
Analysis and Inference of
Resource Usage Information

by

Jorge A. Navas Laserna

B.S., Computer Science, Technical Univ. of Madrid, 2003
M.S., Computer Science, Univ. of New Mexico, 2006

M.B.A., Business Administration, Univ. of New Mexico, 2008

Advisor: Manuel V. Hermenegildo

DISSERTATION

Submitted in Partial Ful�llment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2008

Dedication

A mis padres y Yosune

iii

Acknowledgments
First, I would like to thank my parents who gave me what they didnot have to
reach this goal. I do not have words to express my gratitude to them and I hope to
make them happy and proud of me despite the long distance which separates us. In
Spanish:

\Gracias a mis padres que me dieron todo lo que no ten��an paraalcanzar este
objetivo. No tengo palabras para expresarles mi gratitud y espero haberles hecho feliz
y orgullosos de mi a pesar de la gran distancia que nos separa."

Also, nothing of this could have been possible without Yosune. Shealways sup-
ported me in my few good days and, more important, in my numerous bad days.
Thank you for loving and respecting me. To them I dedicate thisthesis.

I want to thank Manuel Hermenegildo my mentor, collaborator,and friend, for
all his time, energy and resources who taught me a lot and allowed me to �nish
this thesis. He showed me this amazing world of research supportingme during
these years in very di�erent ways. I also gratefully acknowledge the support of the
Prince of Asturias Chair in Information Science and Technology at UNM funded by
Iberdrola.

I would like to thank specially Mario M�endez for his friendship and fruitful series
of common works that are a fundamental part of this thesis, and also Amadeo Casas
for his interesting scienti�c discussions. They became my best friends during these
years and we shared great moments in Albuquerque.

Throughout these years, I would like also to thank the rest of my co-authors of
the papers that are part of this thesis: Elena Ackley, Francisco Bueno, Stephanie
Forrest, Pedro L�opez-Garc��a, Edison Mera, and Eric Trias. I also want to thank all
members of the CLIP Group who allowed me to take advantage of many existing
tools and analyses used in this thesis. I would like also to thank specially UNM
Professors Deepak Kapur and George Luger, members of my committee, who have
provided me with many helpful comments about this thesis and contributed to its
improvement.

Finally, I cannot forget my brother Kike and all my friends who might not have
contributed to this thesis directly, but without their parti cipation it would have been
impossible to make it: Anick, Basam, Gabriel, Jose, Lili, Manoito, Natalia, Raquel,
Roberto, Salvador, Sandra, Myriam, . . . , and of course, the wonderful land of New
Mexico and its people.

Acknowledgments are hard to write since, inevitably, someone important is left
out by mistake. I apologize to you.

Jorge Navas
August 2008

iv

Analysis and Inference of
Resource Usage Information

by

Jorge A. Navas Laserna

ABSTRACT OF DISSERTATION

Submitted in Partial Ful�llment of the

Requirements for the Degree of

Doctor of Philosophy

Computer Science

The University of New Mexico

Albuquerque, New Mexico

December, 2008

Analysis and Inference of
Resource Usage Information

by

Jorge A. Navas Laserna

B.S., Computer Science, Technical Univ. of Madrid, 2003

M.S., Computer Science, Univ. of New Mexico, 2006

M.B.A., Business Administration, Univ. of New Mexico, 2008

Ph.D., Computer Science, University of New Mexico, 2008

Abstract

Static analysis is a powerful technique used traditionally for optimizing programs,

and, more recently, in tools to aid the software development process, and in partic-

ular, in �nding bugs and security vulnerabilities. More concretely, the importance

of static analyses that can infer information about the costs ofcomputations is well

recognized since such information is very useful in a large number of applications.

Furthermore, the increasing relevance of analysis applications such as static debug-

ging, resource bounds certi�cation of mobile code, and granularity control in parallel

vi

computing makes it interesting to develop analyses for resource notions that are ac-

tually application-dependent. This may include, for example, bytes sent or received

by an application, number of �les left open, number of SMSs sent or received, energy

consumption, number of accesses to a database, etc.

In this thesis, we present a resource usage analysis that aims at inferring upper

and lower bounds on the cost of programs as a function of its data size for a given

set of user-de�nable resources of interest. We use logic programming as our basic

paradigm since it subsumes many others and this allows us treating the problem at

a considerable level of generality.

Resource usage analysis requires various pre-analysis steps. An important one

is Set-Sharing analysis which attempts to detect mode information and which vari-

ables do not point to the same memory location, providing essential information to

the resource usage analysis. Hence, this thesis also investigates the problem of ef-

�cient Set-Sharing analyses presenting two di�erent alternatives: (1) via widening

operators, and (2) de�ning compact and e�ective encodings.

Moving to the area of applications, a very interesting class involves certi�cation

of the resources used by mobile code. In this context, Java bytecode is widely

used, mainly due to its security features and the fact that it isplatform independent.

Therefore, this thesis �nally presents a resource usage analysistool for Java bytecode

that includes also a transformation which provides a block-level view of the bytecode,

and can be used as a basis for developing analyses. We have also developed for

this purpose, a generic, abstract interpretation-based �xpoint algorithm which is

parametric in the abstract domain. By plugging appropriate abstract domains into

it, the framework provides useful information that can improve the accuracy of the

resource usage information.

vii

Contents

List of Figures xiii

List of Tables xvi

1 Introduction 1

1.1 Thesis Objectives . 3

1.2 Main Contributions . 6

1.3 Structure of the Work . 8

2 Logic Programming 10

2.1 De�nitions: First-Order Logic and Syntax of Logic Programs 10

2.2 Semantics of Logic Programs . 15

2.2.1 Declarative Semantics . 16

2.2.2 Operational Semantics . 16

2.3 Uni�cation . 18

2.4 Non-Determinism . 19

viii

Contents

2.5 Modes in Logic Programming . 21

2.6 The Ciao Prolog System . 23

3 Abstract Interpretation 28

3.1 De�nitions . 29

3.2 Galois Connections . 30

3.3 Widening . 34

3.4 Abstract Functions Required by Logic Programming-based Analysis

Frameworks . 35

4 Resource Usage Analysis for Logic Programs 39

4.1 Motivation . 40

4.2 Worked Example . 42

4.3 A Framework for Inference of Resource Usage 45

4.3.1 The Resource Assertion Language 47

4.3.2 Size Analysis . 51

4.3.3 Resource Usage Analysis . 59

4.3.4 De�ning the Parameters (Functions) of the Analysis 63

4.4 Experimental results . 72

4.5 Related Work . 76

4.6 Summary . 78

ix

Contents

5 Set-Sharing Analysis 80

5.1 Overview . 81

5.2 Preliminaries . 83

5.3 The Set-Sharing Domain . 83

5.4 The Sharing+Freeness Domain . 87

5.5 Previous Work . 89

6 Widening Set-Sharing Analysis 92

6.1 Overview . 92

6.2 The Clique-Sharing Domain . 93

6.3 The Clique-Sharing+Freeness Domain 96

6.4 Abstract Functions for Top-Down Analysis in the Clique Domains . . 98

6.5 Detecting Cliques . 102

6.6 Widening Set-Sharing . 105

6.7 Experimental Results . 107

6.7.1 Cliques as Alternative Representation108

6.7.2 Widening Set-Sharing via Cliques 112

6.8 Summary . 114

7 Negative Set-Sharing Analysis 115

7.1 Introduction . 116

x

Contents

7.2 Set-Sharing Encoded by Binary Strings 117

7.3 Ternary Set-Sharing . 121

7.4 Negative Ternary Set-Sharing . 127

7.5 Experimental Results . 138

7.6 Summary . 143

8 A Generic Analysis Framework for Java Bytecode 145

8.1 Motivation and Proposal . 146

8.2 Intermediate Program Representation 147

8.3 The Top-Down Analysis Algorithm 151

8.4 Experimental Results . 159

8.5 Related Work . 161

8.6 Summary . 162

9 Resource Usage Analysis for Java Bytecode 163

9.1 Overview of the Approach . 165

9.2 A Framework for Resource Usage Analysis 169

9.2.1 Size Analysis . 171

9.2.2 Resource Usage Analysis . 179

9.3 Experimental Results . 184

9.4 Related Work . 186

xi

Contents

9.5 Summary . 187

10 Conclusions and Future Work 189

10.1 Conclusions . 189

10.2 Future Work . 192

A Proofs 196

References 210

xii

List of Figures

3.1 Abstract functions required by top-down analyses 36

4.1 A simple client application. 41

4.2 Syntax of the resource assertion language49

4.3 Argument dependency graph for the recursive clause ofexch buffer/3 55

4.4 Size relation equations forexch buffer/3 57

5.1 Memory Representation for� . 81

6.1 Algorithm for detecting cliques . 104

7.1 Simple algorithm for encoding binary sharing relationships 117

7.2 A deterministic algorithm for converting a set of binary strings bsh

into a set of ternary strings tsh, where k is the desired minimum

number of speci�ed bits (non-�) to remain. 122

7.3 NegConvert, NegConvertMissing, Deleteand Insertalgorithms used to

transform positive to negative representation;k is the desired number

of speci�ed bits (non-*'s) to remain. 128

xiii

List of Figures

7.4 Level of compression after conversions frombSH to tSH and tNSH

for k = 1, 4, 7, and 10. 139

7.5 Memory usage (avg. # of strings) and time normalized for conver-

sions with k = 7. 141

7.6 Memory usage (avg. # of strings) and time normalized for amgu

over 30 runs withk = 7. 142

8.1 Pipeline of transformation and analysis 146

(a) Source code of theVector class 149

(b) Control Flow Graph . 149

8.2 The top-down �xpoint algorithm . 152

8.3 The top-down �xpoint algorithm: non-recursive methods 153

8.4 The top-down �xpoint algorithm: recursive methods 154

8.5 The top-down �xpoint algorithm: recursive methods (continuation) . 155

8.6 The top-down �xpoint algorithm: optimization 156

8.7 Fixpoint calculation for Vector.append. 158

9.1 Architecture of Resource Usage Analyzer 164

9.2 Sub-components of the resource usage analysis 166

9.3 Motivating example: Java source code and Control Flow Graph . . . 167

9.4 Generic Resource Analysis Algorithm 170

9.5 The size analysis algorithm . 172

xiv

List of Figures

9.6 The size analysis algorithm: input arguments 174

9.7 The size analysis algorithm: output arguments and normalization . . 175

9.8 Size equations example . 178

9.9 The resource usage analysis algorithm 180

9.10 The resource usage analysis algorithm (continuation) 181

9.11 Resource equations example . 182

xv

List of Tables

4.1 Accuracy and e�ciency in milliseconds of the analysis. 75

6.1 Precision and Time-e�ciency for Sharing and Clique-Sharing 109

6.2 Precision and Time-e�ciency for Sharing+freeness and Clique-Sharing+-

freeness . 110

6.3 Precision and Time-e�ciency with Widening 113

7.1 Summary of conversions:l-length strings; � = jResultj � l ; if m < k

then � = k � m else� = 0, where m = minimum speci�ed bits in

entire set, k = number of speci�ed bits desired; bnsh = U n bsh;

� = O(2l) time to �nd bnsh. 132

8.1 Statistics of the transformation phase. 160

8.2 Statistics for the Nullity and Class Hierarchy (CHA) domains. . .. 161

9.1 Times in ms of di�erent phases of the resource analysis on a Pentium

M 1.73Ghz with 1Gb of RAM. 185

9.2 Resource usage functions for programs described in Table 9.1. 186

xvi

Chapter 1

Introduction

Static program analysis is the process of inferring information at compile-time on

the runtime behavior of the program. Static program analysishas many important

applications. It has traditionally been used primarily for optimizing programs so

that they will run faster. More recently, program analysis is increasingly being used

in tools to aid the software development process and it is extremely useful in �nding

bugs and security vulnerabilities in software.

Although many promising advancements have been achieved, there are still many

challenges in software reliability and development in the real world. One of the

biggest issues is the lack of more practical tools but the fact isthat static program

analysis is a very hard task. The current complexity of softwaremakes sometimes ex-

isting static analysis tools unable to infer information in a reasonable amount of time.

On the other hand, most problems in static program analysis are undecidable, which

means the use of approximate algorithms is needed. To make these approximated

algorithms work well on real programs is also a challenge.

The importance of static analyses that can infer information about the costs of

computations is well recognized since such information is useful in a large number

1

Chapter 1. Introduction

of applications. The kinds of costs which have received most attention so far are

related to a �xed set of resources such as execution steps as well as, sometimes,

execution time or memory (see, e.g., [69, 104, 101, 108, 45, 15, 47] for functional

languages, [111, 14, 40, 119] for imperative languages, and [37, 36, 38] for logic

languages).

These and other types of cost analyses have been used in the context of applica-

tions such as granularity control in parallel and distributedcomputing (e.g., [80, 24]),

resource-oriented specialization (e.g., [32, 100]), or, more recently, certi�cation of

the resources used by mobile code (e.g., [8, 25, 4, 51]). Specially in these more re-

cent applications, the properties of interest are often higher-level, user-oriented, and

application-dependent. Examples of such programmer-de�nable resources are bits

sent or received by an application over a socket, number of �lesleft open, number

of SMSs sent or received, number of accesses to a database, energyconsumption,

monetary units spent, disk space used, etc.

Some recent work does deal with less restricted sets of resources([116], [1]).

However, while the approaches proposed can conceptually be adapted to infer some

application-dependent resources in addition to the more traditional costs, the number

of resources of interest may be unbounded since it depends on each application.

Therefore, for each analysis developed the set of measured resource is �xed and

changes in their implementations are needed to develop analyses for other resources.

Among existing programing paradigms, in an important part of this thesis we use

logic programming [65] as our basic paradigm since it subsumes many others and

this allows us treating the problem at a considerable level ofgenerality. Moreover,

languages based on logic programming are considered well suited for program analysis

due to their very high abstraction level and higher separationof control issues from

the logical speci�cation of the problem. This observation wasexpressed by Kowalsky

in the following equation [66]:

2

Chapter 1. Introduction

Algorithm = Logic + Control

Regarding the object of certi�cation, in the case of mobile code we do not have

access to the source code, but only to compiled code. Therefore, the certi�cation

and checking processes are often performed at the bytecode level, since, in addition

to other reasons of syntactic convenience, bytecode is what ismost often available

at the receiving (checker) end. In this context, Java bytecode [75] is widely used

because of its security features and its condition of platformindependent. Due to

these reasons, we also cover in this thesis analysis of Java bytecode.

1.1 Thesis Objectives

The �nal objective of the work presented in this thesis is the development, imple-

mentation, and experimental evaluation of a set of advanced static analysis-based

compilation techniques with special emphasis on resource-related properties. We

believe that they contribute to the state of the art of this research area and can

potentially improve the program development process.

In order to achieve the objectives mentioned above, the thesis develops a fully

automated resource bounds analysis for logic programs which is quite independent

of the particular resource of interest, based on the philosophy:"write once run

for any resource". To do this, the analysis uses a resource notion that is actually

application-dependent. In our context a resource is easily de�ned by the user through

a
exible and powerful assertion language which, for each external or built-in called

by a procedure in the program to be analyzed, provides its costin terms of that

particular resource. The objective of our method is to statically derive from these

elementary assertions upper and lower bounds on the amount of those resources that

each of the procedures in the program (and the program as a whole) will consume

3

Chapter 1. Introduction

or provide. This approach allows us to infer almost any kind ofresource without

changes in the implementation.

The automatic inference of resource usage information relieson other analyses

and the accuracy and e�ciency of these analyses have a deep impact on it. An

important issue in resource usage analysis of logic programs is that certain program

information must be �rst automatically inferred by other (abstract interpretation-

based) analyzers. Such analyses must, for example:

� Determine which argument is input or output. This is called the mode of an

argument.

� Infer the type of each argument, since Prolog is an untyped (or, rather, dy-

namically typed) programming language.

� Optionally, if lower bounds are to be inferred, detect whichprocedures fail or

not, which can improve considerably the precision of the results.

Set-Sharinganalyses aim to detect which variables do not point transitively to

the same memory location. This information can provide very accurate input/output

modes to the resource usage analysis. However, traditional Set-Sharing analyses can

also be quite ine�cient and they are not good choices when analyzing large programs.

Because of this, this thesis also aims at the development of e�cient Set-Sharing

analyses presenting two practical solutions.

We �rst present a more e�cient Set-Sharing analysis viawideningoperators. Tra-

ditionally, widening operators are used in the context of abstract interpretation [31]

to ensure, in some cases, the termination of the analysis. In our context, we use

widening to speed up the �xpoint computation. We de�ne the abstract functions re-

quired by standard analysis frameworks, and also de�ne several widening operators.

4

Chapter 1. Introduction

We then evaluate the e�ciency and precision of the resulting analyses, and discuss

the interactions between thresholds, precision, e�ciency andcost of the widenings.

In our second proposal, we present an alternative approach: we de�ne a new

representation that leverages the complement (or negative)sharing relationships of

the original sharing relationships, without loss of accuracy. The intuition is that

switching to the complement representation can dramaticallyreduce the number

of elements that need to be represented during the �xpoint computation when the

number of relationships becomes large.

Since this thesis is focused on the design and implementation oftools that help

the development of real-life programs, it cannot omit the fact that in numerous real

applications the source code is not available, but only its bytecode version. In this

context, Java bytecode has become very popular because of thesecurity features and

its platform-independent nature. Therefore, the thesis alsodevelops a tool for the

inference of resource usage information for Java bytecode. Itshould be also noticed

that, although this work is clearly inspired by the proposal for logic programs, an

adaptation from logic programs to Java programs is requiredbecause of issues such

as virtual method invocation, exceptions, unstructured control
ow, assignment, etc.

To �ll all these gaps, the thesis presents the architecture of an analysis tool which

takes a Java bytecode program and, a set of resources of interestand attempts to

compute an upper bound of its resource usage as a (closed form) expression depending

on the input data size. The inference of resource usage information requires �rst the

construction, from the program, of an intermediate representation representing the

Control Flow Graph (CFG) of the original program. This provides a uniform high-

level representation which allows us to reason compositionally about the cost. The

tool also includes an abstract interpretation-based �xpoint algorithm for analysis of

Java bytecode which is parametric on the abstract domain. The�xpoint algorithm

receives a CFG of the original program, and computes a safe approximation of the

5

Chapter 1. Introduction

state of the program in terms of the abstraction chosen. The �xpoint is e�cient (due

to memoization techniques and dependency tracking) and precise (because of the

top-down, context sensitive approach adopted). By plugging appropriate abstract

domains such as class hierarchy analysis and nullity into the �xpoint algorithm, our

framework can provide useful information that may improve the accuracy of the

resource usage information.

1.2 Main Contributions

We now enumerate the main contributions of this thesis. Since we have completed

some parts of the work in collaboration with other researchers,we also mention their

names and institutions to which they belong to, and the level of our contribution.

We also mention the publications resulting from each part of the work.

Regarding the problem of resource usage inference for logic programs:

� We propose a novel resource bounds analysis for logic programs which allows

automatically inferring both upper and lower bounds on the usage that a logic

program makes of a set of application programmer-de�nable resources of inter-

est. This work has been done in collaboration with Prof. PedroL�opez-Garc��a

(Technical University of Madrid) and Edison Mera (Complutense University of

Madrid) and has been published at the 23rd International Conference on Logic

Programming (ICLP) in 2007 [95]. I am the main contributor tothis work.

� We have studied the problem of scalable Set-Sharing analyses which play a

pivotal role in resource bounds analysis of logic programs proposing:

{ A Set-Sharing analysis via widening that accelerates the �xpoint compu-

tation. This work has been done in collaboration with Prof. Francisco

6

Chapter 1. Introduction

Bueno (Technical University of Madrid) and has been published at the 8th

International Symposium on Practical Aspects of Declarative Languages

(PADL) in 2006 [93]. I am the main contributor to this work.

{ A Set-Sharing analysis using a novel encoding that compacts the repre-

sentation of sharing relationships among variables by workingwith the

complement (or negative) set of the original relationships. This work has

been done in collaboration with Eric Trias and Elena S. Ackley(Univ.

of New Mexico) and Prof. Stephanie Forrest (Univ. of New Mexico)

and has been published at the 24th International Conference on Logic

Programming (ICLP) in 2008 [112]. I am the main contributor to this

work. Eric Trias and Elena S. Ackley contributed to the formalization

and implementation.

Regarding the problem of inference of resource usage inform ation for Java

bytecode:

� We present the architecture of a tool for inference of resourceusage information

for Java bytecode. The tool includes:

{ An intermediate language representing the Control Flow Graph(CFG) of

the original Java bytecode program.

{ An abstract interpretation-based �xpoint algorithm which is parametric

on the abstract domain.

{ A resource usage analysis that takes the CFG of a Java bytecode program

and a set of resources of interest and tries to compute an upper bound of

its resource usage. In addition, by plugging appropriate abstract domains

into the �xpoint algorithm, the tool may improve the accuracy of the

resource usage functions.

7

Chapter 1. Introduction

This tool has been developed in collaboration with Mario M�endez (Univ. of

New Mexico). The intermediate language has been published at 17th In-

ternational Symposium on Logic-based Program Synthesis and Transforma-

tion (LOPSTR) in 2007 [84]. The �xpoint algorithm has been published at

the ETAPS 2nd Workshop on Bytecode Semantics, Veri�cation, Analysis and

Transformation (BYTECODE'07) in 2007 [85] and at the ECOOP 9thWork-

shop on Formal Techniques for Java-like Programs (FTfJP) alsoin 2007 [94].

Finally, the resource usage analysis is submitted for publication at the time of

writting this thesis. Mario M�endez and I have contributed in approximately

equal amounts to this work.

1.3 Structure of the Work

The structure of the rest of this thesis is as follows:

� Chapter 2 provides background about logic programming required to under-

stand an important part of this thesis.

� Chapter 3 gives background about abstract interpretation that will be required

to understand several chapters of this thesis.

� Chapter 4 describes the resource bounds analysis for logic programs and presents

some experimental results of the implementation completed ofsuch analysis.

� Chapter 5 provides background information regarding the Set-Sharing analysis

that will be required to understand Chapters 6 and 7.

� Chapter 6 describes our �rst approach to Set-Sharing analysis using widening

operators. It also shows experimental results which allow evaluating the im-

8

Chapter 1. Introduction

provement obtained with respect to the original Set-Sharinganalysis and other

e�cient approaches.

� Chapter 7 presents the alternative approach to Set-Sharing working with the

negative of the sharing relationships. The chapter also shows an initial experi-

mental evaluation of the approach and compares it with respect to the original

Set-Sharing analysis.

� Chapter 8 describes the intermediate language and the abstract interpretation-

based �xpoint algorithm that we propose. Both components willbe used by

the analyzer shown in Chapter 9. We also show some experimental results

for standard benchmarks, which further support the feasibilityof the solution

adopted.

� Chapter 9 presents the generic resource usage analysis for Java bytecode pro-

posed. This chapter also presents experimental results that support the prac-

ticability of the approach.

� Finally, Chapter 10 presents our main conclusions and proposeddirections for

future work.

9

Chapter 2

Logic Programming

This chapter gives a brief review of basic notions of logic programming based mainly

on [71], [48], [49], and [35]. For a more extensive introduction to general aspects of

logic programming, the reader is referred to VanEmdem and Kowalski [115], Kowal-

ski [66], Lloyd[76], and Apt [6].

2.1 De�nitions: First-Order Logic and Syntax of

Logic Programs

De�nition 2.1.1. (Alphabet). An alphabetconsists of:

� a possible empty set offunction symbols. They are denoted by lower case letters

starting from the letter f , for examplef ,g,h, . . .

� predicate symbols. They are denoted by lower case letters beginning with p, for

instancep,q,r , . . .

10

Chapter 2. Logic Programming

� variables. They are denoted by upper case letters selected from the end ofthe

alphabet, such asX ,Y,Z , . . .

� connectives: : ,_ ,^ , ,$.

� quanti�ers : 8, 9.

� punctuation symbols, such as brackets and comma.

Functions and predicate symbols have an associatedarity that represents the

number of arguments. Constant symbols are a special case of functions when the

arity is zero. They are denoted by lower case letters starting from a,b,c, . . . On the

other hand, a predicate with arity of zero is called aproposition.

In the case of logic programs, the following notation is used:

� All variables are quanti�ed universally. Therefore, quanti�ers are omitted.

� The conjunction operator^ is replaced by a comma.

� Lists are represented as in Prolog such that [H jT] denotes the distinguished

functor :(H; T) where H is the head element of the list andT is the tail. The

empty list, nil , is denoted by [].

� A don't care variable is denoted by the symbol0 0.

We can refer to functions or predicates using their functor orpredicate symbols

and arity. For instance, the predicatep(X; Y) is denoted byp=2.

De�nition 2.1.2. (Term). The set of terms over some alphabet is de�ned recur-

sively as:

11

Chapter 2. Logic Programming

� a variable is a term.

� a constant is a term.

� a function symbolf of arity n > 0 applied to the sequencet1; : : : ; tn of n terms,

f (t1; : : : ; tn) is a term.

De�nition 2.1.3. (Atom). The set ofatoms over some alphabet is de�ned as:

� a proposition is an atom.

� a predicate symbolp of arity n > 0 applied to the sequencet1; : : : ; tn of n

terms, denoted byp(t1; : : : ; tn) is an atom.

De�nition 2.1.4. (Ground). A term or atom is ground if it does not contain any

variable.

De�nition 2.1.5. (Formula). A formula over some alphabet is recursively de�ned

as:

� an atom is a formula.

� if A and B are formulas then: A, A ^ B, A _ B, A B , and A $ B are also

formulas.

� if X is a variable and A is a formula, then8XA and 9XB are also formulas.

12

Chapter 2. Logic Programming

De�nition 2.1.6. (Literal) If A is an atom then the formulasA and : A are called

literals. A is called apositive literal and : A is callednegative literal. In this thesis,

we will only use positive literals.

De�nition 2.1.7. (Clause) . A clauseis a formula of the form8(H1 _ : : : ; Hm_

B1 ^ : : : ^ Bn) were m � 0, n � 0 and H1; : : : ; Hm ; B1; : : : ; Bn are all literals.

The left hand side of the formulaH1; : : : ; Hm is called theheadof the clause, and

the right hand sideB1; : : : ; Bn is called thebody of the clause.

De�nition 2.1.8. (Horn Clause) . A Horn clause is clause in which there is at

most one positive literal in the head of the clause.

� A fact is a clause with an empty body.

� A goal is a clause with an empty head and a non-empty body.

� A clause with only atoms containing no variables is called aground instance.

De�nition 2.1.9. (Substitution). Let X i 7! t i be a binding between a variable

X i and a term t i such that X i 6= t i . A substitution � is a �nite set of bindings,

� = f X 1 7! t1; : : : ; X n 7! tng weref X 1; : : : ; X ng are distinct.

De�nition 2.1.10. (Interpretation). Given a �rst-order languageL , an interpre-

tation I for L consists of:

� a non-empty setD called the domain of interpretationD.

� an assignment for each constant inL of an element inD.

13

Chapter 2. Logic Programming

� an assignment for eachn-ary function in L of a mapping fromD n ! D .

� an assignment for eachn-ary predicate in L of a subset ofD n .

De�nition 2.1.11. (Herbrand Universe). The Herbrand Universefor the lan-

guageL is the set of all ground terms that can be formed from the function symbols

including constants.

De�nition 2.1.12. (Herbrand Base). The Herbrand Basefor the languageL is

the set of all ground atoms that can be formed using predicate symbols and where

their arguments are in the Herbrand Universe.

If L is associated with a programP, we denote the Herbrand universe and base as

UP and BP , respectively. For instance, letP = f p(f (X)) p(X): p(a): q(a): q(b):g

be a program, then for the languageL associated withP, we can de�ne

� UP = f a; b; f (a); f (b); f (f (a)) ; f (f (b)) ; : : :g

� BP = f p(a); p(b); q(a); q(b); p(f (a)); p(f (b)); q(f (a)); : : :g

De�nition 2.1.13. (Herbrand interpretation). The Herbrand interpretation for

a languageL is the interpretation de�ned by:

� The domain of the interpretation isUP .

� Constants in L are mapped to themselves inUP .

� For all function symbols f=n in L and all terms t1; : : : ; tn 2 UP , f applied to

t1; : : : ; tn is mapped tof (t1; : : : ; tn).

� For all n-ary predicate p=n in L and all terms t1; : : : ; tn 2 UP , p applied to

t1; : : : ; tn is mapped to an element in} ((UP)n).

14

Chapter 2. Logic Programming

Thus, a Herbrand interpretation is uniquely determined by a subset of BP .

De�nition 2.1.14. (Model). A model of a formula (over a domainD) is an inter-

pretation in which the formula has the valuetrue assigned to it.

The concept of a model of a formula can be extended to sets of formulas. A

model of a setS of formulas is an interpretation which is a model of all formulas

in S. Two formulas arelogically equivalentif they have the same set of models. A

formula Q is a logical consequenceof a setS of formulas if Q is assigned the value

true in all models ofS and it is denoted byS j= Q.

De�nition 2.1.15. (Herbrand model). A Herbrand model of a program P of

the languageL is any Herbrand interpretation of L that is also a model ofP. A

Herbrand modelM � BP for a program P is a least Herbrand modelif no other

H 0 � H is also a Herbrand model ofP.

The least Herbrand model captures the meaning of a program. It contains all

the atomic logical consequences of the program. A formula that is true in the least

Herbrand model is true in all Herbrand models.

2.2 Semantics of Logic Programs

The semantics of a program is the meaning assigned to this program. For a logic

program P, its semantics is equivalent to the least Herbrand model ofP, and it

de�nes the set of atomic logical consequences ofP.

15

Chapter 2. Logic Programming

2.2.1 Declarative Semantics

The least Herbrand model can be obtained as the least �xpoint of the function TP .

The theoretical foundation of this semantics is based on amongother things, complete

lattices and monotone functionsover complete lattices. We postpone the de�nitions

of these concepts to the next chapter.

De�nition 2.2.1. (TP). Let P be a program, theimmediate consequence operator

TP : 2B P 2B P is de�ned as follows:

TP (I) = f H 2 BP j 9C 2 ground(P); C = H B1; :::; Bn and B1; :::; Bn 2 I g

whereground(C) = f C� j � is a valid substitution for C and var(C�) = ;g

De�nition 2.2.2. (Transfer function). Let T be a mapping 2D ! 2D , we de�ne

T " 0 = ? and T " i + 1 = T(T " T i). We also de�ne T " 1 as
S

i< 1 T " i .

Theorem 2.2.1. (Fixpoint characterization of the least Herbrand model).

Let P be a program, thenlfp (TP) = TP " 1 = HP where lfp is the least �xpoint

and HP is the least Herbrand model ofP.

Proof. Proved by Van Emdem and Kowalski in [115].

2.2.2 Operational Semantics

The operational semanticsof a logic program is based on atop-down (or 'goal ori-

ented') resolution and is namedSLD-resolution. This SLD-resolution can be de�ned

by the following algorithm whereP is a logic program andQ is a goal:

16

Chapter 2. Logic Programming

SLD(P,Q)

1: Initialize the set R to be f Qg

2: while R 6= ;

3: Take a literal A in R

4: Choose a renamed clauseA0 B1; :::; Bn from P, such that A and A0

unify with uni�er � .

5: if no such clause can be foundthen

return fail ; explore another branch.

6: else

7: RemoveA from R, add B1; :::; Bn to R

8: R R�

9: Q� Q�

10: if R = ; then

11: return Q� and succeed

Note that lines 3 and 4 do not specify the ordering of clauses within the program,

and the ordering of the goals in the bodies of the clauses, respectively. Di�erent logic

programming systems may de�ne di�erent strategies for each case. In this thesis,

we concentrate onProlog (PROgramming in LOGic). It was the �rst practical logic

programming language and it still is the most widely used and e�ciently implemented

today. It was devised by the group led by A. Colmenauer at the U. ofMarseille. They

chose for Prolog an extremely simpleimplicit control strategy. The following two rules

determine Prolog'scontrol strategy:

� Search rule, line 3: given a goal, the �rst clause whose head uni�es with the

goal, scanning from top to bottom of the program, is selected. Then the goals in

the body of the clause are executed in the order determined by thecomputation

rule below. If the choice does not lead to a solution (i.e. it leads to fail), all

17

Chapter 2. Logic Programming

resolution steps and variable substitutions (i.e. all 'bindings') done since the

last such choice are undone, the next clause whose head matches with the

goal is selected, and execution continues from there. This technique is called

backtracking.

� Computation rule, line 4: once a clause is selected (using thesearch ruleabove),

the goals in the body of the clause are executed one by one in left-to-right order.

De�nition 2.2.3. (Success set). The success setis the set of all grounds atoms

SuccP = f b j SLD(P; Q) = b; Q is a goalg. Then, SuccP corresponds to the least

Herbrand model ofP.

2.3 Uni�cation

In the SLD-resolution algorithm explained above, we omitteddeliberately one of the

its basic mechanisms calleduni�cation and de�ned by Alan Robinson [103] (line 4).

Two atoms pa(ta1; :::; tam) and pb(tb1; :::; tbn) are said to beuni�able, if they have

identical predicate symbols (i.e.,pa = pb), they have the same arity (i.e.,n = m),

and all their terms are pairwise (i.e.,ta1 vs. tb1; ta2 vs. tb2 etc.) uni�able. Two

terms, ta and tb are uni�able if the following recursive algorithm succeeds for them:

1. if ta is a variable which appears intb fail 1; else

2. if ta is a variable, and tb is not, then succeed , and substitute tb for all

occurrences ofta; else

1This \check" (referred to as the occurs check) is sometimes omitted in practical im-
plementations because of the overhead involved in performing it.

18

Chapter 2. Logic Programming

3. if both ta and tb are variables, thensucceed , keeping them as variables, but

giving them the same name. These variables are said toshare: if a substitution

is done for one of them it will also be done for the other;else

4. if ta is a constant then,if tb is a constant and both constants are identical,

succeed , else fail ; else

5. ta is a structure (compound term); then,if tb is also a structure, they have

identical functors and arity, and all their respective termsare uni�able (using

this algorithm recursively), succeed ; else

6. fail .

2.4 Non-Determinism

At this point, it should be fairly clear from all descriptions given above that there

are two distinct components during the execution of a logic program:

1. The programP, i.e., the set of rules and facts, provided by the user (including

the query goal, Q).

2. An evaluator of the program, which is in charge of answering the query using

the SLD-resolution algorithm given above.

It should also be clear from that description that there are two occasions, lines

3 and 4 in the SLD-resolution algorithm, in which the next step to be taken by the

program evaluator is not uniquely determined. This is the origin of the two basic

types of non-determinism present in Logic programs [66]:

19

Chapter 2. Logic Programming

� non-determinism1: if several clause heads unify with the selected goal, thepol-

icy used by the program evaluator for performing this selection iscalled the

search rule. The search rule also determines whether the remaining choices will

also be eventually tried or not. This results in two subtypes ofnondetermin-

ism1:

{ 'Don't care' non-determinism1: once a choice is made the systemcommits

to that choice.

{ 'Don't know' non-determinism1: more than one of the possible choices

may eventually be tried in the search for a solution.

� non-determinism2: if the current query goal contains several goals (procedure

calls) the policy used by the program evaluator for performingthis selection is

called the computation rule.

It is important to note that modifying the search rule a�ects the order and number

of solutions which can be obtained from the system: although SLD-resolutiondoes

not impose a particular order in the choices made by the search rule, completeness

(i.e., the guarantee of �nding all possible solutions) is only preserved if afair rule

is chosen, i.e., one which will ensure that all possible paths in the search spacewill

eventually be explored. Systems which use only \don't care" non-determinism1 are

therefore incomplete (also, they can only provide at most one solution path for a

given query goal). Systems which use 'don't know' non-determinism1 can provide

more than one solution to a given query. Their degree of completeness depends on

the type of search rule being used. Since most computation rulesareexhaustive(i.e.,

they will eventually invoke all goals in the body of a clause) the choice of one or

another will only a�ect the behavior of the system, but not the number of solutions

found.

20

Chapter 2. Logic Programming

2.5 Modes in Logic Programming

One of the distinctive features of logic programs is that predicates can run in di�erent

modes, i.e., there is no priori notion of input and output. This allows a form of code

reuse that is not available (or supported) in other programming languages. For

instance, consider the quicksort algorithm2 implemented by the followingqsort/2

program:

qsort([],[]).

qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L2,R2),

qsort(L1,R1),

append(R1,[X|R2],R).

partition([],_,[],[]).

partition([E|R],C,[E|Left1],Right):-

E .<. C, !,

partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):-

partition(R,C,Left,Right1).

append([],X,X).

append([H|X],Y,[H|Z]):- append(X,Y,Z).

This program can be used to answer questions of di�erent kinds:

� Given an arbitrary list, return all its elements sorted:

2It is written using Constraint Logic Programming [62] to avoid an instantiation error
during the execution of </2 when its arguments are not instantiated.

21

Chapter 2. Logic Programming

| ?- qsort([2,1,4,3],L).

L = [1,2,3,4] ?

yes

� but also, given a sorted list, return all its possible permutations:

| ?- qsort(L,[1,2,3,4]).

L = [1,2,3,4] ;

L = [1,2,4,3] ;

...

These di�erent ways of using a logic program are usually referred to by saying

that the programs is used in di�erentmodes. Mode information is important mainly

for compiler optimizations. Mode analysisdeals with analyzing the possible modes

in which a predicate may be called within a particular program in order to obtain

information that may be useful for specializing the predicateand thus helping the

compiler to implement it more e�ciently.

In this thesis, mode information is also essential since it has a deep impact on the

correctness of the resource usage analysis for logic programs described in Chapter 4.

In particular, the same predicate with di�erent modes may have di�erent complexi-

ties. For instance, suppose we would like to infer an upper bound of the number of

resolution steps during the execution ofqsort/2 . If we run the program with the

�rst argument instantiated to a list, then the upper bound on the number of steps

is O(n2) where n is the length of the list. However, if the �rst argument is free (not

instantiated) and the second argument is a sorted list, then the upper bound on the

number of resolution steps is factorial.

Therefore, a precise inference of predicate modes is very important for the re-

source usage analysis. In Chapters 6 and 7, we will propose two di�erent analyses

22

Chapter 2. Logic Programming

that can be used for inferring precise mode information with special emphasis on

e�ciency.

2.6 The Ciao Prolog System

In this section, we provide a brief description of the Prolog system used in this thesis,

Ciao, and its preprocessor,CiaoPP, that contains a number of program analyzers, and

into which all the analyses presented in this thesis have been integrated. Finally, we

also describe a subset of the assertion language used inCiaoPPthat will be necessary

to understand the Prolog examples shown in this thesis.

Ciao [21, 27, 53] is a multiparadigm programming language with anadvanced

programming environment that relies on a high-performanceProlog-based engine.

Its modular approach allows both restricting and augmentingthe language through

libraries in a well-controlled fashion. This allows providing signi�cant extensions

which makeCiao a next-generation logic-programming language as well as a multi-

paradigm programming system. These advanced features together with the capabil-

ities already known of standard Prolog engines persuaded us tochooseCiao as the

main program development system in this thesis.

CiaoPP[52, 54], the preprocessor of theCiao system, is a novel programming

framework which uses extensively abstract interpretation as afundamental tool in the

program development process to obtain information about theprogram. Then, this

information is used to verify programs, to detect bugs with respect to partial speci-

�cations written using assertions (in the program itself and/orin system libraries),

to generate run-time tests for properties which cannot be checked completely at

compile-time and simplify them, and to perform high-level program transformations

such as multiple abstract specialization, parallelization, and resource usage control,

all in a provably correct way. The usage ofCiaoPPin this thesis is twofold. On one

23

Chapter 2. Logic Programming

hand, the tools available inCiaoPPsuch as e�cient and precise �xpoint algorithms,

static analysis algorithms, abstract veri�cation code, etc. are taken as starting point

for the analyses developed in this thesis; on the other hand, in this thesis we provide

new analyses which have been integrated into the preprocessor.

One of these advanced features is the assertion language [22, 98] in which (partial)

speci�cations are written for program validation and debugging. Such assertions are

simply linguistic constructions which allow expressing properties of programs. One

of the most useful characteristics of the assertions used inCiaoPPis that they may

be used in di�erent contexts and for many di�erent purposes. First, any assertions

present in programs can be processed by an autodocumenter (lpdoc [50]) in order to

generate useful documentation. Also, assertions are used asspeci�cations which are

then compared byCiaoPPinteractively during program development with the results

of analysis in order to�nd bugs statically, verify that the program complies with the

assertions, or even generate automatically proofs of correctness that can be shipped

with programs and checked easily at the receiving end (using the proof/abstraction

carrying codeapproach [4]). Even if a program contains no user-provided assertions,

CiaoPPcan check the program against the assertions contained in the libraries used

by the program, thus potentially catching additional bugs at compile time. For

homogeneity, and to ease information exchange among the autodocumenter and the

di�erent checkers and analyzers, analysis results are reported using also the assertion

language |which, since it is readable by humans, can be inspected by a programmer,

for example to make sure that the results of the analyses agree with the intended

meaning of the program.

Assertions also allow programmers to describe the relevant properties of modules

or classes which are not yet written or are written in other languages. This is also

done in other languages but often using di�erent types of assertions for each purpose.

In contrast in Ciao the same assertion language is used again for this task. This,

24

Chapter 2. Logic Programming

interestingly, makes it possible to run checkers / veri�ers / documenters against

code which is only partially developed: the traditional \stubs", which have to be

changed later on for a working version, can be replaced by an assertion declaring

how the predicate should behave, with the advantage that thisdeclared behavior

can e�ectively be checked against its uses. Finally, assertions can be used to guide

analysis when precision is lost.

It is beyond the scope of this thesis to present the complete assertion language.

Instead, we concentrate on a subset of it which su�ces for illustrating the main

concepts involved in further chapters. The assertions that we will use adhere to the

following schema:

' :- pred Pred : PreCond => PostCond + Comp prop . '

which should be interpreted as

\for any call of the form Pred for which PreCond holds, if the call succeeds

then on successPostCond should also hold."

Properties which refer to the whole computation of the predicate, rather than the

input-output behavior can also be expressed by means of theComp prop �eld. These

properties should be interpreted as

\for any call of the form Pred for which PreCond holds, Comp prop

should also hold for the computation ofPred."

We will illustrate this subset of the assertion language with the following example

that presents (part of) the previously introducedCiao quicksort program implement-

ing the algorithm for sorting lists in ascending order. Predicate qsort/2 is annotated

25

Chapter 2. Logic Programming

with a predicate assertion which expresses properties that the user expects should

hold for the program.

:- pred qsort(A,B) : list(A) * var(B)

=> list(A) * list(B)

+ not_fail.

qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L2,R2),

qsort(L1,R1),

append(R1,[X|R2],R).

qsort([],[]).

In qsort/2 , examples ofPreCond and PostCond are type and instantiation dec-

larations such as, e.g.,list(A) , list(B) , and var(B) . list(A) denotes the variable

A is instantiated to a polymorphic list. var(B) expresses that B is a free variable,

i.e., unbounded variable. An example of aComp prop property is not fail which

expresses that if the predicate is called with the �rst argumentinstantiated to a list

then the predicate should not fail. Another example of aComp prop property is the

resource usage of a predicate which we will describe in Chapter 4. Note also that a

property may be one out of a prede�ned set, including extra-logical properties such

as, e.g.,var , gnd (ground term), atm (atoms), etc, or, in principle, predicates de�ned

by the user, using the full underlying logic programming language (but which must

satisfy some properties such as, e.g., terminating for any possiblecall).

Finally, a predicate assertion may be extended to the following schema:

' :- pred Tag Pred : PreCond => PostCond + Comp prop . '

Having at most one of the following tags in front of the assertion:

26

Chapter 2. Logic Programming

� check used to mark the corresponding assertion as expressing an expected

property of the �nal program (intended property).

� true indicates that the property holds for the program at hand (actual prop-

erty).

� trust . The property holds for the program at hand. The di�erence with the

above is that this information is given by the user and it may not be possible

to infer it automatically.

� checked. A check assertion which expresses an intended property is rewritten

with the status checked during compile-time checking when such property is

proved to actually hold in the current version of the program for any valid

initial query.

� false . Similarly, a check assertion is rewritten with the statusfalse during

compile-time checking when such property is proved not to hold in the cur-

rent version of the program for some valid initial query. In addition, an error

message will be issued by the preprocessor.

27

Chapter 3

Abstract Interpretation

Most program models are in�nite such as e.g., theTP semantics in Section 2.2.1.

Thus, the least �xed point of TP cannot be computed in general in a �nite amount of

time. Fortunately, there are some formal techniques that provide safe approximations

(i.e., so that the success set of the program is included in the approximation) which

are computable in �nite time. In this section, we provide some background on

abstract interpretation, a technique used for approximating the concrete semantics

of programs in this thesis.

Abstract interpretation [31] is a theory of approximation of mathematical struc-

tures, in particular those involved in the semantic models of programs. The idea

behind abstract interpretation is to "mimic" the execution of a program using an

abstraction of the concrete semantics of the program to approximate undecidable or

very complex properties. The abstraction of the semantics equipped with a structure

(e.g., ordering) may involve a simpler abstraction of the datavalues that variables

may take.

28

Chapter 3. Abstract Interpretation

3.1 De�nitions

De�nition 3.1.1. (Partial ordered set, poset). A partial order set is a set and

a binary relation such that the relation is:

1. Re
exive: x v x is in the relation.

2. Transitive : if x v y and y v z then x v z.

3. Antisymmetric: if x v y and y v x then x = y.

De�nition 3.1.2. (Lower bound). Given a setS and T, a subset ofS, z 2 S is a

lower boundof T if and only if for all x 2 T, z v x.

De�nition 3.1.3. (Upper bound). Given a setS and T, a subset ofS, z 2 S is

a upper boundof T if and only if for all x 2 T, x v z.

De�nition 3.1.4. (Greatest Lower bound). Given a setS and T, a subset ofS,

z is the greatest lower boundof T if and only if:

1. z is a lower bound ofT, and

2. for all x a lower bound ofT, x v z.

De�nition 3.1.5. (Least Upper bound). Given a setS and T, a subset ofS, z

is the least upper boundof T if and only if:

1. z is an upper bound ofT, and

2. for all x an upper bound ofT, z v x.

29

Chapter 3. Abstract Interpretation

De�nition 3.1.6. (Chain). For a poset T, a subsetS � T is a chain if for all

s1; s2 2 S then s1 v s2 or s2 v s1.

De�nition 3.1.7. (Ascending Chain Condition). A poset S has theAscending

Chain Condition if every ascending chains1 v s2 v : : : of elements inS is eventually

stationary. A chain is stationary if there exists ann 2 N such that sm = sn for all

m > n .

De�nition 3.1.8. (Completely partially ordered set, cpo). A completely par-

tially ordered setS, also called acomplete lattice, is a poset with the further restric-

tions that:

1. Every subset ofS has a unique greatest lower bound.

2. Every chain ofS has a unique least upper bound.

3.2 Galois Connections

An abstract semantic object is a �nite representation of a, possibly in�nite, set of

actual semantic objects in the concrete domain (D). The set of all possible abstract

semantic values represents anabstract domain (D �) which is usually a complete

lattice or cpo which is ascending chain �nite. In this thesis, werestrict ourselves

to complete lattices over sets both for the concretehD; vi and abstract hD � ; vi

domains. An abstraction function describes elements ofD in terms of elements in

D � :

� : D 7! D �

30

Chapter 3. Abstract Interpretation

Similarly, a concretization function de�nes the mapping from elements ofD � to D:

 : D � 7! D

The concrete and abstract domains are related byGalois Connections.

De�nition 3.2.1. (Galois Connection). hD; �;
; D � i is a Galois Connection

between the latticeshD; vi and hD � ; vi if and only if:

1. � and
 are monotonic.

2. 8x 2 D :
 (� (x)) w x

3. 8y 2 D � : � (
 (y)) v y

De�nition 3.2.2. (Galois Insertion). A Galois Insertion is a Galois Connection

satisfying: 8y 2 D � : � (
 (y)) = y. Therefore, hD; �;
; D � i is a Galois Insertion

between the latticeshD; vi and hD � ; vi if and only if:

8x 2 D :
 (� (x)) w x and 8y 2 D � : � (
 (y)) = y: (3.1)

The abstract domainD � is usually constructed with the objective of computing

approximations of the semantics of a given program. Thus, all operations in the

abstract domain also have to abstract their concrete counterparts. In particular, if

the semantic operatorSP can be decomposed in lower level operations, and their

abstract counterparts are locally correct w.r.t. them, thenan abstract semantic op-

erator S�
P can be de�ned which is correct w.r.t.SP . This means that
 (S�

P (� (x)) is

31

Chapter 3. Abstract Interpretation

an approximation of SP (x) in D, and consequently,
 (lfp (S�
P)) is an approximation

of the meaning of the programP, denoted by [[P]]. We will denote lfp (S�
P) as [[P]]� .

The fundamental theorem of abstract interpretation provides the following result:

Theorem 3.2.1. Let hD; �;
; D � i be a Galois Insertion and letSP : D 7! D and

S�
P : D � 7! D � be monotonic functions such that8x 2 D :
 (S�

P (� (x)) w SP (x),

i.e., S�
P approximatesSP . Then:

 ([[P]]�) w [[P]] equivalently [[P]]� w � ([[P]])

i.e., [[P]]� approximates[[P]].

Proof. Proved by P.Cousot and R.Cousot in [31].

Therefore, the art of abstract interpretation can be described as involving the

following steps:

1. Choose an appropriate concrete semantics.

2. Provide good approximations of the basic operations in theconcrete semantics.

3. Compute the abstract least �xed point.

In practice, the abstract domains should be su�ciently simple toallow e�ective

computation of semantic approximations of programs. For example, Herbrand in-

terpretations of some alphabet may be mapped into an abstract domain where each

element represents a typing of predicates in some type system. For a given program

P the abstract operatorS�
P would allow then to compute a typing of the predicates

in the least Herbrand model ofP.

Example 3.2.1. A simple example of abstract interpretation in logic programming

can be constructed as follows. The concrete semantics (least Herbrand model) of a

32

Chapter 3. Abstract Interpretation

program P is [[P]] = l fp (TP). So the concrete domain isD = } (BP) (where BP is

the Herbrand base of the program).

We consider over-approximating the set of \succeeding predicates", i.e., those

whose predicate symbols appear in [[P]]. A possible abstraction is as follows. The

abstract domain is D � = } (B �
P), where B �

P is the set of predicate symbols ofP.

Let pred(A) denote the predicate symbol for an atomA. We de�ne the abstraction

function:

� : D ! D � such that � (I) = f pred(A) j A 2 I g:

Similarly, the concretization function is de�ned as:

 : D � ! D such that
 (I �) = f A 2 BP j pred(A) 2 I � g:

For example,

� (f p(a; b); p(c; d); q(a); r (a)g) = f p=2; q=1; r=1g

 (f p=2; q=1g) = f p(a; a); p(a; b); p(a; c); : : : ; q(a); q(b); : : :g:

Note that hD � ; �;
; D i is a Galois Insertion. The abstract semantic operator

T �
P : D � ! D � is de�ned as:

T �
P (I �) = f pred(A) j 9 (A B1; : : : ; Bn) 2 P 8 i 2 [1; n] : pred(B i) 2 I � g:

SinceD � is �nite and T �
P is monotonic, the analysis (applyingT �

P repeatedly until

�xpoint, starting from ;) will terminate in a �nite number of steps n and [[P]]� =

T �
P " n approximates [[P]]. For example, for the following programP,

p(X,Y) :- q(X), r(Y).

t(X) :- l(X).

m(X) :- s(X).

q(a). q(b).

r(a). r(c). r(X).

33

Chapter 3. Abstract Interpretation

we haveB �
P = f p=2; q=1; r=1; s=1; t=1; l=1; m=1g, and:

T �
P " 0 = ?

T �
P " 1 = T �

P (?) = f q=1; r=1g

T �
P " 2 = T �

P (f q=1; r=1g) = f q=1; r=1; p=2g

T �
P " 3 = T �

P (f q=1; r=1; p=2g) = f q=1; r=1; p=2g

SoT �
P " 2 = T �

P " 3 = f q=1; r=1; p=2g = [[P]]�

3.3 Widening

Widening is a technique often used to approximate the least �xed point ofa program.

Widening can be used to construct chains that converge to a �xedpoint much faster

than the direct application of a monotonic operator over complete lattices (such as

the transfer function in De�nition 2.2.2).

Widening is implemented throughwidening operators. How these operators are

constructed will a�ect the precision of the approximated �xedpoint, and the com-

putational cost of �nding the approximation. In general, there is a trade-o� between

precision and e�ciency in the process of accelerating the convergence of the �xpoint

computations.

De�nition 3.3.1. (Widening operator).

Let l1; l2 2 L be lattices, then an operatorO : L � L ! L is a widening operator

l1Ol2 if:

1. (soundness) It is an upper bound operator: l1 v l1Ol2 and l2 v l1Ol2.

2. (stationary) For any increasing chaina0 v a1 v a2 v : : : the chain b0 =

a0; b1 = b0Oa1; : : : ; bi +1 = bi Oai +1 ; : : : is not strictly increasing for v , that is, it

should be a stationary sequence.

34

Chapter 3. Abstract Interpretation

3.4 Abstract Functions Required by Logic Progra-

mming-based Analysis Frameworks

In this section, we outline the two main approaches for analysis of logic programs

based on abstract interpretation, and we also describe their core abstract operations.

This background is required to understand Chapters 5, 6, and 7.

Di�erent semantics de�nition styles lead to di�erent approaches to program anal-

ysis. There are mainly two approaches in the analysis of logic programs: top-down

and bottom-up analysis. The top-down (e.g., [117, 18, 88]) approach propagates the

information in the same direction asSLD-resolution does. Alternatively, bottom-up

(e.g., [81]) analyses propagate the information as in the computation of the least �x-

point of the immediate-consequences operatorTp. The main di�erence between the

top-down and bottom-up approaches is related togoal dependence. The top-down

analyses start with a particular (abstract) goal, and they are able to determine call

pattern information, i.e., information about speci�c procedure calls. On the other

hand, bottom-up analyses determine an approximation of the success set, which is

goal independent.

In top-down frameworks, the analysis of a clauseHead:- Body proceeds as fol-

lows (we follow the description and {at a high level{ the algorithm of [89, 88,

91]). There is a goalGoal for the predicate of Head, which is called in a con-

text represented by abstract substitutionCall on a set of variables (distinct from

vars(Head) [vars(Body)) which contains those ofGoal. Then the success ofGoal

by executing the above clause is represented by abstract substitution Succgiven in

Figure 3.1.

35

Chapter 3. Abstract Interpretation

Succ = extend(Call; Goal; P rime)
P rime = exitToSucc(project(Head; Exit); Goal; Head)
Exit = entryToExit (Body; Entry)
Entry = augment(F; callToEntry (P roj; Goal; Head))
P roj = project(Goal; Call)

Figure 3.1: Abstract functions required by top-down analyses

In Figure 3.1, F is any term with the variablesvars(Body) n vars(Head). Call ,

P rime, and Successare abstract substitutions (� �) of the form � � = f x1 7! d�
1 2

D � ; : : : ; xn 7! d�
n 2 D � g. The abstract functions in Figure 3.1 are described as:

� extend(Call; Goal; P rime) makes the framework inter-procedural updating the

caller's context,Call , with the callee's context,P rime, yielding a substitution

for the success ofGoal when it is called in a context represented by substitution

Call on a set of variables which contains those ofGoal, given that in such

context the success ofGoal is already represented by substitutionPrime on

the variables ofGoal. The domain of the resulting substitution is the same as

the domain ofCall .

� project(Goal; Call) removes all bindings (x i 7! d�
i) of a substitution Call =

f x1 7! d�
1 ; : : : xn 7! d�

n g such that the variablex i ; 1 � i � n does not appear in

Goal.

� augment(Goal; Call) extends the domain of an abstract substitutionCall to

the variables of a given termGoal. Thus, for each variablex i 2 vars(Goal),

the binding x i 7! > is added intoCall , where> is the top abstract value.

� entryToExit (Body; Entry) is given by the framework, and basically traverses

the body of a clause, analyzing each atom in turn. The exit abstract substitu-

tion is the abstract substitution after the last literal in Body, starting the �rst

36

Chapter 3. Abstract Interpretation

literal with Entry .

� callToEntry (P roj; Goal; Head) ("procedure entry") yields a substitution on

the variables ofHead which represents the e�ects of uni�cationGoal = Head

in a context represented by substitutionProj on the variables ofGoal.

� exitToSucc(Exit 0; Goal; Head) ("procedure exit") yields a substitution on the

variables ofGoal which represents the e�ects of uni�cationGoal = Head in a

context represented by substitutionExit 0 on the variables ofHead.

All these operations need to be de�ned speci�cally for a given abstract domain.

However,callToEntry and exitToSucccan be de�ned from the abstract uni�cation

operation (unify)1 as follows:

callToEntry (ASub; Goal; Head) = unify (ASub; Head; Goal)

exitToSucc(ASub; Goal; Head) = unify (ASub; Goal; Head)

Given an operationamgu(x; t; ASub) of abstract uni�cation for equation x = t,

wherex is a variable,t; t 1; and t2 are terms, andASub an abstract substitution (the

domain of which contains variablesvars(t) [f xg), then abstract uni�cation, unify ,

for equation t1 = t2, is given by:

unify (ASub; t1; t2) = project(t1; Amgu(solve(t1 = t2); augment(t1; ASub)))

Amgu(Eq; ASub) =

8
<

:
ASub if Eq = ;

Amgu(Eq0; amgu(x; t; ASub)) if Eq = Eq0 [f x = tg

such that solve(t1 = t2) denotes the solved form of uni�cation equationt1 = t2, i.e.,

the left hand side of the equation is a variable.

Finally, in addition to these operations, top-down frameworks also require the

de�nition of:
1unify is also domain-dependent.

37

Chapter 3. Abstract Interpretation

� init (Goal) generates an initial abstract substitution,Call = f x1 7! > ; : : : xn 7!

>g , for all x i 2 vars(Goal).

� equivalence(ASub1; ASub2) succeeds if and only ifASub1 is equivalent toASub2.

� join (ASub1; ASub2) merges the two abstract substitutionsASub1 and ASub2.

In the case of bottom-up frameworks the analysis is simpler thantop-down analy-

ses since only the following operations are required:init , equivalence, join , project,

augment, and amgu, and they can be de�ned as above.

38

Chapter 4

Resource Usage Analysis for Logic

Programs

This chapter presents the foundations of one of the major components and main

motivation of this thesis, a static analysis that infers both upper and lower bounds

on the usage that a logic program makes of a set of user-de�nable resources. The

inferred bounds will in general be functions of input data sizes. A resource in our

approach is a quite general, user-de�ned notion which associates a basic cost function

with elementary operations. The analysis then derives the related upper- and lower-

bound resource usage functions for all predicates in the program. This chapter

also presents an assertion language which is used to de�ne both suchresources and

resource-related properties that the system can then check based on the results of the

analysis. Finally, this chapter also shows some experimental evaluation with some

concrete resources such as execution steps, bytes sent or received by an application,

number of �les left open, number of accesses to a database, number of calls to a

predicate, heap memory usage, etc.

39

Chapter 4. Resource Usage Analysis for Logic Programs

4.1 Motivation

The importance of inferring information about the costs of computations for a variety

of applications is well recognized. These costs are usually related to execution steps

and, sometimes, time or memory. We propose an analyzer which allows automatically

inferring both upper and lower bounds on the usage that a logicprogram makes of

user-de�nable resources. Examples of such user-de�nable resources are bits sent or

received by an application over a socket, number of calls to a predicate, number

of �les left open, number of accesses to a database, energy consumption, monetary

units spent, disk space used, etc., as well as the more traditional execution steps,

execution time, or memory. We expect the inference of this kind of information to

be instrumental in a variety of applications, such as resource usage veri�cation and

debugging, certi�cation of resource consumption in mobile code, resource/granularity

control in parallel/distributed computing, or resource-oriented specialization.

In our approach aresourceis a user-de�ned, application-dependent notion which

associates a basic cost function with elementary operations in the base language

and/or to some predicates in libraries. In this sense, each resource is essentially a

user-de�ned counter. The user gives a name (such as, e.g.,bits) to the counter

and then de�nes via assertions how each elementary operation in the program (e.g.,

uni�cations, calls to builtins, external calls, etc.) increments or decrements that

counter. The use of resources obviously depends in practice on the sizes or values

of certain inputs to programs or predicates. Thus, in the assertions describing el-

ementary operations the counters may be incremented or decremented not only by

constants but also by amounts that arefunctions of input data sizes or values. The

objective of our approach is to statically derive from these elementary assertions and

the program text functions that yield upper and lower boundson the amount of

those resources that each of the predicates in the program (andthe program as a

whole) will consume or provide. The input to these functions will also be the sizes or

40

Chapter 4. Resource Usage Analysis for Logic Programs

value ranges of the topmost input data to the program or predicate being analyzed.

The structure of the rest of this chapter is as follows. Section 4.2 provides more

details about the size and resource usage functions inferred through a worked ex-

ample. In the following, Section 4.3.1 �rst presents in details the assertion lan-

guage proposed for de�ning resources and annotating elementary operations. Sec-

tion 4.3.2 shows how size relationships among program variables are determined,

and Sections 4.3.3 and 4.3.4 describe how the resource usage functions are inferred.

Section 4.4 shows some experimental results with concrete resources. Section 4.5

compares our approach with respect to the current state of the art, and �nally,

Section 4.6 summarizes our conclusions.

:- pred client(Opts, IBuf, OBuf)
: list(gnd) * list(byte) * var.

client([Host,Port],IBuf,OBuf) :-
connect(Host,Port,Stream),
exch_buffer(IBuf,Stream,OBuf),
close(Stream).

exch_buffer([],_,[]).
exch_buffer([B|Bs],Id,[B0|Bs0]) :-

exch_byte(B,Id,B0),
exch_buffer(Bs,Id,Bs0).

:- head_cost(ub,bits,0).
:- literal_cost(ub,bits,0).

/* SOCKET LIBRARY */
:- trust pred connect(Host,Port,S)

: atm * num * var
=> atm * num * atm
+ cost(ub,bits,0).

:- trust pred close(Stream)
: atm => atm
+ cost(ub,bits,0).

:- trust pred exch_byte(B,Id,B0)
: byte * atm * var
=> byte * atm * byte.
+ cost(ub,bits,8).

Figure 4.1: A simple client application.

41

Chapter 4. Resource Usage Analysis for Logic Programs

4.2 Worked Example

Consider a client application written in Ciao in Figure 4.1 that sends a data bu�er

(a list of bytes) through a socket and receives another (possibly transformed) data

bu�er. In this section, we will provide an overview of our approach with that pro-

gram.

A resourceis a user-de�ned, application dependent notion which associates a ba-

sic cost function with some user-selected predicates in the program. This is expressed

by adding annotations using our assertion language (Section 4.3.1) to the code. The

objective of the analysis is to safely approximate the usage that the program makes

of the resource. In the example, assume that we would like to obtain an upper

bound on the number of bits received by the application that we will call bits . We

assume that the program receives 8 bits each time thatexch byte/3 is called. This

fact is re
ected by the user by adding theComp prop assertion'cost(ub,bits,8)'

which will increment the counter associated with the upper-bound on the number

of bits received by 8. Similarly, we assume that open and close socket connec-

tions (connect/3 and close/1) do not imply any exchange of bits, as indicated by

'cost(ub,bits,0)' . In addition, the types and modes of the socket operations must

be given to the analysis by other analyses or by user-provided assertions. In this ex-

ample, we assume that the analysis does not have access to the codeof the socket

operations and hence, the user provides this information using trust assertions. For

now, we will omit deliberately the directives':- head cost(ub,bits,0)' and ':-

literal cost(ub,bits,0)' . The rest of this section describes the main steps ap-

plied by the analyzer to approximate the number of bits received of the program

depicted in Figure 4.1.

Step 1: Size metrics and mode inference. In the �rst step, the approach

needs to infer for each argument in the program the notion of size metrics. For

42

Chapter 4. Resource Usage Analysis for Logic Programs

instance, the length of a list, the depth of a term, the size of a term, etc. In addi-

tion, the analysis also needs to infer if each argument is inputor output (i.e., the

modes) in order to perform properly the size and resource usage analyses described

in Sections 4.3.2, 4.3.3, and 4.3.4. Input/output and size metrics information can

be required by the language (typed language), given by the user (via assertions), or,

as in our implementation, inferred automatically via analysis. In the example this

information is asserted by the user in case of the socket library (connect/3 , close/1 ,

and exch byte/3) and inferred automatically from the program for the predicates

client/3 and exch buffer/3 .

Step 2: Inference of data dependencies and size relationshi ps. In the sec-

ond step, the analysis �rstly yieldsargument dependency graphs for the clauses within

a strongly connected component, through a data
ow analysis. These graphs will be

used for inferringsize relationshipsfor each literal argument between the input and

output head arguments of every clause. The goal of this phase isthen to describe

the sizes of each body or head argument in terms of the size of someinput head

argument. In the example, assume theexch buffer/3 predicate. The analysis will

infer from the �rst clause that the size of the third argument is 0, i.e. empty list,

if the �rst argument is also an empty list. We denote this size relationship by the

equation:

	 3
exch buf fer (0;) = 0 (4.1)

where 	 3
exch buf fer describes the size of the third argument for the predicateexch buffer/3 .

The idea is that for eachk-output argument of a predicatep, the analysis de�nes

its size as a function 	k
p which takes as arguments the sizes of the input head argu-

ments ofp. Note that the size of the third argument does not depend on the second

argument. We denote this by using the don't care symbol ''. Similarly, the analysis

43

Chapter 4. Resource Usage Analysis for Logic Programs

will infer from the second clause the following equation:

	 3
exch buf fer (x;) = 	 3

exch buf fer (x � 1;) + 1 (4.2)

Since the clause is recursive the analysis describes the sizes using a symbolic ex-

pression (a recurrence equation). This symbolic expression means that the size of

the third argument is one plus the resulting size of calling recursively the predicate

exch buffer/3 where the size of the �rst input argument has been decreased by one.

Finally, the recurrence equation system shown above (Equations 4.1 and 4.2) must

be approximated by a recurrence solver in order to obtain a closed form solution. In

this case, our analysis yields the solution:

	 3
exch buf fer (x;) = x

i.e. the size of the third argument is proportional to the size of the �rst argument.

Step 3: Resource usage analysis. In this step, the analysis will use the size

metrics, modes, the data dependencies, and the size relationships inferred in previ-

ous steps, and also the user-de�ned resource-related assertions inorder to infer a

resource usage equation for each clause and further simplify theresulting obtaining

upper/lower bound closed form solutions. The resource analysis will statically de-

rive safe upper/lower bounds on the amount of resources that each of the predicates

consumes or provides. The result given by our analysis for an upper bound on the

number of bits received byexch buffer/3 in the case of the �rst clause is:

Cost(exch buf fer; ub; bits; h0; i) = 0

that is interpreted as "the upper bound of the number of bits received when the size

of the �rst input argument is zero results zero". Note that the sizes of the input

arguments is given by the tupleh0; i where the size of second input argument is

irrelevant since it does not a�ect the resource usage of the clause. Similarly, the

44

Chapter 4. Resource Usage Analysis for Logic Programs

analysis infers a resource usage equation for the second clause:

Cost(exch buf fer; ub; bits; hx; i) = 8 + Cost(exch buf fer; ub; bits; hx � 1; i)

that is interpreted as "the upper bound of the number of bits received when the size

of the �rst input argument is x results in a symbolic expression formed by 8 (i.e.,

the resource usage ofexch byte/3) plus the resource usage of the recursive call to

exch buffer/3 in which the size of the �rst input argument has been decreased by

one. Again, the size of the second input argument ofexch buffer/3 is irrelevant.

Finally, this equation system is solved by a recurrence solver, resulting in the closed

form:

Cost(exch buf fer; ub; bits; hx; i) = 8 � x

Note that since we know from the user-de�ned assertions thatconnect/3 andclose/1

receive no bits, then

Cost(client; ub; bits;h ; ni) = 8 � n

4.3 A Framework for Inference of Resource Usage

We can now describe in detail our framework, outlined in Section 4.2, for inferring

upper and lower bounds on the usage that a program makes of a set of user-de�nable

resources. Our basic approach is as follows. Given a predicate call p, let �(p; r; n)

denote the exact units of resourcer consumed or produced during the computation of

p for a tuple of argument sizesn. Note that, in general, the computation of �(p; r; n)

will be undecidable or very complex. Therefore, an expressionCost(p,ap,r ,n) is

determined at compile-time that approximates �(p; r; n) with approximation ap (i.e.,

upper-bound or lower-bound). For assuring the correctness of our approach, we must

always generate resource usage bounds functions such asCost(p,ap,r ,n) that hold the

following conditions:

45

Chapter 4. Resource Usage Analysis for Logic Programs

� If the analysis computes an upper-bound approximation, i.e., ap = ub, then:

�(p; r; n) � Cost(p,ub,r ,n) (4.3)

� Conversely, if the analysis computes a lower-boundap = lb , then:

Cost(p,lb ,r ,n) � �(p; r; n) (4.4)

Note that the analysis can always generate trivial upper and lower bounds,1

and �1 , in those cases where it cannot infer resource equations or �nd aclosed

form. Of course, the analysis should infer bounds as precise as possible.

Certain program information is �rst automatically inferred by other abstract

interpretation-based analyzers included inCiaoPPand then provided as input to the

size and resource analysis:

1. Inference of modes, i.e., determine which arguments are input or output.

2. Inference of types for each predicate argument.

3. Inference of size metrics for predicate arguments based on the type information.

4. Inference of non-failure information, i.e., determine which predicates should

fail.

The techniques involved in inferring this information are beyond the scope of this

thesis |see, e.g., [54] and its references for some examples.

The size of an output argument in a predicatep call depends in general on the size

of the input arguments in that call. For this reason, for eachk-output argument we

infer an expression which yields its size as a function of the input data sizes (i.e., 	 k
p).

Argument sizes are described in terms of size metrics. Typical sizemetrics are the ac-

tual value of a number, the length of a list, the size (number of constant and function

46

Chapter 4. Resource Usage Analysis for Logic Programs

symbols) of a term, etc. To this end, and using the input-output argument infor-

mation, argument dependency graphs are used to set up recurrence equations whose

solution yields size relationships between input and output arguments of predicate

calls. This information regarding argument sizes and other such as resource-related

assertions are then used to set up another set of recurrence equations whose solution

provides resource usage bound functions. Both the size and resource usage recurrence

equations must be solved by a recurrence equation solver. Although the operation

of such solvers is beyond the scope of the thesis our implementation does provide a

table-based solver (an evolution of the solver of the Caslog system[36]) which covers

a reasonable set of recurrence equations such as �rst-order and higher-order linear

recurrence equations in one variable with constant and polynomial coe�cients,divide

and conquer recurrence equations, etc. In addition, the systemallows the use of ex-

ternal solvers (such as, e.g. [12], Mathematica, Matlab, etc.). Note also that, since

we are computing upper/lower bounds, it su�ces to compute upper/lower bounds

on the solution of a set of recurrence equations, rather than an exact solution. This

allows obtaining anapproximateclosed form when the exact solution is not possible.

In further sections, we will describe each main component of ourframework.

In Section 4.3.1 we will �rst present the assertion language proposed for de�ning

resources and annotating elementary operations. Section 4.3.2 shows how size rela-

tionships among program variables are determined, Section 4.3.3 describes how the

resource usage bound functions are inferred, and �nally, Section 4.3.4 shows how

users can de�ne resources using our assertion language.

4.3.1 The Resource Assertion Language

We start by describing the assertion schema. This language is used for describing

resources and providing other input to the resource analysis, and is also the language

47

Chapter 4. Resource Usage Analysis for Logic Programs

in which the resource analysis produces its output. This assertion language is used

additionally to state resource-related speci�cations which can then be proved or

disproved based on the results of analysis following the scheme of[54], as already

mentioned in Chapter 2, allowing �nding bugs, verifying the program, etc.

The rules for the assertion language grammar are listed in Figure 4.2. In this

grammar V ar corresponds to variables written in the syntax for variables of the un-

derlying logic programming language (i.e., normally non-empty strings of characters

which start with a capital letter or underscore). Similarly,Num is any valid number

and Pred name any valid name for a predicate in the underlying programminglan-

guage, normally non-empty strings of characters which start with a lower-case letter

or are quoted. State prop corresponds to otherstate propertiessuch as modes and

types, and Comp prop stands for any other validcomputational property, see [54]

and its references.

Predicates can be annotated with zero or more assertions. These assertions

can refer to properties of the execution states when the predicate is called (Pre-

Cond), properties of the execution states when the predicate terminates execution

(PostCond), and properties which refer to the whole computation of thepredicate

(Comp prop), rather than the input-output behavior, which herein will be used only

for resource-related properties). The assertion schema that allows de�ning the Pre-

Cond, PostCond, andComp prop parts together in a compact way viapred assertions

which was already described in Section 2.6. In addition, there may be a set of global

head cost and literal cost declarations (i.e., directives), one for each resource

and approximation direction. TheRes name �elds determine which resource the as-

sertion refers to. TheseRes names are user-provided identi�ers which give a name

to each particular resource that needs to be tracked. Resources do not need to be

declared in any other way, i.e., the set of resources that the system is aware of is

simply the set of such names that appear in assertions which are in the scope. The

48

Chapter 4. Resource Usage Analysis for Logic Programs

hprogram assrt i ::= :- hstatus f lag i hpred assrt i .
j :- head cost (happroxi ,Res name,� H).
j :- literal cost (happroxi ,Res name,� L).

hstatus f lag i ::= trust j check j true j checked j false j �
hpred assrt i ::= pred hpred desci hpre condi hpost condi hcomp condi .
hpred desci ::= Pred name j Pred name(hargsi)
hargsi ::= Var j Var, hargsi
hpre condi ::= : hstate propsi j �
hpost condi ::= = > hstate propsi j �
hcomp condi ::= + hcomp propsi j �
hstate propi ::= size (Var, happroxi ,hsz metric i ,harith expri) j State prop
hstate propsi ::= hstate propi j hstate propi , hstate propsi
hcomp propi ::= size metric (Var, hsz metric i) j hcosti j Comp prop
hcomp propsi ::= hcomp propi j hcomp propi , hcomp propsi
hcosti ::= cost (happroxi ,Res name,harith expri)
happroxi ::= ub j lb j oub j olb
hsz metric i ::= value j length j term size j depth j void
harith expri ::= � h arith expri j harith expri ! j hquantif ier i harith expri

j harith expri hbin opi harith expri
j exp(harith expri ,Num) j log (Num , harith expri)
j Num j hsz metric i (Var)

hbin opi ::= + j - j * j /
hquantif ier i ::=

P
j

Q

Figure 4.2: Syntax of the resource assertion language

happroxi �elds state whether harith expri is providing an upper bound or a lower

bound (with oub meaning it is a \big O" expression, i.e., with only the order infor-

mation, and olb meaning it is an
 asymptotic lower bound). For instance, given

the upper and lower boundsUB = 2 � n + 5 and LB = 2n + n2 + 1, the O(UB) = n

(oub) and
(LB) = 2 n (olb).

The �rst and most fundamental use of assertions in our context is todescribe

how the execution of some predicates increments or decrements the usage of the

resources de�ned in the program. The purpose of analysis is thento infer the resource

usage of all predicates in the program. The "head cost (happroxi , Resname, � H)"

declarations are used to describe how predicates in general update the value for

49

Chapter 4. Resource Usage Analysis for Logic Programs

those resources that are applicable to predicate heads such as counting the number

of arguments passed or total execution steps {see Section 4.3.3.The de�nition of

� H (cl head; arith expr) ! B is provided by means a user-de�ned (or imported)

predicate, written in the source language, and which will be called by the analyzer

when the clause head is analyzed. This code gets loaded into the compiler in a similar

way to, e.g., macro expansion code. The "literal cost (happroxi , Resname, � L)"

declarations describe how predicate bodies update the valueof certain resources

which are applicable to body literals such as, for example, number of uni�cations.

In this case, � L (bodylit; arith expr) ! B is also user- (or library-)provided code

which will be executed when the body literals of di�erent predicates are analyzed.

The actual resource usage bound functions for each builtin or external (e.g., de�ned in

another language) predicate used in the program are providedby a kind of Comp prop

property expressed by "cost (happroxi , Resname,harith expri)". Additionally, size

metrics ("size metric (Var,hsz metric i)") information can be provided by users if

needed, but note that in practice size metrics can often be derived automatically

from the inferred types. Finally, assertions can also be used, viathe PreCond and

PostCond �elds, to declare relationships between the data sizes of the inputs and

outputs of predicates ("size (Var,happroxi ,hsz metric i ,harith expri)"), which may

be needed by our analysis in case of external or builtins predicates.

Therefore, as mentioned in Section 4.1, users should describe how each predicate

increments or decrements the counters associated with each resource by de�ning two

assertions: head cost and literal cost . Additionally, for each builtin or exter-

nal predicate p an assertion of type ':- trust pred p : PreCond => PostCond

+ Comp prop . ' should be also de�ned. PreCond will contain typically type dec-

larations, PostCond also type declarations and properties such assize . Finally,

Comp prop will include properties such as e.g.,size metric and cost . Optionally,

users also can guide the analysis (i.e., improve its precision) by de�ning a similar

schema for other predicates. In this case, the analysis will compute the most precise

50

Chapter 4. Resource Usage Analysis for Logic Programs

approximation between the information provided by the assertion and the informa-

tion inferred by analysis.

4.3.2 Size Analysis

We will now explain the foundations behind the argument dependency-based method

for inferring bounds on the sizes of output arguments in the head of a predicate as a

function of the sizes of input arguments to the predicate. Besides this, as a result of

the size analysis, we have bounds on the size of each input argument to body literals

in a clause as a function of the size of the input arguments to thehead of that clause.

The size of the input arguments to body literals will be used later to infer functions

which give bounds on the resource usage of body literals in terms of the sizes of the

input arguments to the head. We adopt the approach of Debray et al. [36, 37] for

the inference of upper bounds on argument sizes and [38] for lower bounds.

The size of an input is de�ned in terms of metrics. Bysize metricswe refer to

a total function that, given a term, returns an arithmetic expression or an unde-

�ned value ? , possibly in terms of other input argument sizes. One of the di�erence

with respect to Debray's approach is that our analysis is parametric on size met-

rics, which can be de�ned by the user throughsize metric and size assertions.

For concreteness, several size metrics are de�ned in our system. Wede�ne here a

size(hsz metric i ; t) operation which returns the size of a termt under the metric

hsz metric i for those prede�ned metrics:

� If size metrics is the integer value and let	 be an arithmetic operator (+; � ; � ,

. . .) then:

51

Chapter 4. Resource Usage Analysis for Logic Programs

size(value; t) =

8
>>><

>>>:

t if t is an integer

	 (size(value; t1); : : : ; size(value; tn)) if t = 	 (t1; : : : ; tn)

? otherwise.

� If size metrics is the length of a list, then:

size(length; t) =

8
>>><

>>>:

0 if t = []

1 + size(length; T) if t = [H j T]

? otherwise.

� If size metrics is the size of a term, then:

size(term size; t) =

8
>>><

>>>:

1 if t is a constant

1 +
P n

i =1 size(term size; t i) if t = f (t1; : : : ; tn)

? otherwise.

� If size metrics is the depth of a term, then:

size(depth; t) =

8
>>><

>>>:

0 if t is a constant

1 + maxf size(depth; t i)g if t = f (t1; : : : ; tn)

? otherwise.

Some examples:size(length; [X; Y]) = 2, size(length; [X jY]) = ? , size(value; 3 + 7) =

10, size(term size; f (g(a); b) = 4, and size(depth; f (2; f (3; nil; nil); nil) = 2.

Since our approach assumes the general case in which the input program is not

normalized (i.e., functor and predicate symbols may have arguments that are not

52

Chapter 4. Resource Usage Analysis for Logic Programs

atoms or variables), sometimes we need to establish size relationships as the di�er-

ence between the sizes of two terms. This relationship is provided by the function

di� (hsz metric i ; t1; t2) operation, which returns an approximation of the di�erence

between the size oft1 and the size oft2 under the metric hsz metric i . We de�ne it

again for our prede�ned metrics:

� If size metrics is the integer value, then:

di� (value; t1; t2) =

8
<

:
t2 � t1 if t1 and t2 are integers

? otherwise.

� If size metrics is the length of a list, then:

di� (length; t1; t2) =

8
>>>>><

>>>>>:

0 if t1 � t2

di� (length; t; t 2) � 1 if t1 = [jt] for some term t

di� (length; t1; t) + 1 if t2 = [jt] for some term t

? otherwise.

For instance,di� (length; [X jXs]; Xs) = � 1 and di� (length; Y s;[Y jY s]) = 1.

� If size metrics is the size of a term, then:

di� (term size; t1; t2) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

0 if t1 � t2

(sz(t2(i)) � size(term size; t1)) + 1 if t1 = f (s1; : : : ; sn)

si � t2,9i; 1 � i � n

(sz(t1(i)) + size(term size; t2)) � 1 if t2 = f (s1; : : : ; sn)

si � t1,9i; 1 � i � n

? otherwise.

where sz(t(i)) is a symbolic expression that represents the size of thei -th

argument position of the t term. For example, di� (term size; g(X; Y); Y) =

sz(g(2)) � 2, and similarly, di� (term size; B; h(A; B; C)) = sz(h(2)) + 3.

53

Chapter 4. Resource Usage Analysis for Logic Programs

� If size metrics is the depth of a term, then:

di� (depth; t1; t2) =

8
>>>>><

>>>>>:

0 if t1 � t2

maxf di� (depth; si ; t2)g � 1 if t1 = f (s1; : : : ; sn)

maxf di� (depth; si ; t1)g + 1 if t2 = f (s1; : : : ; sn)

? otherwise.

where the maximum between? and a numbern is n. For example,di� (depth; tree-

(X; Lef t; Right); Right) = maxf? ; ? ; 0g� 1 = � 1, and conversely,di� (depth; Lef t -

; tree(X; Lef t; Right)) = maxf? ; 0; ?g + 1 = 1.

De�nition 4.3.1. (Argument dependency graph). . An argument dependency

graph G = (V; E) is a directed acyclic graph such thatV denotes argument positions

of a clause, and there is an edge from a noden1 to a node n2, (n1; n2) 2 E if the

variable bindings generated byn1 are used to construct the term occurring atn2.

Argument dependency graphs are used to represent the data dependency between

argument positions in a clause body, and between them and those in the clause head.

De�nition 4.3.2. (Predecessor, predec). Let G = (V; E) be an argument depen-

dency graph, and (n1; n2) and edge ofE, then the noden1 is said to be apredecessor

of the noden2. We will assume apredecfunction that takes an argument dependency

graph, a literal, and a parameter position and returns its nearest predecessor in the

graph.

Figure 4.3 shows the argument dependency graph ofexch buffer/3 for its recur-

sive clause. Solid rectangles and arrows denote input arguments and dependencies

between input arguments, respectively. Similarly, dashed rectangles and arrows rep-

resent output arguments and dependencies between input and output arguments.

54

Chapter 4. Resource Usage Analysis for Logic Programs

exch_byte[1] exch_byte[2] exch_byte[3]

exch_buffer[1] exch_buffer[2] exch_buffer[3]

head[3]

head[2] head[1]

Figure 4.3: Argument dependency graph for the recursive clauseof exch buffer/3

Using the sizeand di� functions and the argument dependency graph for every

clause, the analysis will traverse each strongly-connected component in reverse topo-

logical order in order to set up size relations for expressing thesize of each argument

position in terms of the sizes of its predecessors for every clause. Let sz(i) denote the

size of the term occurring at an argument positioni . For convenience, we will omit

the argument hsz metric i in the sizeand di� functions in the rest of the chapter.

Then, the size relationships can be obtained as follows:

� Output arguments. Let i 1; : : : ; in denote the input argument positions of the

predicatep, and let 	 k
p be a function that represents the size of thek-th (output)

argument position of the predicatep in terms of the size of its input argument

positions i 1; : : : ; in . Then the following size relation is set up:

sz(k) � 	 k
p(sz(i 1); : : : ; sz(i n)) (4.5)

1. If p is a recursive literal de�ned in the body of a clause, then 	kp(sz(i 1); : : : ; sz(i n))

is a symbolic expression. For instance, the size of the output argument of

the recursive call ofexch buffer/3 in the second clause should be de�ned

as 	 3
exch buf fer (sz(exch buf fer 1); sz(exch buf fer 2)).

2. Otherwise, if p is a non-recursive literal in the body of a clause then

the function 	 k
p has been recursively computed, and thus we replace

55

Chapter 4. Resource Usage Analysis for Logic Programs

	 k
p(sz(i 1); : : : ; sz(i n)) by the (explicit) expression resulting from the ap-

plication of the function 	 k
p to sz(i 1); : : : ; sz(i n). For example, the size

of the output argument of the call to exch byte/3 should be de�ned as

	 3
exch byte(sz(exch byte1); sz(exch byte2)), and this equation can be simpli-

�ed to 1 (given by user assertion). Therefore, we can obtain a closed form

solution in that case.

� Input arguments. Assume now thati is an input argument position in a body

literal l in a clauseC, and i 0 the term occurring at an argument positioni .

Let G be also the argument dependency graph ofC. We have the following

possibilities:

1. Computesize(i 0). If size(i 0) 6= ? then set up the size relation:

sz(i) � size(i 0) (4.6)

2. Let r = predec(G; l; i), if the size metrics corresponding tor and i are the

same andd = di� (r; i) 6= ? , then set up the size relation

sz(i) � sz(r) + d (4.7)

3. Otherwise,sz(i) = ? .

Size relations can be propagated to transform a size relation corresponding to an

input argument in a body literal or an output argument in the clause head into a

function in terms of the sizes of the input arguments of the head. The basic idea here

is to repeatedly substitute size relations for body literals into size relations for head

arguments. This is the purpose of the normalization algorithmdescribed in [36].

Example 4.3.1. Consider again the program described in Figure 4.1. We will denote

by pred name the name of a predicate, and bypred namei the i -th argument position

56

Chapter 4. Resource Usage Analysis for Logic Programs

Size relation equations for �rst clause of exch buffer/3 :
1 : sz(head1) � size([]) and size([]) = 0
2 : sz(head2) � 1
3 : sz(head3) � size([]) and size([]) = 0

Size relation equations for second clause of exch buffer/3 :
4 : sz(exch byte1) � size(B) and size(B) = 1
5 : sz(exch byte2) � sz(head2) + di� (Id; Id)

� sz(head2)
6 : sz(exch byte3) � 	 3

exch byte(sz(exch byte1); sz(exch byte2))
� 	 3

exch byte(1; sz(head2))
� 1

7 : sz(exch buf fer 1) � sz(head1) + di� ([B jBs]; Bs)
� sz(head1) � 1

8 : sz(exch buf fer 2) � sz(head2) + di� (Id; Id)
� sz(head2)

9 : sz(exch buf fer 3) � 	 3
exch buf fer (sz(exch buf fer 1); sz(exch buf fer 2))

� 	 3
exch buf fer (sz(head1) � 1; sz(head2))

10 : sz(head3) � sz(exch buf fer 3) + di� (Bs0; [B0jBs0])
� 	 3

exch buf fer (sz(head1) � 1; sz(head2)) + 1
Closed form for the output argument of the head:

11 : 	 3
exch buf fer (0; y) = 0

12 : 	 3
exch buf fer (x; y) = 	 3

exch buf fer (x � 1; y) + 1
13 : 	 3

exch buf fer (x; y) = x

Figure 4.4: Size relation equations forexch buffer/3

in literal with predicate name pred name in the body of a clause. Letheadi denote

the i -th argument position in the clause head.

The Figure 4.4 shows all equations needed to establish the size ofthe output

argument in exch buffer/3 . First, the system sets up its size in the �rst clause.

Since this argument (third) is an empty list, its size based on the length metrics is

zero. Note also that it is straightforward for the analysis to infer the sizes of the

�rst and second input arguments. The size of the �rst argument is zero because

it is also an empty list, and the size of the second argument is in�nite since the

variable is unbounded. The next step is the size inference of the output argument

57

Chapter 4. Resource Usage Analysis for Logic Programs

for exch buffer/3 in the second clause. In this case, the size of the third argument

of the head depends on the size of some body literal argument. Thus, the system

needs �rst to determine the size relations for each input and output argument of the

body literals (inequalities 4� 10):

4 By Equation 4.6.

5 By Equation 4.7.

6 By Equation 4.5. Note that exch byte/3 is not recursive and has been previ-

ously computed. In particular, the size of its third argument has been given

by the user through assertions.

7 By Equation 4.7.

8 By Equation 4.7.

9 By Equation 4.5. In this case, there is a recursive call toexchange buffer/3 .

Thus, the size of the third argument is a symbolic expression whichwill be

further solved by the recurrence solver.

10 By Equation 4.7.

Note that the size of the output argument ofexch buffer/3 can be denoted

by sz(head3). Note also that since it is an output argument, that expression is

equivalent to 	 3
exch buf fer . Therefore, the system can then establish the recurrence

system formed by inequalities 11 and 12, wherex and y represent the sizes of the

�rst and second input argument, respectively. In the next step, the system obtains

a closed form function (inequality 13) by calling the recurrence equation solver.

Finally, it is important to notice that although the main obj ective of this method

is to infer the sizes of each output argument in a clause head. Byconstruction, the

58

Chapter 4. Resource Usage Analysis for Logic Programs

method can also infer the sizes of each body literal argument, i.e., size relationships

at each program point. This information will be also requiredby the resource usage

analysis in the next section.

4.3.3 Resource Usage Analysis

In order to infer the resource usage functions all predicates in the program are pro-

cessed in a single traversal of the call graph in reverse topological order. Consider

such a predicatep de�ned by clausesC1; : : : ; Cm . Assume thatn is a tuple such that

each element corresponds to the size of an input argument position to predicatep.

Then, the resource usage expressed in units of resourcer with approximation ap of

a call to p, for an input of sizen, can be expressed as:

Costpred(p; ap; r;n) =
K

(ap)1� i � m f Costclause(Ci ; p; ap; r;n)g (4.8)

where
J

(ap) is a function that takes an approximation identi�er ap and returns a

function which applies over allCostclause(Ci ; p; ap; r;n), for 1 � i � m. For example,

if ap is the identi�er for approximation \upper bound" (ub), then a possible conser-

vative de�nition for
J

(ap) is the
P

function. In this case, and since the number

of solutions generated by a predicate that will be demanded isgenerally not known

in advance, a conservative upper bound on the computational cost of a predicate

is obtained by assuming that all solutions are needed, and that all clauses are exe-

cuted, thus the cost of the predicate is assumed to be the sum of thecosts of all of

its clauses. However, the analysis can take mutual exclusion intoaccount, which is

inferred by CiaoPPand is available to our analysis, to obtain a more precise estimate

of the cost of a predicate, using the maximum of the costs of mutually exclusive

59

Chapter 4. Resource Usage Analysis for Logic Programs

groups of clauses.1. If ap is the identi�er for approximation \lower bounds" (lb),

then
J

(ap) is the min function.

Let us see now how to compute the resource usage of clauses. Considera clause

C of predicate p of the form H :� L1; : : : ; Lk where L j , 1 � j � k, is a literal

(either a predicate call, or an external or builtin predicate), and H is the clause

head. Assume thatnj is a tuple with the sizes of all the input arguments to literal

L j , given as functions of the sizes of the input arguments to the clause head. Note

that these nj size relations have previously been computed during size analysis for

all input arguments to literals in the bodies of all clauses.

Then, Costclause(C; ap; r;n), the resource usage expressed in units of resource

r with approximation ap of clauseC of predicate p, is given by the expression

Costclause(C; ap; r;n) = solver(Cost(C; ap; r;n)). That is, it is expressed as the solved

form function of the following expression which, in general, for recursive clauses yields

a recurrence equation:

Cost(C; ap; r;n) = � (ap; r)(head(C)) +
lim (ap;C)P

j =1
(
Q

l � j
SolsLl (nl))(� (ap; r)(L j) + Costlit (L j ; ap; r; nj))

(4.9)

wherelim (ap; C) is a function that takes an approximation identi�er ap and a clause

C and returns the index of a literal in the clause body. For example, if ap is the

identi�er for approximation \upper bound" (ub), then lim (ap; C) = k (the index

of the last body literal). If ap is the identi�er for approximation \lower bounds"

(lb), then lim (ap; C) is the index for the rightmost body literal that is guaranteed

not to fail. � (ap; r) is a function that takes an approximation identi�er ap and a

1Note that the problem of detecting predicates whose clause tests are mutually exclusive
is far from being trivial. Since the inference of mutual exclusion among predicate clauses
is external to our analysis, it is beyond the scope of this thesis to explain it (see [79] for
details).

60

Chapter 4. Resource Usage Analysis for Logic Programs

resource identi�er r and returns a function � H (cl head; arith expr) ! B which takes

a clause head and returns an arithmetic resource usage expression< arith expr >

as de�ned in Figure 4.2. Thus, � (ap; r)(head(C)) represents � H (head(C)). On

the other hand, � (ap; r) is a function that takes an approximation identi�er ap

and a resource identi�er r and returns a function � L (bodylit; arith expr) ! B

which takes a body literal and returns also an arithmetic resource usage expression

< arith expr > . In this case,� (ap; r)(L j) represents � L (L j). Section 4.3.4 illustrates

di�erent de�nitions of the functions � (ap; r) and � (ap; r) in order to infer di�erent

resources.SolsL l is the number of solutions that literalLl can generate, wherel � j

denotes that Ll precedesLj in the literal dependency graph for the clause. The

inference of upper bounds on the number of solutions given a literal is far from being

trivial. We take the approach of [36].

Finally, Costlit (Lj ; ap; r; nj) is:

� If L j is recursive, i.e., calls a predicateq which is in the strongly-connected com-

ponent of the call graph being analyzed, thenCostlit (L j ; ap; r; nj) is replaced

by a symbolic expressionCost(q; ap; r;nj).

� If L j is not recursive, assume that it is a call toq (where q can be either a

predicate call, or an external or builtin predicate), thenq has been already an-

alyzed, i.e., the (closed form) resource usage function forq has been recursively

computed as
 and Costlit (L j ; ap; r; nj) can be expressed explicitly in terms

of the function
 , and it is thus replaced with
 (nj), i.e., the resource usage

function
 is updated with the sizes at that particular program point which is

given by nj .

Note that in both cases, if there is a resource usage assertion forq, 'cost(ap,-

r, harith expri)' , then Costlit (L j ; ap; r; nj) is replaced by the most precise between

the arithmetic resource usage expression in closed form and its closed form resource

61

Chapter 4. Resource Usage Analysis for Logic Programs

usage function inferred previously by the analysis, provided they are not incompati-

ble, in which case an error is
agged.

It can be proved by induction on the number of literals in the body of clauseC that:

1. If clause C is not recursive, then, expression (4.9) results in a closed form

function of the sizes of the input argument positions in the clause head;

2. If clauseC is simply recursive, then, expression (4.9) results in a recurrence

equation in terms of the sizes of the input argument positions in the clause

head;

3. If clauseC is mutually recursive, then expression (4.9) results in a recurrence

equation which is part of a system of equations for mutually recursive clauses

in terms of the sizes of the input argument positions in the clause head.

If these recurrence equations can be solved, including approximating the solution

in the direction of ap, then Cost(p; ap; r;n) can be expressed in a closed form, which

is a function of the sizes of the input argument positions in thehead of predicatep

(and henceCostclause(C; ap; r;n) = solver(Cost(p; ap; r;n))). Thus, after the strongly-

connected component to which p belongs in the call graph has been analyzed, we

have that expression (4.8) results in a closed form function of the sizes of the input

argument positions in the clause head.

Finally, note that our analysis is parameterized by the functions � (ap; r) and

� (ap; r) whose de�nitions can be given by means of assertions of typehead cost

and literal cost , respectively. These functions make our analysis parametric with

respect to any resource of interest de�ned by users.

62

Chapter 4. Resource Usage Analysis for Logic Programs

4.3.4 De�ning the Parameters (Functions) of the Analysis

In this section we explain and illustrate with examples how thefunctions that make

our resource analysis parametric, namely,� (which includes the de�nition of � H),

and � (which includes the de�nition of � L) are written in practice in our system.

Both � H (cl head; arith expr) ! B and � L (bodylit; arith expr) ! B will be imple-

mented as predicates of two arguments. The �rst one takes the clause head if �H or

the body literal, otherwise. The second argument is the resource usage function.

Assume for example that the resource we want to measure is an upper bound

on the number of resolution steps (steps) performed by a program. This can be

achieved by adding one unit each time a clause head is traversed. Since the assertion

head cost is applied each time a clause head is analyzed, it is straightforward to

measure the number of resolution steps by providing the following assertion and

de�nition of the delta one/2 predicate:

:- head_cost(ub,steps,delta_one).

delta_one(_,1).

Note that the predicatedelta one/2 is the de�nition of � H and it will return one for

any value in its �rst argument. If the resource usage function isa constant expression

and it does not depend on the clause head or body literal, the system also allows

writing the following shortcut:2

:- head_cost(ub,steps,1).

In order to simplify the process of de�ning interesting and useful � H and � L func-

tions, our implementation provides a library with predicates that perform syntactic

2In the worked example in Figure 4.1 thehead cost and literal cost assertions are
written following this style.

63

Chapter 4. Resource Usage Analysis for Logic Programs

operations on clauses, such as, for example, getting the number of arguments in a

clause head or body literal, getting a clause head, getting a clause body, accessing

an argument of a clause head or body literal, getting the main functor and arity of a

term in a certain position, etc. In this context it is important to remember that the

di�erent � H and � L function de�nitions perform syntactic matching on the program

text.

Assume now that the resource we want to measure is the number of argument

passings (numargs) that occur during clause head matching in a program. This is

achieved by the following code:

:- head_cost(ub,num_args,delta_num_args).

delta_num_args(H,N) :- functor(H,_,N).

functor/3 is a predicate de�ned in any Prolog system and it receives a termand

returns the functor symbol and the arity in the second and thirdargument, respec-

tively.

As another example, if we are interested in decomposing arbitrary uni�cations

performed while unifying a clause head with the literal beingsolved into simpler

steps, we can de�ne a resourcenumunifs , and a head cost assertion which counts

the number of function symbols, constants, and variables in eachclause head as

follows:

64

Chapter 4. Resource Usage Analysis for Logic Programs

:- head_cost(ub,num_unifs,

delta_num_unifs).

delta_num_unifs(H,S) :-

functor(H,_,N),

num_fun_vars(N,H,S).

num_fun_vars(0,_H,0).

num_fun_vars(N,H,S) :-

N > 0,

arg(N,H,Arg),

nfun_vars(Arg,S1),

N1 is N-1,

num_fun_vars(N1,H,S2),

S is S1 + S2.

nfun_vars(Arg,1) :-

var(Arg).

nfun_vars(Arg,1) :-

atomic(Arg).

nfun_vars(Arg,S) :-

nonvar(Arg),

functor(Arg,_, N),

num_fun_vars(N,Arg,S1),

S is S1 + 1.

var/1 , atomic/1 , nonvar/1 , arg/3 are additional built-in predicates in ISO-Prolog

similarly to functor/3 . var/1 succeeds if the input argument is a free variable.

atomic/1 succeeds if the input argument is instantiated to an atom.nonvar/1

succeeds if the input argument is a term which is not a free variable. Finally,

arg(Index,Term,Arg) returns in Arg argument numberIndex from Term.

If in addition to the number of uni�cations performed while unifying a clause

head we are also interested in the cost of term creation for the literals in the body of

clauses, we can de�ne a resourceterms created , and include aliteral cost (� L)

assertion which keeps track of the number of function symbols and constants in body

literals:

65

Chapter 4. Resource Usage Analysis for Logic Programs

:- literal_cost(ub,

terms_created,

beta_terms_created).

beta_terms_created(L,S) :-

functor(L,_,N),

num_fun(N,L,S).

num_fun(0,_L,0).

num_fun(N,L,S) :-

N > 0,

arg(N,L,Arg),

nfun(Arg,S1),

N1 is N-1,

num_fun(N1,L,S2),

S is S1 + S2.

nfun(Arg,0) :-

var(Arg).

nfun(Arg,1) :-

atomic(Arg).

nfun(Arg,S) :-

nonvar(Arg),

functor(Arg,_,N),

num_fun(N,Arg,S1),

S is S1 + 1.

:- head_cost(ub,

terms_created,

delta_terms_created).

delta_terms_created(_L,0).

Note that in this case we also de�ne ahead cost assertion which returns 0 for

every clause head.

More interestingly, our implementation provides a library with predicates that

perform semantic checks of properties. These properties are inferred by the available

analyzers. Some of the analyses are always performed as part ofthe resource analysis,

such as mode and type analysis, and others are performed on demand, depending

on the properties that need to be checked in the �H and � L function de�nitions or

depending on the type of approximation to be performed by theresource analysis.

For instance, suppose that for debugging purposes we would like to generate

heap space cost relations to de�ne an upper bound on the heap consumption of the

program as a function of its input data sizes. In order to infer the heap consumption

of the program, we will assume for example purposes a simple memory model. We

66

Chapter 4. Resource Usage Analysis for Logic Programs

de�ne a resource model,M heap, that counts the number of bytes allocated in the

heap as follows. We assume that input arguments are ground and hence, no heap

allocation is required. Therefore, we only consider the heapusage of the output

arguments using the following formula:

M heap(t) =

8
>>><

>>>:

4 if t is output and constant or variable

4 +
P i = N

i =1 M heap(t i) if t is output and t = f (t1; : : : ; tN)

0 otherwise

(4.10)

Then, we can implement Equation 4.10 through aheap usage function/2 pred-

icate, de�ned as:

heap_usage_function(LitInfo,Cost) :-

get_literal(LitInfo,Head),

get_modes(LitInfo,Modes),

usage_func(Modes,Head,1,0,Cost).

usage_func([],_Head,_Ind,Cost,Cost).

usage_func([in|Modes],Head,Ind,Acc,Cost):-

NInd is Ind + 1,

usage_func(Modes, Head,NInd,Acc,Cost).

usage_func([out|Modes],Head,Ind,Acc,Cost):-

arg(Index,Head,Term),

term_heap_usage(Term,Cost),

NAcc is Acc + Cost,

NInd is Ind + 1,

usage_func(Modes, Head,NInd,NAcc,Cost).

term_heap_usage(Term,4):- var(Term).

67

Chapter 4. Resource Usage Analysis for Logic Programs

term_heap_usage(Term,4):- atm(Term).

term_heap_usage(Term,N):-

functor(Term,F,_A),

Term =.. [F|Ts],

term_heap_usage_(Ts,N1),

N is N1 + 4.

term_heap_usage_([],0).

term_heap_usage_([T|Ts],N):-

term_heap_usage(T,N1),

term_heap_usage_(Ts,N2),

N is N1 + N2.

where Term =.. List means that the functor and arguments of the term Term

comprise the list List. For instance,f(a,b) =.. [f,a,b] .

It is important to notice that heap usage function/2 not only operatessyn-

tactically on the program text but alsosemantically since the argument modes are

considered. Further, since the creation of terms can occur both in the clause head

and in the body literals, we need to applyheap usage function/2 to both cases.

The user makes this explicit through the assertions:

:- head_cost(ub,heap_usage,heap_usage_function).

:- literal_cost(ub,heap_usage,heap_usage_function).

Assume now that we want to separate the counting of uni�cations where one of

the terms being uni�ed is a variable and thus behaves as an \assignment," and the

counting of full uni�cations, i.e., when both terms being uni�ed are not variables,

and thus uni�cation performs a \test" or produces new terms, etc.

For this purpose, we can de�ne a resource, as for examplevo unif , which counts

68

Chapter 4. Resource Usage Analysis for Logic Programs

the number of variables in the clause head which correspond to \output" argument

positions throughhead cost assertions. This describes a component of the execution

time that is directly proportional to the number of cases where both a goal argu-

ment and the corresponding head argument are variables. This should boil down to

assignment (maybe with trailing). This is achieved by the following code:

:- head_cost(ub,vo_unif,

delta_vo_unif).

delta_vo_unif(H,S) :-

functor(H,_,N),

num_vo_unif(N, H, S).

num_vo_unif(0,_H,0) :- !.

num_vo_unif(N,H,S) :-

arg(N,H,Arg),

free(Arg),

!,

nvo_unif(Arg,S1),

N1 is N-1,

num_vo_unif(N1, H, S2),

S is S1 + S2.

num_vo_unif(N,H,S) :-

N1 is N-1,

num_vo_unif(N1,H,S).

nvo_unif(Arg,1) :-

var(Arg).

nvo_unif(Arg,0) :-

atomic(Arg).

nvo_unif(Arg,S) :-

nonvar(Arg),

functor(Arg,_, N),

num_vo_unif(N,Arg,S1),

S is S1 + 1.

Similarly, we could de�ne resources for counting:

� The number of variables in the clause head which correspond to input argument

positions

� The number of function symbols and constants in the clause head which appear

in output arguments.

� The number of function symbols and constants in the clause head which appear

69

Chapter 4. Resource Usage Analysis for Logic Programs

in input arguments.

Example 4.3.2. Consider the same program de�ned in Figure 4.1 and the size re-

lations computed in Example 4.3.1. We now show the corresponding resource usage

equations for each clause for the resourcebits . Although the functions � (ap; r)(H)

and � (ap; r)(L) take as arguments a clause headH and a body literal L respectively,

in our examples we will only write the predicate name ofH and L for the sake of

simplicity. Since the program is analyzed in a single traversalof the call graph in re-

verse topological order, the system starts by analyzing the predicate exch buffer/3 .

Note that the resource usage for external predicates (whose codeis not available)

connect/3 , exch byte/3 and close/1 is already given by user assertions:

:- pred connect(Host,Port,S) ... + cost(ub,bits,0)

:- pred close(Stream) ... + cost(ub,bits,0)

:- pred exch byte(B,Id,B0) ... + cost(ub,bits,8)

which express that:

Cost(connect;ub; bits ; h ; i) = 0

Cost(close;ub; bits ; h i) = 0

Cost(exch byt;ub; bits ; h ; i) = 8

For simplicity, we have omitted the sizes of the input arguments (don't care

symbols) since the resource usage functions do not depend on the sizes of the input

arguments.

The system �rst infers the resource usage of the �rst clause ofexch buffer/3

applying formula 4.9. Recall that the � and � functions applied to each clause

head and body literal respectively return zero, as provided by the user through the

head cost and literal cost assertions. Additionally, the body of the clause is

empty. Hence, no resource usage is provided by the clause. Then, the system yields

70

Chapter 4. Resource Usage Analysis for Logic Programs

the following resource usage equation:3

Cost(exch buf fer; ub; bits ; h0; i) = 0

For the recursive clause ofexch buffer/3 , the system follows the same for-

mula 4.9. For this clause, there is a call to a predicate (exch byte/3) that receives

8 bits, and also a recursive call toexch buffer/3 . In this case, the system estab-

lishes a symbolic expression of the formCost(exch buf fer; ub; bits ; hn � 1; i) that

expresses the resource usage of the recursive call. Note that the size of the �rst

input argument has been updated at this particular program point, n � 1, wheren

represents the size of the �rst argument to this predicate. Therefore, the analysis

sets up the following recurrence equation:

Cost(exch buf fer; ub; bits ; hn; i) =

0z }| {
� (ub; bits)(exch buf fer) +

0z }| {
� (ub; bits)(exch byte) +

8z }| {
Cost(exch byte;ub; bits ; h ; i) +

0z }| {
� (ub; bits)(exch buf fer) + Cost(exch buf fer; ub; bits ; hn � 1; i)

= 8 + Cost(exch buf fer; ub; bits ; hn � 1; i)

Then, the analysis calls a recurrence solver with the recurrence equation system

inferred:

Cost(exch buf fer; ub; bits ; h0; i) = 0

Cost(exch buf fer; ub; bits ; hn; i) = 8 + Cost(exch buf fer; ub; bits ; hn � 1; i)

yielding the following closed form resource usage function:

Cost(exch buf; ub; bits ; hn; i) = 8 � n

Finally, the system analyzes the main predicate of the program(i.e., client/3).

3Again the size of the second input argument is omitted since it is irrelevant for the
resource usage of the predicate.

71

Chapter 4. Resource Usage Analysis for Logic Programs

This predicate has only one clause which is not recursive. Moreover, the resource

usage functions of all body literals have been previously inferred by the analysis

(e.g., exch buffer/3) or given by the user through assertions (e.g.,connect/3 and

close/1). Then, the system sets up the following expression wherek expresses the

size of the input bu�er, i.e., the second argument to this predicate:

Resource usage equations for client/3 :

Cost(client; ub; bits ; h ; ki) =

0z }| {
� (ub; bits)(client) +

0z }| {
� (ub; bits)(connect) +

0z }| {
Cost(connect;ub; bits ; h ; i) +

0z }| {
� (ub; bits)(exch buf fer) +

8� kz }| {
Cost(exch buf fer; ub; bits ; hk; i) +

0z }| {
� (ub; bits)(close) +

0z }| {
Cost(close;ub; bits ; h i) = 8 � k

i.e., the result of the analysis is that an upper bound of the bits received by the client

application is eight times the size of the second input argument, which is a bu�er of

bytes.

4.4 Experimental results

In this section we study the feasibility of the approach analyzing a set of representa-

tive benchmarks which include de�nitions of resources using this language and used

the system to infer the resource usage bound functions. In order todo this, we

have completed a prototype implementation of the analyzer,written in the Ciao lan-

guage, using a number of modules and facilities fromCiaoPP, including recurrence

equation processing. We have also written aCiao language extension (a \package"

in Ciao terminology) which when loaded into a module allows writingthe resource-

72

Chapter 4. Resource Usage Analysis for Logic Programs

related assertions and declarations proposed herein.4

First, we show the actual resource for which bounds are being inferred by the

analysis for a given benchmark together with a brief description. In addition, we also

show the size metric used for the relevant arguments. While any ofthe resources

de�ned in a given benchmark could then be used in any of the others we show only

the results for the most natural or interesting resource for eachone of them. We

have tried to use a relatively wide range of resources: number ofbytes sent by an

application, number of calls to a particular predicate, robot arm movements, number

of �les left open in a kernel code, number of accesses to a database, heap memory

usage, etc. We also cover a signi�cant set of complexity functions such as constant,

polynomial, and exponential using relevant data structures in Prolog programs such

as lists, trees, etc.

� bst is a program that illustrates a typical operation, insertion,over binary

search trees, and we measure the heap usage in terms of number of bytes as a

function on the depth of the input argument.

� client is the program depicted in Fig. 4.1 and we measure the number ofbits

received by the application as a function on the length of theinput argument.

� color map: performs map coloring and we measure the number of uni�cations

as a function that depends on the term size of one of the input arguments.

� fib : computes the �bonacci function and infers the number of arithmetic op-

erations in terms of the integer value of the input argument.

� hanoi : is the Towers of Hanoi program and we assume that this program, after

computing the movements, sends these to a robotic arm that will actually be

4The system also supports adding resource assertions specifying expected resource us-
ages which the system will then verify or falsify using the results of the implemented
analysis.

73

Chapter 4. Resource Usage Analysis for Logic Programs

moving the disks. We want to measure the energy consumption of therobot

movements as a function in terms of the integer value of the input argument.

� eight queen: plays the 8-queens game and we measure the number of queens

movements as a function in terms of the length of the input argument.

� eval polynom: evaluates a polynomial function and we measure the
oating

point unit time usage as a function in terms of the length of thethe list of

coe�cients.

� grammar: represents a simple sentence parser and we measure the number of

phrases generated by the parser as a function in terms of the term size of the

input argument.

� insert stores : is a database transaction that adds a new entry into theSTORE

relation. We measure the number of updates as a function in terms of the

relation size, i.e. number of records.

� merge: is a program that merges the content of a set of input �les intoan

output �le, and we measure the number of �les left open as a function in terms

of the length of the list of �les.

� power set : generates the powerset of a list and we measure the number of

output elements as a function in terms of the input list length.

� qsort : implements the quicksort algorithm and we measure the numberof lists

parallelized as a function in terms of the input list length.

� send files : is a program that sends the content of a set of �les through a

stream. We measure the number of bytes read as a function in terms of the

input list length.

74

Chapter 4. Resource Usage Analysis for Logic Programs

Program Usage Function Exact Function Time
bst �x: 20� x + 16 � 184
client �x: 8 � x � 186
color map 104691 31686 176
eight queen 19173961 � 304
eval polynom �x: 2:5x � 44

fib
�x: 2:17� 1:61x+
0:82� (� 0:61)x � 3

� 116

grammar 24 16 227
hanoi �x: 2x � 1 � 100
insert stores �n; m:n + k � 292

�n; m:n �
merge �x:x � 180
power set �x: 1

2 � 2x+1 � 119
qsort �x: 4 � 2x � 2x � 4 �x: 2 � x2 144
send files �x; y:x � y � 179
subst exp �x; y: 2xy + 2y �x; y:x � y 153
zebra 30232844295713061 6869 292

Table 4.1: Accuracy and e�ciency in milliseconds of the analysis.

� subst exp: substitutes a list of variables in a mathematical expression. We

measure the number of replacements as a function in terms of the list length

and also the term size of the input arguments.

� zebra: based on the classic zebra puzzle we measure the number of resolution

steps as a function in terms of the term size of the input.5

The results from the analysis of these benchmarks are shown in Table 4.1. For

brevity, we report only results for upper-bounds analysis. Thecolumn Usage Func-

tion shows the actual resource usage function (which depends on the size of the input

arguments) inferred by the analysis, given as a lambda term. ThecolumnExact Func-

tion shows the exact resource usage function, given also as a lambda term. Finally,

5The system infers a resource usage function considering allpossible solutions. The
exact function shown in Table 4.1 considers only one solution.

75

Chapter 4. Resource Usage Analysis for Logic Programs

the column labeledTime shows the resource analysis times in milliseconds, on a

medium-loaded Pentium IV Xeon 2.0Ghz with two processors, 4Gb ofRAM mem-

ory, running Fedora Core 5.0. Note that these times do not include other analyses

such as types, modes, etc.

4.5 Related Work

As mentioned previously, most previous work is speci�c to the analysis of execution

steps and, sometimes, time or memory. The ACE system [69] can automatically

extract upper bounds on execution steps for a subset of functional programming. The

system is based on program transformation. The original programis transformed into

a step-counting version and then into a composition of a cost bound and a measure

function. Rosendahl de�nes in [104] another automatic upper-bound analysis based

on an abstract interpretation of a step-counting version. The analysis measures both

execution time and execution steps. However, size measures cannot automatically

be inferred and the experimental section shows few details about the practicality

of the analysis. Debray et al. presents in [36, 37] a semi-automatic analysis which

infers upper-bounds on the number of execution steps. These bounds are functions

on the sizes or value ranges of input data. This seminal work applies to a large

class of logic programs and presents techniques in order to deal with the generation

of multiple solutions via backtracking. The authors also show how other speci�c

analyses could be developed, such as for, e.g., time or memory.This approach

was later fully automated and extended to inferring upper- and lower-bounds on

the number of execution steps(which is non-trivial because of the possibility of

failure) in [38, 54]. Our method builds on this work but generalizes it in order to

deal with a much more general class of user-de�ned resources, allowing thus the

coverage of di�erent analyses within a single implementation. Grobauer presents

76

Chapter 4. Resource Usage Analysis for Logic Programs

in [47] a method for automatically extracting cost recurrences from �rst-order DML

(dependent ML) programs, a conservative extension of ML. The main feature is

the use of dependent types to describe a size measure that abstracts from data to

data size. In [96], and inspired by [13] and [82], a complexity analysis is presented

for Horn clauses, also fully automating the necessary calculations. In [60], Igarashi

et al. presents a method for modeling problems such as memory management, lock

primitive usage, etc., and a type-based method is proposed as solution to the inference

problem. In [116] a cost model is presented for inferring cost equations for recursive,

polymorphic, and higher-order functional programs. While it is claimed that the

approach can be modi�ed in order to infer a reduced set of resources such as execution

time, execution steps, or memory, no details are given. Worst case execution time

(WCET) estimation has been studied for imperative languages and for di�erent

application domains (see, e.g., [111, 14, 40] and its references). However these and

related methods again concentrate only on execution time. Also, they do not infer

cost functions of input data sizes but rather absolute maximum execution times,

and they generally require the manual annotation of loop iteration bounds. In [25]

a method is presented for reserving resources before their actual use. However, the

programmer (or program optimizer) needs to annotate the program with \acquire"

and \consume" primitives, as well as provide loop invariants and function pre- and

post-conditions. Interesting type-based related work has also been performed in the

GRAIL system [9], also oriented towards resource analysis, but it has concentrated

mainly on ensuring memory bounds.

In comparison with previous work our approach allows dealingwith a class of

resources which is open, in the ample sense that such resources arein fact de�ned by

programmers using an assertion language, which we also consider itself an important

contribution of our work. Another important contribution of our work because of its

impact in the scalability and automation of the analysis is that our approach allows

de�ning the resource usage of external predicates, which can beused for modular

77

Chapter 4. Resource Usage Analysis for Logic Programs

composition. In addition, assertions also allow describing by hand the usage of

any predicate for which the automatic analysis infers a valuethat is not accurate

enough, and this can be used to prevent inaccuracies in the automatic inference from

propagating.

4.6 Summary

Research about resource usage analysis goes back to the seminal work by Wegbreit

in 1975 [118], which proposed to analyze the performance of a program by deriving

closed form expressions for its execution behavior. Since then, there has been a good

number of cost analysis frameworks for a wide variety of programming languages,

including functional [69, 104, 101, 108, 45, 15, 47], imperative [111, 14, 40, 119], and

logic languages [37, 36, 38].

In spite of such large amount of work in the area, there is a lack of resource usage

analysis tools that:

� deal with a generic user-de�nable notion of resources allowing thus the coverage

of di�erent analyses within a single implementation.

� analyze programs with a realistic size and complexity in a fully automated way.

In this chapter, we have presented a resource bounds analysis framework that

infers upper and lower bounds on the usage that a logic programmakes of a quite

general notion of user-de�nable resources. The inferred bounds are in general func-

tions of input data sizes. We have also presented the assertion language which is

used to de�ne such resources. The analysis then derives the related (upper- and

lower-bound) resource usage functions for all predicates in the program. Our exper-

imental evaluation is encouraging because it shows that interesting resource bound

78

Chapter 4. Resource Usage Analysis for Logic Programs

functions can be obtained automatically and in reasonable time, for a representative

set of benchmarks with a good variety of resources such as bits sent or received by an

application over a socket, number of �les left open, number ofaccesses to a database,

energy consumption, etc., as well as the more traditional execution steps, execution

time, or heap memory. While clearly further work is needed toassess scalability

we are cautiously hopeful in the sense that our approach allows de�ning via asser-

tions the resource usage of external predicates, which can thenbe used for modular

composition. These includes also predicates for which the codeis not available or

which are written in a programming language that is not supported by the analyzer.

In addition, assertions also allow describing by hand the usage ofany predicate for

which the automatic analysis infers a value that is not accurate enough, and this can

be used to prevent inaccuracies in the automatic inference from propagating. Our

expectation is that the automatic analysis will be able to do the bulk of the work

for large applications, even if the cost of some specially complex predicates may still

need to be given by the user. Finally, we expect the applications of our analysis

to be rather interesting, including resource consumption veri�cation and debugging

(including for mobile code), resource control in parallel/distributed computing, and

resource-oriented specialization.

79

Chapter 5

Set-Sharing Analysis

In the automatic inference of resource bounds functions certain program information

is �rst automatically inferred by other analyzers. In particular, the input/output

modes of the predicate arguments represent essential information for the resource

usage analysis. Set-Sharing analyses aim to detect which variables do not point

transitively to the same memory location. This information can provide very accurate

input/output modes to the resource usage analysis. While other techniques exist for

inferring modes (such as, e.g.,def analysis [7]) we choose the sharing domain because

it is also useful for many other optimizations in compilers (ina similar way to points-

to and shape-sharing analyses in imperative languages). However, traditional Set-

Sharing analyses can also be quite ine�cient and they are traditionally not considered

good choices when analyzing large programs.

In this chapter, we provide the background information about the Set-Sharing

abstract domain introduced by Jacobs and Langen in 1990 [61, 68] that will be

necessary to understand our two practical Set-Sharing solutions presented in this

thesis, in Chapters 6 and 7, respectively.

80

Chapter 5. Set-Sharing Analysis

5.1 Overview

De�nition 5.1.1. (Sharing). Two or more variables in a logic program are said

to share if in some possible execution of the program they are bound to terms that

contain a common variable.

Recall that a variable in a logic program is said to beground if it is bound to

a term that does not contain free variables.Set-Sharing is an important type of

combined sharing and groundness analysis. It was originally introduced by Jacobs

and Langen [61, 68] and its abstract values are sets of sets of variables that keep

track of the sharing relationships among variables.

Example 5.1.1. (Set-Sharing abstraction). LetV = f X; Y; Z g be a set of variables

of interest. A substitution � = f X 7! f (U1; U2; V1; V2; W); Y 7! g(V1; V2; W); Z 7!

g(W)g, depicted in Figure 5.1, will be abstracted in Sharing asff X g; f X; Y g; f X; Y; Z gg.

Sharing groupf X g in the abstraction represents the occurrence (i.e., the possible

occurrences of run-time variables within the terms to whichprogram variables will be

bound) of run-time variablesU1 and U2 in the concrete substitution, f X; Y g repre-

sentsV1 and V2, and f X; Y; Z g representsW. Note that the number of (occurrences

of) run-time variables shared is abstracted away.

Y g(W)

X f(U1,U2,V1,V2,W)

g(V1,V2,W) Z

Figure 5.1: Memory Representation for�

De�nition 5.1.2. (Independence). Several program variables are said to beinde-

pendent if the terms they are bound to do not have (run-time) variables in common.

81

Chapter 5. Set-Sharing Analysis

Variable independence is the counterpart of sharing: program variables share

when the terms they are bound to do have run-time variables incommon. When

we are talking of only two variables then we refer toPair-Sharing [109], and when

we track relations among more than two variables we refer toSet-Sharing. Sharing

abstract domains are used to infermay sharing, i.e., the possibility that shared

variables exist, and thus, in the absence of such possibility,de�nite information

about independence.

Example 5.1.2. (Notion of independence). LetV = f X; Y; Z g be the variables

of interest. A Set-Sharing abstract substitution such asff X g; f Yg; f Zgg (which

denotes the set of the singleton sets containing each variable)represents that all

three variables are independent.

Sharing analysis has been used to infer several interesting properties and perform

optimization and veri�cation of programs at compile-time, most notably but not

limited to: occurs-check reduction (e.g., [109]), automatic parallelization (e.g., [92,

91, 23]), and �nite-tree analysis (e.g., [11]). In addition,and as mentioned before,

the resource usage analysis described in Chapter 4 requires thatcertain program

information (such as, for example, input/output modes, types, non-failure informa-

tion, etc.) be �rst automatically inferred by other (abstract interpretation-based)

analyzers. Set-Sharing analyses can provide very accurate input/output modes to

the resource usage analysis and improve the accuracy of others such as e.g., types

and non-failure which are also required by the resource usage analysis.

82

Chapter 5. Set-Sharing Analysis

5.2 Preliminaries

Let } (S) denote the powerset of setS, and } 0(S) denote theproper powersetof set

S, i.e., } 0(S) = } (S) n f;g . Let also jSj denote the cardinality of a setS. Let V be

a set of variables of interest; e.g., the variables of a program.

Let F and P be sets of ranked (i.e., with a given arity) functors of interest;

e.g., the function symbols and the predicate symbols of a program. We will use

Term to denote the set of terms constructed fromV and F [P. Although somehow

unorthodox, this will allow us to simply write g 2 Term whether g is a term or a

predicate atom, since all our operations apply equally well to both classes of syntactic

objects. We will denotêt the set of variables oft 2 Term. For two elementss 2 Term

and t 2 Term, ŝt = ŝ [t̂ . We will also denote by [t]y the number of occurrences of

the variable y in the term t.

Analysis of a program proceeds by abstractly solving uni�cationequations of the

form t1 = t2, t1 2 Term, t2 2 Term. Let solve(t1 = t2) denote the solved form

of uni�cation equation t1 = t2. The results of analysis are abstract substitutions

which approximate the concrete substitutions that may occur during execution of

the program. Let U be a denumerable set of variables (e.g., the variables that may

occur during execution of a program). Concrete substitutionsthat occur during

execution are mappings fromV to the set of terms constructed fromU [V and F .

5.3 The Set-Sharing Domain

The Set-Sharing abstract domain was �rst presented in [61]. Abstract uni�cation for

bottom-up analyses was �rst de�ned and proved correct in [68].The presentation

here and in Chapters 6 and 7 follows that of [120, 30], since thenotation used and

the abstract uni�cation operation obtained are rather intuitive. A complete set of

83

Chapter 5. Set-Sharing Analysis

abstract functions for top-down analysis (as well as a top-down analysis framework)

was de�ned and proved correct in [92], and presented in [91, 90].

A sharing groupis a set containing one or more of the variables of interest, antit

represents a possible sharing among them (i.e., that they might be bound to terms

which have a common variable).

De�nition 5.3.1. (Set-Sharing abstract domain, SH). Let SG = } 0(V) be

the set of all sharing groups. Asharing setis a set of sharing groups. The Sharing

domain isSH = } (SG), the set of all sharing sets, ordered by� .

De�nition 5.3.2. (Occur). Let � be a substitution andV 2 V a variable of interest,

the sharing groupoccur(�; V) is de�ned as:

occur(�; V) = f X 2 V j V 2 var(� (X))g

For instance, if � = f X 7! f (V; U); y 7! g(V); Z 7! h(U; W)g then:

� occur(�; U) = f X; Z g

� occur(�; V) = f X; Y g

� occur(�; W) = f Zg

The abstract function � SH is de�ned as� SH (�) = f occurs(�; V) j V 2 range(�)g.

Jacobs and Langen proved that Set-Sharing enjoys a Galois Insertion into the domain

of concrete substitutions, and in particular, a concretization function
 SH exists. We

now show the de�nition of the abstract uni�cation which also wasproved by Jacobs

and Langen as a safe approximation of the concrete uni�cation.

De�nition 5.3.3. (Relevant sharing rel(sh; t) and irrelevant sharing irrel (sh; t)).

Given termss and t, and sh 2 SH, we denote byrel : SH � Term ! SH the set of

sets insh which have non-empty intersection witht̂, the set of variables oft.

84

Chapter 5. Set-Sharing Analysis

rel(sh; t) = f s j s 2 sh; (s \ t̂) 6= ;g

Also, irrel (sh; t) is the complement ofrel(sh; t), i.e., sh n rel(sh; t).

De�nition 5.3.4. (Cross-union sh1 �[sh2). For two elementssh1 2 SH, sh2 2

SH, let sh1 �[sh2 : SH � SH ! SH be their cross-union, i.e., the result of applying

union to each pair in their Cartesian productsh1 � sh2.

sh1 �[sh2 = f s j s = s1 [s2; s1 2 sh1; s2 2 sh2g

De�nition 5.3.5. (Up-closure, sh�). Let sh 2 SH be a sharing set, then the

up-closure(:)� : SH ! SH is de�ned as its closure under union that represents the

smallest superset ofsh such that s1 [s2 2 sh� whenevers1; s2 2 sh� :

sh� = f s j 9n � 1 9t1; : : : ; tn 2 sh, s = t1 [: : : [tng

De�nition 5.3.6. (Abstract uni�cation, amgu). The abstract uni�cation is a

function amgu : V � Term � SH ! SH de�ned as:

amgu(x; t; sh) = irrel (sh; x = t) [(rel(sh; x) �[rel(sh; t)) �

Example 5.3.1. (Abstract uni�cation, amgu). Let V = f X 1; X 2; X 3; X 4g be the

set of variables of interest and letsh = ff X 1g; f X 2g; f X 3g; f X 4gg be a sharing set.

Consider the analysis ofX 1 = f (X 2; X 3):

85

Chapter 5. Set-Sharing Analysis

A = rel(sh; X1) = ff X 1gg

B = rel(sh; f (X 2; X 3)) = ff X 2g; f X 3gg

A �[B = ff X 1; X 2g; f X 1; X 3gg

(A �[B)� = ff X 1; X 2g; f X 1; X 3g;

f X 1; X 2; X 3gg

C = irrel (sh; X1 = f (X 2; X 3)) = ff X 4gg

amgu(X 1; f (X 2; X 3); sh) = C [(A �[B)� = ff X 1; X 2g; f X 1; X 3g;

f X 1; X 2; X 3gg; f X 4gg

Finally, we de�ne the rest of the abstract operations requiredby a top-down

Set-Sharing analysis which have been proved sound in [91, 90]:

De�nition 5.3.7. (Extend, extend). Let sh1; sh2 2 SH be two abstract substitu-

tions and t 2 Term then extend updates all sharing groups insh1 relevant to t that

appear insh2 and it is de�ned as follows:

extend(sh1; t; sh2) = irrel (sh1; t) [f s j s 2 rel(sh1; t)� ; (s \ t̂) 2 sh2 g

De�nition 5.3.8. (Projection, project). Let sh 2 SH be an abstract substitution

and t 2 Term, the projection of sh onto the variables oft is de�ned as:

project(t; sh) = f s \ t̂ j s 2 shg n f;g

De�nition 5.3.9. (Augment, augment). Let sh 2 SH be an abstract substitution

and t 2 Term, sh can be augmented with the variables oft as follows:

augment(t; sh) = sh [ff xg j x 2 t̂g

86

Chapter 5. Set-Sharing Analysis

5.4 The Sharing+Freeness Domain

The inclusion of freeness information, i.e., which variablesare free, into the Sharing

domain and the bene�ts it could report to sharing analysis was already discussed

in [68] but the �rst proposal of a domain was in [90]. The presentation here follows

that of [57].

Example 5.4.1. Let sh 2 SH be an abstract substitution de�ned assh = ff X g;-

f W; Yg; f Y; Zgg. Assume the following abstract uni�cationamgu(X = f (W; Y); sh)

which returns (by De�nition 5.3.6) the new abstract substitution sh1 = ff X; W; Y g;-

f X; Y; Z g; f X; W; Y; Z gg.

Suppose now thatX is a free variable. Then, it is not possible thatW and Y can

share throughX sinceX is a free variable. In this case, the Up-closure operation

can be avoided on the relevant sharing groups toW and Y. Thus, the result would

be sh2 = ff X; W; Y g; f X; Y; Z gg. Sincesh2 � sh1 it is shown that the inclusion of

freeness can improve the original Set-Sharing.

De�nition 5.4.1. (Sharing+Freeness domain, SHF). The Sharing+Freeness

domain is SHF = SH � V , i.e., the Sharing domain,SH, augmented with a new

component which tracks the variables which are free.

De�nition 5.4.2. (Abstract uni�cation, amguf). The abstract uni�cation de-

�ned as V � Term� SHF ! SHF and it is given by amguf (x; t; (sh; f)) = (sh0; f 0),

87

Chapter 5. Set-Sharing Analysis

where:1

sh0 =

8
>>>>><

>>>>>:

irrel (sh; x = t) [(rel(sh; x) �[rel(sh; t)) if x 2 f or t 2 f

irrel (sh; x = t) [(rel(sh; x) �[rel(sh; t)�) if x 62f; t 62f; but t̂ � f

and lin (t)

amgu(x; t; sh) otherwise

and lin (t) holds if for all y 2 t̂: [t]y = 1 and for all z 2 t̂ such that y 6= z,

rel(sh; y) \ rel(sh; z) = ; .

f 0 =

8
>>>>><

>>>>>:

f if x 2 f; t 2 f

f n ([rel(sh; x)) if x 2 f; t 62f

f n ([rel(sh; t)) if x 62f; t 2 f

f n ([(rel(sh; x) [rel(sh; t))) if x 62f; t 62f

Note that, for implementation, the second condition in the direct de�nition of

lin (t) might be rather expensive to compute:rel(sh; y) has to be calculated for

every y 2 t̂ to check that each pairwise intersection is empty. Instead, an equivalent

condition to checking pairwise intersections, which is more e�cient, can be used: for

all s 2 rel(sh; t) js \ t̂ j = 1.

Finally, we show how the functionsextend, project, and augment are lifted for

the inclusion of freeness information:

De�nition 5.4.3. (Extend, extendf). Let (sh1; f 1); (sh2; f 2) 2 SHF be two ab-

stract substitutions and t 2 Term then extendf is de�ned as follows:

extendf ((sh1; f 1); t; (sh2; f 2)) = (sh0; f 0)

sh0 = extend(sh1; t; sh2)

f 0 = f 2 [f x j x 2 (f 1 n t̂); (([rel(sh0; x)) \ t̂) � f 2g

1Note that t is not necessarily a variable:t 2 f means \t is a variable and is known to
be free".

88

Chapter 5. Set-Sharing Analysis

De�nition 5.4.4. (Projection, projectf). Let (sh; f) 2 SHF be an abstract

substitution and t 2 Term, the projection of (sh; f) onto the variables oft is de�ned

as:

projectf (t; (sh; f)) = (project(t; sh); f \ t̂)

De�nition 5.4.5. (Augment, augmentf). Let (sh; f) 2 SHF be an abstract

substitution and t 2 Term, (sh; f) can be augmented with the variables oft as

follows:

augmentf (t; (sh; f)) = (augment(g; sh); f [t̂)

5.5 Previous Work

Due to all applications described in Section 5.1, the accuracy of the Set-Sharing

domain has received a lot of attention in the literature in the past. In particular, it

has been improved by extending it with other kinds of information, the most relevant

being:

� Extension with linearity was �rst proposed by Jacobs and Langen [61]. Exten-

sion with freenesswas proposed by Muthukumar and Hermenegildo [90, 91].

These extensions have been further studied by Codish et al. [29],and Hill,

Za�anella, and Bagnara [57].

� Combination with term structure information such as depth-k was proposed

preliminarily in in [88, 90] and developed fully as depth-k sharing by King and

Soper [64], in the abstract equation systems by Mulkers et al. [87], and in the

composite domains for deriving sharing by Bruynooghe et al. [19].

89

Chapter 5. Set-Sharing Analysis

� Finally, combination with other abstract domains has been proposed in [28, 43,

30].

However, Set-Sharing has a key computational disadvantage: the abstract uni�-

cation implies potentially exponential growth in the number of sharing groups due

to the closure operation which is the heart of that operation. Therefore, the study

of reducing the impact of the complexity of this operation has been also essential:

� In [92, 91], Muthukumar and Hermenegildo presented the �rst comparatively

e�cient algorithms for performing the basic operations needed for implement-

ing set sharing-based analyses.

� In [30], Codish, S�ndergaard, and Stuckey showed that the Jacobs and Lan-

gen's sharing domain is isomorphic to the dual negative ofPos [7], denoted

by coPos. This insight improved the understanding of sharing analysis, and

led to an elegant expression of the combination with groundnessdependency

analysis based on the reduced product of Sharing and Pos. In addition, this

work pointed out the possible implementation ofcoPosthrough Reduced Or-

dered Binary Decision Diagrams(ROBDDs) [20], although this point was not

investigated further therein.

� In [120], Za�anella et al. extended the Set-Sharing representation for inferring

pair-sharing from a set of sets of variables to a pair of sets of setsof variables in

order to support widening. A new component is added to abstractsubstitutions

that represents sets of variables, the powerset of which would have been part of

the original abstract substitution. Such sets are calledcliques. The precision

and e�ciency of using cliques for the case of inferring pair-sharing were reported

in [120]. In [121], cliques were incorporated into the original Sharing domain,

but precision and e�ciency are again studied for the case of inferring pair-

90

Chapter 5. Set-Sharing Analysis

sharing. Although signi�cant e�ciency gains were achieved, this approach

loses precision with respect to the original Set-Sharing.

� Other relevant work was presented in [74] in which the closure operation was

delayed and full sharing information was recovered lazily. However, this in-

teresting approach shares some of the disadvantages of Za�anella's widening.

Therefore, the authors re�ned the idea in [73] reformulating the amgu in terms

of the closure under unionoperation, collapsing those closures to reduce the

total number of closures and applying them to smaller descriptions without

loss of accuracy.

In the next two chapters, we will present two new, alternative,and practical

solutions to the problem of Set-Sharing analysis. The �rst approach, in Chapter 6,

is inspired by Za�anella et al. [120] and the idea behind this approach is to de�ne

di�erent widening operators to accelerate the �xpoint computation. Although, as

we will show, relevant e�ciency gains are achieved, this is achieved at the expense of

losses in accuracy. Our second approach, in Chapter 6, is based onrepresenting the

complement of the sharing relationships. This alternative representation may imply

important e�ciency gains when the number of relationships isrelatively large, and

has the advantage of doing so without any loss of accuracy.

91

Chapter 6

Widening Set-Sharing Analysis

In this chapter, we study the problem of improving the e�ciency and scalability of

Set-Sharing analysis of logic programs for top-down analysesusing a form ofcliques.

We provide a brief overview of the approach in Section 6.1. The representation based

on cliques and the clique-domains for set-sharing and set-sharing with freeness are

presented in Sections 6.2 and Section 6.3, respectively. In Section 6.4 the required

functions for top-down analysis are de�ned. In Section 6.5 analgorithm for detecting

cliques is presented and, in Section 6.6 the use of the representation based on cliques

as widening is shown. Section 6.7 shows an experimental evaluation of the proposed

analyses. Finally, Section 6.8 summarizes this chapter.

6.1 Overview

Our starting point is Za�anella's idea [120] of representing sharing information as

a pair of abstract substitutions, one of which is a worst-case sharing representation

called a clique set, which as mentioned previously, was proposed for the case of

inferring pair-sharing. Our other starting point is the original set-sharing. The

92

Chapter 6. Widening Set-Sharing Analysis

main goal is to reduce the running time and memory consumptionof the traditional

Set-Sharing domain.

We use the clique-set representation for:

1. Inferring actual set-sharing information, and

2. Analysis within a top-down framework.

In particular, we de�ne the new abstract functions required by standard top-down

analyses, both for sharing alone and also for the case of includingfreeness in addition

to sharing. Such functions were not de�ned in [120, 121], sincebottom-up analyses

were used there. The analysis uses the PLAI/CiaoPP framework [52], which, as

mentioned before, includes an e�cient implementation of a top-down analyzer using

the �xpoint algorithms and optimizations described in [89, 91, 55]. We use cliques

both as an alternative representation and as a widening, de�ning several widening

operators.

6.2 The Clique-Sharing Domain

When a sharing setsh 2 SH over a set of variables of interestV includes the proper

powerset of some subsetC � V of variables, the representation can be made more

compact since the powerset ofC does not provide any useful information, i.e., all

variables of C may share each other. This situation is illustrated in the following

example:

Example 6.2.1. (Useless sharing groups). LetV = f X 1; X 2; X 3; X 4g the set of vari-

ables of interest. Letsh 2 SH be an abstract substitutionff X 1g; f X 1; X 2g; f X 1; X 2; X 3g;-

f X 1; X 3g; f X 2g; f X 2; X 3g; f X 1; X 2; X 3g; f X 4gg. A key observation is that nothing is

known of the subset of variablesC = f X 1; X 2; X 3g since any aliasing may be possible

93

Chapter 6. Widening Set-Sharing Analysis

in C. Therefore, we may de�ne a more compact representation to group the powerset

of C.

De�nition 6.2.1. (Clique). A clique is a set of variables of interest, much the

same as a sharing group, but a cliqueC represents all the sharing groups in} 0(C).

For a clique C, we will use#C = } 0(C). Note that #C denotes all the sharing that

is implicitly represented in a cliqueC.

De�nition 6.2.2. (Clique set). A clique setis a set of cliques. LetCL = SH

denote the set of all clique sets. For a clique setcl 2 CL we de�ne #[cl = [f# C j C 2

clg. Note that #[cl denotes all the sharing that is implicitly represented in a clique

set cl. For a pair (cl; sh) of a clique setcl and a sharing setsh, the sharing that the

pair represents is #[cl [sh.

Example 6.2.2. (Clique-Sharing representation). Assume the same set of variables

of interest as in Example 6.2.1. Assume also the same set-sharingsh = ff X 1g;-

f X 1; X 2g; f X 1; X 2; X 3g; f X 1; X 3g; f X 2g; f X 2; X 3g; f X 1; X 2; X 3g; f X 4gg. Then, we can

representsh as a pair (cl; sh0) where cl = ff X 1; X 2; X 3gg and sh0 = ff X 4gg.

De�nition 6.2.3. (The Clique-Sharing Domain, SHw). The Clique-Sharing

domain is SHw = f (cl; sh) j cl 2 CL; sh 2 SHg, i.e., the set of pairs of a clique set

and a sharing set [120].

An abstract uni�cation operation amguw is de�ned in [121] which uses a function

irrel : CL � Term � �! CL (complement ofrel), de�ned as:

irrel (cl; t) = f C n t̂ j C 2 cl g n f;g

which approximates the sharing not related to variables int.

94

Chapter 6. Widening Set-Sharing Analysis

In [121], the following operations1 are de�ned as counterparts inSHw of the

corresponding ones in Sharing, and proved correct with respect to their corresponding

counterparts (Theorem 9.8, page 239). Let (cl; sh) 2 SHw, (cl1; sh1) 2 SHw,

(cl2; sh2) 2 SHw:

rel((cl; sh); t) = (rel(cl; t); rel(sh; t))

irrel ((cl; sh); t) = (irrel (cl; t); irrel (sh; t))

(cl1; sh1) [w (cl2; sh2) = (cl1 [cl2; sh1 [sh2)

(cl1; sh1) �[(cl2; sh2) = ((cl1 �[cl2) [(cl1 �[sh2) [(sh1 �[cl2); sh1 �[sh2)

(cl; sh)� =

8
<

:
(; ; sh�) if cl = ;

(f [(cl [sh) g; ;) otherwise

De�nition 6.2.4. (Abstract uni�cation, amguw). The abstract uni�cation is a

function amguw : V � Term � SHw ! SHw de�ned in [121] as:

amguw(x; t; clsh) = irrel (clsh; x = t) [w (rel(clsh; x) �[rel(clsh; t)) �

In [121] the correctness ofamguw is also shown, which is reproduced here.

Theorem 6.2.1. Let (cl; ss) 2 SHw, sh 2 SH, equation x = t, x 2 V and t 2

Term, and amguw(x; t; (cl; ss)) = (clo; sso). If #[cl [ss � sh then:

#[clo [sso � amgu(x = t; sh)

Proof. See Appendix A.

By using the above de�nitions of the operations and a case analysis,amguw can

be also de�ned as:
1Note that the operations lifted to SHw are named with the same symbol as their

counterparts in Sharing, and also the same nameirrel as de�ned before is used. Thus, we
are overloading all symbols except[.

95

Chapter 6. Widening Set-Sharing Analysis

amguw(x; t; (cl; sh)) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

(cl ; amgu(x; t; sh)) if rel(cl; x) = rel(cl; t) = ;

(irrel (cl; x = t)) ; if rel(cl; x) = rel(sh; x) = ;

irrel (sh; x = t)) or rel(cl; t) = rel(sh; t) = ;

(irrel (cl; x = t) [otherwise

f[(rel(cl; x) [rel(cl; t) [

rel(sh; x) [rel(sh; t))g

; irrel (sh; x = t))

which is the abstract uni�cation operation implemented and it is of course equivalent

to the one in [121] as proved also in Appendix A.

6.3 The Clique-Sharing+Freeness Domain

Similarly to the Set-Sharing domain described in Section 5, the Clique-Sharing do-

main can also improve its accuracy by adding some freeness information about the

set of variables of interest. Freeness can be introduced to the Clique-Sharing domain

in the usual way [90], by including a component which tracks the variables which are

known to be free.

De�nition 6.3.1. (Clique-Sharing+Freeness domain, SHF w). The Clique-

Sharing+Freeness domain isSHF w = SHw � V , i.e., the Clique-Sharing domain,

SHw, augmented with a new component which tracks the variables which are free.

A method to de�ne an abstract uni�cation function for SHw with freeness and

linearity is outlined in [121]. We have used an abstract uni�cation operation amgusf

for SHw with freeness which is a simpli�cation of the corresponding operation which

results from the application of such method.

96

Chapter 6. Widening Set-Sharing Analysis

The method in [121] is basically the one used above foramguw: de�ne the

counterparts for the basic operations and prove them correct. For freeness we will

need the following: Letclsh 2 SHw, clsh = (cl; sh), t 2 Term,

W(clsh) = [(cl [sh)

lin s(t) , 8 y 2 t̂ : [t]y = 1 ^

8z 2 t̂ : y 6= z ! rel(cl; y) \ rel(cl; z) = ; ^

rel(sh; y) \ rel(sh; z) = ;

Note again that checking emptiness of each pairwise intersection in the de�nition

of lin s(t) (as in lin (t)) can be reduced to a more e�cient equivalent condition: given

rel(clsh; t) = (rel(cl; t); rel(sh; t)), for all s 2 rel(cl; t) [rel(sh; t) js \ t̂ j = 1.

Now amgusf is de�ned simply by lifting amguf by substituting each original

operation by its counterpart.

De�nition 6.3.2. (Abstract uni�cation, amgusf). Abstract uni�cation is a func-

tion amgusf : V � Term � SHF w ! SHF w given by amgusf (x; t; (clsh; f)) =

(clsh0; f 0), where:

clsh0 =

8
>>><

>>>:

amgusf f (x; t; clsh) if x 2 f or t 2 f

amgusf l (x; t; clsh) if x 62f; t 62f but t̂ � f and lin s(t)

amguw(x; t; clsh) otherwise

amgusf f (x; t; clsh) = irrel (clsh; x = t) [w (rel(clsh; x) �[rel(clsh; t))

amgusf l (x; t; clsh) = irrel (clsh; x = t) [w (rel(clsh; x) �[rel(clsh; t)�)

f 0 =

8
>>>>><

>>>>>:

f if x 2 f; t 2 f

f n (W(rel(clsh; x))) if x 2 f; t 62f

f n (W(rel(clsh; t))) if x 62f; t 2 f

f n (W(rel(clsh; x) [w rel(clsh; t))) if x 62f; t 62f

97

Chapter 6. Widening Set-Sharing Analysis

so that by using the above de�nitions of the operations the following is obtained:

amgusf f (x; t; (cl; sh)) = (irrel (cl; x = t) [

((rel(cl; x) [rel(sh; x)) �[rel(cl; t)) [

(rel(cl; x) �[rel(sh; t))

; irrel (sh; x = t) [(rel(sh; x) �[rel(sh; t)))

amgusf l (x; t; (cl; sh)) =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

(irrel (cl; x = t) [(rel(cl; x) �[rel(sh; t)�) if clt = ;

; irrel (sh; x = t) [(rel(sh; x) �[rel(sh; t)�))

(irrel (cl; x = t) [otherwise

((rel(cl; x) [rel(sh; x)) �[

f[(rel(cl; t) [rel(sh; t))g)

[(rel(cl; x) �[rel(sh; t)�)

; irrel (sh; x = t))

Theorem 6.3.1. Let ((cl; ss); f) 2 SHF w, (sh; e) 2 SHF , and equationx = t, x 2

V, t 2 Term. Let alsoamgusf (x; t; ((cl; ss); f)) = ((clo; sso); f o) andamguf (x; t; (sh; e)) =

(sh0; f 0). If #[cl [ss � sh and f � e then:

#[clo [sso � sh0 and f o � f 0

Proof. See Appendix A.

6.4 Abstract Functions for Top-Down Analysis in

the Clique Domains

Functions call2entry and exit 2succ have usually been de�ned in a way which is

speci�c to the domain and for top-down analysis (see, as mentioned before, [91] for a

de�nition for Set-Sharing). We have chosen instead to present here a formalization of

a way to use theamgu in top-down frameworks. Thus, the de�nitions ofcall2entry

98

Chapter 6. Widening Set-Sharing Analysis

and exit 2succ based onamgu given above. Our intuition in doing this is that the

results should be (more) comparable to goal-dependent bottom-up analyses, where

amgu is used directly.

Note, however, that such de�nitions imply a possible loss of precision. Using

amgu in the way explained above does not allow to take advantage ofthe fact that

all variables in the head of the clause being entered during analysis are free. Al-

ternative de�nitions of call2entry can be obtained that improve precision from this

observation.2 The overall e�ect would be equivalent to using theamgu function for

the Sharing domain coupled with freeness, with the head variables as free variables,

and then throwing out the freeness component of the result. Forexample, for the

Clique-Sharing domain a functioncall2entry s that takes advantage of freeness infor-

mation can be de�ned as follows, whereunify sf is the version ofunify that uses

amgusf :

call2entry s(ASub; Goal; Head) = ASub0

where (ASub0; F ree) = unify f ((ASub;;); Head; Goal)

However, for the reasons mentioned above, we have used the de�nitions ofcall2entry

and exit 2succ based onamgu. The rest of the top-down functions are de�ned be-

low. For the Clique-Sharing domain, letg 2 Term, and (cl; sh) 2 SHw. Functions

projects and augments are de�ned as follows:

projects(g;(cl; sh)) = (project(g; cl); project(g; sh))

augments(g;(cl; sh)) = (cl; augment(g; sh))

Function extends(Call; g; P rime) is de�ned as follows. LetCall = (cl1; sh1) and

Prime = (cl2; sh2). Let normalize be a function which normalizes a pair (cl; sh)

2For example, one such de�nition (developed independently)can be found in [5].

99

Chapter 6. Widening Set-Sharing Analysis

so that no powersets occur insh (all are \transferred" to cliques in cl; Section 6.5

presents a possible implementation of such a function). LetP rime be already nor-

malized, and:

(cl0; sh0) = normalize((rel(cl1; g)� [(rel(cl1; g)� �[rel(sh1; g)�); rel(sh1; g)�))

The following two functions lift the classicalextend [91] respectively to the cases

of the two clique sets (clique groups of theCall allowed by the clique component

of the Prime) and of the two sharing sets (sharing groups belonging to theCall

allowed by the sharing part of thePrime):

extsh(sh1; g; sh2) = irrel (sh1; g) [f s j s 2 sh0; (s \ ĝ) 2 sh2 g

extcl(cl1; g; cl2) = irrel (cl1; g) [f (s0 \ s) [(s0 n ĝ) j s0 2 cl0; s 2 cl2 g

The following two functions account respectively for the sharing sets belonging

to the clique component of theCall allowed by the sharing part of thePrime, and

the sharing sets of the sharing component of theCall allowed by the clique part of

the Prime:

clsh(cl0; g; sh2) = f s j s � c 2 cl0; (s \ ĝ) 2 sh2 g

shcl(sh0; g; cl2) = f s j s 2 sh0; (s \ ĝ) � c 2 cl2 g

The extend function for the Clique-Sharing domain is thus:

extends((cl1; sh1); g;(cl2; sh2)) =

(extcl(cl1; g; cl2)

; extsh(sh1; g; sh2) [clsh(cl0; g; sh2) [shcl(sh0; g; cl2))

Example 6.4.1. (Extend for the Clique-Sharing domain). LetCall = (cl1; sh1) =

(ff X; Y; Z gg; ff U; Vgg), P rime = (cl2; sh2) = (ff X gg; ff U; Vgg), and ĝ = f X; U; V g.

100

Chapter 6. Widening Set-Sharing Analysis

Then we have (cl0; sh0) = (ff X; Y; Z; U; V gg; ;). The extends function is computed

as follows:

extsh(sh1; g; sh2) = extsh(ff U; Vgg; g;ff U; Vgg) = ;

extcl(cl1; g; cl2) = extcl(ff X; Y; Z gg; g;ff X gg) = ff X; Y; Z g; f Y; Zgg

clsh(cl0; g; sh2) = clsh(ff X; Y; Z; U; V gg; g;ff U; Vgg) = ff Y; Z; U; Vg;

f Y; U; Vg;

f Z; U; Vg; f U; Vgg

shcl(sh0; g; cl2) = shcl(; ; g;ff X gg) = ;

Thus, extends(Call; g; P rime) = (ff X; Y; Z g; f Y; Zgg; ff Y; Z; U; Vg; f Y; U; Vg; f Z;-

U; Vg; f U; Vgg), which after normalization yields (ff X; Y; Z gg; ff Y; Z; U; Vg; f Y; U; Vg;-

f Z; U; Vg; f U; Vgg).

Note how the result is less precise than the exact result (ff X; Y; Z gg; ff U; Vgg).

This is due to the overestimation of sharing implied by the cliques; in particular,

for the case ofextend, overestimations stem mainly from the necessary worst-case

assumption given by (cl0; sh0), which is then \pruned" as much as possible by the func-

tions de�ned above. The resulting operation, however, is correct: the sharing implied

by extends on two abstract substitutions Call and Prime is an over-approximation

of that given by extend on the sharing set substitutions corresponding toCall and

Prime.

Theorem 6.4.1. Let Call 2 SHw, P rime 2 SHw, and g 2 Term, such that the

conditions for the extend function are satis�ed. Let Call = (cl1; ss1), P rime =

(cl2; ss2), extends(Call; g; P rime) = (cl; ss), #[cl1 [ss1 � sh1, and #[cl2 [ss2 �

sh2 then:

#[cl [ss � extend(sh1; g; sh2)

Proof. See Appendix A.

101

Chapter 6. Widening Set-Sharing Analysis

For the Clique-Sharing+Freeness domain, letg 2 Term, and s 2 SHF w, s =

((cl; sh); f). Functions projectsf and augmentsf are de�ned as follows:

projectsf (g; s) = (projects(g;(cl; sh)); f \ ĝ)

augmentsf (g; s) = (augments(g;(cl; sh)); f [ĝ)

Function extendsf (Call; g; P rime) is de�ned as follows. LetCall = ((cl1; sh1); f 1)

and Prime = ((cl2; sh2); f 2), extendsf (Call; g; P rime) = ((cl0; sh0); f 0), where:

(cl0; sh0) = extends((cl1; sh1); g;(cl2; sh2))

f 0 = f 2 [f x j x 2 (f 1 n ĝ); (([(rel(sh0; x) [rel(cl0; x))) \ ĝ) � f 2g

Theorem 6.4.2. Let Call 2 SHF w, P rime 2 SHF w, and g 2 Term, such that the

conditions for theextend function are satis�ed. Let Call = ((cl1; sh1); f 1), P rime =

((cl2; sh2); f 2), and extendsf (Call; g; P rime) = ((cl0; sh0); f 0). Let also s1 = #[cl1 [

sh1, s2 = #[cl2 [sh2, and extendf ((s1; f 1); g;(s2; f 2)) = (sh; f). Then (#[cl0[sh0) �

sh and f 0 � f .

Proof. See Appendix A.

Therefore, the operationextendsf is correct: it gives safe approximations. The

resulting sharing it implies when applied on two abstract substitutions Call and

Prime is no less than that given byextendf on the sharing set substitutions corre-

sponding toCall and Prime; and the freeness is no more than whatextendf would

have computed.

6.5 Detecting Cliques

Obviously, to minimize the representation inSHw it pays o� to replace any setS of

sharing groups which is the proper powerset of some set of variablesC by including C

as a clique. Once this is done, the setS can be eliminated from the sharing set, since

102

Chapter 6. Widening Set-Sharing Analysis

the presence ofC in the clique set makesS redundant. This is the normalization

mentioned in Section 6.4 when de�ningextend for the Clique-Sharing domain, and

denoted there by anormalize function. In this section we present an algorithm for

such a normalization.

Given an element (cl; sh) 2 SHw, sharing groups might occur insh which are

already implicit in cl. Such groups are redundant with respect to the sharing repre-

sented by the pair. We say that an element (cl; sh) 2 SHw is minimal if #[cl\ sh = ; .

An algorithm for minimization is straightforward: it should delete from sh all sharing

groups which are a subset of an existing clique incl. But normalization goes a step

further by \moving sharing" from the sharing set of a pair to the clique set, thus

forcing redundancy of some sharing groups (which can therefore be eliminated).

While normalizing, it turns out that powersets may exist whichcan be obtained

from sharing groups in the sharing set plus sharing groups implied by existing cliques

in the clique set. The representation can be minimized furtherif such sharing groups

are also \transferred" to the clique set by adding the adequate clique. We say that

an element (cl; sh) 2 SHw is normalized if whenever there is ans � (#[cl [sh) such

that s = #c for some setc then s \ sh = ; .

Our normalization algorithm is presented in Figure 6.1. It starts with an element

(cl; sh) 2 SHw, which is already minimal, and obtains an equivalent element (w.r.t.

the sharing represented) which is normalized and minimal. First, the number m is

computed, which is the length of the longest possible clique. Then the sharing set

sh is traversed to obtain candidate cliques of the greatest possible length i (which

starts in m and is iteratively decremented). Existing subsets of a candidate clique S

of length i are extracted fromsh. If there are 2i � 1 � [S] subsets ofS in sh then

S is a clique: it is added tocl and its subsets deleted fromsh. Note that the test

is performed on the number of existing subsets, and requires the computation of a

number [S], which is crucial for the correctness of the test.

103

Chapter 6. Widening Set-Sharing Analysis

1: Let n = jshj; if n < 3, stop
2: Compute the maximumm such that n � 2m � 1
3: Let i = m
4: if i = 1, stop
5: Let C = f s j s 2 sh; jsj = ig
6: if C = ; then decrementi and goto 4
7: Take S 2 C and delete it from C
8: Let SS = f s j s 2 sh; s � Sg
9: Compute [S]

10: if jSSj = 2 i � 1 � [S] then
Add S to cl (regularizecl)
Subtract SS from sh

11: goto 6

Figure 6.1: Algorithm for detecting cliques

The number [S] stands for the number of subsets ofS which may not appear

in sh because they are already represented incl (i.e., they are already subsets of

an existing clique). In order to correctly compute this number it is essential that

the input to the algorithm be already minimal; otherwise, redundant sharing groups

might bias the calculation: the formula below may count as not present in sh a

(redundant) group which is in fact present. The computation of [S] is as follows. Let

I = f S \ C j C 2 clg n f;g and A i = f\ A j A � I; jAj = ig. Then:

[S] =
X

1� i �j I j

(� 1)i � 1
X

A2 A i

(2jA j � 1)

Note that the representation can be minimized further by eliminating cliques

which are redundant with other cliques. This is the regularization mentioned in step

10 of the algorithm. We say that a clique setcl is regular if there are no two cliques

c1 2 cl, c2 2 cl, such that c1 � c2. This can be tested while adding cliques in step 10

above.

104

Chapter 6. Widening Set-Sharing Analysis

Finally, there is a chance for further minimization by considering as cliques can-

didate sets of variables such that not all of their subsets exist inthe given element

of SHw. Note that the algorithm preserves precision, since the sharing represented

by the element ofSHw input to the algorithm is the same as that represented by

the element which is output. However, we could set up a thresholdfor the number

of subsets of the candidate clique that need be detected, and inthis case the out-

put element may in general represent more sharing. This might in fact be useful in

practice in order to use the normalization algorithm as a widening operation. Note

that, although the complexity of this algorithm is exponential since it is actually the

problem of solving all the maximal cliques of an undirected graph (NP-complete), it

is not a practical problem due to the small size of these graphs.

6.6 Widening Set-Sharing

A widen function for SHw is based on an unary widening operator
`

: SHw !

SHw, which must guarantee that for eachclsh 2 SHw,
`

clsh � clsh3. The

following theorem is necessary to establish the correctness of the widenings used:

Theorem 6.6.1. Let clsh 2 SHw and equationx = t, x 2 V, t 2 Term, we have

amguw(x; t;
h

clsh) � amguw(x; t; clsh)

For our experiments we start using two widenings already de�ned. The �rst of

them, by [43], is of an intermediate precision and it is as follows:

Fh
(cl; sh) = (cl [sh; ;)

3Note that this de�nition of widening for sharing is slightly di�erent from original
De�nition 3.3.1.

105

Chapter 6. Widening Set-Sharing Analysis

The second widening was de�ned in [120] as a cautious widening(because it did

not introduce new sharing sets, although obviously informationwas lost as soon as

the operations for the Clique-Sharing domain were used) and the idea was to de�ne

an undirected graph from an elementclsh 2 SHw and compute the maximal cliques

of that graph:

Gh
(cl; sh) = (f C1; : : : ; Ckg; sh)

whereC1; : : : ; Ck are all the maximal cliques of the induced graph from (cl; sh). For

the experimental evaluation in [120] a version of this cautious widening
` g was used

which is equivalent to the previous one but disregarding the singletons. It is easy

to see that our normalization process is totally equivalent tothe computation of

the maximal cliques of a graph and thus we will use the normalization process as a

cautious widening
` N . In the same way as [120], we use a more precise version of

` N which is based on disregarding the singletons called
` n .

Since cliques should only be used when it is strictly necessary to keep the analysis

from running out of memory, its application is guarded by a condition. We use the

simplest possible condition based on cardinality of the sets inSHw, imposing a

threshold n on cardinality which triggers the widening. We have tuned the threshold

in order to be able to achieve a reasonable trade-o� between the objective of triggering

widening only when strictly required and preventing runningout of memory in all

cases. For each widening, the triggering condition is de�ned as follows:

widen(cl; sh) =

8
<

:

`
(cl; sh) if (

P
s2 sh jsj) > n

(cl; sh) otherwise

106

Chapter 6. Widening Set-Sharing Analysis

6.7 Experimental Results

We have measured experimentally the relative e�ciency and precision obtained with

the inclusion of cliques both as an alternative representation in the Set-Sharing and

Set-Sharing+Freeness domains and as a widening in the Set-Sharing+Freeness do-

main. Our �rst objective is to study the implications of the change in representation

for analysis: although the introduction of cliques does not byitself imply a loss of pre-

cision, the abstract operations for cliques are not precise. We�rst want to measure

such loss in practice. Second, to minimize precision loss, the clique representation

should ideally be used only whenever necessary, i.e., when the classical representa-

tion cannot deal with the analysis of the program at hand. In this case, we will be

using the clique representation as a widening to guarantee (smooth) termination of

the analysis, i.e., that analysis does not abort because of running out of memory. It

turns out that this is not a trivial task: it is not easy to determine beforehand when

analysis will need more memory than is available.

Benchmarks are divided into three groups.

� The �rst group, append (app in the tables) through serialize (serial), is a set of

simple programs, used as a testbed for an analysis: they have only direct recur-

sion and make a straightforward use of uni�cation (basically, for input/output

of arguments i.e., they are moded).

� The second group, aiakl through zebra, are more involved: they make use of

mutual recursion and of elaborate aliasing between argumentsto some extent;

some of them are parts of \real" programs (aiakl is part of an analyzer of the

AKL language; prologread (plread) and rdtok are Prolog parsers).

� The benchmarks in the third group are all (parts of) \real" programs: ann

is the &-prolog parallelizer, peephole (peep) is the peephole optimizer of the

107

Chapter 6. Widening Set-Sharing Analysis

SB-Prolog compiler, qplan is the core of the Chat-80 application, and witt is a

conceptual clustering application.

Our results are shown in Tables 6.1, 6.2 and 6.3. Columns labeled T show anal-

ysis times in milliseconds, on a medium-loaded Pentium IV Xeon 2.0Ghz with two

processors, 4Gb of RAM memory, running Fedora Core 2.0, and averaging several

runs after eliminating the best and worst values. Ciao version 1.11#326 and CiaoPP

1.0#2292 were used. Columns labeledP (precision) show the number of sharing

groups in the information inferred and, between parenthesis,the number of sharing

groups for the worst-case sharing. Columns labeled#W show the number of widen-

ings performed and columns labeled#C show the number of clique groups. Since

our top-down framework infers information at all program points (before and after

calling each clause body atom), and also several variants for each program point, it

is not trivial to provide a good absolute measure of precision: changes in precision

may cause more variants during analysis, which in turn a�ect theprecision measure.

Instead, we have chosen to provide the accumulated number of sharing groups in all

variants for all program points, in order to be able to compareresults in di�erent

situations.

6.7.1 Cliques as Alternative Representation

Tables 6.1 and 6.2 show the results for Set-Sharing, Clique-Sharing and Sharing+Freeness,

and Clique-Sharing+Freeness, respectively for the cases in which cliques are used as

an alternative representation.

In order to understand the results it is important to note an existing synergy

between normalization, e�ciency, and precision when cliques are used as an alterna-

tive representation. If normalization causes no change in thesharing representation

(i.e., sharing groups are not moved to cliques), usually becausepowersets do not

108

Chapter 6. Widening Set-Sharing Analysis

Sh SHW

T P T P # C
app 11 29 (60) 8 44 (60) 4
deriv 35 27 (546) 27 27 (546) 0
mmat 13 14 (694) 11 14 (694) 0
qsort 24 30 (1716) 25 30 (1716) 0
query 11 35 (501) 13 35 (501) 5
serial 306 1734 (10531) 90 2443 (10531) 88
aiakl 35 145 (13238) 42 145 (13238) 0
boyer 369 1688 (4631) 267 1997 (4631) 158
brow 30 69 (776) 29 69 (776) 0
plread 400 1080 (408755) 465 1080 (408755) 10
rdtok 325 1350 (11513) 344 1391 (11513) 182
wplan 3261 8207 (42089) 1430 8191 (26857) 420
zebra 25 280 (67�107) 34 280 (67�107) 0
ann 2382 10000 (31�104) 802 19544 (31�104) 700
peep 831 2210 (12148) 435 2920 (12118) 171
qplan 1 860 42�104 (38�105) 747
witt 405 858 (45�105) 437 858 (45�105) 25

Table 6.1: Precision and Time-e�ciency for Sharing and Clique-Sharing

really occur during analysis, then the clique part is empty. Analysis is the same as

without cliques, but with the extra overhead due to the use of the normalization

process. Then precision is the same but the time spent in analyzingthe program

is a little longer. This also occurs often if the use of normalization is kept to a

minimum: only for correctness (in our implementation, normalization is required for

correctness at least for theextend function and other functions used for comparing

abstract substitutions). This should not be surprising, since the fact that powersets

occur during analysis at a given time does not necessarily mean that they keep on

occurring afterward: they can disappear because of groundnessor other precision

improvements during subsequent analysis (of, e.g., builtins).

When the normalization process is used more often (like for example at every

109

Chapter 6. Widening Set-Sharing Analysis

Shfr SHW fr
T P T P # C

app 6 7 (30) 6 7 (30) 0
deriv 27 21 (546) 27 21 (546) 0
mmat 9 12 (694) 11 12 (694) 0
qsort 25 30 (1716) 27 30 (1716) 0
query 12 22 (501) 14 22 (501) 0
serial 61 545 (5264) 55 736 (5264) 41
aiakl 37 145 (13238) 43 145 (13238) 0
boyer 373 1739 (5036) 278 2074 (5036) 163
brow 29 69 (776) 31 69 (776) 0
plread 425 1050 (408634) 481 1050 (408634) 0
rdtok 335 1047 (11513) 357 1053 (11513) 2
wplan 1320 3068 (23501) 1264 5705 (25345) 209
zebra 41 280 (67�107) 42 280 (67�107) 0
ann 1791 7811 (401220) 968 14108 (39�104) 510
peep 508 1475 (9941) 403 2825 (12410) 135
qplan 1 - 2181 23�104 (31�105) 529
witt 484 813 (4545594) 451 813 (45�105) 0

Table 6.2: Precision and Time-e�ciency for Sharing+freenessand Clique-Sharing+-
freeness

call to call2entry as we have done), then sharing groups are moved more often

to cliques. Thus, the use of the operations that compute on clique sets produces

e�ciency gains, and also precision losses, as it was expected. However, precision

losses are not high. Finally, if normalization is used too often, then the analysis

process su�ers from heavy overhead, causing too high penalty ine�ciency that it

makes the analysis intractable. Therefore it is very clear that a thorough tuning

of the use of the normalization process is crucial to lead analysis to good results in

terms of both precision and e�ciency.

As usual in top-down analysis, theextend function plays a crucial role. In our

case, this function is a very important bottleneck for the use of normalization. As we

have said, we use the normalization for correctness at the beginning of the extend

110

Chapter 6. Widening Set-Sharing Analysis

function. Additionally, it would be convenient to use it also at the end of such

function, since the number of sharing groups can grow too much.However, this is

not possible in practice due to theclsh function, which can generate so many sharing

groups that, at the limit, the normalization process itself cannot run. Alternative

de�nitions of clsh have been studied, but because of the precision losses incurred,

they have been found impractical.

Tables 6.1 and 6.2 shows that there are always programs whose analysis of which

does not produce cliques. This occurs in some of the benchmarks(like all of the

�rst group but serialize and some of the second one such as aiakl, browse (brow),

prolog read, and zebra). In this case, precision is maintained as expected but there

is a small loss of e�ciency due to the extra overhead discussed above. The same

thing happens with benchmarks which produce cliques (append, query, prologread,

and witt, in the case of Sharing without freeness), but this doesnot a�ect precision.

On the other hand, for those benchmarks which do generate cliques (like serialize,

boyer, warplan (wplan), ann, and peephole) the gain in e�ciency is considerable at

the cost of a small precision loss. As usual, e�ciency and precision correlate inversely:

if precision increases then e�ciency decreases and vice versa. Aspecial case is, to

some extent, that of rdtok, since precision losses are not coupledwith e�ciency gains.

The reason is that for this benchmark there are extra success substitutions (which

do not convey extra precision and, in fact, the result is less precise) that make the

analysis times larger.

In general, the same e�ects are maintained with the addition of freeness, al-

though the e�ciency gains are lower whereas the precision gains are a little higher.

The reason is that theamgusf function is less e�cient than amgus (but more pre-

cise). Overall, however, the trade-o� between precision and e�ciency is bene�cial.

Moreover, the more compact representation of the clique domain makes possible

to analyze benchmarks (e.g., qplan) which ran out of memory with the standard

111

Chapter 6. Widening Set-Sharing Analysis

representation.

6.7.2 Widening Set-Sharing via Cliques

As mentioned before, the intention of the widening operator is to limit the use of

cliques only to the cases where it is necessary in order to avoid analysis running

out of memory. This is not a trivial task, as explained below. Table 6.3 shows

results from our experiments for Sharing+Freeness, Clique-Sharing+Freeness using

widening. The widenings have been applied before each abstract uni�cation and at

the end of theextend function, and they are guarded by the condition discussed in

Section 6.6.

The choice of a suitable value of the threshold is a key issue, sincethis threshold

is responsible for triggering widening only for the cases whereit is needed. In a

top-down framework the choice of threshold is further complicated by the extend

function. As commented above, this function and, in particular, the clsh function

de�ned in Section 6.4 can make the number of sharing groups grow excessively after

every call, since that function generates powersets of the given cliques. In order to

solve this problem we studied two di�erent alternatives.

First, we tried a more e�cient version of the clsh function, which moved some

extra sharing groups to cliques. This, however, resulted in excessive precision losses

which reduced the usefulness of the analysis. Given this, we also developed a hybrid

approach for the case of
` n , where

` n is used in uni�cations but the more aggressive
` F is used after callingclsh. We call this version

` nF .

As for practical thresholds, we have concluded experimentallythat an appropriate

value for the guard for the widenings in our test platform is 250. This is the highest

value that prevents analysis from running out of memory. However, as we will see,

it also triggers widening for a few cases where it is not needed.For the additional

112

Chapter 6. Widening Set-Sharing Analysis

threshold used in the
` nF operations (Section 6.5) we have determined that 40%

is an appropriate value since, although low, it gives surprisingly good results.The

results in Table 6.3 thus correspond to
` F

250 and
` nF

250� 40.

SHW fr+
` F

250 SHW fr+
` nF

250� 40
T P # W T P # W

app 11 7 (30) 0 10 7 (30) 0
deriv 48 21 (546) 0 35 21 (546) 0
mmat 16 12 (694) 0 16 12 (694) 0
qsort 40 30 (1716) 0 43 30 (1716) 0
query 23 22 (501) 0 25 22 (501) 0
serial 74 722 (5264) 6 70 703 (5264) 10
aiakl 63 145 (13238) 6 61 145 (13238) 33
boyer 561 1744 (5036) 2 536 1743 (5036) 4
brow 44 69 (776) 0 42 69 (776) 0
plread 3419 24856 (1754310) 198 593 1050 (408634) 103
rdtok 472 1047 (11513) 0 466 1047 (11513) 0
wplan 1878 5376 (21586) 42 1394 5121 (20894) 60
zebra 42 280 (67�107) 1 56 280 (67�107) 48
ann 751 16122 (394800) 17 726 16122 (394800) 34
peep 453 2827 (12410) 8 512 2815 (12410) 16
qplan 1722 238426 (3141556) 26 1897 233070 (3126973) 55
witt 2333 259366 (23378597) 110 736 813 (4545594) 140

Table 6.3: Precision and Time-e�ciency with Widening

As expected, the use of widening allows executing programs which the Shfr do-

main could not due to exceeded memory capacity. However, as mentioned in the

discussion of the threshold, we do also widen for some benchmarks which the origi-

nal domain could handle. Fortunately, the precision losses arelimited.

Widening operator
` nF

250� 40 results at least as precise as
` F

250 and, for most of

the cases, better. In fact, the results obtained for prologread and witt using
` F

250

are remarkable since the information obtained is very poor. The di�erence in time

e�ciency between
` F

250 and
` nF

250� 40 is acceptable, and in fact for some programs

113

Chapter 6. Widening Set-Sharing Analysis

` nF
250� 40 is more e�cient than

` F
250. Note that for prolog read and witt the di�erence

is considerable in favor of
` nF

250� 40. There appears to be a clear correspondence

between number of widenings and e�ciency gains. This holds even if the widening

operations are expensive, such as with
` nF

250� 40, because the widening expense is o�set

by e�ciency gains in the abstract operations due to the reduction in the size of the

abstract substitutions being processed.

6.8 Summary

We have studied the problem of e�cient, scalable Set-Sharing analysis of logic pro-

grams using cliques both as alternative representation and aswidenings. We have

concentrated on the previously unexplored case of inferring set-sharing information

in the context of top-down analyses. To this end, we have proposed all the operations

required for top-down analyses for the cases of combining cliques with both Shar-

ing and Sharing+Freeness. We have also proposed and studied several widenings,

providing di�erent levels of precision and e�ciency tradeo�.

Our experimental evaluation supports the conclusion that, for inferring set-sharing,

the use of cliques as an alternative representation results in limited precision losses

(due to normalizations) while e�ciency gains are obtained. We have also derived

interesting conclusions regarding the interactions betweenthresholds, precision, e�-

ciency and cost of widening which have resulted in the proposal of a hybrid widening

which resulted quite useful in practice. In fact, the new representations allowed an-

alyzing some programs that exceeded memory capacity using classical sharing rep-

resentations. Thus, we believe the results of this chapter contribute to the practical

application of top-down analysis of Set-Sharing.

114

Chapter 7

Negative Set-Sharing Analysis

In Chapter 6, a new approach for improving the e�ciency (in terms of memory

and running time) of the process of inferring set-sharing information in top-down

frameworks was presented. The technique relied on the use of several widenings which

provided di�erent levels of precision and e�ciency tradeo�. However, sometimes

there are situations where the loss of accuracy is not allowed by the application

and/or more substantial e�ciency gains are required.

In this chapter we introduce another novel approach to improving the e�ciency of

Set-Sharing, both in terms of memory and running time, in this case without any loss

of accuracy. In the remainder of this chapter we �rst introduce the basis of the new

approach in Section 7.1, rede�ne the Set-Sharing domain, described in Chapter 5,

adapting it to a binary string representation (Section 7.2) which we then extend in

Section 7.3 to use a more compact representation through a ternary encoding. In

Section 7.4, we use the encoding of the complement (or negative) of the original Set-

Sharing. Finally, results from an experimental evaluation of these representations

are reported in Section 7.5 and summary in Section 7.6.

115

Chapter 7. Negative Set-Sharing Analysis

7.1 Introduction

The new approach for inferring set-sharing information e�ciently without loss of

accuracy is described as follows. We de�ne a new representationthat leverages

the complement (or negative) sharing relationships of the original sharing set, and

allows more compact representations for cases where there aremany sharing sets

without loss of accuracy. Intuitively, given an abstract stateshV over the �nite

set of variables of interestV, its negative representation is} (V) n shV . Using this

encoding during analysis dramatically reduces the number ofelements that need to be

represented in the abstract states and during abstract uni�cation as the cardinality

of the original set grows toward 2jVj . To further compress the number of elements, we

express the set-sharing relationships through a set of ternary strings that compacts

the representation by eliminating redundancies among the sharing sets.

It is important to notice that our work is not based on [30]. Although they

de�ne the dual negated positive Boolean functions,coPosdoes not represent the

entire complement of the positive set. Moreover, they do not usecoPosas a means

of compressing relationships but as a way of representing Sharing through Boolean

functions. We also represent Sharing through Boolean functions, but that is where

the similarity ends.

Example 7.1.1. (Negative sharing relationships). LetV = f X 1; X 2; X 3g be a set

of variables of interest. Letsh 2 SH be an abstract substitution such thatsh =

ff X 1g; f X 1; X 2; X 3g; f X 1; X 3g; f X 2g; f X 1; X 2; X 3gg, jshj = 5. Since that the set

of variables V is �nite, the computation of the set complement, i.e. } (V) n sh, is

always possible. Therefore, the negative (or complement) image of sh, sh, will be

ff X 1; X 2g; f X 2; X 3gg and its cardinality jshj = 2. Then, it is easy to see that, in

certain cases, the size of the sharing relationships can be reduced by encoding their

complement.

116

Chapter 7. Negative Set-Sharing Analysis

7.2 Set-Sharing Encoded by Binary Strings

In this section, we adapt the Set-Sharing abstract domain described in Chapter 5 for

handling binary strings rather than sets of variables. Unless otherwise stated, here

and in the rest of this chapter we will represent the Set-Sharing domain using a set

of strings rather than a set of sets of variables.

De�nition 7.2.1. (Binary sharing domain, bSH). Let alphabet � = f 0; 1g, V

be a �xed and �nite set of variables of interest in arbitrary order, and � l the �nite

set of all strings over � with length l, 0 � l � jVj . Let bSHl = } 0(� l) be the proper

power set (i.e., } (� l) n f;g) that contains all possible combinations over � with

length l. Then, the binary sharing domainis de�ned asbSH =
S

0� l �jVj
bSHl .

Example 7.2.1. (Binary encoding of sharing relationships). LetV = f X 1; X 2; X 3; X 4g

be the set of variables of interest and letsh = ff X 1g; f X 1; X 2g; f X 1; X 2; X 3gg be

a sharing set. Assume the following order among variables:X 1 � X 2 � X 3 � X 4.

Then, we can encode each sharing group into a binary string usingthe algorithm

described in Figure 7.1. In this example, the result of mappingsh into a set of binary

strings is bsh= f 1000; 1100; 1110g.

BinaryEncoding(sh;V)
bsh ;
foreach sg 2 sh

foreach i -th variable of V
if the i -th variable of V appears insg then

s[i] 1
else

s[i] 0
bsh bsh[f sg

return bsh

Figure 7.1: Simple algorithm for encoding binary sharing relationships

117

Chapter 7. Negative Set-Sharing Analysis

In this chapter, we will denote byt̂ the binary representation of the set of variables

of t 2 Term according to a particular order among variables. Sincêt will be always

used through a bitwise operation with some string of lengthl, the length of t̂ must be

l. If not, t̂ is adjusted with 0's in those positions associated with variablesrepresented

in the string but not in t. For instance, if V = f X 1; X 2; X 3; X 4g and t contains

f X 2; X 3g, then t̂ = 0110.

The following de�nitions are an adaptation for the binary representation of the

standard de�nitions for the Set-Sharing domain:

De�nition 7.2.2. (Binary relevant sharing rel(bsh; t) and irrelevant sharing

irrel (bsh; t)). Given t 2 Term, the set of binary strings inbsh2 bSHl of length l that

are relevant with respect tot is obtained by a functionrel(bsh; t) : bSHl � Term !

bSHl de�ned as:

rel(bsh; t) = f s j s 2 bsh;(s
V

t̂) 6= 0 lg

where
V

represents the bitwise AND operation and 0l is the all-zeros string of length

l. Consequently, the set of binary strings inbsh 2 bSHl that are irrelevant with

respect tot is a function irrel (bsh; t) : bSHl � Term ! bSHl whereirrel (bsh; t) is

the complement ofrel(bsh; t), i.e., bshn rel(bsh; t).

De�nition 7.2.3. (Binary cross-union, �[) . Given bsh1; bsh2 2 bSHl , their

cross-union is a function �[: bSHl � bSHl ! bSHl de�ned as

bsh1 �[bsh2 = f s j s = s1
W

s2; s1 2 bsh1; s2 2 bsh2g

where
W

represents the bitwise OR operation.

De�nition 7.2.4. (Binary up-closure, (:)�) . Let l be the length of strings in

bsh 2 bSHl , then the up-closure of bsh, denoted bsh� is a function (:)� : bSHl !

118

Chapter 7. Negative Set-Sharing Analysis

bSHl that represents the smallest superset ofbshsuch that s1
W

s2 2 bsh� whenever

s1; s2 2 bsh� :

bsh� = f s j 9n � 1 9t1; : : : ; tn 2 bsh, s = t1
W

: : :
W

tng

De�nition 7.2.5. (Binary abstract uni�cation, amgu). The abstract uni�cation

is a function amgu : V � Term � bSHl ! bSHl de�ned as

amgu(x; t; bsh) = irrel (bsh; x = t) [(rel(bsh; x) �[rel(bsh; t)) �

Example 7.2.2. (Binary abstract uni�cation). Let V = f X 1; X 2; X 3; X 4g be the

set of variables of interest and letsh = ff X 1g; f X 2g; f X 3g; f X 4gg be a sharing

set. Assume the following order among variables:X 1 � X 2 � X 3 � X 4. Then,

sh is encoded as the following set of binary stringsbsh = f 1000; 0100; 0010; 0001g.

Consider the analysis ofX 1 = f (X 2; X 3):

A = rel(bsh; X1) = f 1000g

B = rel(bsh; f (X 2; X 3)) = f 0100; 0010g

A �[B = f 1100; 1010g

(A �[B)� = f 1100; 1010; 1110g

C = irrel (bsh; X1 = f (X 2; X 3)) = f 0001g

amgu(X 1; f (X 2; X 3); bsh) = C [(A �[B)� = f 0001; 1100; 1010; 1110g

As described in Sec. 3.4 in Chapter 3, the design of a bottom-up analysis must be

completed by de�ning the following abstract operations:init (initial abstract state),

equivalence(between two abstract substitutions),join (de�ned as the union), and

project.

119

Chapter 7. Negative Set-Sharing Analysis

De�nition 7.2.6. (Binary initial state, init bSH) . The initial state init : V !

bSH describes an initial substitution given a set of variables. Assume that an initial

substitution sh 2 SH is given byinit SH : V ! SH, de�ned in [61]. Then, the binary

initial state can be de�ned using the algorithm shown in Fig. 7.1as:

init bSH (V) = BinaryEncoding(init SH (V); V)

De�nition 7.2.7. (Binary equivalence, �) . Given bsh1; bsh2 2 bSH, they are

equivalent (i.e., bsh1 � bsh2) if and only if 8s1 2 bsh1; 8s2 2 bsh2; s1 = s2 (syntactic

equivalence).

De�nition 7.2.8. (Binary join, t) . Given bsh1; bsh2 2 bSH, the join function

t : bSH � bSH ! } (bSH) is de�ned as union (i.e.,bsh1 t bsh2 = bsh1 [bsh2).

De�nition 7.2.9. (Binary projection, bshj t) . The binary projection is a function

bshj t : bSHl � Term ! bSHk (k � l) that removes thei -th positions from all strings

(of length l) in bsh2 bSHl , if and only if the i -th positions of t̂ (denoted by t̂[i]) is

0, and it is de�ned as

bshj t = f s0 j s 2 bsh; s0 = � (s; t)g

where� (s; t) is the binary string projection de�ned as

� (s; t) =

8
>>><

>>>:

�; if s = � , the empty string

� (s0; t); if s = s0ai and t̂[i] = 0

� (s0; t)ai ; if s = s0ai and t̂[i] = 1

and s0ai is the concatenation of charactera to string s0 at position i .

120

Chapter 7. Negative Set-Sharing Analysis

7.3 Ternary Set-Sharing

In this section, we introduce a more e�cient representation for the Set-Sharing do-

main de�ned in Sec. 7.2 to accommodate a larger number of variables for analy-

sis. We extend the binary string encoding discussed above to the ternary alphabet

� � = f 0; 1; �g , where the � symbol denotes both 0 and 1 bit values. This repre-

sentation e�ectively compresses the number of elements in the set into fewer strings

without changing what is represented (i.e., without loss of accuracy). To handle the

ternary alphabet, we rede�ne the binary operations coveredin Sec. 7.2.

De�nition 7.3.1. (Ternary sharing domain, tSH). Let alphabet � � = f 0; 1; �g ,

V be a �xed and �nite set of variables of interest in an arbitrary order as in Def. 7.2.1,

and � l
� the �nite set of all strings over � � with length l, 0 � l � jVj . Then,

tSH l = } 0(� l
�) and hence, theternary sharing domainis de�ned astSH =

S

0� l �jVj
tSH l .

Prior to de�ning how to transform the binary string representation into the corre-

sponding ternary string representation, we introduce two corede�nitions, Def. 7.3.2

and Def. 7.3.3, for comparing ternary strings. These operations are essential for

the conversion and set operations. In addition, they are used to eliminate redun-

dant strings within a set and to check for equivalence of two ternary sets containing

di�erent strings.

De�nition 7.3.2. (Match, M). Given two ternary strings, x; y 2 � l
� , of length l,

match is a function M : � l
� � � l

� ! B , such that 8i 1 � i � l ,

xM y =

8
<

:
true; if (x[i] = y[i]) _ (x[i] = �) _ (y[i] = �)

false; otherwise

121

Chapter 7. Negative Set-Sharing Analysis

0 Convert(bsh; k)
1 tsh ;
2 foreach s 2 bsh
3 y PatternGenerate(tsh; s; k)
4 tsh ManagedGrowth(tsh; y)
5 return tsh

10 PatternGenerate(tsh; x; k)
11 m Speci�ed(x)
12 i 0
13 x0 x
14 l length(x)
15 while m > k and i < l
16 Let bi be the value ofx0 at position i
17 if bi = 0 or bi = 1 then
18 x0 x0 � bi

19 if x0 �j tsh then
20 x0 x0 � � i

21 else
22 x0 x0 � bi

23 m Speci�ed(x0)
24 i i + 1
25 return x0

30 ManagedGrowth(tsh; y)
31 Sy = f s j s 2 tsh; s �� yg
32 if Sy = ; then
33 if y �/j tsh then
34 appendy to tsh
35 else
36 removeSy from tsh
37 appendy to tsh
38 return tsh

Figure 7.2: A deterministic algorithm for converting a set of binary strings bsh into
a set of ternary stringstsh, wherek is the desired minimum number of speci�ed bits
(non-�) to remain.

De�nition 7.3.3. (Subsumed By �� and Subsumed In �j) . Given two ternary

strings s1; s2 2 � l
� , �� : � l

� � � l
� ! B is a function such that s1 �� s2 if and only if

every string matched bys1 is also matched bys2. More formally, s1 �� s2 () 8 s 2

tSH l ; if s 1M s then s2M s. For convenience, we augment this de�nition to deal with

sets of strings. Given a ternary strings 2 � l
� and a ternary sharing set,tsh 2 tSH l ,

�j : � l
� � tSH l ! B is a function such that s �j tsh if and only if there exists some

elements0 2 tsh such that s �� s0.

Figure 7.2 gives the pseudo code for an algorithm which converts a set of binary

122

Chapter 7. Negative Set-Sharing Analysis

strings into a set of ternary strings. The functionConvertevaluates each string of the

input and attempts to introduce � symbols usingPatternGenerate, while eliminating

redundant strings usingManagedGrowth.

PatternGenerateevaluates the input string bit-by-bit to determine where the�

symbol can be introduced. The number of� symbols introduced depends on the

sharing set represented andk, the desired minimum number of speci�ed bits, where

1 � k � l (the string length). For a given set of strings of lengthl, parameter

k controls the compression of the set. Fork = l (all bits speci�ed), there is no

compression andtsh = bsh. For k = 1, the maximum number of � symbols is

introduced. For now, we will assume thatk = 1, and some experimental results in

Section 7.5 will show the best overallk value for a givenl. The Speci�ed function

returns the number of speci�ed bits (0 or 1) inx.

ManagedGrowthchecks if the input string y subsumes other strings fromtsh. If

no redundant string exists, theny is appended totsh only if y itself is not redundant

to an existing string in tsh. Otherwise, y replaces all the redundant strings.

Example 7.3.1. (Conversion from bSH to tSH). LetV be the set of variables of

interest with the same order as Example 7.2.2. Assume the following sharing set

of binary strings bsh = f 1000, 1001, 0100, 0101, 0010, 0001g. Then, a ternary

string representation produced by applyingConvertis tsh = f 100*, 0010, 010*, *001g.

There can be a certain level of redundancy in the representation, a subject that will

be discussed further in Section 7.5.

The example above begins withConvert(bsh,k = 1).

1. Sincetsh = ; initially (line 1), the �rst string 1000 is appended to tsh, so

tsh = f 1000g.

2. Next, 1001 frombsh is evaluated. In PatternGenerate, with x0 at iteration i

123

Chapter 7. Negative Set-Sharing Analysis

(denoted asx0
i), i = 3 and b3 = 1, we test x0

3 = 1000 if the i th position of x can

be replaced with a� (line 15-24). In this case, sincex0
3

�j tsh (line 19), x0
3 =

100* is returned (line 25). Next,ManagedGrowthevaluates 100* and since it

subsumes 1000 (Sy = f 1000g), 100* replaces 1000 leavingtsh = f 100*g (line

38).

3. The process continues withPatternGenerate(f 100*g,0100) (line 3). In Pat-

ternGenerate, since x0
0

�/j tsh, x0
1

�/j tsh, x0
2

�/j tsh, and x0
3

�/j tsh, we reset each

i th bit to its original value (line 22) and x0 = x = 0100 is returned. Next,

ManagedGrowth(f 100*g,0100) is called and since 0100 is not redundant to any

string in tsh, it is appended totsh resulting in tsh = f 100*,0100g.

4. The process continues withPatternGenerate(f 100*,0100g,0101). InPatternGenerate,

when x0
3 = 0100 and sincex0

3
�j tsh, then x0

3 = 010* is returned. Managed-

Growth(f 100*, 0100g, 010*) is called next and since 010* subsumes 0100 in

tsh, it is replaced leavingtsh = f 100*,010*g (line 38).

5. The process continues similarly, for the remaining input strings inbshobtaining

the �nal result of tsh = f 100*, 0010, 010*, *001g.

Next, we rede�ne the binary string operations to account for the � symbol in

a ternary string. Note that since the ternary representation extends the binary

alphabet (i.e., binary is a subset of the ternary alphabet), ternary operations can

also operate over strictly binary strings. For simplicity, we will overload certain

operators to denote operations involving both binary and ternary strings.

De�nition 7.3.4. (Ternary-or
W

and Ternary-and
V

). Given two ternary

strings, x; y 2 � l
� of length l, ternary-or and ternary-and are two bitwise-or functions

de�ned as
W

;
V

: � l
� � � l

� ! � l
� such that z = x

W
y and w = x

V
y, 8i 1 � i � l ,

where:

124

Chapter 7. Negative Set-Sharing Analysis

z[i] =

8
>>><

>>>:

� if (x[i] = � ^ y[i] = �)

0 if (x[i] = 0 ^ y[i] = 0)

1 otherwise
w[i] =

8
>>>>>>>><

>>>>>>>>:

� if (x[i] = � ^ y[i] = �)

1 if (x[i] = 1 ^ y[i] = 1)

_ (x[i] = 1 ^ y[i] = �)

_ (x[i] = � ^ y[i] = 1)

0 otherwise

De�nition 7.3.5. (Ternary set intersection, \) . Given tsh1, tsh2 2 tSH l ,

\ : tSH l � tSH l ! tSH l is de�ned as

tsh1 \ tsh2 = f r j r = s1
V

s2; s1M s2; s1 2 tsh1; s2 2 tsh2g

For convenience, we de�ne two binary patterns,0-maskand 1-mask, in order to

simplify further operations. The former takes anl-length binary string s and returns

a set with a single string having a 0 wheres[i] = 1 and � 's elsewhere,8i 1 � i � l .

The latter takes also anl-length binary string s, but returns a set of strings with a

1 wheres[i] = 1 and � 's elsewhere,8i 1 � i � l . For instance, 0-mask(0110) and

1-mask(0110) return f� 00�g and f� 1 � � ; � � 1�g , respectively.

De�nition 7.3.6. (Ternary relevant sharing rel(tsh; t) and irrelevant sharing

irrel (tsh; t)). Given t 2 Term with length l and tsh 2 tSH l with strings of length l,

the set of strings intsh that are relevant with respect to t is obtained by a function

rel(tsh; t) : tSH l � Term ! tSH l de�ned as

rel(tsh; t) = tsh \ 1-mask(t̂)

In addition, irrel (tsh; t) is de�ned as

125

Chapter 7. Negative Set-Sharing Analysis

irrel (tsh; t) = (tsh \ 1-mask(t̂)) \ 0-mask(t̂)

Ternary cross-union,�[, and ternary up-closure, (:)� , operations are as de�ned

in Def. 7.2.3 and in Def. 7.2.4, respectively, except the binary version of the bitwise

OR operator is replaced with its ternary counterpart de�nedin Def. 7.3.4 in order

to account for the � symbol. In addition, the ternary abstract uni�cation (amgu)

is de�ned exactly as the binary version, Def.7.2.5, using the corresponding ternary

de�nitions.

Example 7.3.2. (Ternary abstract uni�cation). Let tsh = f 100*, 010*, 0010, *001g

as in Example 7.3.1. Consider again the analysis ofX 1 = f (X 2; X 3), the result is:

A = rel(tsh; X 1) = f 100�g

B = rel(tsh; f (X 2; X 3)) = f 010� ; 0010g

A �[B = f 110� ; 101�g

(A �[B)� = f 110� ; 101� ; 111�g

C = irrel (tsh; X 1 = f (X 2; X 3)) = f 0001g

amgu(X 1; f (X 2; X 3); tsh) = C [(A �[B)� = f 0001; 110� ; 101� ; 111�g

De�nition 7.3.7. (Ternary initial state, init) . The initial state init : V � I + !

tSH jVj describes an initial substitution given a set of variables of interest. Assuming

the binary initial state operation de�ned asinit bSH : V ! bSHjVj , the ternary initial

state can be de�ned using theConvertalgorithm in Fig. 7.2 as:

init (V; k) = Convert(init bSH (V); k)

De�nition 7.3.8. (Ternary equivalence, �) . Given tsh1, tsh2 2 tSH l , the sets

are equivalentif and only (8t1 2 tsh1, 8s1 �� t1, s1
�j tsh2) ^ (8t2 2 tsh2, 8s2 �� t2,

126

Chapter 7. Negative Set-Sharing Analysis

s2
�j tsh1).

The ternary join is de�ned as its binary counterpart, i.e., union. Finally, the ternary

projection, tshj t , is de�ned similarly as binary projection, see Def. 7.2.9. However,

the projection domain and range is extended to accommodate the � symbol. So, the

function de�nition remains the same except thatternary string projection is now

de�ned as a function� (s; t): � l
� � Term ! � k

� , k � l . For example, lettsh = f 100*,

010*, 0010, *001g as in Example 7.3.1. Then, the projection oftsh over the term

t = f (X 1; X 2; X 3) is tshj t = f 100, 010, 001g. Note that since all zeros is meaningless

in a set-sharing representation, it is not included here.

7.4 Negative Ternary Set-Sharing

In this section, we describe a further step using the ternary representation discussed

in the previous section. In certain cases, a more compact representation of sharing

relationships among variables can be captured equivalentlyby working with the

complement (or negative) set of the original sharing set. A ternary string t can

either be in or not in the set tsh 2 tSH . This mutual exclusivity together with the

�niteness of V allows for checkingt's membership intsh by asking if t is in tsh, or,

equivalently, if t is not in its complement, tsh. Given a set ofl-bit binary strings, its

complement or negative set containsall the l-bit ternary strings not in the original

set. Therefore, if the cardinality of a set is greater than halfof the maximum size

(i.e., 2jVj� 1), then the size of its complement will not be greater than 2jVj� 1. It is this

size di�erential that we exploit. In Set-Sharing analysis, as we consider programs

with larger numbers of variables of interest, the potential number of sharing groups

grows exponentially, toward 2jVj , whereas the number of sharing groups not in the

127

Chapter 7. Negative Set-Sharing Analysis

0 NegConvert(sh; k)
1 tnsh U
2 foreach t 2 sh
3 tnsh Delete(tnsh; t; k)
4 return tnsh

0 NegConvertMissing(bsh; k)
1 tnsh ;
2 bnsh U n bsh
3 foreach t 2 bnsh
4 tnsh Insert(tnsh; t; k)
5 return tnsh

10 Delete(tnsh; x; k)
11 Dx f t j t 2 tnsh; xM tg
12 tnsh0 tnsh with Dx removed
13 foreach y 2 Dx

14 foreach unspeci�ed bit position qi of y
15 if bi (the i th bit of x) is speci�ed, then
16 y0 y � (qi = bi)
17 tnsh0 Insert(tnsh0; y0; k)
18 return tnsh0

20 Insert(tnsh; x; k)
21 m Speci�ed(x)
22 if m < k then
23 P select (k � m) unspeci�ed bit positions in x
24 foreach possible bit assignmentVP of the selected positions
25 y x � VP

26 tnsh0 ManagedGrowth(tnsh; y)
27 else
28 y PatternGenerate(tnsh; x; k)
29 tnsh0 ManagedGrowth(tnsh; y)
30 return tnsh0

Figure 7.3: NegConvert, NegConvertMissing, Delete and Insert algorithms used to
transform positive to negative representation;k is the desired number of speci�ed
bits (non-*'s) to remain.

sharing set decreases toward 0.

The idea of a negative set representation and its associated algorithms extends

the work by Esponda et al. in [41, 42]. In that work, a negative set is generated from

the original set in a similar manner to the conversion algorithms shown in Figs. 7.2

and 7.3. However, they produce a negative set with unspeci�ed bits in random

128

Chapter 7. Negative Set-Sharing Analysis

positions and with less emphasis on managing the growth of the resulting set. The

technique was originally introduced as a means of generating Boolean satis�ability

(SAT) formulas where, by leveraging the di�culty of �nding so lutions to hard SAT

instances, the contents of the original set are obscured withoutusing encryption [41].

In addition, these hard-to-reverse negative sets are still ableto answer membership

queries e�ciently while remaining intractable to reverse (i.e., to obtain the contents

of the original set). In this paper, we are not interested in this security property,

however, and use the negative approach simply to address the e�ciency issues faced

by the traditional Set-Sharing domain.

The conversion to the negative set can be accomplished using the two algorithms

shown in Figure 7.3. NegConvertuses theDeleteoperation to remove input strings

of the set sh from U, the set of all l -bit strings U = f� lg, and then, the Insert

operation to return U n sh which represents all stringsnot in the original input.

Alternatively, NegConvertMissinguses theInsert operation directly to append each

string missing from the input set to an empty set resulting in a representation ofall

strings not in the original input. Although as shown in Table 7.1 both algorithms

have similar complexities, depending on the size of the original input it may be

more e�cient to �nd all the strings missing from the input and tra nsform them with

NegConvertMissing, rather than applying NegConvertto the input directly. Note that

the resulting negative set will use the same ternary alphabet described in Def. 7.3.1.

For clarity, we will de�ne it as:

De�nition 7.4.1. (Ternary Negative Sharing Domain, tNSH). The ternary

negative sharing domain is de�ned as its positive counterpartin Def. 7.3.1, i.e.

tNSH � tSH .

We describe onlyNegConvertsinceNegConvertMissinguses the same machinery.

129

Chapter 7. Negative Set-Sharing Analysis

Assume a transformation frombshto tnsh calling NegConvertwith k = 1. We begin

with tnsh = U = f� � ��g (line 1), then incrementally Deleteeach element ofbsh

from tnsh (line 2-3). Deleteremoves all strings matched byx from tnsh (line 11-

12). If the set of matched strings,Dx , contains unspeci�ed bit values (* symbols),

then all string combinationsnot matching x must be re-inserted back intotnsh (line

13-17). Each stringy0 not matching x is found by setting the unspeci�ed bit to the

opposite bit value found inx[i] (line 16). Then, Insertensures stringy0 has at least

k speci�ed bits (line 22-26). This is done by specifyingk � m unspeci�ed bits (line

23) and appending each to the result usingManagedGrowth(line 24-26). If string

x already has at leastk speci�ed bits, then the algorithm attempts to introduce

more � symbols usingPatternGenerate(line 28) and appends it while removing any

redundancy in the resulting set usingManagedGrowth(line 29).

Example 7.4.1. (Conversion from bSH to tNSH). Consider the same sharing set as

in Example 7.3.1: bsh = f 1000, 1001, 0100, 0010, 0101, 0001g. A negative ternary

string representation is generated by applying theNegConvertalgorithm to obtain

f 0000, 11**, 1*1*, *11*, **11g. Since a string of all 0's is meaningless in a set-sharing

representation, it is removed from the set. Thus,tnsh = f 11**, 1*1*, *11*, **11 g.

1. The �rst string 1000 is deleted fromU = f� � ��g . So, Dx = f� � ��g (line

11) and tnsh0 = ; (line 12). For eachi th bit of x, a newy0
i /M x is evaluated for

insertion into the result set. So,Insert(; , y0
0 = 0***, k = 1) is called (line 17).

Since Speci�ed(y0) � k and tnsh0 = ; , the result returned is tnsh0 = f 0*** g

(line 27-30). For all other unspeci�ed positions (line 14) ofy, a new string is

created with a bit value opposite tox i 's value, (bi). So, Insert (f 0*** g, y0
1 =

*1**, k = 1) is called next andy0
1 is appended totnsh0. The process continues

with y0
2 and y0

3 resulting in tnsh = f 0***, *1**, **1*, ***1 g.

130

Chapter 7. Negative Set-Sharing Analysis

2. Next, 1001 frombsh is deleted (line 2) resulting inDx = f ***1 g and tnsh0 =

f 0***, *1**, **1* g (line 11,12). Then, Insert (f 0***, *1**, **1* g, y0 = 0**1,

k = 1) is called. Since 0**1 �j tnsh0, then tnsh0 remains unchanged. The

process continues withy0
1 =*1*1, y0

2 =**11 being subsumed bytnsh0; so the

result returned is tnsh = f 0***, *1**, **1* g.

3. Next, 0100 is deleted resulting intnsh = f 00**, 0**1, 11**, *1*1, **1* g.

4. Next, 0010 is deleted resulting intnsh = f 000*, 0**1, 11**, 1*1*, *11*, *1*1,

**11g.

5. Next, 0101 is deleted resulting intnsh = f 000*, 00*1, 11**, 1*1*, *11*, **11g.

6. Finally, 0001 is deleted resulting intnsh = f 0000, 11**, 1*1*, *11*, **11g.

7. Removing the string with all 0s, we get the �naltnsh = f 11**, 1*1*, *11*,

**11g.1

An alternative conversion algorithm usesNegConvertMissing. But, �rst the miss-

ing strings must be calculated from the given set. For Example 7.4.1, the missing

strings aref 0011, 0110, 0111, 1010, 1011, 1100, 1101, 1110, 1111g.

1. The NegConvertMissingbegins with the �rst string 0011 andtnsh = ; resulting

in tnsh = f 0011g.

2. Then, Insert(f 0011g, y0 = 0110, k = 1) resulting in tnsh = f 0011, 0110g.

3. Next, Insert(f 0011, 0110g, y0 = 0111, k = 1) resulting in tnsh = f 011*, 0*11g.

4. Next, Insert (f 011*, 0*11g, y0 = 1010, k = 1) resulting in tnsh = f 011*, 0*11,

1010g.

1Notice that tnsh = U n(bsh[f 0000g).

131

Chapter 7. Negative Set-Sharing Analysis

Transformation Time Complexity Size Complexity
bSH ! tSH O(jbshj�l) O(jbshj)
bSH=tSH ! tNSH O(jbshj� (� 2� + 1)) O(jtnshj(l � m)2�)
tNSH ! tSH O(jtnshj� (� 2� + 1)) O(jtshj(l � m)2�)
bSH ! tNSH O(� + jbnshj(� 2� + 1)) O(jbnshj2�)

Table 7.1: Summary of conversions:l-length strings; � = jResultj � l ; if m < k then
� = k � m else� = 0, where m = minimum speci�ed bits in entire set, k = number
of speci�ed bits desired;bnsh= U nbsh; � = O(2l) time to �nd bnsh.

5. Next, Insert (f 011*, 0*11, 1010g, y0 = 1011, k = 1) resulting in tnsh = f 011*,

0*11, 101*, *011g.

6. Next, Insert(f 011*, 0*11, 101*, *011g, y0 = 1100, k = 1) resulting in tnsh = f 011*,

0*11, 101*, 1100, *011g.

7. Next, Insert (f 011*, 0*11, 101*, 1100, *011g, y0 = 1101, k = 1) resulting in

tnsh = f 011*, 0*11, 101*, 110*, *011g.

8. Next, Insert (f 011*, 0*11, 101*, 110*, *011g, y0 = 1110, k = 1) resulting in

tnsh = f 011*, 0*11, 101*, 110*, *011, *110g.

9. Finally, Insert(f 011*, 0*11, 101*, 110*, *011, *110g, y0 = 1111, k = 1) resulting

in tnsh = f 11**, 1*1*, *11*, **11 g.

Notice that NegConvertMissingwould return the same result for Example 7.4.1,

and, in general, an equivalent negative representation.

Table 7.1 illustrates the di�erent transformation functions and their complex-

ities for a given input. Transformation bSH ! tSH can be performed by the

Convertalgorithm described in Fig. 7.2. TransformationsbSH=tSH ! tNSH and

bSH ! tNSH are done byNegConvertand NegConvertMissing, respectively. Both

transformations show that we can convert a positive representation into negative with

132

Chapter 7. Negative Set-Sharing Analysis

corresponding di�erence in time and memory complexity. Depending on the size of

the original input we may prefer one transformation over another. If the input size is

relatively small, less than 50% of the maximum size, thenNegConvertis often more

e�cient than NegConvertMissing. Otherwise, we may prefer to insert those strings

missing in the input set. In our implementation, we continuouslytrack the size of

the relationships to choose the most e�cient transformation. Finally, transformation

tNSH ! tSH is performed byNegConvertallowing comming back to the positive

from a negative representation.

Consider now the same set of variables and order among them as in Example 7.4.1

but with a slightly di�erent set of sharing groups encoded asbsh= f 1000, 1100, 1110g

or tsh = f 1*00, 1110g. Then, a negative ternary string representation produced by

NegConvertis tnsh = f 00**, 01**, 0*1*, 0**1, 1**1, *01* g. This example shows that

the number of elements, or size, of the negative result,jtnshj = 6 > jbshj = 3 and

jtshj = 2. However, in Example 7.4.1 whenjbshj = 6, jtnshj = 4 < jbshj. This is

because whenjbshj is less than 2jVj� 1, i.e., jbshj = 3 < 23, then its complement set

must represent (2jVj � j bshj) = 13 elements. Depending on the strings in the positive

set, the size of the negative result may indeed be greater. This is a good illustration

of how selecting the appropriate set-sharing representation will a�ect the size of the

converted result. Thus, the size of the original sharing set at speci�c program points

will be used by the analysis to produce the most compact working set. The negative

sharing set representation allows us to represent more variables of interest enabling

larger problem instances to be evaluated.

We now de�ne certain operations on the negative representation in order to per-

form abstract uni�cation and the other abstract operations required by our engine

to use the negative representation.

De�nition 7.4.2. (Negative intersection, \) . Given two negative sets with

same length strings,ns1 and ns2, the Negative Intersectionreturns a negative set

133

Chapter 7. Negative Set-Sharing Analysis

representing the set intersection ofns1 \ ns2, and is de�ned in [42] as:

ns1 \ ns2 = f xjx 2 ns1g [f yjy 2 ns2g:

De�nition 7.4.3. (Negative relevant sharing rel(tnsh; t) and irrelevant shar-

ing irrel (tnsh; t)) Given t 2 Term and tnsh 2 tNSH l with strings of length l, the

set of strings in tnsh that are negative relevantwith respect to t is obtained by a

function rel(tnsh; t) : tNSH l � Term ! tNSH l de�ned as:

rel(tnsh; t) = tnsh \ 0-mask(t̂),

In addition, irrel (tnsh; t) is de�ned as:

irrel (tnsh; t) = tnsh \ 1-mask(t̂).

Because the negative representation is the complement, it is not only more com-

pact for large positive set-sharing instances, but also, and perhaps more importantly,

it enables us to use inverse operations that are more memory- and computationally

e�cient than in the positive representation. However, the negative representation

does have its limitations. Certain operations that are straightforward in the positive

representation areN P -Hard in the negative representation [41, 42]. A key observa-

tion given in [41] is that there is a mapping from Boolean formulae to the negative

set-sharing domain such that �nding which strings are not represented is equiva-

lent to �nding satisfying assignments to the corresponding Boolean formula. This

is known to be anN P -Hard problem. As mentioned before, this fact is exploited

in [41] for privacy enhancing applications. The mapping is de�ned as follows.

134

Chapter 7. Negative Set-Sharing Analysis

Let tnsh = f 11**, 1*1*, *11*, **11 g be the same sharing set as in Example 7.4.1.

Its equivalent Boolean formula� � not [(x1 and x2) or (x1 and x3) or (x2 and x3)

or (x3 and x4)] is de�ned over the set of variablesf x1; x2; x3; x4g. The formula �

is mapped into a negative set-sharing instance where each clausecorresponds to a

string and each variable in the clause is represented as a 0 if it appears negated,

as a 1 if it appears un-negated, and as a * if it does not appear in the clause. By

applying DeMorgan's law, we can convert� to an equivalent formula in conjunctive

normal form. Then, it is easy to see that a satisfying assignment of the formula such

as f x1 = true; x 2 = false; x 3 = false; x 4 = trueg corresponding to the string 1001

is not represented in the negative set-sharing instance.

Theorem 7.4.1. A polynomial time algorithm for computing negative cross-union, �[,

implies P= N P .

Proof. See Appendix A.

Due to the interdependent nature of the relationship betweenthe elements of a

negative set, it is unclear how a precise negative cross-union can be accomplished

without going through a positive representation. Therefore,we accomplish the nega-

tive cross-union by �rst identifying the represented positive strings and then applying

cross-union accordingly.

Rather than iterating through all possible strings inU and performing cross-union

on strings not in tnsh, we achieve a more e�cient negative cross-union,�[, by con-

verting tnsh to tsh �rst, i.e., using NegConvertfrom Table 7.1 and performing ternary

cross-union on stringst 2 tsh. In this way, the ternary representation continues to

provide a compressed representation of the sharing set. Note that the negative up-

closure operation,� , su�ers the same drawback as cross-union. Therefore, we handle

it in the same way as the negative cross-union.

De�nition 7.4.4. (Negative union, [) . Given two negative sets with same length

135

Chapter 7. Negative Set-Sharing Analysis

strings, ns1 and ns2, the Negative Unionreturns a negative set representing the set

union of ns1 [ns2, and is de�ned in [42] as:

ns1 [ns2 = f zj(xM y)) z = x
^

y; x 2 ns1; y 2 ns2g;

where
V

is the ternary AND operator.

De�nition 7.4.5. (Negative abstract uni�cation, amgu). The negative abstract

uni�cation is a function amgu : V � Term � tNSH l ! tNSH l de�ned as

amgu(x; t; tnsh) = irrel (tnsh; x = t) [(rel(tnsh; x) �[rel(tnsh; t)) � ,

Example 7.4.2. (Negative abstract uni�cation). Let tnsh = f 11**, 1*1*, *11*,

**11g be the same sharing set as in Example 7.4.1. Consider the analysis of X 1 =

f (X 2; X 3):

A = rel(tnsh; X 1) = f 11� � ; 1 � 1� ; � 11� ; � � 11; 0 � ��g

B = rel(tnsh; f (X 2; X 3)) = f 11� � ; 1 � 1� ; � 11� ; � � 11; � 00�g

A �[B = f 00� � ; 01� � ; 0 � 0� ; � 00�g

(A �[B) � = f 01� � ; 0 � 1� ; 100�g

C = irrel (tnsh; X 1 = f (X 2; X 3)) = f 11� � ; 1 � 1� ; � 11� ; � � 11; 1 � �� ;

� 1 � � ; � � 1�g

= f 1 � �� ; � 1 � � ; � � 1�g

amgu(X 1; f (X 2; X 3); tnsh) = C [(A �[B) � = f 01� � ; 0 � 1� ; 0 � � 0; 100�g

De�nition 7.4.6. (Negative initial state, init) . The negative initial state init :

V �I + ! tNSH jVj describes an initial substitution given a set of variables of interest.

Assuming as in Def. 7.3.7 the binary initial state operationinit bSH : V ! bSHjVj , the

136

Chapter 7. Negative Set-Sharing Analysis

negative initial state can be de�ned using eitherNegConvertor NegConvertMissing

described in Fig. 7.3 and denoted both byConvertas follows:

init (V; k) = Convert(init bSH (V); k)

De�nition 7.4.7. (Negative set equivalence, �) . Given tnsh1; tnsh2 2 tNSH l ,

they are equivalent if and only if (8t1 2 tnsh1; 8s1 �� t1; s1
�/j tnsh2) ^ (8t2 2

tnsh2; 8s2 �� t2; s2
�/j tnsh1).

De�nition 7.4.8. (Negative join, t) . Given tnsh1; tnsh2 2 tNSH l , the negative

join function t : tNSH l � tNSH l ! } 0(tNSH l) is de�ned as the negative set union

of the two sets, i.e.,tnsh1 [tnsh2.

De�nition 7.4.9. (Negative project, �) . Given a negative setns and the desired

bit positions to project �, Negative Projectis de�ned in [42] as

� � (ns) = f xj(xM w) ^ (8w 2 U� ; 8z 2 U� ; 9y 2 ns(y[�] M w ^ y[�] M z))g;

e.g., the resulting negative set will contains strings that hasa bit value projected in

column(s) speci�ed by � if and only if all possible binary combination of all strings

created with the projected column(s) appear in the negative set. For example, given

ns = f 000, 011, 10*, 11*g, the � �=1 ;2(ns) = f 10, 11g.

De�nition 7.4.10. (Negative projection, tnshj t) . The negative projectionis a

function tnshj t : tNSH l � Term ! tNSH k (k � l) that selects elements oftnsh

projected onto the binary representation oft 2 Term and is de�ned as

tnshj t = � (tnsh; � t),

137

Chapter 7. Negative Set-Sharing Analysis

where � t is equal to all i th -bit positions of t̂ where t̂[i] = 1.

Example 7.4.3. (Negative projection). Let tnsh = f 11**, 1*1*, *11*, **11 g be the

same sharing set as in Example 7.4.1. The negative projection oftnsh over the term

t = f (X 1; X 2; X 3) is tnshj t = f 11*, 1*1, *11g. String **1 is not in the result because

it represents the following strings when fully speci�edf 001, 011, 101, 111g and not

all these strings are in the complement, e.g., 001 is in the positive result of the same

projection over bsh.

7.5 Experimental Results

We developed a proof-of-concept implementation in order tomeasure experimentally

the relative e�ciency in terms of running time and memory usage obtained with

the two new representations described earlier,tSH and tNSH . The prototype uses

tries [86] to handle e�ciently binary and ternary strings, and is connected to a naive

bottom-up �xpoint analyzer.

Our �rst objective is to study the implications of the conversions in the repre-

sentation for analysis. Note that although bothtSH and tNSH do not imply a loss

of precision, the sizes of the resulting representations and their conversion times can

vary signi�cantly from one to another. An essential issue is to determine experimen-

tally the best overall k parameter for the conversion algorithms. Second, we study

the core abstract operation of the traditional set-sharing,amgu, under two di�erent

metrics. One is the running time to perform the abstract uni�cation. The other

metric expresses the memory usage through the size of the representation in terms

138

Chapter 7. Negative Set-Sharing Analysis

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 1000 2000 3000 4000

N
um

be
r

of
 S

tr
in

gs
 (

O
ut

pu
t)

Number of Binary Strings (Input)

k = 1

bSH
tSH

tNSH

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000

N
um

be
r

of
 S

tr
in

gs
 (

O
ut

pu
t)

Number of Binary Strings (Input)

k = 4

bSH
tSH:

tNSH:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000

N
um

be
r

of
 S

tr
in

gs
 (

O
ut

pu
t)

Number of Binary Strings (Input)

k = 7

bSH
tSH:

tNSH:

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1000 2000 3000 4000

N
um

be
r

of
 S

tr
in

gs
 (

O
ut

pu
t)

Number of Binary Strings (Input)

k = 10

bSH
tSH:

tNSH:

Figure 7.4: Level of compression after conversions frombSH to tSH and tNSH for
k = 1, 4, 7, and 10.

of number of strings during key steps in the uni�cation. All experiments have been

conducted on an IntelR CoreT M Duo CPU T2350 at 1.86GHz with 1GB of RAM

running Ubuntu 7.04, and were performed with 12-bit strings since we consider this

value large enough to show all the relevant features of our approach. In general,

within some upper bound, the more variables considered the better the expected

e�ciency.

The �rst experiment determines the bestk value suitable for the conversion algo-

rithms, shown in Figs. 7.2 and 7.3. We proceed by submitting a set of12-bit strings

in random order using di�erent k values. We evaluate size for the smallest output

(see Fig. 7.4) for a givenk value. As expected,bSH (x = y line) results in no

compression;tSH slowly increases with increasing input size, remaining belowbSH

(for k = 7 and k = 10) due to the compression provided by the� symbol and by

139

Chapter 7. Negative Set-Sharing Analysis

having little redundancy; tNSH , the complement set, starts larger thanbSH but

quickly tapers o� as the input size increases past 50% ofjUj. Since thek parameter

helps determine the minimum number of speci�ed bits in the set,there is a direct

relationship between thek parameter and the size of the output due to compression

by the � symbol. A smallerk value, i.e.,k = 1, introduces the maximum number of

� symbols in the set. However, for a given input, a smallk value does not necessarily

result in the best compression factor (seek = 1 of Fig. 7.4). This result may be

counter-intuitive, but it is due to the potentially larger number of unmatched strings

that must be re-inserted back into the set determined by all the strings that must be

represented by the converted result, see line 13-17 of Fig. 7.3.In addition, a small k

value may result in a set with more ternary strings than the number of binary strings

represented. This occurs when multiple ternary strings, none of which subsumes any

other, represent the same binary string. This redundancy in theternary representa-

tion is not prevented byManagedGrowth, and is apparent in Fig. 7.4 whenjtSH j and

jtNSH j exceed the maximum size of binary sharing relationships (i.e.,4096). One

way to reduce the number of redundant strings is to sort the binary input by Ham-

ming distancebefore conversion. In the subsequent tests, sorting was performedto

maximize compression. We have found empirically that ak setting near (or slightly

larger than) l=2 is the best overall value considering both the result size and time

complexity. We usek = 7 in the following experiments. It is interesting to note that

a k value of log2(l) results in polynomial time conversion of the input (see the Com-

plexity column of Table 7.1) but it may not result in the maximum compression of

the set (seek = 4 of Fig. 7.4). Therefore,k may be adjusted to produce results based

on acceptable performance level depending on which parameter is more important

to the user, the level of compression (memory constraints) or execution time.

Our second experiment shows the comparison in terms of memory usage (Fig. 7.5,

left) and running time (Fig. 7.5, right) of the conversion algorithms for transforming

an initial set of binary strings, bSH, into its corresponding set of ternary strings,

140

Chapter 7. Negative Set-Sharing Analysis

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000

N
um

be
r

of
 S

tr
in

gs

Number of Binary Strings

bSH
tSH

tNSH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
(n

or
m

al
iz

ed
)

Number of Binary Strings

bSH
tSH

tNSH

Figure 7.5: Memory usage (avg. # of strings) and time normalizedfor conversions
with k = 7.

tSH , or its complement (negative),tNSH . We generated random sets of binary

strings (over 30 runs) usingk = 7 and we converted the set of binary strings using

the Convertalgorithm described in Fig. 7.2 fortSH , andNegConvertMissingin Fig. 7.3

for tNSH . We also reduced the number of redundant strings by sorting themusing

the Hamming distance before conversion. The plot on the left shows that the number

of positive ternary strings,jtSH j, used for encoding the input binary strings always

remains belowjbSHj, and this number increases slowly with increasing input size. It

important to notice that for large values ofjbSHj, tSH compacts worse than expected

and the compression factor is lower. The main cause is the use of the parameter

k = 7 that implies only the use of 5 or less� symbols for compression. Conversely,

the number of negative sharing relationships,jtNSH j, is greater than jbSHj and

jtSH j up to between 40% and 50%, respectively. However, when the loadexceeds

those thresholdstNSH compresses much better than its alternatives. For instance,

for the maximum number of binary sharing relationships,tNSH compresses them to

only one negative string. On the other hand, the rightmost plotshows the average

time consumed over 30 runs for both conversion algorithms. Again, tNSH scales

better than the positive ternary solution, tSH , after a threshold established around

50% of the maximum number of binary sharing relationships. Our proof-of-concept

141

Chapter 7. Negative Set-Sharing Analysis

 1

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000

S
tr

in
gs

 P
os

t-
am

gu
 (

lo
gs

ca
le

d)

Strings Pre-amgu

bSH
tSH

tNSH

 0.0001

 0.001

 0.01

 0.1

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

T
im

es
 (

no
rm

al
iz

ed
 a

nd
 lo

gs
ca

le
d)

Number of strings

bSH
tSH

tNSH

Figure 7.6: Memory usage (avg. # of strings) and time normalizedfor amgu over
30 runs with k = 7.

implementation is not really optimized, since our objectiveis to study the relative

performance between the three representations, and thus times are normalized to the

range [0; 1]. We argue that comparisons that we report between representations are

fair since the three cases have been implemented with similar e�ciency, and useful

since the absolute performance of the base representation is well understood.

Finally, our third experiment shows also the e�ciency in termsof the memory

usage (in Fig. 7.6, left) and running time (in Fig. 7.6, right)when performing the

abstract uni�cation for k = 7. Several characteristics of the abstract uni�cation

in
uence the memory usage and its performance. Given an arbitrary set of variables

of interest V (jVj = 12), we constructed x 2 V by selecting one variable andt 2

Term as a term consisting of a subset of the remaining variables, i.e.,V n fxg. We

tested with di�erent values of t. Another important aspect is the input sharing set,

bSH. Again, we reduced the in
uence of this factor by generating randomly 30

di�erent sets. In the leftmost plot, the x-axis illustrates the number of input binary

strings considered during theamgu. In the case of the positive and negative ternary

amgu, the input binary strings were �rst converted to their corresponding compressed

representations. The y-axis shows the number of strings after the uni�cation. The

plot shows that exceeding a threshold lower than 500 in the number of input binary

142

Chapter 7. Negative Set-Sharing Analysis

sharing relationships, bothtSH and tNSH yield a signi�cant smaller number of

strings than the binary solution after uni�cation. Moreover, when the number of the

input binary strings is smaller than 50% of its maximum value,tSH compresses more

e�ciently than tNSH . However, if this value is exceeded then this trend is reversed:

the negative encoding yields a better compression as the cardinality of the original set

grows toward 2jVj . The rightmost plot shows the size of the random binary input sets

in the x-axis, and the average time consumed for performing theabstract uni�cation

in its y-axis, normalized again from 0 to 1. This graph shows that the execution

times behave similarly to the memory usage during abstract uni�cation. Both tSH

and tNSH run much faster than bSH. The di�erences are signi�cant (a factor of

10) for most x-values, reaching a factor of 1000 for large values of jbSHj. When

the load exceeds a 50� 60%-threshold,tNSH scales better thantSH by a factor of

10. The main di�erence with respect to the memory usage depicted in the leftmost

plot is that for a smaller load, tSH runs as fast astNSH during uni�cation. The

main reason is that the ternary relevant and irrelevant sharing operations are less

e�cient than their negative counterparts: intersection is an expensive operation in

the positive ternary representation whereas the negative intersection is very e�cient

(positive union).

7.6 Summary

We have presented a novel approach to Set-Sharing that leverages the complement or

negative sharing relationships of the original sharing set, without any loss of accuracy.

In this work, we based the negative representation on ternary strings. We also showed

that the same ternary representation can be used as a positive encoding to e�ciently

compact the original binary sharing set. This provides the useror the analyzer

the option of working with whichever set sharing representation is more e�cient for

143

Chapter 7. Negative Set-Sharing Analysis

a given problem instance. The capabilities of our negative approach to compress

sharing relationships are orthogonal to the use of the ternary representation. Hence,

the negative relationships may be encoded by any other representation such as, e.g.,

Binary Decision Diagrams. Concretely,Zero-suppressed Binary Decision Diagrams

(ZBDDs) [59] are particularly interesting because ZBDDs were designed to represent

sets of combinations (i.e., sets of sets). In addition, this approach may be also

applicable to similar sharing-related analyses in object-oriented languages (e.g., [83]).

Our experimental evaluation has shown that our approach may reduce signi�-

cantly the memory usage of the sharing relationships and the running time of the

abstract operations, including the abstract uni�cation. Our experiments also show

how to set up key parameters in our algorithms in order to control the desired com-

pression and time complexities. We have shown that we can obtain areasonable

compression in polynomial time by tuning appropriately those parameters. Thus,

we believe our results show another approach that can contribute to the practical,

scalable application of Set-Sharing.

144

Chapter 8

A Generic Analysis Framework for

Java Bytecode

Chapter 4 presented a practical resource usage analysis for logic programs. However,

there are situations, e.g., mobile code, where the source code is not accessible but

only compiled code. For example, the receiver of the code maywant to infer resource

information in order to decide whether to reject code which has too large cost require-

ments in terms of computing resources (number of bytes sent or received, number of

SMSs, energy consumption, heap usage, time, etc.), and to accept code which meets

the established requirements. In this context, Java bytecode [75] is widely used,

mainly due to its security features and the fact that it is platform-independent.

This chapter presents a generic framework for analysis of Javabytecode programs

based on abstract interpretation which can improve the accuracy of the resource

usage analysis further shown in Chapter 9. In Section 8.2, we introduce an inter-

mediate representation which generates a Control Flow Graphfrom the bytecode of

each method. In Section 8.3, a generic �xpoint algorithm based on abstract interpre-

tation is described. Section 8.4 shows the feasibility of the framework. Section 8.5

145

Chapter 8. A Generic Analysis Framework for Java Bytecode

AnalysisTransformation

soot + Ciao

transform.

javac

Java parser

Java bytecode

Java Source

Fixpoint

algorithm

Domains

Pre/Post pairs
Prog. Point Info

...Horn clauses

Figure 8.1: Pipeline of transformation and analysis

reviews the state of the art in abstract interpretation-based frameworks, and �nally,

Section 8.6 summarizes this chapter.

8.1 Motivation and Proposal

Analysis of the Java language (either in its source version or itscompiled byte-

code [75]) using the framework of abstract interpretation hasbeen the subject of

signi�cant research in the last decade (see, e.g., [78] and its references). Most of this

research concentrates on �nding new abstract domains that better approximate a

particular concrete property of the program analyzed in order to optimize compila-

tion (e.g., [17, 105]) or statically verify certain properties about the run-time behavior

of the code (e.g., [44, 70]). In contrast to this concentration and progress on the de-

velopment of new, re�ned domains there has been comparatively little work on the

underlying �xpoint algorithms. In fact, many existing abstract interpretation-based

analyses use relatively ine�cient �xpoint algorithms. In other cases, the �xpoint

algorithms are speci�c to a particular source language or analysis and cannot easily

be reused in other contexts.

146

Chapter 8. A Generic Analysis Framework for Java Bytecode

The proposed framework (see Figure 8.1) is generic in terms of the abstract

domain, and analysis is a two-step process that starts with a program transformation;

this phase is language dependent and results in a control
ow graph (CFG)-style

representation where the operational semantics is made explicit. For example, a

virtual call is replaced by a non-deterministic call to all the possible implementations

it can be resolved to. This encoding allows transforming di�erent related idioms of a

given language (or from several languages) into a highly uniform representation. We

argue that this preliminary (de)compilation process greatly simpli�es the burden of

designing new analyses and abstract operations.

A second, pivotal piece of the framework is an e�cient �xpoint algorithm. The

e�ciency of the algorithm relies on keeping dependencies between di�erent methods

during analysis so that only the really a�ected parts need to berevisited after a

change during the convergence process. The algorithm deals thus e�ciently with

mutually recursive call graphs. In addition, recomputation is avoided usingmem-

oization which remembers the results corresponding to some set of speci�c inputs.

The proposed algorithm is alsoparametric with respect to the abstract domain,

specifying a reduced number of basic operations that it must implement. Another

characteristic is that it is context sensitive{abstract calls to a given method that

represent di�erent input patterns are automatically analyzed separately { and fol-

lows a top-down approach, in order to allow modeling properties that depend on the

data
ow characteristics of the program.

8.2 Intermediate Program Representation

Analysis of a Java bytecode programP normally requires its translation into an inter-

mediate representation that is easier to manipulate. In particular, our decompilation

assisted by the Soot [114] tool involves elimination of stack variables, conversion to

147

Chapter 8. A Generic Analysis Framework for Java Bytecode

three-address statements, static single assignment (SSA) transformation, and gen-

eration of a Control Flow Graph (CFG) that is ultimately the subject of analysis.

In the framework, the decompilation process from Java bytecode to the �nal CFG

involves two steps. The �rst one is based on the Soot tool that returns a Shimple1

CFG(P), which has all the described characteristics. In a second phase,the compiler

maps that graph into another one,CFG0(P), which represents the same information

in a format that is more suitable for analysis.

The following grammar describes the intermediate representation:

CFG ::= BlockMethod+

BlockMethod ::= (id:N,sig:Sig,fpars:Id+ ,annot:expr� ,body:Stmt �)

Sig ::= (class:Type,name:Id,pars:Type+)

Stmt ::= (id:N,sig:Sig,apars:(Id jCt)+)

V ar ::= (name:Id; type:Type)

The Control Flow Graph is formed byblock methods. A block method is similar

to a Java method, except that:

1. If the program
ow reaches it, every statement in it will be executed, i.e, it

contains no branching;

2. Its signature might not be unique: the CFG might contain several block meth-

ods in the same class sharing the same name and formal parameter types;

3. It always includes as formal parameters the returned value ret and, unless it is

static, the instance self-referencethis ;

4. For every formal parameter (input formal parameter) of the original Java

method that might be modi�ed, there is an extra formal parameter in the

1Shimple is an SSA variant of Soot's Jimple internal representation which is a 3-address
code, and is the representation of choice for Java analyses.

148

Chapter 8. A Generic Analysis Framework for Java Bytecode

public c lass Vector f
Element f i r s t ;
public void add (int va lue) f

Element e = new Element () ;
e . va lue = va lue ;
Vector v = new Vector () ;
v . f i r s t = e ;
append (v) ;

g
g

c lass SubVector extends Vector f
public void append (Vector v) f

// . . .
g

g

public void append (Vector v) f
Element e = f i r s t ;
i f (e == nul l)

f i r s t = v . f i r s t ;
e lse f

while (e . next != nul l)
e = e . next ;

e . next = v . f i r s t ;
g

g

(a) Source code of theVector class

Vector.dyn_append(this,r3,ret)

Vector.append(this,r1,ret)

Builtin.gtf(this,first,r2)

Vector.append_1_2(this,r1,r2,r3,r4,r5,ret)

Vector.append_1_2(this,r1,r2,r3,r4,r5,ret) Vector.append_1_2(this,r1,r2,r3,r4,r5,ret)

Builtin.ne(r2,null)
Builtin.gtf(r2,next,r4)
Vector.append_3_4(this,r1,r2,r3,r4,r5,ret)

Builtin.eq(r2,null)
Builtin.gtf(r1,first,r3)
Builtin.stf(r3,first,this)

Vector.append_3_4(this,r1,r2,r3,r4,r5,ret)

Builtin.eq(r4,null)
Builtin.gtf(r1,first,r5)

Builtin.stf(r5,next,r2)

Vector.append_3_4(this,r1,r2,r3,r4,r5,ret)

Builtin.ne(r4,null)
Builtin.gtf(r2,next,r2')

Vector.append_1_2(this,r1,r2',r3,r4,r5,ret)

Vector.add(this,i0,ret)

Element.new(r1)
Element.init(r1,_)
Builtin.asg(r1,r2)
Builtin.stf(i0,value,r2)
Vector.new(r4)
Vector.init(r4,_)
Builtin.asg(r4,r3)
Builtin.stf(r2,first,r3)

Vector.dyn_append(this,r3,ret)

Vector.dyn_append(this,r3,ret)

SubVector.append(this,r1,ret)

SubVector.append(this,r3,ret)
Builtin.iof(this,[SubVector])

Vector.append(this,r3,ret)
Builtin.iof(this,[Vector])

...

(b) Control Flow Graph

block method that contains its �nal version in the SSA transformation (output

formal parameter);

5. Every statement in a block method is an invocation, including builtins (assign-

ment asg, �eld dereferencegtf, �eld accessstf, etc.), which are understood as

block methods of the classBuiltin.

As mentioned before, there is no branching within a block method. Instead,

each conditionalif cond stmt1 else stmt 2 in the original program is replaced with

an invocation and two block methods which uniquely match itssignature: the �rst

149

Chapter 8. A Generic Analysis Framework for Java Bytecode

block corresponds to thestmt 1 branch, and the second one tostmt 2. To respect

the semantics of the language, we decorate the �rst block method with the result of

compiling cond, while we attach cond to its sibling. A similar approach is used in

virtual invocations, for which we introduce as many block methods in the graph as

possible receivers of the call were in the original program.

Example 8.2.1. (CFG transformation). Figure 8.2(a) shows an alternative version

of the JDK Vector class, and Figure 8.2(b) depicts its corresponding Control Flow

Graph. An entry method corresponds in the original program to the �rst clause [46]

of the Java method of the same name and shares its signature, except for two ex-

tra parameter that represents the the instance self-reference, this , and the value

returned, ret. The other clauses present in the Java method are compiled into(com-

ponents of) internal methods which share the same set of variables: all the formal

parameters and local variables they reference. Examples ofconstructions converted

into internal clauses areif , while or for loops. In the example, we can see how the

if (e==null)...else conditional in the Vector implementation of appendis con-

verted into two di�erent clauses, one for each branch, which actually share the same

nameVector.append1 2. In this case, the internal method is composed of two clauses

which are indistinguishable from the caller's point of view, thus causing invocations

to the method to be non-deterministic (i.e., causing the execution of one clause or

another). Entry clauses are marked in grey, internal ones in white; dotted arrows

denote non-deterministic
ows while the continuous ones symbolize deterministic

calls.

Another
ow transformation, extra clauses, tries to expose the internal structure

of some complex Java features, which sometimes encode sophisticated operations.

That is the case of the virtual invocations. Note that the call toappendwithin

add is polymorphic: it might execute the implementation inVector or the one in

SubVector. We make this semantics explicit by inspecting the application hierarchy

150

Chapter 8. A Generic Analysis Framework for Java Bytecode

and replacing the virtual invocation with a set of resolved calls, one for each possible

implementation. The method acting as a \hub" is called anextra clause; in the

example we have two,Vector.dynappend, marked in black. They behave in a very

similar way to the conditional discussed previously, since the program
ow might go

through two alternative paths (clauses), one for each implementation of append. Each

branch contains a guard,iof, see the �rst statement in each of theVector.dynappend

clauses, listing the acceptable types for the callee.

It is interesting how, in an analogous way to the clause case, we introduced extra

statements to further simplify analysis. For example, the mentionediof builtin �lters

the execution of subsequent statements when the class of the instance is not listed

in the set of possibilities; guard statements have a similar goal inclauses that come

from conditional constructions. In Figure 8.2(b) theeq call at the beginning of

the leftmost Vector.append1 2 clause refers to the condition for executing the �rst

branch, while thenecall contains its negated version, for the second alternative. Also,

those methods that areentry but not extra contain assignments to shadow variables

that simulate the call-by-reference semantics. They are omitted in Figure 8.2(b) for

clarity.

8.3 The Top-Down Analysis Algorithm

We now describe our top-down analysis algorithm, which calculates the least �xed

point given a control
ow graph and an initial abstract state. Intermediate results

are stored in a memo table, which contains the results of computations already

performed and is typically used to avoid needless recomputation. In our context it

is used to store results obtained from an earlier round of iteration and also to track

whether a certain entry represents �nal, stable results for theblock, or intermediate

approximations obtained half way during the convergence of�xpoint computations,

151

Chapter 8. A Generic Analysis Framework for Java Bytecode

topDownAnalyze(CFG; method; dom; in; mt; set)

mf lag := classify(CFG; method)
case mf lag of

not recursive:
return analyzeNonRecMethod(CFG; method; dom; in; mt; set)

recursive:
return analyzeRecMethod(CFG; method; dom; in; mt; set)

builtin :
return dom:analyzeBuiltin(method; in; mt)

external :
return dom:analyzeExternal(method; in; mt)

Figure 8.2: The top-down �xpoint algorithm

and also it keeps track of the implicit abstractand-or graph. An entry in the memo

table has the following �elds: block name, its projected callstate (�), its status,

its projected exit state (�
0
) and a unique identi�er. Along with the memo table we

assume operations which allow to query the status of an entry, retrieve the projected

exit state, and add or update an entry.

The pseudocode for the main procedure of the �xpoint algorithm is shown in

Figure 8.2. Builtins are treated directly by each domain; the same happens for

external invocations since we are making, in the current implementation, a worst-

case assumptionin which any reference to an external method returns the top-most

element in the domain for all the variables involved in the call.

Invocations of non-recursive methods are handled byanalyzeNonRecMethodin

Figure 8.3. It �rst checks if there is an entry in the memo tablefor the name of

the invoked method and its � . In that case, we reuse the previously computed

value for �
0
. Otherwise, the variables of its� are renamed to the set of variables

f res; r0; : : : ; rmg (we will assume a standard naming for the formal parameters of

the form res; r0; : : : ; rm) and an exit state is calculated for each block the method

is built of. The results are then merged through the lub operation, renamed back

152

Chapter 8. A Generic Analysis Framework for Java Bytecode

analyzeNonRecMethod(CFG; method; dom; in; mt; set)

name:= getName(method)
actPars:= getActualParams(method)
� := dom:project(in; actPars)
if mt: isComplete(hname; � i) then

�
0
:= mt:getOutput(hname; � i)

else
h�

0
; mt; seti := analyzeNonRecBlocks(CFG; name; dom; actPars;

�; complete; mt; set)
out:= dom:extend(in; actPars; �

0
)

return hout; mt; seti

analyzeNonRecBlocks(CFG; name; dom; actPars; �; st; mt; set)

� := � j f res;r 0 ;:::;r m g
f actP ar 0 ;:::;actP ar m g

blocks:= getNonRecBlocks(name)
�

0
:= ?

foreach block2 blocks
body:= getBody(block)
h�

0
; mt; seti := analyzeBody(CFG; � ; dom; body; mt; set)

�
0

b:= dom:project(�
0
; f res; r0; : : : ; rmg)

�
0
:= �

0
t �

0

b

�
0
:= �

0
j f actP ar 0 ;:::;actP ar m g
f res;r 0 ;:::;r m g

mt:insert(hname; �; �
0
; sti)

return h�
0
; mt; seti

analyzeBody(CFG; � ; body; dom; mt; set)

in := �
foreach stmt 2 body

hout; mt; seti := topDownAnalyze(CFG; stmt; dom; in; mt; set)
in := out

�
0
:= out

return h�
0
; mt; seti

Figure 8.3: The top-down �xpoint algorithm: non-recursive methods

to the scope of the callee, and inserted as an entry in the memo table characterized

as complete. Finally, �
0

is reconciled with the calling state through theextend[85]

operation, yielding the exit state.

153

Chapter 8. A Generic Analysis Framework for Java Bytecode

analyzeRecMethod(CFG; method; dom; in; mt; set)

name:= getName(method)
actPars:= getActualParams(method)
� := dom:project(in; actPars)
if mt: isComplete(hname; � i) then

�
0
:= mt:getOutput(hname; � i)

elseif mt: isFixpoint(hname; � i) then
�

0
:= mt:getOutput(hname; � i)

set:= set [f getUniqueID(name)g
elseif mt: isApproximate(hname; � i) then

mt:update(hname; � i ; �xpoint)
h�

0
; mt; seti := analyzeRecBlocks(CFG; method; dom; �; mt; set)

else
h�

0
; mt; seti := analyzeNonRecBlocks(CFG; name; dom; actPars;

�; �xpoint ; mt; set)
set:= set [f getUniqueID(name)g
h�

0
; mt; seti := analyzeRecBlocks(CFG; method; dom; �; �

0
; mt; set)

out:= dom:extend(in; actPars; �
0
)

return hout; mt; seti

Figure 8.4: The top-down �xpoint algorithm: recursive methods

When a method is recursive, theanalyzeRecMethodprocedure in Figure 8.4 re-

peats analysis until a �xpoint is reached for the abstract execution tree, i.e., until it

remains the same before and after one round of iteration. In order to do this, we keep

track of a
ag to signal the termination of the �xpoint computa tion. The procedure

starts the analysis in the non-recursive blocks of the invoked method, thus accelerat-

ing convergence since the initial�
0

is di�erent from ? . An entry in the memo table

is inserted with that tentative abstract state and characterized as�xpoint . The re-

maining, recursive blocks are analyzed withinanalyzeRecBlocksin Figure 8.5, which

repeats their analysis until the value of�
0

does not change between two consecutive

iterations.

This basic scheme requires two extra features in order to work also for mutually

recursive calls. One is the addition of new possible values for thestatus�eld in memo

154

Chapter 8. A Generic Analysis Framework for Java Bytecode

analyzeRecBlocks(CFG; method; dom; �; �
0
; mt; set)

name:= getName(method)
actPars:= getActualParams(method)
� := � j f res;r 0 ;:::;r m g

f actP ar 0 ;:::;actP ar m g

blocks:= getRecBlocks(name)

setmethod := ;
f ixpoint := true
repeat

foreach block2 blocks
body:= getBody(block)
h�

0
; mt; setbodyi := analyzeBody(CFG; � ; dom; body; mt; ;)

dom:project(�
0
; actPars)

�
0

old:= �
0

�
0
:= �

0

old t �
0
j f actP ar 0 ;:::;actP ar m g
f res;r 0 ;:::;r m g

if �
0

old 6= �
0

then
f ixpoint := false
mt:update(hN; � i ; �

0
)

setmethod := setmethod [setbody

until (f ixpoint = true)
hmt; seti := updateDeps(method; mt; setmethod ; set)
return h�

0
; mt; seti

Figure 8.5: The top-down �xpoint algorithm: recursive methods (continuation)

table entries. If the �xpoint has not been reached yet for a entry (m1; �), we saw that

it is labeled as�xpoint ; if it has been reached, but by using a possibly incomplete

value of �
0

of some other methodm2 (i.e., a value that does not correspond yet to a

�xpoint), we tag that entry as approximate. The second required artifact is a table

with dependencies between methods. Note that the �xpoint computation can involve

two or more mutually recursive methods, which will inde�netely wait for the other

to be completebefore reaching that status. This deadlock scenario can be avoided

by pausing analysis in methodm2 if it depends of a call to a methodm1 which is

already in �xpoint state; we will use the current approximation�
0

for m1 and wait

until it reaches completestatus and noti�es, via updateDepsin Figure 8.6, all the

155

Chapter 8. A Generic Analysis Framework for Java Bytecode

updateDeps(method; mt; setmethod ; set)

id:= getUniqueID(method)
if setmethod n f idg = ; then

status:= complete
foreach id0 such that id0 depends on id

remove dependence betweenid0 and id
if id0 is independentthen

let hnameid 0; �
0

id 0i be associated withid0

mt:update(hnameid 0; �
0

id 0i ; complete)
else

status:= approximate
make id dependent fromsetmethod n f idg

mt:update(hname; �
0
i ; status)

set:= set [setmethod n f idg
return hmt; seti

Figure 8.6: The top-down �xpoint algorithm: optimization

methods depending on it.

Computation of that �xpoint can be sometimes computationally expensive or

even prohibitive, so in order to speed it up we use a combination of techniques. The

�rst is memoization[39] since the memo table acts as a cache for already computed

tuples. E�ciency of the computation can be further improved by keeping track of the

dependencies between methods. In the above scenario, during subsequent iterations

for m1, the subtree form2 is explored every time and its entry in the memo table

labeled asapproximate. After the last round of iteration for m1, its entry in the memo

table will be tagged ascompletebut the row for m2 remains asapproximate. The

subtree form2 has to undergo an unnecessary exploration, since it has alreadyused

the completevalue of the exit state ofm1. In order to avoid this redundant work,

after each �xpoint iteration all those methods depending only on another m that

just changed its status tocompleteare automatically tagged with the same status.

Another major feature of our algorithm is its accuracy. Although precision re-

156

Chapter 8. A Generic Analysis Framework for Java Bytecode

mains in general a domain-related issue, our solution possesses inherent character-

istics that help yield more precise results. First, the algorithmo�ers results of the

analysis at each program point due to its top-down condition.Second, and more

relevant, the algorithm is fully context sensitive: every newencountered abstract

state for the set of formal parameters is independently stored in the memo table.

Moreover, di�erent caller contexts will use the same entry as long as the state of

their actual parameters is identical.

Although not present in the pseudo-code, our current implementation also sup-

ports path-sensitivity [34], which allows independent reasoning about di�erent branches.

Since theextendoperation is usually computationally expensive and may introduce

further imprecision, it is desirable to avoid it whenever possible. For that reason, the

analysis can take advantage of some compiler invariants, such asthe equal signature

shared by all the internal methods contained in the same Java method. Because

of having the same number and naming of formal parameters, theextendoperation

turns out to be unnecessary when the call is invoked from an internal method and

targets an internal method.

Example 8.3.1. (Computation of a �xpoint). We show how an example of mu-

tual recursion, Vector.appendin Figure 8.2(b), is handled by the �xpoint algorithm

de�ned in Section 8.3. For simplicity, the abstract domain usedis nullity, capable

of approximating which variables are de�nitely null and which ones de�nitely point

to a non-null location. The objective is not to fully understand each of the entries

of the memo table in Figure 8.7, which would require a complementary explanation

of the domain transfer functions and going through a vast amount of intermediate

states, but to illustrate how some interesting dependencies and status change in a

very speci�c subset of those states. The method names have been shortened to �t

into the tables.

In step 1 it is assumed that the non-recursive blocks forapp34 and app12 have al-

157

Chapter 8. A Generic Analysis Framework for Java Bytecode

step method � �
0

state dependencies
app12 � 1 �

0

11 �x f app12g
1 app34 � 2 �

0

21 �x f app34g
app12 � 3 �

0

31 �x f app12g
app12 � 1 �

0

11 �x f app12g
2 app34 � 2 �

0

21 �x f app34g
app12 � 3 �

0

32 app f app12; app34g
app12 � 1 �

0

11 �x f app12g
3 app34 � 2 �

0

22 com ;
app12 � 3 �

0

32 app f app12g
app12 � 1 �

0

12 �x f app12g
4 app34 � 2 �

0

22 com ;
app12 � 3 �

0

32 com ;
app � 0 �

0

0 com ;
5 app12 � 1 �

0

12 com ;
app34 � 2 �

0

22 com ;
app12 � 3 �

0

32 com ;

Figure 8.7: Fixpoint calculation for Vector.append

ready been analyzed. Both entries for these blocks are markedas �xpoint since they

correspond to recursive methods whose analyses have not converged to a �xpoint

yet. Note that there exist two di�erent entries corresponding to methodapp12 which

has been analyzedtwice with di�erent abstract call patterns: one when called from

appand another when called fromapp34 yielding happ12; � 1; �
0

11i and happ12; � 3; �
0

31i ,

respectively. In step 2, the analysis corresponding to the entryhapp12; � 3; �
0

31i has

converged to a �xpoint but using the incomplete value ofhapp34; � 2; �
0

21i . There-

fore, the entry is forced toapproximate changing its exit state to �
0

32. In step 3,

the analysis for the methodapp34 reaches a �xpoint and since it does not depend

on other methods, the entryhapp34; � 2; �
0

21i is marked ascompleteand updated to

happ34; � 2; �
0

22i . After this step, the algorithm notices that happ12; � 3; �
0

32i is approx-

imate and waiting for a complete value ofhapp34; � 2; �
0

22i which has been already

produced. Thus, the entryhapp12; � 3; �
0

32i is marked directly ascompleteand no

158

Chapter 8. A Generic Analysis Framework for Java Bytecode

extra iteration is required. This change is illustrated in step 4. Finally, the analysis

characterizes also the entryhapp12; � 1; �
0

12i ascompleteand terminates the semantics

computation of app.

8.4 Experimental Results

We have completed a preliminary implementation of the framework, and performed

two experiments with the framework using the benchmarks corresponding to the

JOlden suite [63]. The �rst experiment is summarized in Table 8.1 and shows the

scalability of the transformation phase. The �rst three columnscontain basic metrics

about the application: number of classes (k), methods (m) and instructions (i). Since

the latter corresponds to the bytecode representation of the source, we also list how

many program points (pp) are present in the Horn clause program analyzed. This

metric slightly di�ers from the number of instructions in the sense that extra clauses

and builtins make it somewhat larger;pp also provides a better approximation of the

size and complexity of the program analyzed because the semantics of the object-

oriented program is made explicit. The �fth column (ct) shows the time invested

(given in seconds) in transforming the input program and producing the Horn clause

version.

The second experiment shown in Table 8.2 illustrates the scalability, e�ciency,

and precision of the analysis component of our framework. We �rst use a simple

abstract domain, Nullity, capable of approximating which variables are de�nitely null

and which ones de�nitely point to a non-null location. The second abstract domain is

a Class Hierarchy Analysis [10], which uses the combination of thestatically declared

type of an object and the class hierarchy of the program to determine the set of

possible targets of a virtual invocation. The use of a Class Hierarchy Analysis shows

159

Chapter 8. A Generic Analysis Framework for Java Bytecode

Program k m i pp ct
Health 8 30 637 933 1.1
BH 9 70 1208 1739 3.2
Voronoi 6 73 988 1340 2.2
MST 6 36 445 665 0.1
Power 6 32 1017 1270 2.1
TreeAdd 2 12 193 274 2.0
Em3d 4 22 447 669 0.1
Perimeter 10 45 543 814 0.1
BiSort 2 15 323 476 0.1
All 50 317 5839 7251 11.0

Table 8.1: Statistics of the transformation phase.

the scalability of our framework for a domain with non-linearworst-case complexity

in its operations. The columns labeledpp0 show the number of program points

reachable by the analyses. Therefore,pp0 may di�er from pp because the number

of analyzed program points is not always the total number of program points in

the program: some commands are found to be unreachable. Sinceour framework

is multivariant and can thus keep track of di�erent contexts at each program point,

at the end of analysis there may be more than one abstract state associated with

each program point. Thus, the number of abstract states is typically larger than

the number of reachable program points. Columnsast provide the total number of

these abstract states inferred by analyses. The level of multivariance is the ratio

ast=pp0, presented in columnsst. In general, such a larger number forst tends to

indicate more precise results. Running times are listed in columns pt (time invested

in preprocessing the program and the construction of the class hierarchy) and at

(analysis time); both are also given in seconds.

The benchmarks have been tested in both experiments on a Pentium M 1.73Ghz

with 1Gb of RAM , and averaging several runs after eliminating the best and worst

values. We chose to show separately the total times of the two phases (transformation

160

Chapter 8. A Generic Analysis Framework for Java Bytecode

Nullity CHA
pt pp0 ast st at pp0 ast st at

Health 2.1 921 5836 6.3 9.6 933 3542 3.8 52.1
BH 2.2 1739 12384 7.1 50.1 1739 4757 2.7 59.4
Voronoi 2.2 1277 5492 4.3 11.5 1340 5147 3.8 81.3
MST 2.1 496 1503 3.0 1.1 665 1609 2.4 11.6
Power 2.1 1270 10560 8.3 29.9 1270 2908 2.3 32.7
TreeAdd 2.0 274 880 3.2 0.6 274 729 2.6 6.1
Em3d 2.0 669 5565 8.3 0.9 669 3320 4.9 49.5
Perimeter 2.1 814 2653 3.2 1.7 814 3731 4.5 25.0
BiSort 2.1 476 3353 7.0 5.8 476 1614 3.4 15.6
All 2.6 7188 48476 6.7 145.9 7251 29586 4.1 391.2

Table 8.2: Statistics for the Nullity and Class Hierarchy (CHA) domains.

and analysis) because we expect the transformation process to be fully run only once.

Later executions can use incremental compilation for those �les that changed, so that

the overhead of the preprocessing phase should be almost negligible in medium and

large programs. Although the same approach can be taken for the analysis [99], the

current implementation is not incremental.

8.5 Related Work

Most published analyses based on abstract interpretation for Java or Java bytecode

do not provide much detail regarding the implementation of the �xpoint algorithm.

Also, most of the published research (e.g., [17, 26]) focuses on particular properties

and therefore their solutions (abstract domains) are tied to them, even when they

are explicitly multipurpose, like TVLA [72]. In [97] the authors mention a choice of

several context insensitive and sensitive computations, but no further information is

given. The more recent and quite interesting Julia framework[110] is intended to be

generic and targets bytecode as in our case. Their �xpoint techniques are based on

161

Chapter 8. A Generic Analysis Framework for Java Bytecode

prioritizing analysis of non-recursive components over thoserequiring �xpoint com-

putations and using abstract compilation [56]. However, few implementation details

are provided. Also, this is abottom-up framework, while our objective is to develop

a top-down, context sensitive framework. While it is well-known that bottom-up

analyses can be adapted to perform top-down analyses by subjecting the program to

a \magic-sets"-style transformation [102], the resulting analyzers typically lack some

of the characteristics that are the objective of our proposal,and, specially, context

sensitive results. Finally, Cibai [77] is another generic staticanalyzer for the modular

analysis and veri�cation of Java classes. The algorithm presented is top-down, and

only a naive version of it (which is not e�cient for mutually recursive call graphs) is

presented.

8.6 Summary

This chapter has presented a novel abstract interpretation framework, which is

generic in terms of abstract domain in use. The framework makesuse of a de-

compilation phase that results in a control
ow graph (CFG) where the operational

semantics is made explicit, and an analysis phase based on an e�cient, precise �x-

point algorithm which has been concisely described in this chapter. This algorithm

bene�ts from acceleration techniques like memoization or dependency tracking, con-

siderably reducing the number of iterations. We also claim thatthe analysis has the

potential to be very accurate because of the top-down, context sensitive approach

adopted. Our experimental evaluation shows the feasibility of the approach with

medium-size programs using the benchmarks corresponding to the JOlden suite.

162

Chapter 9

Resource Usage Analysis for Java

Bytecode

This chapter presents a resource usage analyzer for Java bytecode. The starting

point of this analysis is the analysis described in Chapter 4. Herein, we develop

based on it an analysis suitable for Java bytecode. The resultingtool takes a Java

bytecode program, a set of resources of interest given by the user, and computes an

upper bound of its resource consumption as a (closed form) expression depending on

the input data sizes. Its main components as depicted in Figure9.1 are as follows:

1. The left side of the �gure represents the construction, starting from the in-

put bytecode program, of an intermediate representation, asdescribed in Sec-

tion 8.2, which provides a uniform high-level encoding which allows us to reason

compositionally about the cost.

2. The top right side of the �gure shows the various pre-analysissteps which are

instrumental for the resource usage analysis. We use the �xpoint algorithm

de�ned in Section 8.3 and "plug" into it two domains which result in two

163

Chapter 9. Resource Usage Analysis for Java Bytecode

AnalysisTransformation

soot + Ciao

transform.

javac

Java parser

Java bytecode

Java Source

Fixpoint
algorithm

(AI-based)

Pre/Post pairs
Prog. Point Info

...

Resource Usage

Horn clauses

(iCFG)

Class analysis

Nullity Analysis

Figure 9.1: Architecture of Resource Usage Analyzer

di�erent analyses: nullity , which is aimed at keeping track of null variables,

and class hierarchy analysis (CHA)[10, 83], which attempts to resolve dynamic

dispatching at compile time by transforming dynamic calls into static calls.

3. The bottom right side of the �gure shows the resource usage analysis which

will be discussed in the rest of this chapter.

Our approach can be used in the context of Java source and Java bytecode in the

following �elds:

� Resource Bound Certi�cation [33, 8, 58, 25]: It proposes the use of safety

properties involving cost requirements, i.e., that the untrusted code adheres to

speci�c bounds on resource consumption. Our approach shows, for the �rst

time, that it is possible to automatically generate arbitrary resource bounds

certi�cates for user de�ned resources in a realistic mobile language. Previous

work was restricted to linear bounds [33, 8, 58], to semi-automatic techniques

[25], or to source code [54].

� Performance Debugging and Validation [54]:This is a direct application of re-

164

Chapter 9. Resource Usage Analysis for Java Bytecode

source analysis, where the analyzer tries to verify or falsify annotations about

the e�ciency of the program which are written by the programmer. Annota-

tions can possibly refer to the source code level, but it is trivial to translate

them to be understandable by the bytecode analyzer.

� Resource Granularity Control [36]: Parallel computers have currently become

mainstream with multicore processors. In parallel systems, knowledge about

the cost of di�erent procedures in the object code can be used inorder to guide

the partitioning, allocation and scheduling of parallel processes.

In the rest of this chapter, Section 9.1 presents a running example and introduces

the basic components of the resource usage analysis. In Section 9.2.1 a practical

size analysis and its main sub-components are shown. In Section 9.2.2 the main

algorithm for inferring resource usage information is presented, and Section 9.3 shows

the feasibility of the approach. Finally, Section 9.5 summarizes our conclusions.

9.1 Overview of the Approach

We start by illustrating the overall approach, whose sub-components are shown in

Figure 9.2, through a working example. The Java program in Fig. 9.3 emulates

the process of sending of text messages within a cell phone. The source code is

provided here just for clarity, since the analyzer works directly on the corresponding

bytecode. The phone (classCellPhone)receives a list of packets (SmsPacket), each

one containing a single SMS, encodes them (Encoder), and sends them through a

stream (Stream). There are two types of encoding:TrimEncoder, which eliminates

any leading and trailing white spaces, andUnicodeEncoder, which converts any special

character into its Unicode(nuxxxx) equivalent. The length of the SMS which the

cell phone ultimately sends through the stream depends on the size of the encoded

165

Chapter 9. Resource Usage Analysis for Java Bytecode

Resource Analysis

Analysis

Size

Analysis

Resource

Recur. Equation
Solver

Analysis

Data Dependency

Horn clauses

(iCFG)

Annotation
Processing

Size Eqs.

Resource Eqs.

Closed-form Size Rel.

Closed-form Resource Functions

DDG

Data Dep. Graph (DDG)

Blocks

Annotations Size Rels.

Resource Functions

Figure 9.2: Sub-components of the resource usage analysis

message.

A resource is a fundamental component in our approach. A resource is a user-

de�ned notion which associates a basic cost function with some user-selected elements

(class, method, statement) in the program. This is expressed by adding Java annota-

tions to the code. The objective of the analysis is to approximate the usage that the

program makes of the resource. In the example, the resource is the cost in cents of a

dollar for sending the list of text messages, since we will assume for simplicity that

the carrier charges are proportional (2 cents/character) tothe number of characters

sent. This domain knowledge is re
ected by the user in the method that is ulti-

mately responsible for the communication (Stream.send), by adding the annotation

@Cost(f "cents","2*size(data)"g). Similarly, the formatting of an SMS done in any

implementation of Encoder.formatis free, as indicated by the@Cost(f "cents","0") g)

annotation. The analysis understands these resource usage expressions and uses

them to infer a safe upper bound on the total usage of the program.

Step 1: Constructing the Control Flow Graph. In the �rst step, the analysis

translates the Java bytecode into an intermediate representation building a Control

166

Chapter 9. Resource Usage Analysis for Java Bytecode

import java . net . URLEncoder ;

public c lass Cel lPhone f

SmsPacket sendSms (SmsPacket smsPk ,
Encoder enc ,
Stream stm) f

i f (smsPk != nul l) f
S t r i n g newSms = enc . format (smsPk . sms) ;
stm . send (newSms) ;
smsPk . next=sendSms (smsPk . next , enc , stm) ;
smsPk . sms = newSms ;

g
return smsPk ;

g
g
c lass SmsPacket f

S t r i n g sms ;
SmsPacket next ;

g

in ter face Encoder f
S t r i n g format (S t r i n g data) ;

g
c lass TrimEncoder implements Encoder f

@Cost (f " cen t s " , "0" g)
@Size (" s i z e (r e t)< = s i z e (s) ")
public S t r i n g format (S t r i n g s) f

return s . t r im () ;
g

g
c lass UnicodeEncoder implements Encoder f

@Cost (f " cen t s " , "0" g)
@Size (" s i z e (r e t) < =6 � s i z e (s) ")
public S t r i n g format (S t r i n g s) f

return URLEncoder . encode (s) ;
g

g
abstract c lass Stream f

@Cost (f " cen t s " , "2 � s i z e (data) " g)
native void send (S t r i n g data) ;

g

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

CellPhone.sendSms(r0,r1,r2,r3,r4,r5)

Builtin.ne(r1,null,void)
Builtin.gtf(r1,sms,r6)

Builtin.asg(r4,r5)

Builtin.eq(r1,null,void)
Builtin.asg(null,r5)

Builtin.gtf(r1,next,r8)
CellPhone.sendSms(r0,r8,r2,r3,r9,r10)
Builtin.stf(r1,next,r10,r1_1)
Builtin.stf(r1_1,sms,r7,r4)

Encoder.format(r2, r6, r7)
Stream.send(r3,r7,void)

Stream.send(r0,r1,r2)

Encoder.format(r0,r1,r2)

Builtin.asg(r3,r2)
java.net.URLEncoder.encode(r1,r3)

Encoder.format(r0,r1,r2)

java.lang.String.trim(r1,r3)
Builtin.asg(r3,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

TrimEncoder.format(r0,r1,r2) UnicodeEncoder.format(r0,r1,r2)

@Cost({"cents","0"}) @Cost({"cents","0"})

@Cost({"cents","2*size(r1)"})

@Size("size(r2)<=size(r1)") @Size("size(r2)<=6*size(r1)")

Figure 9.3: Motivating example: Java source code and ControlFlow Graph

Flow Graph (CFG). Edges in the CFG connectblock methodsand describe the possi-

ble
ows originated from conditional jumps, exception handling, virtual invocations,

etc. A (simpli�ed) version of the CFG corresponding to our code example is also

shown in Fig. 9.3.

The original sendSmsmethod has been compiled into two block methods that

share the same signature: class where declared, name (CellPhone.sendSms), and num-

ber and type of the formal parameters. The bottom-most box represents the base

case, in which we return null, here represented as an assignment of null to the

167

Chapter 9. Resource Usage Analysis for Java Bytecode

return variable r5; the sibling corresponds to the recursive case. The virtual invo-

cation of format has been transformed into a static call to a block method named

Encoder.format. There are two block methods which are compatible in signature

with that invocation, and which serve as proxies for the intermediate representations

of the interface implementations inTrimEncoder.formatand UnicodeEncoder.format.

Note that the resource-related annotations have been carriedthrough the CFG and

are thus available to the analysis.

Step 2: Inference of Data Dependencies and Size Relationshi ps. The algo-

rithm infers in this phasesize relationshipsbetween the input and the output formal

parameters of every block method. For now, we can assume that size of (the contents

of) a variable is the maximum number of pointers we need to traverse, starting at

the variable, until null is found. The following equations are inferred by the analysis

for the two CellPhone.sendSmsblock methods :

Sizer 5
sendSms(sr 0 ; 0; sr 2 ; sr 3) � 0

Sizer 5
sendSms(sr 0 ; sr 1 ; sr 2 ; sr 3) � 7 � sr 1 � 6 + Sizer 5

sendSms(sr 0 ; sr 1 � 1; sr 2 ; sr 3)

The size of the returned valuer5 is independent of the sizes of the input param-

eters this , enc, and stm (sr 0 ; sr 2 and sr 3 respectively) but not of the sizesr 1 of the

list of text messagessmsPk (r1 in the graph). Such size relationships are computed

based ondependency graphs, which represent data dependencies between variables

in a block, and user annotations if available. In the example in Fig. 9.3, the user

indicates that the formatting in UnicodeEncoderresults in strings that are at most

six times longer than the ones received as input@Size("size(ret)� 6*size(s)"), while

the trimming in TrimEncoderreturns strings that are equal or shorter than the input

(@Size("size(ret)� size(s)")). The equation system shown above must be approxi-

mated by a recurrence solver in order to obtain a closed form solution. In this case,

our analysis yields the solutionSizer 5
sendSms(sr 0 ; sr 1 ; sr 2 ; sr 3) � 3:5 � s2

r 1
� 2:5 � sr 1 .

168

Chapter 9. Resource Usage Analysis for Java Bytecode

Step 3: Resource Usage Analysis. In the this phase, the analysis uses the CFG,

the data dependencies, and the size relationships inferred in previous steps in order

to infer a resource usage equation for each block method in the CFG and further

simplify the resulting obtaining closed form solutions (in general, approximated {

upper bounds). Therefore, the objective of the resource analysis is to statically

derive safe upper bounds on the amount of resources that each ofthe block methods

in the CFG consumes or provides. The result given by our analysis for the monetary

cost of sending the messages (CellPhone.sendSms) is

CostsendSms(sr 0 ; 0; sr 2 ; sr 3) � 0

CostsendSms(sr 0 ; sr 1 ; sr 2 ; sr 3) � 12� sr 1 � 12 + CostsendSms(sr 0 ; sr 1 � 1; sr 2 ; sr 3)

i.e., the cost is proportional to the size of the message list (smsPkin the source,r1

in the CFG). Again, this equation system is solved by a recurrencesolver, resulting

in the closed formulaCostsendSms(sr 0 ; sr 1 ; sr 2 ; sr 3) � 6 � s2
r 1

� 6 � sr 1 .

9.2 A Framework for Resource Usage Analysis

We now describe our framework for inferring upper bounds on the usage that a Java

bytecode program makes of a set of application programmer-de�nable resources. The

algorithm in Fig 9.4 takes as input a Control Flow Graph in theformat described

in the previous section, including the user annotations that assign elementary costs

to certain graph elements for a particular resource. The user also indicates the set

of resources to be tracked by the analysis. Without loss of generality we assume for

conciseness in our presentation a single resource.

A preliminary step in our approach is a nullity and class hierarchy analysis,

aimed at simplifying the CFG and therefore improving overallprecision. Then, an-

other analysis is performed over the CFG to extract data dependencies, as described

169

Chapter 9. Resource Usage Analysis for Java Bytecode

resourceAnalysis(CFG; res)
CFG classAnalysis(CFG)
mt initialize(CFG)
SCCs stronglyConnectedComponents(CFG)
dg dataDependencyAnalysis(CFG; mt)
foreach SCC 2 SCCs in reverse topological order

mt sizeAnalysis(SCC; mt; CFG; dg)
mt resourceAnalysis(SCC; res; mt; CFG)

return mt
end

Figure 9.4: Generic Resource Analysis Algorithm

below. The next step is the decomposition of theCFG into its strongly-connected

components. After these steps, two di�erent analyses are run separately on each

strongly connected component: a) the size analysis, which estimates parameter size

relationships for each statement and output formal parameters as a function of the

input formal parameter sizes (Sec. 9.2.1); and b) the actual resource analysis, which

computes the resource usage of each block method in terms also ofthe input data

sizes (Sec. 9.2.2). Each phase is dependent on the previous one.

The data dependency analysisis a data
ow analysis1 that yields position depen-

dency graphs for the block methods within a strongly connected component. Each

graph G = (V; E) represents data dependencies between positions corresponding to

statements in the same block method, including its formal parameters. Vertexes in

V denote positions, and edges (s1; s2) 2 E denote that s2 is dependent ons1. We say

that s1 is a predecessorof s2. We will assume apredecfunction that takes a position

dependency graph, a statement, and a parameter position and returns its nearest

predecessor in the graph. The following �gure shows the positiondependency graph

of the TrimEncoder.formatblock method:

1This analysis is similar to the one explained in Chapter 4.

170

Chapter 9. Resource Usage Analysis for Java Bytecode

9.2.1 Size Analysis

We now show our algorithm for estimating parameter size relations based on the data

dependency analysis. This method is inspired by the ideas of [37, 36] but adapting

them to the case of Java bytecode. Our goal is to represent inputand output size

relationships for each statement as a function in terms of the formal parameter sizes.

Unless otherwise stated, whenever we refer to a parameter we meanits position.

The size of an input is de�ned in terms of measures. Bymeasure we mean a

function that, given a data structure, returns a number. Our method is parametric

on measures, which can be de�ned by the user and attached via annotations to

parameters or classes. For concreteness, we have de�ned herein two measures,int

for integer variables, and thelongest path-length[1] ref for reference variables. The

longest path-length of a variable is the cardinality of the longest chain of pointers

than can be followed from it. More complex measures can be de�ned to handle other

datatypes such as cyclic structures, arrays, etc. The set of measures will be denoted

by M .

The size analysis algorithm is given in pseudo-code in Figures 9.5, 9.6, and 9.7;

its main steps are:

1. Assign an upper bound to the size of every parameter position of all statements,

including formal parameters, for all the block methods with the same signature

(genBlockSizeRel, Figures 9.6 and 9.7).

171

Chapter 9. Resource Usage Analysis for Java Bytecode

sizeAnalysis(SCC; mt; CFG; dg)
Eqs ; jSCCj

foreach sig 2 SCC
Eqs[sig] genBlockSizeRel(sig; mt; SCC; CFG; dg)

Sols recEqsSolver(simplifyEqs(Eqs))
foreach sig 2 SCC

insert(mt; size; sig; Sols[sig])
return mt

end

genBlocksSizeRel(sig; mt; SCC; CFG; dg)
Eqs ;
BMs getBlocks(CFG; sig)
foreach bm 2 BMs

Eqs Eqs[genBlockSizeRel(bm; mt; SCC; dg)
return normalize(Eqs)

end

Figure 9.5: The size analysis algorithm

2. For a given signature, take the set of size inequations returned by (1) and

rename each size relation in terms of the sizes of input formal parameters

(normalization, Figure 9.7).

3. Repeat steps (1) and (2) for every signature corresponding tothe same strongly-

connected component (sizeAnalysis, Figure 9.5).

4. Simplify size relationships by resolving mutually recursivefunctions, and �nd

closed form solutions for the output formal parameters (sizeAnalysis, Figure 9.5).

Intermediate results are cashed in a memo tablemt, which stores measures, sizes,

and resource usage expressions for every parameter position. Both size and resource

usage expressions are de�ned in theL language:

172

Chapter 9. Resource Usage Analysis for Java Bytecode

hexpri ::= hexprihbin opihexpri j hquantif ier ihexpri

j hexpri hexpr i j lognum hexpri j �h expri

j hexpri ! j 1 j num

j size([hmeasurei ,]arg((rj ij c) num))

hbin opi ::= + j � j � j = j %

hquantif ier i ::=
P

j
Q

hmeasurei ::= int j ref j . . .

The size of the parameter at positioni in statement stmt , under measurem, is

referred to assize (m; stmt; i). We consider a parameter position to beinput if it

is bound to some data when the statement is invoked. Otherwise, it is considered

an output parameter position. In the case of input parameter and output formal

parameter positions, an upper bound on that size is returned bygetSize(Figure 9.6).

The upper bound can be a concrete value when there is a constantin the referred

position, i.e., when theval function returns a non-in�nite value:

De�nition 9.2.1. (Concrete Size, val) The concrete size value for a parameter

position under a particular measure is returned byval : M � S tmt � N ! L , which

evaluates thesyntactic content of the actual parameter in that position:

val (m; stmt; i) =

8
>>>>><

>>>>>:

n if stmt:aparsi is an integer n

and m= int

0 if stmt:aparsi is null and m= ref

1 otherwise

If the content of that input parameter position is a variable, the algorithm

searches the data dependency graph for its immediate predecessor. Since the in-

termediate representation is in SSA form, the only possible scenarios are that either

173

Chapter 9. Resource Usage Analysis for Java Bytecode

genBlockSizeRel(bm; mt; SCC; dg)
body bm:body
Eqs ;
foreach stmt 2 body

Let I be the input parameter positions instmt
Eqs Eqs[genSizeRel(stmt; I; mt; dg)
Eqs Eqs[genOutSizeRel(stmt; mt; SCC)

Let K be bm output formal parameter positions
Eqs Eqs[genSizeRel(bm; K; mt; dg)
return Eqs

end

genSizeRel(elem; Pos; mt; dg)
Eqs ;
foreach pos2 Pos

m lookup(mt; measure; elem:sig; pos)
s getSize(m; elem:id; pos; dg)
Eqs Eqs[f size (m; elem:id; pos) � sg

return Eqs
end

getSize(m; id; pos; dg)
result val (m; id; i)
if result 6= 1 then

return result
elseif 9 (elem; posp) 2 predec(dg; id; pos) then

mp lookup(mt; measure; elem:sig; posp)
if (m = mp) then

return size (mp; elem:id; posp)
return 1

end

Figure 9.6: The size analysis algorithm: input arguments

there is a unique predecessor whose size is assigned to that input parameter position,

or there is none, causing the input parameter size to be unbounded (1).

Consider now an output parameter position within a block method, case covered

174

Chapter 9. Resource Usage Analysis for Java Bytecode

genOutSizeRel(stmt; mt; SCC)
Let I = f i 1; : : : ; i lg be the input positions instmt
sig stmt: sig
f mi 1 ; : : : ; mi l g f lookup(mt; measure; sig; i1); :::; lookup(mt; measure; sig; i l)g
f si 1 ; : : : ; si l g f size (mi 1 ; stmt: id; i1); :::, size (mi l ; stmt: id; i l)g
Eqs ;
Let O be the output parameter positions instmt
foreach o 2 O

mo lookup(mt; measure; sig; o)
if sig =2 SCC then

Sizeuser A o
sig (si 1 ; : : : ; si l)

Sizealg0 max(lookup(mt; size; sig; o))
Sizealg Sizealg0(si 1 ; : : : ; si l)
Sizeo min(Sizeuser ; Sizealg)

else
Sizeo S izeo

sig (mo; si 1 ; : : : ; si l)
Eqs Eqs[f size (mo; stmt: id; o) � Sizeog

return Eqs
end

normalize(Eqs)
foreach size relationp � e1 2 Eqs

repeat
if subexpressions appears ine1

and s � e2 2 Eqs then
replace each occurrence ofs in e1 with e2

until there is no change
return Eqs

end

Figure 9.7: The size analysis algorithm: output arguments andnormalization

in genOutSizeRel(Figure 9.7). If the output parameter position corresponds toa

non-recursive invoke statement, either a size relationship function has already been

computed recursively (since the analysis traverses each strongly-connected compo-

nent in reverse topological order), or it is provided by the user through size anno-

175

Chapter 9. Resource Usage Analysis for Java Bytecode

tations. In the �rst case, the size function of the output parameter position can be

retrieved from the memo table by using thelookupoperation, taking the maximum in

case of several size relationship functions, and then passing the input parameter size

relationships to this function to evaluate it. In the second scenario, the size function

of the output parameter position is provided by the user through size annotations,

denoted by theA function in the algorithm. In both cases, it will able to return an

explicit size relation function.

Example 9.2.1. (Builtin class). We have already shown in theCellPhoneexample

how a class can be annotated. TheBuiltin class includes the assignment methodasg,

annotated as follows:

public c lass Builtin f

@Sizef " s i z e (r e t)< =s i z e (o) " g

public s ta t i c native Object asg (Object o) ;

// . . . r e s t o f annotated b u i l t i n s

g

which results in equation:

A 1
asg(ref; size (ref; asg;0)) � size (ref; asg;0)

.

If the output parameter position corresponds to a recursive invoke statement, the

size relationships between the output and input parameters are built as a symbolic

size function. Since the input parameter size relations have already been computed,

we can establish each output parameter position size as a function described in terms

of the input parameter sizes.

At this point, the algorithm has de�ned size relations for allparameter positions

within a block method. However, those relations are either constants or given in

176

Chapter 9. Resource Usage Analysis for Java Bytecode

terms of the immediate predecessor in the dependency graph. The algorithm rewrites

the equation system such that we obtain an equivalent system in which only formal

parameter positions are involved. This process is callednormalization, shown in

Figure 9.7. After normalization, the analysis repeats the sameprocess for all block

methods in the same strongly-connected component (SCC). Onceevery component

has been processed, the analysis further simpli�es the equations in order to resolve

mutually recursive calls among block methods within the same SCC in the simplifyEqs

procedure.

In the �nal step, the analysis submits the simpli�ed system to a recurrence equa-

tion solver, recEqsSolver, called from sizeAnalysis) in order to obtain approximated

upper-bound closed forms2.

Example 9.2.2. (Size Relationships). We now illustrate the de�nitions and algo-

rithm with an example of how the size relations are inferred for the two CellPhone.-

sendSmsblock methods (Fig. 9.3), using theref measure for reference variables. For

simplicity, we omit the measures in the equations. We will referto the k-th occur-

rence of a statementstmt in a block method asstmt k , and denoteCellPhone.sendSms,

Encoder.format, and Stream.sendby sendSms, format, and sendrespectively. Finally,

we will refer to the size of the input formal parameter positioni , corresponding to

variable r i , as sr i .

The main steps in the process are listed in Figure 9.8. The �rst block of rows

contains the most relevant size parameter relationship equations for the recursive

block method, while the second block of rows corresponds to thebase case. These size

parameter relationship equations are constructed by the analysis by �rst following

the algorithm in Figures 9.6 and 9.7 , and then normalizing them (expressing them

in terms of the input formal parameter sizessr i). Also, in the �rst block of rows we

observe that the algorithm has returned 6� size (ref; format; 1) as upper bound for

2The analysis uses the same recurrence solver mentioned in Chapter 4.

177

Chapter 9. Resource Usage Analysis for Java Bytecode

Size parameter relationship equations (normalized)
size (gtf 1; 0) � size (ne;0) � sr 1

size (gtf 1; 2) � A 2
gtf (size (gtf 1; 0);) � sr 1 � 1

size (format; 1) � size (gtf 1; 2) � sr 1 � 1
size (format; 2) � max(lookup(mt; size; format; 2))(size(format; 2))

� max(sr 1; 6 � sr 1)(sr 1 � 1)6 � (sr 1 � 1)
size (send;1) � size (format; 2) � 6 � (sr 1 � 1)
size (gtf 2; 0) � size (gtf 1; 0) � sr 1

size (gtf 2; 2) � A 2
gtf (size (gtf 2; 0);) � sr 1 � 1

size (sendSms;1) � size (gtf 2; 2) � sr 1 � 1
size (sendSms;5) � S ize5

sendSms (; size (sendSms;1); ;)
� S ize5

sendSms (sr 0; sr 1 � 1; sr 2; sr 3)
size (stf 1; 0) � size (gtf 2; 0) � sr 1

size (stf 1; 2) � size (sendSms;5) � S ize5
sendSms (sr 0; sr 1 � 1; sr 2; sr 3)

size (stf 1; 3) � A 3
stf (size (stf 1; 0); ; size (stf 1; 2))

� sr 1 + Size5
sendSms (sr 0; sr 1 � 1; sr 2; sr 3)

size (stf 2; 0) � size (stf 1; 3) � sr 1 + Size5
sendSms (sr 0; sr 1 � 1; sr 2; sr 3)

size (stf 2; 2) � size (format; 2) � 6 � (sr 1 � 1)
size (stf 2; 3) � A 3

stf (size (stf 2; 0); ; size (stf 2; 2))
� 7 � sr 1 � 6 + Size5

sendSms (sr 0; sr 1 � 1; sr 2; sr 3)
size (asg;0) � size (stf 2; 3) � 7 � sr 1 � 6 + Size5

sendSms (sr 0; sr 1 � 1; sr 2; sr 3)
size (asg;1) � A 1

asg(size (asg;0))7 � sr 1 � 6 + Size5
sendSms (sr 0; sr 1 � 1; sr 2; sr 3)

size (eq;0) � size (sendSms;1) � sr 1

size (eq;1) � val (eq;1) � 0
size (asg;0) � val (asg;0) � 0
size (asg;1) � A 1

asg(size (asg;0)) � 0

Output param. size functions for builtins (through annotations)

A 2
gtf (size (gtf; 0);) � size (gtf; 0) � 1
A 1

asg(size (asg;0)) � size (asg;0)
A 3

stf (size (stf; 0); ; size (stf; 2)) � size (stf; 0) + size (stf; 2)

Simpli�ed size equations and closed form solution

Size5
sendSms (sr 0; sr 1; sr 2; sr 3) �

8
<

:

0 if sr 1 = 0
7 � sr 1 � 6+ if sr 1 > 0
Size5

sendSms (sr 0; sr 1 � 1; sr 2; sr 3)

Size5
sendSms (sr 0; sr 1; sr 2; sr 3) � 3:5 � s2

r 1 � 2:5 � sr 1

Figure 9.8: Size equations example

the size of the formatted string,max(lookup(mt; size; format; 2)). The result is the

maximum of the two upper bounds given by the user for the two implementations

178

Chapter 9. Resource Usage Analysis for Java Bytecode

for Encoder.formatsinceTrimEncoder.formateliminates any leading and trailing white

spaces (thus the output is at most as bigger as the input), whereasUnicodeEncoder.-

format converts any special character into its Unicode equivalent (thus the output is

at most six times the size of the input), a safe upper bound for the output parameter

position size is given by the second annotation.

In the particular case of builtins and methods for which we do not have the code,

size relationships are not computed but rather taken from the user@Sizeannotations.

These functions are illustrated in the third block of rows. Finally, in the fourth block

of rows we show the recurrence equations built for the output parameter sizes in the

block method and in the �nal row the closed form solution obtained.

9.2.2 Resource Usage Analysis

The core of our framework is the resource usage analysis, whose pseudo code is

shown in Figures 9.9 and 9.10. It takes a strongly-connected component of the CFG,

including a set of annotations which describeapplication programmer-de�nablecost

functions on a given set of resources, and calculates an expression which is an upper

bound on the resource usage made by the program. The algorithm manipulates the

same memo table described in Sec. 9.2.1 in order to avoid recomputations and access

the size relationships already inferred.

The algorithm is structured in a very similar way to the size analysis (which also

allows us to draw from it to keep the explanation within space limits): for each ele-

ment of the strongly-connected component the algorithm willconstruct an equation

for each block method that shares the same signature representing the resource us-

age of that block. To do this, the algorithm will visit each invoke statement. There

are three possible scenarios, covered by thegenStmsRUExprfunction. If the signa-

tures of caller and callee(s) belong to the same strongly-connected component, we

179

Chapter 9. Resource Usage Analysis for Java Bytecode

resourceAnalysis(SCC; res; mt; CFG)
Eqs ; jSCCj

foreach sig in SCC
Eqs[sig] genBlocksRUExpr(sig; res; mt; SCC; CFG)

Sols recEqsSolver(simplifyEqs(Eqs))
foreach sig in SCC

insert(mt; cost; max(Sols[sig]))
return mt

end

genBlocksRUExpr(sig; res; mt; SCC; CFG)
Eqs ;
BMs getBlocks(CFG; sig)
foreach bm 2 BMs

body bm:body
Costbody 0
foreach stmt 2 Body

Coststmt genStmtRUExpr(stmt; res; mt; SCC)
Costbody Costbody + Coststmt

Costbm genBlockRUExpr(bm; res; mt)
Eqs Eqs [f Costbm � Costbodyg

return Eqs
end

Figure 9.9: The resource usage analysis algorithm

are analyzing a recursive invoke statement. Then, we add to thebody resource usage

a symbolic resource usage function, in an analogous fashion to the case of output

parameters in recursive invocations during the size analysis.

The other scenarios occur when the invoke statement is non-recursive. Either

a resource usage functionCostalg for the callee has been previously computed, or

there is a user annotationCostusr that matches the given signature, or both. In the

latter case, the minimum between these two functions is chosen (i.e., the most precise

safe upper bound assigned by the analysis to the resource usage of the non-recursive

180

Chapter 9. Resource Usage Analysis for Java Bytecode

genStmtRUExpr(stmt; res; mt; SCC)
Let f i 1; : : : ; ikg be the input parameter positions instmt
f si 1 ; : : : ; si k g f max(lookup(mt; size; stmt:sig; i1))

; : : : ;
max(lookup(mt; size; stmt:sig; i k))g

if stmt: sig =2 SCC then
Costuser A stmt: sig(res; si 1 ; : : : ; si k)
Costalg0 lookup(mt; cost; res; stmt:sig)
Costalg Costalg0(si 1 ; : : : ; si k)
return min(Costalg ; Costuser)

else
return Cost(stmt: sig; res; si 1 ; : : : ; si k)

end

genBlockRUExpr(bm; res; mt)
Let f i 1; : : : ; i lg be bm input formal parameter positions
f si 1 ; : : : ; si l g f lookup(mt; size; bm:id; i1)

; : : : ;
lookup (mt; size ; bm:id; i l)g

return Cost(bm:id; res; si 1 ; : : : ; si l)

Figure 9.10: The resource usage analysis algorithm (continuation)

invoke statement).

Example 9.2.3. (Resource annotations). Consider the same block method as in the

previous example and the invocation ofStream.send. The resource usage expression

for the statement is de�ned by the functionA send($; ; 6 � (sr 1 � 1)) since the input

parameter at position one is at most six times the size of the secondinput formal

parameter, as calculated by the size analysis in Figure 9.8. Note also that there is

a resource annotation@Cost(f "cents","2*size(r1)"g) attached to the block method

describing the behavior ofA send and yielding the expressionCostuser = 12 � (sr 1 � 1).

On the other hand, the absence of any callee code to analyze {the original method

is native{ results in Costalg = 1 . Then, the upper bound obtained by the analysis

181

Chapter 9. Resource Usage Analysis for Java Bytecode

Resource usage equations
Cost(sendSms;$; sr 0; sr 1; sr 2; sr 3) �

min(

1z }| {
lookup(mt; cost; $; ne);

@Cost("cents","0") =0
z }| {
A ne($; sr 1;))

+ min(

1z }| {
lookup(mt; cost; $; gtf);

@Cost("cents","0") =0
z }| {
A gtf ($; sr 1;))

+ min(

0z }| {
lookup(mt; cost; $; format)(; sr 1 � 1);

1z }| {
A format ($; ; sr 1 � 1))

+ min(

1z }| {
lookup(mt; cost; $; send);

@Cost("cents","2*size(r1)") =12 � (sr 1 � 1)
z }| {
A send($; ; 6 � (sr 1 � 1))

+ min(

1z }| {
lookup(mt; cost; $; gtf);

@Cost("cents","0") =0
z }| {
A gtf ($; sr 1;))

+ Cost(sendSms;$; sr 0; sr 1 � 1; sr 2; sr 3)

+ min(

1z }| {
lookup(mt; cost; $; stf);

@Cost("cents","0") =0
z }| {
A stf ($; sr 1; ;))

+ min(

1z }| {
lookup(mt; cost; $; stf);

@Cost("cents","0") =0
z }| {
A stf ($; sr 1; ;))

+ min(

1z }| {
lookup(mt; cost; $; asg);

@Cost("cents","0") =0
z }| {
A asg($;))

� 12� (sr 1 � 1) + Cost(sendSms;$; sr 0; sr 1 � 1; sr 2; sr 3)

Cost(sendSms;$; sr 0; 0; sr 2; sr 3) �

min(

1z }| {
lookup (mt; cost ; $; eq) ;

@Cost(" cents " ;" 0")=0
z }| {
A eq($; 0;)) +

min(lookup (mt; cost ; $; asg)
| {z }

1

; A asg($; 0))
| {z }

@Cost(" cents " ;" 0")=0

� 0

Simpli�ed resource usage equations and closed form solutio n

Cost(sendSms;$; sr 0; sr 1; sr 2; sr 3) �

8
<

:

0 if sr 1 = 0
12� sr 1 � 12+ if sr 1 > 0
Cost(sendSms;$; sr 0; sr 1 � 1; sr 2; sr 3)

Cost(sendSms;$; sr 0; sr 1; sr 2; sr 3) � 6 � s2
r 1 � 6 � sr 1

Figure 9.11: Resource equations example

for the statement is min(Costalg ; Costuser) = Costuser .

At this point, the analysis has built a resource usage function (denoted by

182

Chapter 9. Resource Usage Analysis for Java Bytecode

Costbody) that re
ects the resource usage of the statements within the block. Fi-

nally, it yields a resource usage equation of the formCostblock � Costbody where

Costblock is again a symbolic resource usage function built by replacing each input

formal parameter position with its size relations in that block method. These re-

source usage equations are simpli�ed by callingsimplifyEqsand, �nally, they are

solved callingrecEqsSolver, both already de�ned in Sec. 9.2.1. This process yields an

(in general, approximate, but always safe) closed form upper bound on the resource

usage of the block methods in each strongly-connected component. Note that given a

signature the analysis constructs a closed form solution for every block method that

shares that signature. These solutions approximate the resourceusage consumed in

or provided by each block method. In order to compute the total resource usage of

the signature the analysis returns the maximum of these solutions yielding a safe

global upper bound.

Example 9.2.4. (Resource usage equations). The resource usage equations gener-

ated by our algorithm for the CellPhone.sendSmsblock methods and the resource

denoted by $ (i.e., monetary total cost of sending the SMSs through a cell phone)

are listed in Figure 9.11. The computation is in part based on the size relations

for each output parameter position in Figure 9.8. The resourceusage of each

block method is calculated by building an equation such that the left part is a

symbolic function constructed by replacing each parameter position with its size

(i.e., Cost(sendSms;$; sr 0; sr 1; sr 2; sr 3) and Cost(sendSms;$; sr 0; 0; sr 2; sr 3)), and

the rest of the equation consists of adding the resource usage of the invoke statements

in the block method. These are calculated by computing the minimum between the

resource usage function inferred by the analysis and the function provided by the

user. The equations corresponding to the recursive and non-recursive block methods

are in the �rst and second row, respectively. They can be simpli�ed (third row) and

expressed in closed form (fourth row), obtaining a �nal upper bound for the charge

incurred by sending the list of text messages of 6� s2
r 1 � 6 � sr 1.

183

Chapter 9. Resource Usage Analysis for Java Bytecode

9.3 Experimental Results

We have completed an implementation of our framework, and tested it for a repre-

sentative set of benchmarks and resources. Our experimental results are summarized

in Tables 9.1 and 9.2. ColumnProgramprovides the name of the main class to be

analyzed. ColumnResource(s)shows the resource(s) de�ned and tracked. Column

Size T.shows the time (in milliseconds) required by the size analysis to construct the

size relations (including the data dependency analysis and class hierarchy analysis)

and obtain the closed form. ColumnRes. T.lists the time taken to build the resource

usage expressions for all method blocks and obtain their closed form solutions. Total

T. provides the total times for the whole analysis process. Finally, column Resource

Usage Func.provides the upper bound functions inferred for the resourceusage.

For simplicity, we only show the most important (asymptotic) component of these

functions, but the analysis yields concrete functions with constants.

Regarding the benchmarks we have covered a reasonable set of data-structures

used in object-oriented programming and also standard Java libraries used in real

applications. We have also covered an ample set of application-dependent resources

which we believe can be relevant in those applications. In particular, not only have

we represented high-level resources such as cost of SMS, bytes received (including

a coarse measure of bandwidth, as a ratio of data per program step), and �les left

open, but also other low-level (i.e., bytecode level) resources such as stack usage

or energy consumption. The resource usage functions obtained can be used for

several purposes. In programFiles (a fragment characteristic of operating system

kernel code) we kept track of the number of �le descriptors left open. The data

inferred for this resource can be clearly useful, e.g., for debugging: the resource

usage function inferred in this case (O(n)) denotes that the programmer did not close

O(n) �le descriptors previously opened. In programJoin (a database transaction

which carries out accesses to di�erent tables) we decided to measure the number of

184

Chapter 9. Resource Usage Analysis for Java Bytecode

Program Resource(s) Size T. Res. T. Total T.
BST Heap usage 250 22 367
CellPhone SMS monetary cost 271 17 386
Client Bytes received and 391 38 527

\Bandwidth" required
Dhrystone Energy consumption 602 47 759
Divbytwo Stack usage 142 13 219
Files Files left open and 508 53 649

Data stored
Join DB accesses 334 19 460
Screen Screen width 388 38 536

Table 9.1: Times in ms of di�erent phases of the resource analysis on a Pentium M
1.73Ghz with 1Gb of RAM.

accesses to such external tables. This information can be used, e.g., for resource-

oriented specialization in order to perform optimized checkpoints in transactional

systems. The rest of the benchmarks include other de�nitions of resources which

are also typically useful for verifying application-speci�c properties: BST (a generic

binary search tree, used in [3] where a heap space analysis for Java bytecode is

presented),CellPhone(extended version of program in Figure 9.3),Client (a socket-

based client application),Dhrystone(a modi�ed version of a program from [67] where

a general framework is de�ned for estimating the energy consumption of embedded

JVM applications; the complete table with the energy consumption costs that we

used can be found there),DivByTwo (a simple arithmetic operation), and Screen

(a MIDP application for a cellphone, where the analysis is usedto make sure that

message lines do not exceed the phone screen width). The benchmarks also cover a

good range of complexity functions (O(1); O(log(n); O(n); O(n2) : : : ; O(2n); : : :) and

di�erent types of structural recursion such as simple, indirect, and mutual.

185

Chapter 9. Resource Usage Analysis for Java Bytecode

Program Resource Usage Func.
BST O(2n) n � tree depth
CellPhone O(n2) n � packets length
Client O(n) n � stream length

O(1) |
Dhrystone O(n) n � int value
Divbytwo O(log2(n)) n � int value
Files O(n) n � number of �les

O(n � m) m � stream length
Join O(n � m) n; m � records in tables
Screen O(n) n � stream length

Table 9.2: Resource usage functions for programs described in Table 9.1.

9.4 Related Work

We start by noting that while the analysis described in Chapter 4was also parametric

it was designed for Prolog and works at the source code level, and thus cannot be ap-

plied to Java bytecode, at least directly, due to issues like virtual method invocation,

unstructured control
ow, assignment, the fact that statementsare low-level byte-

code instructions, etc., as well as the absence of backtracking(which had a signi�cant

impact on the method presented in Chapter 4). Also, the presentation of Chapter 4

is descriptive in contrast to the concrete algorithm providedin this chapter. With

respect to related work, in [2], a cost analysis is described (developed independently

from the one described herein) that does deal with Java bytecode and is capable of

deriving cost relations which are functions of input data sizes. However, while the

approach proposed can conceptually be adapted to infer di�erent resources, for each

analysis developed the measured resource is �xed and changes inthe implementation

are needed to develop analyses for other resources. In contrast,our approach allows

the application programmer to de�ne the resources through annotations in the Java

source, and without changing the analyzer in any way. In addition, the presentation

186

Chapter 9. Resource Usage Analysis for Java Bytecode

in [2] is again descriptive, while herein we provide a concrete, memo table-based

analysis algorithm, as well as implementation results.

9.5 Summary

This chapter has presented a fully-automated analysis for inferring upper bounds on

the usage that a Java bytecode program makes of a set of application programmer-

de�nable resources. The analysis presented derives a vector of functions, one for each

de�ned resource. Each of these functions returns, for each given set of input data

sizes, an upper bound on the usage that the whole program (and each individual

method) make of the corresponding resource. Important novel aspects of our ap-

proach are the fact that it allows the application programmer to de�ne the resources

to be tracked by writing simple resource descriptions via source-level annotations, as

well as the fact that we have provided a concrete analysis algorithm and report on

an implementation. The current results show that the proposed analysis can obtain

non-trivial bounds on a wide range of interesting resources inreasonable time.

Another important aspect, because of its impact on the scalability, precision,

and automation of the analysis, is that our approach allows using the annotations

also for a number of other purposes such as stating the resource usage of external

methods, which is instrumental in allowing modular composition and thus scalabil-

ity. In addition, our annotations allow stating the resource usage of any method for

which the automatic analysis infers a value that is not accurate enough to prevent

inaccuracies in the automatic inference from propagating.Annotations are also used

by the size and resource usage analysis to express their output. Finally, the anno-

tation language can also be used to state speci�cations related to resource usage,

which can then be proved or disproved based on the results of analysis following,

e.g., theCiaoPPscheme of [54] thus �nding bugs or verifying (the resource usageof)

187

Chapter 9. Resource Usage Analysis for Java Bytecode

the program.

188

Chapter 10

Conclusions and Future Work

10.1 Conclusions

Resource usage analysis is increasingly important in the context of applications such

as granularity control in parallel and distributed computing, resource-oriented spe-

cialization, or, more recently, certi�cation of the resources used by mobile code.

Specially in these more recent applications, the properties of interest are often higher-

level, user-oriented, and application-dependent rather than (or, better, in addition

to) the prede�ned, more traditional costs. Note that traditional cost analyses with

a �xed set of resources are not su�cient.

This thesis has covered two main lines. The �rst one consists of Chapters 4, 6,

and 7, and it has been devoted to several analyses associated withthe inference of

resource usage information for logic programs, presenting the following contributions:

� Chapter 4 has presented a resource bounds analysis that infers automatically

lower- and upper-bounds on the usage that a logic program makes of a set

of user-de�nable resources within a single implementation. The chapter has

189

Chapter 10. Conclusions and Future Work

also presented the assertion language which is used to de�ne such resources.

The resource usage functions are, in general, functions in terms of the sizes

of the input data. Moreover, the chapter discussed the implementation com-

pleted of such analysis and experimental results. The experimental evaluation

is encouraging because it shows that interesting resource boundfunctions can

be obtained automatically and in reasonable time, for a representative set of

benchmarks with a good variety of resources such as bits sent or received by

an application over a socket, number of �les left open, numberof accesses to a

database, energy consumption, etc., as well as the more traditional execution

steps, execution time, or heap memory. To the best of our knowledge this is

the �rst user-de�nable resource analysis proposed in the literature.

� Regarding the automatic inference of resource usage information, Chapter 4

pointed out that the inference at compile-time of which variables do not share

provides an invaluable source of information for the resourceusage analysis

among other things because it implies the determination of input/output modes

(Set-Sharing). In Chapters 6 and 7 we have presented two di�erent approaches

to mitigating the ine�ciencies of the Set-Sharing analysis:

{ Chapter 6 has described a Set-Sharing analysis for top-down frameworks

based on the de�nition of several new widening operators in order to

accelerate the �xed point computation to converge, providing di�erent

levels of precision and e�ciency tradeo�. The approach has also included

the case of combining with freeness information in order to increase the

precision of the analysis. The analysis has shown, in general, relevant

e�ciency gains with limited precision losses. More interestingly, some

benchmarks that ran out of memory with the original Set-Sharing analysis

on our test platform have been analyzed by our approach.

{ Chapter 7 has presented another novel approach to improving the e�-

190

Chapter 10. Conclusions and Future Work

ciency of Set-Sharing that leverages the complement or negative sharing

relationships of the original sharing set. Our experimental evaluation has

shown that our approach may reduce signi�cantly the memory usage of

the sharing relationships and the running time of the abstract operations,

including the abstract uni�cation. Our experiments have alsoshown how

to set up key parameters in our algorithms in order to control the desired

compression and time complexities. We have shown that we can obtain a

reasonable compression in polynomial time by tuning appropriately those

parameters.

We believe that our results have shown that both approaches cancontribute

to the practical, scalable application of Set-Sharing. Notice that both of the

approaches are most advantageous when the size of the sharing relationships

is considerably large. Otherwise, the traditional Set-Sharing behaves properly

and alternative approaches are not required. Moreover, thechoice of one or

another will depend on each application. In some cases, some lossesof accuracy

may be tolerable. If this is the case, our widening-based approach may �t

perfectly. In other situations, the lack of accuracy may be unacceptable. Then,

our negative approach should be considered rather than the widening-based

one.

The fact that the source code of many applications and tools issometimes not

available led us in the second part of this thesis (consisting of Chapters 8 and 9)

to concentrate on the development of an analysis tool for the inference of resource

usage information for bytecode. This work resulted in the following contributions:

� Chapter 8 presented a novel abstract interpretation framework, which is generic

in terms of the abstract domain in use. The framework makes use ofa decom-

pilation phase that results in an analysis-friendly intermediate representation

191

Chapter 10. Conclusions and Future Work

which can be also used for other non abstract interpretation-based analyses of

Java bytecode, and an analysis phase based upon an e�cient and precise �x-

point algorithm. The experimental evaluation has shown the feasibility of the

approach with medium-size programs, using the benchmarks in the frequently

used JOlden suite.

� Chapter 9 presented a generic resource usage analysis for Java bytecode. This

work has been inspired by the analysis for logic programs, but required adap-

tations from logic programs to Java bytecode related to virtual method invoca-

tion, exceptions, unstructured control
ow, assignment, etc. Moreover, other

pre-analysis steps were required to generate more precise bounds. The analysis

framework described in Chapter 8 helped us to solve many of theseproblems.

We have used its intermediate language in order to obtain a uniform represen-

tation that is easier for the resource usage analysis to handle. Furthermore,

we plugged in some abstract domains into the analysis frameworkto improve

the precision of the bounds. We have also shown some experimental results

which show that our technique can obtain non-trivial bounds on a wide range

of interesting resources in reasonable time, supporting the practicability of the

solution adopted.

10.2 Future Work

Finding an upper bound on the cost of computations is an undecidable [113] problem

because it can be reduced to solving the halting problem. Givena Turing-equivalent

program, we infer its upper bound cost function. If this cost function is 1 then

the program does not halt. Otherwise, the program halts. A similar reasoning can

be established for lower bounds. Therefore, we can only hope to develop resource

usage analysis that succeed for larger and larger classes of programs, even if there

192

Chapter 10. Conclusions and Future Work

will always be some resource-usage bounded programs which cannot be proved to be

bounded.

The set of programs for which the resource usage analysis can infer non trivial

bounds can be extended if more information at compile-time is known. Set-Sharing

analysis can only abstract information relative to the variables themselves. A more

sophisticated model is to consider the shape of data structures inthe memory at a

program point. Having a more precise vision of the actual graph structure of the heap,

not only the resource usage analysis could detect cyclic structures but also reasoning

about other type of data structures, e.g., choosing more appropriate metrics. In Java

bytecode, we could do that by applying some of the numerous andsuccessful shape

analyses, see [107, 16, 106] and their references. In logic programming, it could be

more interesting since we may need to develop more accurate shape-type analyses

than the current state of the art. Moreover, analysis of largerprograms could raise

other issues related to e�ciency. Therefore, the study of more e�cient shape-type

analysis seems to be also a future line of research.

On the other hand, we feel that the solution to e�cient and precise Set-Sharing

analyses may rely on the de�nition of more compact and e�ective encodings rather

than the use of widening operators. In particular, the encoding of negative sharing

relationships on the top of (or in addition to) other e�cient r epresentations such as,

e.g., Binary Decision Diagrams seems to be another very promising future investiga-

tion.

An important challenge for the future is being able to infer the resource usage

information of larger and larger, real programs. We have seen that the undecidability

of the problem restricts us to a limited subset of programs. In addition, programmers

may use complex, intertwined, non-monotonic loops (i.e., loops in which argument

sizes may increase or decrease), and complex data structures which may make it very

complex to reason about them in terms of the resource usage consumed or provided.

193

Chapter 10. Conclusions and Future Work

At �rst sight this would imply that such future work (and, ultima tely, the ultimate

objective of this thesis) is unachievable. However, in fact, weare rather optimistic

and of the opinion that while analyzing automatically 100% of some programs will

obviously always remain impossible, automatic resource analysis can be made to be

of great help in practice and in large, real program. Thus, we consider an essential

part of future work to work towards the previously stated objective of improving the

scalability of the analysis for large programs. Our vision towards reaching this goal

is based on a number of ideas:

� We believe, based on our experience, that between a large portion of the pro-

grams consists of linear code and relatively simple loops whichour resource

usage analyses can easily deal with. Therefore, the programmercan be liber-

ated from the painful task of working out the complexity of these parts. While

for the remaining percentage we do not expect, in the short-term, an automatic

solution, the assertion language de�ned in Chapter 4 can clearly mitigate the

problem. This language, which we used for de�ning the resourceusage of ex-

ternal procedures (i.e., libraries), also allows programmers to describe by hand

the resource usage of any procedure for which the automatic analysis infers a

value that is not accurate enough. This can be used to prevent inaccuracies in

the automatic inference from propagating. Thus, the manual work is reduced

to a hopefully small part of the program.

� Moreover, we are also working currently on making our inference of resource

usage more modular, taking advantage of the compositional nature of the cost

of computations. We think that a modular approach is requiredto deal with

large programs.

� Finally, we also plan to work on improving the intrinsic power of the solver

and enlarging the class of loops for which accurate bounds canbe obtained,

relaxing a number of the requirements of our current analysis.

194

Chapter 10. Conclusions and Future Work

In conclusion, while it is probably true that totally automatic resource analysis

of very large programs may be far in the future, this is not a necessary condition for

our analyses to be very useful in practice. The real practical bene�t will come from

the fact that the tool typically will take care of the a large portion of the analysis

tasks required, even if a few of the more complex parts will always still be better

analyzed by the user. These results from manual analysis can thenbe fed to the

compiler via assertions, which will then compose them with the automatic analysis

results for the other, generally much larger parts of the program, thus relieving the

programmer from large amounts of work, and obtaining resultsfrom the complete

program.

195

Appendix A

Proofs

Lemma 1. Let cl 2 CL, sh 2 SH, ss 2 SH, #[cl [ss � sh, and t 2 Term. Then:

#[rel(cl; t) [rel(ss; t) � rel(sh; t) (A.1)

irrel (#[cl; t) [irrel (ss; t) � irrel (sh; t) (A.2)

[(rel(cl; t) [rel(ss; t)) � [(rel(sh; t)) (A.3)

Proof. Since #[cl [ss � sh, we have that rel(#[cl [ss; t) � rel(sh; t). Also

#[rel(cl; t) [rel(ss; t) � rel(#[cl [ss; t) (A.8). Thus, (A.1) follows.

For (A.2), the following is straightforward:

#[cl [ss � sh) irrel (#[cl [ss; t) � irrel (sh; t))

irrel (#[cl; t) [irrel (ss; t) � irrel (sh; t)

To see (A.3), note that [(rel(cl; t) [rel(ss; t)) = [(#[rel(cl; t) [rel(ss; t)),

since both expressions represent the same set of variables. But, from (A.1),

#[rel(cl; t) [rel(ss; t) � rel(sh; t)

196

Appendix A. Proofs

so that the result follows directly.

The following results have been already proved or are straightforward from set

theory:

Lemma 2. Let ss1, ss2, and ss3 be sets of sets:

(ss1 �[ss2)� = ss�
1 �[ss�

2 (A.4)

(ss1 [f;g)� = ss�
1 [f;g (A.5)

ss1 �[(ss2 [ss3) = (ss1 �[ss2) [(ss1 �[ss3) (A.6)

If both ss1 6= ; and ss2 6= ; then:

[(ss1 �[ss2) = [(ss1 [ss2) (A.7)

The following result characterizes operation (cl; sh)� for (cl; sh) 2 SHw with an

equivalent expression, which makes more amenable the proof ofcorrectness of the

extends function:

Lemma 3. Let (cl; sh) 2 SHw and (cl; sh)� = (cl0; sh0):

#[cl0 = #[(cl� [(cl� �[sh�))

Proof. By de�nition, if cl = ; then cl0 = ; , otherwisecl0 = f[(cl [sh)g. If cl = ; the

result is trivial, since both expressions in the equality reduceto ; . Let then cl 6= ; .

We now have that cl0 = f[(cl [sh)g so that #[cl0 = #[(cl [sh). Since cl 6= ; and

alsosh [f;g 6 = ; , we can apply (A.7), so that we can write:

#[(cl� [(cl� �[sh�))
(A.6)
= #[(cl� �[(sh� [f;g))

(A.5)
= #[(cl� �[(sh [f;g)�)

(A.4)
= #[(cl �[(sh [f;g)) � (A.9)

= #[(cl �[(sh [f;g))
(A.7)
= #[(cl [sh [f;g) = #[(cl [sh)

= #[cl0

which proves the result.

197

Appendix A. Proofs

Lemma 4. Let I ((cl; sh)) = #[cl [sh. Let clsh 2 SHw, clsh1 2 SHw, clsh2 2

SHw. Then:

rel(I (clsh); t) � I (rel(clsh; t)) (A.8)

irrel (I (clsh); t) = I (irrel (clsh; t))

I (clsh1) [I (clsh2) = I (clsh1 [w clsh2)

I (clsh1) �[I (clsh2) � I (clsh1 �[clsh2)

(I (cl; sh)) � � I ((cl; sh)�)

Theorem 6.2.1 Let (cl; ss) 2 SHw, sh 2 SH, equationx = t, x 2 V and t 2 Term,

and amguw(x; t; (cl; ss)) = (clo; sso). If #[cl [ss � sh then:

#[clo [sso � amgu(x; t; sh)

Proof. Direct from the de�nition of amguw and Lemma 4.

Note that the previous result holds even for the case in which#[cl [ss = sh.

That is, amguw is neccessarily imprecise.

Proposition 1. Let (cl; ss) 2 SHw, sh 2 SH, equationx = t, x 2 V and t 2 Term,

and amgus(x; t; (cl; ss)) = (clo; sso). If #[cl [ss = sh then:

#[clo [sso � amgu(x; t; sh)

but not in general #[clo [sso = amgu(x; t; sh).

Proof. The general statement is a direct corollary of Theorem 6.2.1.To see that

equality does not hold in general, take (cl; ss) = (ff X; Y gg; ;) and sh = ff X g;-

f X; Y g; f Ygg. We have #[cl [ss = sh. Take also t = y. Then (clo; sso) =

198

Appendix A. Proofs

(ff X; Y gg; ;), so that #[clo [sso = ff X g; f X; Y g; f Ygg. But amgu(x; t; sh) =

irrel (sh; x = t) [(rel(sh; x) �[rel(sh; t)) � = ff X; Y gg, which is a proper subset of

#[clo [sso.

The optimization of amguw that we present here is similar to that presented

in [120] for the case of inferring pair-sharing. The followingtwo results will be

instrumental. In the proofs the baselineof a set of setsSS is denoted by the set of

elements in sets belonging toSS, i.e., [SS =
S

S2 SS S. Note that the �rst one allows

to safely replace star-union on clique sets simply by set union (which is precisely the

observation behind the de�nition of (cl; sh)� in [121]):

Lemma 5. For every cl 2 CL:1

#[cl� = #[cl (A.9)

Proof. First, #[cl� � # [cl. Note that # [cl � #[cl, since [cl is baseline ofcl,

and therefore the maximal element that can belong tocl (which gives the maximal

powerset possible for#[cl). Also, [cl� = [cl, since the baseline ofcl and of cl� is the

same. Thus, #[cl� � #[cl� = #[cl.

Also, #[cl � #[cl� . To see this, takes 2 #[cl, we also have that, ifcl 6= ; ,

[cl 2 cl� ([cl is the maximal element ofcl� ; however, ifcl = ; , cl� = ; , too). Thus,

from the de�nition, s 2 #[cl� . If cl = ; , the result follows directly.

Lemma 6. For every cl 2 CL and s 2 } 0(V). If cl 6= ; :

#[(f sg �[cl�) = #[f[cl [sg (A.10)

1Note that #[cl� = #[(cl�).

199

Appendix A. Proofs

Proof.

#[(f sg �[cl�) = #[(f sg� �[cl�) sincef sg is a singleton set

= #[(f sg �[cl)� by (A.4)

= #[(f sg �[cl) by (A.9)

= #([cl [s) since the baseline off sg �[cl is, if cl 6= ; ;

that of cl plus the elements ins

= #[f[cl [sg since[cl [s is a singleton set

Let (cl; sh) = clsh 2 SHw. By de�nition:

amguw(x; t; clsh) = irrel (clsh; x = t) [w (rel(clsh; x)� �[rel(clsh; t)�)

so that using the de�nitions of [w and �[, and considering that there are two cases

in rel(clsh; x)� and another two in rel(clsh; t)� :

amguw(x; t; clsh) = (irrel (cl; x = t) [cl0; irrel (sh; x = t) [sh0)

(cl0; sh0) =

8
>>>>>>>><

>>>>>>>>:

(; ; rel(sh; x)� �[rel(sh; t)�) if rel(cl; x) = rel(cl; t) = ;

(f[(rel(cl; t) [rel(sh; t))g �[rel(sh; x)� ; ;) if rel(cl; x) = ; ; rel(cl; t) 6= ;

(f[(rel(cl; x) [rel(sh; x))g �[rel(sh; t)� ; ;) if rel(cl; x) 6= ; ; rel(cl; t) = ;

(f[(rel(cl; x) [rel(cl; t) [rel(sh; x) if rel(cl; x) 6= ; ; rel(cl; t) 6= ;

[rel(sh; t))g; ;)

However, the second and third cases can be reduced to the last one.Note that,

in the second case, ifrel(sh; x) 6= ; then, by (A.10), we havecl0 = f[(rel(cl; t) [

rel(sh; x)[rel(sh; t))g. Since in this caserel(cl; x) = ; , we can writecl0 = f[(rel(cl; x)[

rel(cl; t) [rel(sh; x) [rel(sh; t))g. However, if rel(sh; x) = ; then cl0 = ; . The same

200

Appendix A. Proofs

reasoning can be applied to the third case. Thus:

(cl0; sh0) =

8
>>>>>>>><

>>>>>>>>:

(; ; rel(sh; x)� �[rel(sh; t)�) if rel(cl; x) = rel(cl; t) = ;

(; ; ;) if rel(cl; x) = rel(sh; x) = ;

or rel(cl; t) = rel(sh; t) = ;

(f[(rel(cl; x) [rel(cl; t)[otherwise

rel(sh; x) [rel(sh; t)g; ;)

Finally, note that in the �rst case, since rel(cl; x) = rel(cl; t) = ; , we have

that irrel (cl; x = t) = cl, which gives the abstract uni�cation operation we have

implemented.

Now, it is proved that the lifted linearity \operator" lin s is correct w.r.t. lin .

Lemma 7. Let (cl; ss) 2 SHw, sh 2 SH, sh � #[cl [ss, and t 2 Term. Then:

lin s(t) for (cl; ss)) lin (t) for sh

given that:

lin s(t) , 8 y 2 t̂ : [t]y = 1 ^

8z 2 t̂ : y 6= z ! rel(cl; y) \ rel(cl; z) = ; ^

rel(sh; y) \ rel(sh; z) = ;

lin (t) , 8 y 2 t̂ : [t]y = 1 ^ 8 z 2 t̂ : y 6= z ! rel(sh; y) \ rel(sh; z) = ;

Proof. Let lin s(t) hold. Then, for all y 2 t̂, [t]y = 1. Also, for all z 2 t̂ s.t. y 6= z

we haverel(cl; y) \ rel(cl; z) = ; , rel(ss; y) \ rel(ss; z) = ; . Assume in what follows

that y 6= z.

We also have thatrel(#[cl; y) \ rel(#[cl; z) = ; , rel(#[cl; y) \ rel(ss; z) = ; , and

rel(ss; y)\ rel(#[cl; z) = ; (see below). Hence, (rel(#[cl; y)[rel(ss; y)) \ (rel(#[cl; z)[

201

Appendix A. Proofs

rel(ss; z)) = rel(#[cl [ss; y) \ rel(#[cl [ss; z) = ; . But sh � #[cl [ss, so that

rel(sh; y) \ rel(sh; z) = ; . Thus, lin (t) holds.

To see that rel(#[cl; y) \ rel(#[cl; z) = ; we reason by contradiction. Lets 2

rel(#[cl; y) \ rel(#[cl; z). We have that s 2 #[cl, y 2 s, z 2 s. Then, there isc 2 cl

such that s � c, y 2 c, z 2 c. Therefore, c 2 rel(cl; y) and c 2 rel(cl; z), so that

rel(cl; y) \ rel(cl; z) 6= ; .

To see that rel(#[cl; y) \ rel(ss; z) = ; we also reason by contradiction. Let

s 2 rel(#[cl; y) \ rel(ss; z). We have that s 2 #[cl, s 2 ss, y 2 s, z 2 s. Therefore,

s 2 rel(ss; y) and s 2 rel(ss; z), so that rel(ss; y) \ rel(ss; z) 6= ; . The proof of

rel(ss; y) \ rel(#[cl; z) = ; is the same, exchangingy and z.

Theorem 6.3.1 Let ((cl; ss); f) 2 SHF w, (sh; e) 2 SHF , and equationx = t, x 2

V, t 2 Term. Let alsoamgusf (x; t; ((cl; ss); f)) = ((clo; sso); f o) and amguf (x; t; (sh; e)) =

(sh0; f 0). If #[cl [ss � sh and f � e then:

#[clo [sso � sh0 and f o � f 0

Proof. That #[clo [sso � sh0 follows directly from the de�nition of amgusf using

Lemma 4 and the following observation based on Lemma 7: Ifamgusf f is used then

x 2 f � e or t 2 f � e, so that the �rst case of amguf would have also been used

in Sharing+Freeness. Also, if it isamgusf l that is used then we have that̂t � f � e

and lin s(t), which implies lin (t) (Lemma 7); so that the second case ofamguf would

have also been used.

We show that f o � f 0, given that f � e and the rest of conditions of the theorem,

in particular, #[cl [ss � sh. From the de�nition of amgsf we have four cases. We

will also have four more subcases of the last case. Note that in everycasef o � f

(by de�nition of amgusf). Thus:

202

Appendix A. Proofs

� x 2 f and t 2 f

In this case, sincef � e, we have x 2 e and t 2 e, so that f 0 = e (by

de�nition of amguf). Also, f o = f (by de�nition of amgusf). Thus, the result

is straightforward.

� x =2 f and t 2 f

Now, we havet 2 e, but either x 2 e or x =2 e. If x 2 e, we havef 0 = e. Thus,

the result is straightforward, sincef o � f and f � e.

If x =2 e, we havef 0 = en [rel(sh; t). Also, f o = f n [(rel(cl; t) [rel(ss; t)), so

that what we have to prove is:

f n [(rel(cl; t) [rel(ss; t)) � en [rel(sh; t)

which holds becausef � e, and [(rel(cl; t) [rel(ss; t)) � [rel(sh; t) (A.3).

� x 2 f and t =2 f

This case is symmetric to the previous one, withx for t and vice versa.

� x =2 f and t =2 f

In this case, f o = f n [(rel(cl; x) [rel(cl; t) [rel(ss; x) [rel(ss; t)), but we

may or may not havex 2 e and t 2 e, so we have four more cases.

� x =2 f , t =2 f , x =2 e, and t =2 e

We now havef 0 = f n [(rel(sh; x) [rel(sh; t)). Thus what we have to prove

is:

f n[(rel(cl; x) [rel(cl; t) [rel(ss; x) [rel(ss; t)) � en[(rel(sh; x) [rel(sh; t))

which holds becausef � e and also:

[(rel(cl; x) [rel(cl; t) [rel(ss; x) [rel(ss; t)) � [(rel(sh; x) [rel(sh; t))

203

Appendix A. Proofs

since we have[(rel(cl; t) [rel(ss; t)) � [rel(sh; t) (A.3) and the same forx:

[(rel(cl; x) [rel(ss; x)) � [rel(sh; x).

� x =2 f , t =2 f , x 2 e, and t =2 e

In this case, f 0 = f n [rel(sh; x). The result then follows from the previous

case, since[rel(sh; x) � [(rel(sh; x) [rel(sh; t)).

� x =2 f , t =2 f , x =2 e, and t 2 e

In this case,f 0 = f n[rel(sh; t). As before, the result follows because[rel(sh; t) �

[(rel(sh; x) [rel(sh; t)).

� x =2 f , t =2 f , x 2 e, and t 2 e

Now, f 0 = e, and the result follows becausef o � f and f � e = f 0.

Theorem 6.4.1 Let Call 2 SHw, P rime 2 SHw, and g 2 Term, such that the

conditions for the extend function are satis�ed. Let Call = (cl1; ss1), P rime =

(cl2; ss2), extends(Call; g; P rime) = (cl; ss), #[cl1 [ss1 � sh1, and #[cl2 [ss2 � sh2

then:

#[cl [ss � extend(sh1; g; sh2)

Proof. The following two results, proved in (9.7) and (9.11) of [121] (page 240),

respectively, will be used. Forc 2 CL and term t:

#[(irrel (c; t)) = irrel (#[c; t) (A.11)

#[c� = (#[cl)� (A.12)

204

Appendix A. Proofs

Now, we simplify the (notation of the) de�nitions of extends and extend:

(cl; ss) = (irrel (cl1; g) [extcl ; irrel (ss1; g) [extsh [clsh [shcl)

extcl = f (s \ c) [(s n ĝ) j s 2 cl0; c 2 cl2 g

extsh = f s j s 2 rel(ss1; g)� ; (s \ ĝ) 2 ss2 g

clsh = f s j s � c 2 cl0; (s \ ĝ) 2 ss2 g

shcl = f s j s 2 rel(ss1; g)� ; (s \ ĝ) � c 2 cl2 g

with (cl0; ss0) = (rel(cl1; g); rel(ss1; g)) � andcl0 = rel(cl1; g)� [(rel(cl1; g)� �[rel(ss1; g)�)

because of Lemma 3. So that:

#[cl [ss = #[(irrel (cl1; g)) [irrel (ss1; g) [#[extcl [extsh [clsh[shcl (A.13)

Also, let extend(sh1; g; sh2) = irrel (sh1; g) [ext with:

ext = f s j s 2 rel(sh1; g)� ; (s \ ĝ) 2 sh2 g

Take s 2 extend(sh1; g; sh2). Then, either s 2 irrel (sh1; g) or s 2 ext (or both,

but this is obviously impossible). Ifs 2 irrel (sh1; g) then we have thats 2 #[cl [ss,

since, from the condition that #[cl1 [ss1 � sh1, and using (A.2), (A.11), and (A.13):

irrel (sh1; g) � irrel (#[cl1; g)[irrel (ss1; g) = #[(irrel (cl1; g)) [irrel (ss1; g) � #[cl[ss

If s 2 ext then, by de�nition, s 2 rel(sh1; g)� and (s \ ĝ) 2 sh2. But from the

condition that #[cl1 [ss1 � sh1, using (A.1) it follows that:

rel(sh1; g)� � (#[(rel(cl1; g)) [rel(ss1; g)) �

so that s 2 (#[(rel(cl1; g)) [rel(ss1; g)) � . Thus, we have three possible cases:s 2

(#[(rel(cl1; g))) � = #[(rel(cl1; g)�) (by (A.12)), s 2 rel(ss1; g)� , or s = [m
i =1 ai [[n

j =1 bj ,

ai 2 #[(rel(cl1; g)) for all i = 1; : : : ; m, bj 2 rel(ss1; g) for all j = 1; : : : ; n.

205

Appendix A. Proofs

Also (s \ ĝ) 2 sh2, so that from the condition that #[cl2 [ss2 � sh2 then

(s \ ĝ) 2 #[cl2 [ss2. Thus, either (s \ ĝ) 2 #[cl2 or (s \ ĝ) 2 ss2. Overall, we have

six possible cases:

� s 2 rel(ss1; g)� , (s \ ĝ) 2 ss2

� s 2 rel(ss1; g)� , (s \ ĝ) 2 #[cl2

� s 2 #[(rel(cl1; g)�), (s \ ĝ) 2 ss2

� s 2 #[(rel(cl1; g)�), (s \ ĝ) 2 #[cl2

� s = [m
i =1 ai [[n

j =1 bj , (s \ ĝ) 2 ss2

� s = [m
i =1 ai [[n

j =1 bj , (s \ ĝ) 2 #[cl2

In the �rst case, we have thats 2 extsh, and thus, by (A.13), s 2 #[cl [ss.

In the second case, we have that there isc 2 cl2 such that (s \ ĝ) 2 #c. Thus,

(s \ ĝ) � c 2 cl2, so that s 2 shcl. Hence, by (A.13),s 2 #[cl [ss.

In the third case, we have that there isc 2 rel(cl1; g)� such that s 2 #c. Thus,

s � c 2 rel(cl1; g)� � cl0, so that s 2 clsh. Hence, by (A.13),s 2 #[cl [ss.

In the fourth case, as in the third, we haves 2 cl0. Also, (s \ ĝ) 2 #[cl2. Thus,

(s \ ĝ) � c 2 cl2, so that ((s \ c) [(s n ĝ)) = e 2 extcl. Obviously, (s \ ĝ) � s, so

that (s \ ĝ) � (s \ c). Therefore,s = (s \ ĝ) [(s n ĝ) � (s \ c) [(s n ĝ) = e 2 extcl.

And then s 2 #e � #[extcl. Hence, by (A.13),s 2 #[cl [ss.

In the �fth case, we have that ai 2 #[(rel(cl1; g)), so that there aredi 2 rel(cl1; g)

such that ai 2 #di . Thus, ai � di 2 rel(cl1; g), so that [m
i =1 ai � [m

i =1 di 2 rel(cl1; g)� .

We also have thatbj 2 rel(ss1; g), so that [n
j =1 bj 2 rel(ss1; g)� . Therefore, s =

[m
i =1 ai [[n

j =1 bj � ([m
i =1 di [[n

j =1 bj) = c 2 rel(cl1; g)� �[rel(ss1; g)� � cl0. Thus,

s � c 2 cl0, so that s 2 clsh. Hence, by (A.13),s 2 #[cl [ss.

206

Appendix A. Proofs

In the sixth case, as in the �fth, we haves 2 cl0. Also, (s \ ĝ) 2 #[cl2. Thus,

following the same reasoning as in the fourth case, we also have that s 2 #[cl[ss.

Theorem 6.4.2 Let Call 2 SHF w, P rime 2 SHF w, and g 2 Term, such that the

conditions for theextend function are satis�ed. Let Call = ((cl1; sh1); f 1), P rime =

((cl2; sh2); f 2), and extendsf (Call; g; P rime) = ((cl0; sh0); f 0). Let also s1 = #[cl1 [

sh1, s2 = #[cl2 [sh2, and extendf ((s1; f 1); g;(s2; f 2)) = (sh; f). Then (#[cl0[sh0) �

sh and f 0 � f .

Proof. We now prove that e � f , given that e1 � f 1, e2 � f 2, and the rest of

conditions of the theorem, in particular #[cl [ss � sh. Remember also that:

f = f 2 [f f and e = e2 [ee

f f = f x j x 2 (f 1 n ĝ); (([rel(sh; x)) \ ĝ) � f 2g

ee= f x j x 2 (e1 n ĝ); (([(rel(ss; x) [rel(cl; x))) \ ĝ) � e2g

Take x 2 e. Then, either x 2 e2 or x 2 ee. If x 2 e2 then, sincee2 � f 2, x 2 f 2,

so that x 2 f . Let, then, x 2 ee.

Now, we havex 2 (e1 nĝ) and (([(rel(ss; x) [rel(cl; x))) \ ĝ) � e2. Sincee1 � f 1,

we havex 2 (f 1nĝ). We also have (([rel(sh; x)) \ ĝ) � f 2 (see below). Thus,x 2 f f ,

so that x 2 f .

To see that (([(rel(ss; x) [rel(cl; x))) \ ĝ) � e2 implies (([rel(sh; x)) \ ĝ) �

f 2, consider that by using (A.3) #[cl [ss � sh implies (([rel(sh; x)) \ ĝ) �

(([(rel(ss; x) [rel(cl; x))) \ ĝ), so that:

(([rel(sh; x)) \ ĝ) � (([(rel(ss; x) [rel(cl; x))) \ ĝ) � e2 � f 2

Theorem 7.4.1 A polynomial time algorithm for computing negative cross-union,�[,

implies P= N P .

207

Appendix A. Proofs

Proof. To show that negative cross-union,�[, is N P -Complete we �rst restate the

de�nition of Non-Empty Self Recognition (NESR) shown to beN P -Complete in

[41]. Then, we useNESR to show that there is no polynomial time algorithm for

computing negative cross-union unlessP = N P .

(Non-Empty Self Recognition, NESR).

INPUT: A negative set tnsh of length l strings over the alphabetf 0; 1; �g .

QUESTION: Doestnsh represent an empty positive setbsh? In other words, does

there exists a string inf 0; 1gl not matched in tnsh?

The following is a proof for Theorem 7.4.1:

Given a negative settnsh of length l, assume a polynomial time algorithmM

that takes as input negative setstnsh1 and tnsh2 and outputs tnsh0 = tnsh1 �[tnsh2,

wheretnsh0 represents the result of the positive cross-union of the two positive sets

represented bytnsh1 and tnsh2.

We construct a polynomial time algorithm for NESR: given any instance of

NESR with input tnsh. First, generate a positive setsh with two strings s1 and s2

of length l each having alternating 1's and 0's, e.g., ifl = 4, then sh = f 0101; 1010g.

Convert sh to its negative set representation,nsh, using a polynomial time algorithm,

i.e., letting k = log2(l) or the Pre�x algorithm, see [41]. Verify that s1 and s2 appear

in tnsh: if either one is missing fromtnsh, then answer "No" (tnsh is not empty, at

a minimum it represents the missing string). Otherwise, boths1 and s2 appear in

tnsh, but there may be some other string(s) missing fromtnsh (tnsh is not empty).

Let M compute tnsh0 = tnsh �[nsh. Now, check if boths1 and s2 appear in tnsh0:

if both are missing fromtnsh0, then answer "Yes" (tnsh is empty); otherwise, answer

"No".

Note that if tnsh represented an empty positive set, then itsnegative cross-union

with another set nsh will yield a representation of the same setnsh. In other words,

208

Appendix A. Proofs

if tnsh is empty and sinces1 and s2 were missing fromnsh, then s1 and s2 will also

be missing from the resulttnsh0. On the other hand, if tnsh is not empty (represents

some string(s), other thans1 and s2, in the positive), then negative cross-union

(ternary OR operation) with one of the two strings will produce a di�erent string to

s1 or s2 resulting in either s1 or s2 appearing intnsh0. Thus, M can be used to solve

NESR e�ciently. Since NESR is N P -Complete, thenP= N P .

209

References

[1] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.Cost Analysis
of Java Bytecode. In Rocco De Nicola, editor,16th European Symposium on
Programming, ESOP'07, volume 4421 ofLecture Notes in Computer Science,
pages 157{172. Springer, March 2007.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini.Cost Analysis
of Java Bytecode. InESOP, LNCS 4421, pages 157{172. Springer, 2007.

[3] E. Albert, S. Genaim, and M. G�omez-Zamalloa. Heap Space Analysis for Java
Bytecode. In ISMM '07: Proceedings of the 6th international symposium on
Memory management, pages 105{116, New York, NY, USA, October 2007.
ACM Press.

[4] E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In
Proc. of LPAR'04, volume 3452 ofLNAI . Springer, 2005.

[5] Gianluca Amato and Francesca Scozzari. Optimality in goal-dependent analysis
of sharing. Technical Report TR-05-06, Dipartimento di Informatica, Univer-
sit�a di Pisa, 2005.

[6] K.R. Apt. Introduction to Logic Programming. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B: Formal Model and Se-
mantics, pages 495{574. Elsevier, Amsterdam and The MIT Press, Cambridge,
1990.

[7] T. Armstrong, K. Marriott, P. Schachte, and H. S�ndergaard. Boolean func-
tions for dependency analysis: Algebraic properties and e�cient representation.
In Springer-Verlag, editor,Static Analysis Symposium, SAS'94, number 864 in
LNCS, pages 266{280, Namur, Belgium, September 1994.

[8] D. Aspinall, S. Gilmore, M. Hofmann, D. Sannella, and I. Stark. Mobile Re-
source Guarantees for Smart Devices. In G. Barthe, L. Burdy, M.Huisman,

210

References

J.-L. Lanet, and T. Muntean, editors,Proc. of Workshop on Construction and
Analysis of Safe, Secure and Interoperable Smart Devices (CASSIS), volume
3362 ofLNCS, pages 1{27. Springer, 2005.

[9] David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl,
and Alberto Momigliano. A program logic for resource veri�cation. In
TPHOLs2004, volume 3223 ofLNCS, pages 34{49, Heidelberg, September
2004. Springer Verlag.

[10] David F. Bacon and Peter F. Sweeney. Fast static analysis ofC++ virtual func-
tion calls. Proc. of OOPSLA'96, SIGPLAN Notices, 31(10):324{341, October
1996.

[11] R. Bagnara, R. Gori, P. M. Hill, and E. Za�anella. Finite-tree analysis for
constraint logic-based languages.Information and Computation, 193(2):84{
116, 2004.

[12] R. Bagnara, A. Pescetti, A. Zaccagnini, E. Za�anella, and
T. Zolo. Purrs: The Parma University's Recurrence Relation Solver.
http://www.cs.unipr.it/purrs .

[13] D. Basin and H. Ganzinger. Complexity Analysis based on Ordered Resolution.
In 11th. IEEE Symposium on Logic in Computer Science, 1996.

[14] I. Bate, G. Bernat, and P. Puschner. Java Virtual-MachineSupport for
Portable Worst-Case Execution-Time Analysis. In5th IEEE International
Symposium on Object-oriented Real-time Distributed Computing, Washington,
DC, USA, Apr. 2002.

[15] R. Benzinger. Automated Higher-Order Complexity Analysis.Theor. Comput.
Sci., 318(1-2), 2004.

[16] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter O'Hearn,
Thomas Wies, and Hongseok Yang. Shape analysis for composite datastruc-
tures. In CAV, 2007.

[17] Bruno Blanchet. Escape Analysis for Object Oriented Languages. Application
to Java(TM). In Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA'99), pages 20{34. ACM, November 1999.

[18] M. Bruynooghe. A Practical Framework for the Abstract Interpretation of
Logic Programs.Journal of Logic Programming, 10:91{124, 1991.

211

References

[19] M. Bruynooghe, M. Codish, and A. Mulkers. Abstract uni�cation for a com-
posite domain deriving sharing and freeness properties of program variables.
In F.S. de Boer and M. Gabbrielli, editors,Veri�cation and Analysis of Logic
Languages, pages 213{230, 1994.

[20] Randal E. Bryant. Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams.ACM Comput. Surv., 24(3):293{318, 1992.

[21] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. L�opez-Garc��a, and
G. Puebla (Eds.). The Ciao System. Reference Manual (v1.10). The ciao
system documentation series{TR, School of Computer Science, Technical Uni-
versity of Madrid (UPM), June 2004. System and on-line version ofthe manual
available at http://www.ciaohome.org .

[22] F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of
Standard Prolog Programs. InEuropean Symposium on Programming, number
1058 in LNCS, pages 108{124, Sweden, April 1996. Springer-Verlag.

[23] F. Bueno, M. Garc��a de la Banda, and M. Hermenegildo. E�ectiveness of Global
Analysis in Strict Independence-Based Automatic Program Parallelization. In
International Symposium on Logic Programming, pages 320{336. MIT Press,
November 1994.

[24] A. Casas, M. Carro, and M. Hermenegildo. Towards a High-LevelImplementa-
tion of Execution Primitives for Non-restricted, Independent And-parallelism.
In D.S. Warren and P. Hudak, editors,10th International Symposium on Prac-
tical Aspects of Declarative Languages (PADL'08), volume 4902 ofLNCS, pages
230{247. Springer-Verlag, January 2008.

[25] Ajay Chander, David Espinosa, Nayeem Islam, Peter Lee, and George C. Nec-
ula. Enforcing resource bounds via static veri�cation of dynamic checks. In
European Symposium on Programming (ESOP), number 3444 in LNCS, pages
311{325. Springer-Verlag, 2005.

[26] Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation with
alien expressions and heap structures. InVMCAI'05 , number 3385 in LNCS,
pages 147{163. Srpinger, 2005.

[27] The Ciao Development Team. The Ciao Multiparadigm Language and Program
Development Environment, November 2006. The ALP Newsletter 19(3). The
Association for Logic Programming.

[28] M. Codish, A. Mulkers, M. Bruynooghe, M. Garc��a de la Banda, and
M. Hermenegildo. Improving Abstract Interpretations by Combining Domains.

212

References

In Proc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics
Based Program Manipulation, pages 194{206. ACM, June 1993.

[29] Michael Codish, Dennis Dams, Gilberto Fil�e, and MauriceBruynooghe. On
the design of a correct freeness analysis for logic programs.The Journal of
Logic Programming, 28(3):181{206, 1996.

[30] Michael Codish, Harald S�ndergaard, and Peter J. Stuckey. Sharing and
groundness dependencies in logic programs.ACM Transactions on Program-
ming Languages and Systems, 21(5):948{976, 1999.

[31] P. Cousot and R. Cousot. Abstract Interpretation: a Uni�ed Lattice Model for
Static Analysis of Programs by Construction or Approximation ofFixpoints.
In Fourth ACM Symposium on Principles of Programming Languages, pages
238{252, 1977.

[32] Stephen-John Craig and Michael Leuschel. Self-Tuning Resource Aware Spe-
cialisation for Prolog. In PPDP '05: Proceedings of the 7th ACM SIGPLAN
international conference on Principles and practice of declarative programming,
pages 23{34, New York, NY, USA, 2005. ACM Press.

[33] K. Crary and S. Weirich. Resource bound certi�cation. InPOPL'00. ACM
Press, 2000.

[34] Manuvir Das, Sorin Lerner, and Mark Seigle. Esp: Path-sensitive program
veri�cation in polynomial time. In PLDI , pages 57{68, 2002.

[35] M. Garc��a de la Banda.Independence, Global Analysis, and Parallelism in Dy-
namically Scheduled Constraint Logic Programming. PhD thesis, Universidad
Polit�ecnica de Madrid (UPM), Facultad Informatica UPM, 28660-Boadilla del
Monte, Madrid-Spain, September 1994.

[36] S. K. Debray and N. W. Lin. Cost Analysis of Logic Programs.ACM Transac-
tions on Programming Languages and Systems, 15(5):826{875, November 1993.

[37] S. K. Debray, N.-W. Lin, and M. Hermenegildo. Task Granularity Analysis in
Logic Programs. InProc. of the 1990 ACM Conf. on Programming Language
Design and Implementation, pages 174{188. ACM Press, June 1990.

[38] S. K. Debray, P. L�opez-Garc��a, M. Hermenegildo, and N.-W. Lin. Lower Bound
Cost Estimation for Logic Programs. In1997 International Logic Programming
Symposium, pages 291{305. MIT Press, Cambridge, MA, October 1997.

213

References

[39] S. W. Dietrich. Extension Tables: Memo Relations in LogicProgramming. In
Fourth IEEE Symposium on Logic Programming, pages 264{272, September
1987.

[40] Jochen Eisinger, Ilia Polian, Bernd Becker, Alexander Metzner, Stephan
Thesing, and Reinhard Wilhelm. Automatic identi�cation of ti ming anoma-
lies for cycle-accurate worst-case execution time analysis. InProceedings of
IEEE Workshop on Design & Diagnostics of Electronic Circuits & Systems
(DDECS), pages 15{20. IEEE Computer Society, April 2006.

[41] F. Esponda, E. S. Ackley, S. Forrest, and P. Helman. On-line negative
databases (with experimental results). International Journal of Unconven-
tional Computing, 1(3):201{220, 2005.

[42] F. Esponda, E. D. Trias, E. S. Ackley, and S. Forrest. A relational algebra
for negative databases. Technical Report TR-CS-2007-18, University of New
Mexico, 2007.

[43] Christian Fecht. An e�cient and precise sharing domain for logic programs.
In Herbert Kuchen and S. Doaitse Swierstra, editors,PLILP , volume 1140 of
Lecture Notes in Computer Science, pages 469{470. Springer, 1996.

[44] S. Genaim and F. Spoto. Information Flow Analysis for JavaBytecode. In
R. Cousot, editor,Proc. of the Sixth International Conference on Veri�cation,
Model Checking and Abstract Interpretation (VMCAI'05), volume 3385 ofLec-
ture Notes in Computer Science, pages 346{362, Paris, France, January 2005.
Springer-Verlag.

[45] G. G�omez and Y. A. Liu. Automatic Time-Bound Analysis for a Higher-
Order Language. InProceedings of the Symposium on Partial Evaluation and
Semantics-Based Program Manipulation (PEPM). ACM Press, 2002.

[46] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha.Java(TM) Language
Speci�cation, The (3rd Edition) . Addison-Wesley Professional, 2005.

[47] Bernd Grobauer. Cost recurrences for DML programs. InInternational Con-
ference on Functional Programming, pages 253{264, 2001.

[48] Kim S. Henriksen. A Logic Programming Based Approach to Applying Ab-
stract Interpretation to Embedded Software. PhD thesis, Roskilde University,
Roskilde, Denmark, October 2007. Research Report #117.

214

References

[49] M. Hermenegildo.An Abstract Machine Based Execution Model for Computer
Architecture Design and E�cient Implementation of Logic Programs in Par-
allel. PhD thesis, Dept. of Electrical and Computer Engineering (Dept. of
Computer Science TR-86-20), University of Texas at Austin, Austin, Texas
78712, August 1986.

[50] M. Hermenegildo. A Documentation Generator for (C)LP Systems. In Inter-
national Conference on Computational Logic, CL2000, number 1861 in LNAI,
pages 1345{1361. Springer-Verlag, July 2000.

[51] M. Hermenegildo, E. Albert, P. L�opez-Garc��a, and G. Puebla. Abstraction
Carrying Code and Resource-Awareness. InPPDP. ACM Press, 2005.

[52] M. Hermenegildo, F. Bueno, G. Puebla, and P. L�opez-Garc��a. Program Anal-
ysis, Debugging and Optimization Using the Ciao System Preprocessor. In
1999 Int'l. Conference on Logic Programming, pages 52{66, Cambridge, MA,
November 1999. MIT Press.

[53] M. Hermenegildo and The Ciao Development Team. An Overview of The
Ciao Multiparadigm Language and Program Development Environment and
its Design Philosophy. InECOOP Workshop on Multiparadigm Programming
with Object-Oriented Languages MPOOL 2007, July 2007.

[54] M. Hermenegildo, G. Puebla, F. Bueno, and P. L�opez-Garc��a. Integrated Pro-
gram Debugging, Veri�cation, and Optimization Using Abstract Interpreta-
tion (and The Ciao System Preprocessor).Science of Computer Programming,
58(1{2):115{140, October 2005.

[55] M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey.Incremental Anal-
ysis of Constraint Logic Programs.ACM Transactions on Programming Lan-
guages and Systems, 22(2):187{223, March 2000.

[56] M. Hermenegildo, R. Warren, and S. K. Debray. Global FlowAnalysis as a
Practical Compilation Tool. Journal of Logic Programming, 13(4):349{367,
August 1992.

[57] P. M. Hill, E. Za�anella, and R. Bagnara. A correct, precise and e�cient
integration of set-sharing, freeness and linearity for the analysis of �nite and
rational tree languages.Theory and Practice of Logic Programming, 4(3):289{
323, 2004.

[58] M. Hofmann and S. Jost. Static prediction of heap space usagefor �rst-order
functional programs. InACM Symposium on Principles of Programming Lan-
guages (POPL), 2003.

215

References

[59] Shin ichi Minato. Zero-Suppressed BDDs for Set Manipulation in Combinato-
rial Problems. In DAC, pages 272{277, 1993.

[60] Atsushi Igarashi and Naoki Kobayashi. Resource usage analysis. In Symposium
on Principles of Programming Languages, pages 331{342, 2002.

[61] D. Jacobs and A. Langen. Static Analysis of Logic Programs for Independent
And-Parallelism. Journal of Logic Programming, 13(2 and 3):291{314, July
1992.

[62] Joxan Ja�ar and Jean-Louis Lassez. Constraint Logic Programming. In ACM
Symposium on Principles of Programming Languages, pages 111{119. ACM,
1987.

[63] JOlden Suite Collection. http://www-ali.cs.umass.edu/DaCapo/benchmarks.html.

[64] A. King and P. Soper. Depth-k Sharing and Freeness. InInternational Con-
ference on Logic Programming. MIT Press, June 1994.

[65] R. A. Kowalski. Predicate Logic as a Programming Language. In Proceedings
IFIPS, pages 569{574, 1974.

[66] Robert A. Kowalski. Logic for Problem Solving. Elsevier North-Holland Inc.,
1979.

[67] S�ebastien Lafond and Johan Lilius. Energy consumption analysis for two em-
bedded java virtual machines.J. Syst. Archit., 53(5-6):328{337, 2007.

[68] A. Langen. Advanced techniques for approximating variable aliasing inLogic
Programs. PhD thesis, Computer Science Dept., University of Southern Cali-
fornia, 1990.

[69] D. Le Metayer. ACE: An Automatic Complexity Evaluator. ACM Transactions
on Programming Languages and Systems, 10(2):248{266, April 1988.

[70] Xavier Leroy. Java bytecode veri�cation: An overview. InCAV'01, number
2102 in LNCS, pages 265{285. Springer, 2001.

[71] Michael Leuschel.Advanced Techniques for Logic Program Specialisation. PhD
thesis, K.U. Leuven, May 1997.

[72] Tal Lev-Ami and Shmuel Sagiv. TVLA: A system for implementingstatic
analyses. InSAS, number 1824 in LNCS, pages 280{301. Springer, 2000.

216

References

[73] Xuan Li, Andy King, and Lunjin Lu. Collapsing Closures. In Sandro Etalle and
Mirek Truszczynski, editors, 22nd. Int'l. Conference on Logic Programming,
volume 4079 ofLNCS, pages 148{162. Springer-Verlag, August 2006. Also see
http://www.springer.de/comp/lncs/index.html.

[74] Xuan Li, Andy King, and Lunjin Lu. Lazy Set-Sharing Analysis. In Philip
Wadler and Masimi Hagiya, editors,8th. Int'l. Symp. on Functional and Logic
Programming, LNCS. Springer-Verlag, April 2006.

[75] T. Lindholm and F. Yellin. The Java Virtual Machine Speci�cation. Addison-
Wesley, 1997.

[76] J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended
edition, 1987.

[77] Francesco Logozzo. Cibai: An abstract interpretation-based static analyzer for
modular analysis and veri�cation of java classes. InVMCAI'07 , number 4349
in LNCS. Springer, Jan 2007.

[78] Francesco Logozzo and Agostino Cortesi. Abstract interpretation and object-
oriented languages: quo vadis? InProceedings of the 1st International Work-
shop on Abstract Interpretation of Object-oriented Languages (AIOOL'05) ,
Electronic Notes in Theoretical Computer Science. Elsevier Science, January
2005.

[79] P. L�opez-Garc��a, F. Bueno, and M. Hermenegildo. Determinacy Analysis for
Logic Programs Using Mode and Type Information. InProceedings of the 14th
International Symposium on Logic-based Program Synthesis and Transforma-
tion (LOPSTR'04) , number 3573 in LNCS, pages 19{35. Springer-Verlag, Au-
gust 2005.

[80] P. L�opez-Garc��a, M. Hermenegildo, and S. K. Debray. A Methodology for Gran-
ularity Based Control of Parallelism in Logic Programs.Journal of Symbolic
Computation, Special Issue on Parallel Symbolic Computation, 21(4{6):715{
734, 1996.

[81] K. Marriott and H. S�ndergaard. Semantics-based data
ow analysis of logic
programs. Information Processing, pages 601{606, April 1989.

[82] David A. McAllester. On the complexity analysis of static analyses. InStatic
Analysis Symposium, pages 312{329, 1999.

217

References

[83] M. M�endez-Lojo and M. Hermenegildo. Precise Set SharingAnalysis for Java-
style Programs. In9th International Conference on Veri�cation, Model Check-
ing and Abstract Interpretation (VMCAI'08) , number 4905 in LNCS, pages
172{187. Springer-Verlag, January 2008.

[84] M. M�endez-Lojo, J. Navas, and M. Hermenegildo. A Flexible(C)LP-Based
Approach to the Analysis of Object-Oriented Programs. In17th Inter-
national Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR'07) , August 2007.

[85] M. M�endez-Lojo, J. Navas, and M. Hermenegildo. An E�cient,Parametric Fix-
point Algorithm for Analysis of Java Bytecode. InETAPS Workshop on Byte-
code Semantics, Veri�cation, Analysis and Transformation (BYTECODE'07) ,
Electronic Notes in Theoretical Computer Science. Elsevier -North Holland,
March 2007.

[86] Donald R. Morrison. Patricia: Practical algorithm to retrieve information
coded in alphanumeric.J. ACM, 15(4):514{534, 1968.

[87] A. Mulkers, W. Simoens, G. Janssens, and M. Bruynooghe. On the Practi-
cality of Abstract Equation Systems. In International Conference on Logic
Programming. MIT Press, June 1995.

[88] K. Muthukumar and M. Hermenegildo. Determination of Variable Dependence
Information at Compile-Time Through Abstract Interpretation. In 1989 North
American Conference on Logic Programming, pages 166{189. MIT Press, Oc-
tober 1989.

[89] K. Muthukumar and M. Hermenegildo. Deriving A Fixpoint Computation Al-
gorithm for Top-down Abstract Interpretation of Logic Programs. Technical
Report ACT-DC-153-90, Microelectronics and Computer Technology Corpo-
ration (MCC), Austin, TX 78759, April 1990.

[90] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing
and Freeness of Program Variables Through Abstract Interpretation. In 1991
International Conference on Logic Programming, pages 49{63. MIT Press, June
1991.

[91] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315{347, July 1992.

218

References

[92] Kalyan Muthukumar. Compile-time Algorithms for E�cient Parallel Imple-
mentation of Logic Programs. PhD thesis, University of Texas at Austin, Au-
gust 1991.

[93] J. Navas, F. Bueno, and M. Hermenegildo. E�cient top-down set-sharing
analysis using cliques. InEight International Symposium on Practical Aspects
of Declarative Languages, number 2819 in LNCS, pages 183{198. Springer-
Verlag, January 2006.

[94] J. Navas, M. M�endez-Lojo, and M. Hermenegildo. An E�cient, Context and
Path Sensitive Analysis Framework for Java Programs. In9th Workshop on
Formal Techniques for Java-like Programs FTfJP 2007, July 2007.

[95] J. Navas, E. Mera, P. L�opez-Garc��a, and M. Hermenegildo.User-De�nable
Resource Bounds Analysis for Logic Programs. InInternational Conference on
Logic Programming (ICLP), volume 4670 ofLNCS, pages 348{363. Springer-
Verlag, September 2007.

[96] Flemming Nielson, Hanne Riis Nielson, and Helmut Seidl. Automatic com-
plexity analysis. In European Symposium on Programming, pages 243{261,
2002.

[97] Isabelle Pollet.Towards a generic framework for the abstract interpretationof
Java. PhD thesis, Catholic University of Louvain, 2004. Dept. of Computer
Science.

[98] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Con-
straint Logic Programs. In P. Deransart, M. Hermenegildo, and J.Maluszynski,
editors, Analysis and Visualization Tools for Constraint Programming, number
1870 in LNCS, pages 23{61. Springer-Verlag, September 2000.

[99] G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremen-
tal Analysis of Logic Programs. InInternational Static Analysis Symposium,
number 1145 in LNCS, pages 270{284. Springer-Verlag, September 1996.

[100] G. Puebla and C. Ochoa. Poly-Controlled Partial Evaluation. In Proc. of
8th ACM-SIGPLAN International Symposium on Principles and Practice of
Declarative Programming (PPDP'06), pages 261{271. ACM Press, July 2006.

[101] F. A. Rabhi and G. A. Manson. Using Complexity Functions to Control Paral-
lelism in Functional Programs. Res. Rep. CS-90-1, Dept. of Computer Science,
Univ. of She�eld, England, January 1990.

219

References

[102] Raghu Ramakrishnan. Magic templates: A spellbinding approach to logic
programs. The Journal of Logic Programming, 11(3 & 4):189{216, Octo-
ber/November 1991.

[103] J. A. Robinson. A Machine Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12(23):23{41, January 1965.

[104] M. Rosendahl. Automatic Complexity Analysis. InProc. ACM Conference on
Functional Programming Languages and Computer Architecture, pages 144{
156. ACM, New York, 1989.

[105] Erik Ruf. E�ective synchronization removal for java. PLDI'00, SIGPLAN
Notices, 35(5):208{218, 2000.

[106] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Solving shape-
analysis problems in languages with destructive updating. InPOPL, 1996.

[107] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. InPOPL, 1999.

[108] D. Sands. A na•�ve time analysis and its theory of cost equivalence. J. Log.
Comput., 5(4), 1995.

[109] H. S�ndergaard. An application of abstract interpretation of logic programs:
occur check reduction. InEuropean Symposium on Programming, LNCS 123,
pages 327{338. Springer-Verlag, 1986.

[110] F. Spoto.Julia : A Generic Static Analyser for the Java Bytecode. InProc. of
the 7th Workshop on Formal Techniques for Java-like Programs, FTfJP'2005,
Glasgow, Scotland, July 2005.

[111] Lothar Thiele and Reinhard Wilhelm. Design for time-predictability. In Per-
spectives Workshop: Design of Systems with Predictable Behaviour, 16.-19.
November 2003, volume 03471 ofDagstuhl Seminar Proceedings. IBFI, Schloss
Dagstuhl, Germany, 2004.

[112] E. Trias, J. Navas, E. S. Ackley, S. Forrest, and M. Hermenegildo. Nega-
tive Ternary Set-Sharing. InInternational Conference on Logic Programming,
ICLP, LNCS, Udine (Italy), December 2008. Springer-Verlag.

[113] A. Turing. On computable numbers with an application tothe entscheidungs
problem. Proc. London Mathematical Society, 2(42):230{265, 1936.

220

References

[114] R. Vallee-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co.
Soot - a Java optimization framework. InProc. of Conference of the Centre
for Advanced Studies on Collaborative Research (CASCON), pages 125{135,
1999.

[115] M. H. van Emden and R. A. Kowalski. The Semantics of Predicate Logic as a
Programming Language.Journal of the ACM, 23:733{742, October 1976.

[116] P. Vasconcelos and K. Hammond. Inferring Cost Equations for Recursive,
Polymorphic and Higher-Order Functional Programs. InProceedings of the
International Workshop on Implementation of Functional Languages, volume
3145 of Lecture Notes in Computer Science, pages 86{101. Springer-Verlag,
September 2003.

[117] R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Global
Flow Analysis of Logic Programs. InFifth International Conference and Sym-
posium on Logic Programming, pages 684{699. MIT Press, August 1988.

[118] B. Wegbreit. Mechanical Program Analysis.Comm. of the ACM, 18(9), 1975.

[119] Reinhard Wilhelm. Timing Analysis and Timing Predictability. In Frank S.
de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever,
editors, Formal Methods for Components and Objects, Third International
Symposium (FMCO), volume 3657 ofLNCS, Revised Lectures, pages 317{323.
Springer, 2004.

[120] E. Za�anella, R. Bagnara, and P. M. Hill. Widening Sharing. In G. Nadathur,
editor, Principles and Practice of Declarative Programming, volume 1702 of
Lecture Notes in Computer Science, pages 414{432. Springer-Verlag, Berlin,
1999.

[121] Enea Za�anella.Correctness, Precision and E�ciency in the Sharing Analysis
of Real Logic Languages. PhD thesis, School of Computing, University of Leeds,
Leeds, U.K., 2001.

221

