clg
extsh="f sjs2rel(ss;;g); (s\ § 2ss, g
csh=fsjs c2cl® (s\ §)2ss, g
shcl=f sjs2rel(ss;;9) ; (s\ g c2clhg

with (cl®% ss?) = (rel(cly; g); rel(ss;; g)) andcl®= rel(cly; g) [ (rel(cli;g) [ rel(ssi;g) )
because of Lemma 3. So that:

Fcl[ ss= f(irrel (cly; @) [ irrel (ss;;0) [ Fextcl[ extsh[ clsh[ shcl (A.13)
Also, let extend(shy; g; shy) = irrel (shy;g) [ ext with:
ext=1f sjs2rel(shy;g); (s\ § 2sh,g
Take s 2 extend(shy; g; shy). Then, either s 2 irrel (shy;g) or s 2 ext (or both,

but this is obviously impossible). Ifs 2 irrel (shy; g) then we have thats 2 fcl[ ss,
since, from the condition that ffcl;[ ss;  shy, and using (A.2), (A.11), and (A.13):

irrel (shy;g) irrel (fely; g)[ irrel (ssi;9) = Firrel (cly; ) [ irrel (ssi;9)  fel[ ss

If s 2 ext then, by de nition, s 2 rel(shy;g) and (s\ §) 2 sh,. But from the
condition that fcly[ ss; shy, using (A.1) it follows that:

rel(sh;;9)  (f(rel(cly; ) [ rel(ss:;g))

so that s 2 (F(rel(cly;g)) [ rel(ssi;g)) . Thus, we have three possible cases:2
(F(rel(cli; @) = F(rel(cl;g) ) (by (A.12)), s2 rel(ss;;g) ,ors= [ Ly all [,h,
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Also (s\ @) 2 shy, so that from the condition that ffcl, [ ss,  sh, then
(s\ @) 2 fcly[ ssp. Thus, either (s\ @) 2 Fcl, or (s\ @) 2 ss,. Overall, we have
six possible cases:

s2 rel(ssi;0) , (s\ §) 2 ss,
s2rel(ssi;; @) , (s\ @) 2 Fcl,
s2 f(rel(cl; ) ), (s\ 0) 2 ss,
s2 f(rel(cli;g) ), (s\ @) 2 Fcl
s=[Za[[ -b,(s\ 0) 2ss

s=[Mall b, (s\ 02 fb

In the rst case, we have thats 2 extsh, and thus, by (A.13),s2 Fcl[ ss.

In the second case, we have that there 52 cl, such that (s\ §) 2 #c. Thus,
(s\ @) c2cly, sothats2 shcl. Hence, by (A.13),s2 ffcl[ ss.

In the third case, we have that there isc 2 rel(cl;;g) such thats 2 #c. Thus,
s c2rel(cl;;g)  cl’ sothats 2 clsh. Hence, by (A.13),s 2 cl[ ss.

In the fourth case, as in the third, we haves 2 cl®. Also, (s\ @) 2 Fcl,. Thus,
(s\ § c2cl, sothat ((s\ ¢[ (sng)) = e2 extcl. Obviously, (s\ §) s, so
that (s\ ) (s\ c). Therefore,s=(s\ [ (sn@) (s\ o[ (sng) = e2 extcl.
And then s 2 #e  [fextcl. Hence, by (A.13),s 2 Fcl[ ss.

In the fth case, we have thata; 2 f(rel(cly; g)), so that there ared; 2 rel(cly; g)
such thata; 2 #d,. Thus, & d 2 rel(cly;g), sothat[ ;& [ 2,d 2 rel(cl;;0) .
We also have thathy 2 rel(ss;;g), so that [ ., 2 rel(ss;;g) . Therefore, s =

ima [[ . ([Zdi [[ jLiB) = c 2 rel(cl;g) [ rel(ssi;9) cl® Thus,
s c¢2cl’ sothats2 clsh. Hence, by (A.13),s2 fcl[ ss.
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In the sixth case, as in the fth, we haves 2 cl®. Also, (s\ @) 2 Fcl,. Thus,

following the same reasoning as in the fourth case, we also havatth 2 fcl[ ss. O

Theorem 6.4.2 LetCall 2 SHFW, Prime 2 SHFW, and g2 Term, such that the
conditions for the extend function are satis ed. Let Call = (( cly;shy); 1), Prime =
((cly; shy); f2), and extend™ (Call; g; Prime) = (( cl%sh9;f9. Let alsos; = fcl; [
shy, s, = Felo[ shy, and extend ((s1;f1); 9;(s2; f2)) = (sh;f). Then ( Fcl’[ sh9
sh and f° f .

Proof. We now prove thate f, given that e fi1, & f,, and the rest of

conditions of the theorem, in particular fcl[ ss sh. Remember also that:
f=f,[ ff ande= e[ ee
ff =fxjx2(fan@);(([rel(sh;x))\ 9) fog

ee=fxjx2 (egn@); ([ (rel(ss;x)[ rel(cl;x))\ § eq

Take x 2 e. Then, eitherx 2 e, or x 2 ee If X 2 e, then, sincee, f,, x 2 f,,

so thatx 2 f. Let, then, x 2 ee

Now, we havex 2 (e;n@) and (([ (rel(ss;x)[ rel(cl;x)))\ §) e. Sincee; fq,
we havex 2 (f1n@). We also have ({ rel(sh;x))\ §) f, (see below). Thusx 2 ff ,
sothatx 2 f.

To see that ([ (rel(ss;x) [ rel(cl;x))) \ § e implies (([ rel(sh;x)) \ @)
f,, consider that by using (A.3) Ffcl[ ss sh implies (([ rel(sh;x)) \ @)
(([ (rel(ss;x) [ rel(cl;x))) \ @), so that:

(([rel(sh;x)\ Q) (([ (rel(ss;x) [ rel(chx))\ §) e f

]

Theorem 7.4.1 A polynomial time algorithm for computing negative avss-union],

impliesP=NP .
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Proof. To show that negative cross-union,[ , is NP -Complete we rst restate the
de nition of Non-Empty Self Recognition (NESR) shown to be NP -Complete in
[41]. Then, we useNESR to show that there is no polynomial time algorithm for

computing negative cross-union unles8 = NP..

(Non-Empty Self Recognition, NESR).
INPUT: A negative settnsh of length | strings over the alphabetf0;1; g.
QUESTION: Doestnsh represent an empty positive sebsh? In other words, does

there exists a string inf 0; 1g' not matched in tnsh?
The following is a proof for Theorem 7.4.1:

Given a negative setinsh of length |, assume a polynomial time algorithmv
that takes as input negative setsnsh, and tnsh, and outputs tnsh®= tnsh; [ tnshy,
wheretnsh® represents the result of the positive cross-union of the two posiéi sets

represented bytnsh; and tnsh,.

We construct a polynomial time algorithm for NESR: given any instance of
NESR with input tnsh. First, generate a positive sesh with two strings s; and s,
of length | each having alternating 1's and 0's, e.g., If= 4, then sh= {0101 101@.
Convert sh to its negative set representationnsh, using a polynomial time algorithm,
i.e., letting k = logy(l) or the Pre x algorithm, see [41]. Verify that s, and s, appear
in tnsh: if either one is missing fromtnsh, then answer "No" (thsh is not empty, at
a minimum it represents the missing string). Otherwise, botls; and s, appear in
tnsh, but there may be some other string(s) missing frormsh (tnsh is not empty).
Let M computetnsh®= tnsh [ nsh. Now, check if boths; and s, appear intnsh®
if both are missing fromtnsh® then answer "Yes" ¢nsh is empty); otherwise, answer
"No".

Note that if thsh represented an empty positive set, then itaegative cross-union

with another setnsh will yield a representation of the same setsh. In other words,
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if tnsh is empty and sincesl and s2 were missing frormsh, then s1 and s2 will also
be missing from the resultnsh® On the other hand, iftnsh is not empty (represents
some string(s), other thansl and s2, in the positive), then negative cross-union
(ternary OR operation) with one of the two strings will produe a di erent string to
s, Or s, resulting in either s, or s, appearing intnsh® Thus, M can be used to solve
NESR e ciently. Since NESR is NP -Complete, thenP=NP. m
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