
Incremental Certificates and Checkers for

Abstraction-Carrying Code

Elvira Albert1, Puri Arenas1, and Germán Puebla2

1 Complutense University of Madrid, {elvira,puri}@sip.ucm.es
2 Technical University of Madrid, german@fi.upm.es

Abstract. Abstraction-Carrying Code (ACC) has recently been pro-
posed as a framework for proof-carrying code (PCC) in which the code
supplier provides a program together with an abstraction (or abstract
model of the program) whose validity entails compliance with a prede-
fined safety policy. The abstraction plays thus the role of safety certificate
and its generation is carried out automatically by a fixed-point analyzer.
Existing approaches for PCC are developed under the assumption that
the consumer reads and validates the entire program w.r.t. the original

certificate at once, in a non-incremental way. In the context of ACC, we
propose an incremental approach to PCC for the generation of certifi-
cates and the checking of untrusted increments of a (trusted) program,
i.e., when a producer provides a new increment of a previously validated
program. This increment may not only include new procedures, but also
extend the definition of already existing ones. Our proposal is that, if
the consumer keeps the original abstraction, it is possible to provide,
together with the program increment, only the difference of both ab-
stractions, i.e., the incremental certificate. The first obvious advantage
is that the size of the transmitted certificate can be considerably re-
duced. Furthermore, it is now possible to define an incremental checking

algorithm which, given a program increment and its incremental cer-
tificate, only re-checks the fixpoint for each procedure affected by the
increment and the propagation of the effect of these fixpoint changes. As
a consequence, both certificate transmission time and checking time can
be reduced significantly. To the best of our knowledge, this is the first
proposal to incremental certificates and incremental checkers for PCC.

1 Introduction

Proof-Carrying Code (PCC) [11] is a general framework for mobile code safety
which proposes to associate safety information in the form of a certificate to
programs. The certificate (or proof) is created at compile time by the certifier
on the code supplier side, and it is packaged along with the code. The consumer
who receives or downloads the (untrusted) code+certificate package can then
run a checker which by an efficient inspection of the code and the certificate can
verify the validity of the certificate and thus compliance with the safety policy.
The key benefit of this “certificate-based” approach to mobile code safety is that
the consumer’s task is reduced from the level of proving to the level of checking,
a task that should be much simpler, efficient, and automatic than generating the
original certificate.

Abstraction-carrying code (ACC) [2, 6] has been recently proposed as an en-
abling technology for PCC in which an abstraction (or abstract model of the
program) plays the role of certificate. An important feature of ACC is that not
only the checking, but also the generation of the abstraction is automatically
carried out by a fixed-point analyzer. Lightweight bytecode verification [13] is
another PCC method which relies on analysis techniques (namely on type anal-
yses in the style of those used for Java bytecode verification [8]) to generate
and check certificates in the context of the Java Card language. In this paper,
we will consider analyzers which construct a program analysis graph which is
interpreted as an abstraction of the (possibly infinite) set of states explored by
the concrete execution. Essentially, the certification/analysis carried out by the
supplier is an iterative process which repeatedly traverses the analysis graph
until a fixpoint is reached. The key idea in ACC is that, since the certificate
is a fixpoint, a single pass over the analysis graph is sufficient to validate the
certificate in the consumer side.

Existing models for PCC (ACC among them) are based on checkers which re-
ceive a “certificate+program” package and read and validate the entire program
w.r.t. this original certificate at once, in a non incremental way. However, there
are situations which are not well suited to this simple model and which instead
require only rechecking of certain parts of the analysis graph which has already
been validated. In particular, we consider possible untrusted increments (or ex-
tensions) of a validated (trusted) code, i.e., a code producer can (periodically)
send to its consumers new updates of a previously submitted package. By incre-
ments we mean both the addition of new data and also the extension of already
existing procedures with new functionalities. In such a context of frequent soft-
ware extensions, it appears inefficient to 1) submit a full certificate (superseding
the original one) and 2) to perform the checking of the extended program from
scratch, as needs to be done with current systems. In this work, we investigate
an incremental approach to PCC, both for the first issue of certificate generation
as well as for the checking process.

Regarding the first issue, when a program is extended, a new fixpoint has to
be computed for the extended program. Such fixpoint differs from the original
fixpoint stored in the certificate in a) the new fixpoint for each procedure affected
by the extension and b) the update of certain (existing) fixpoints affected by the
propagation of the effect of a). However, certain parts of the original certificate
may not have affected by the changes. Our proposal is that, if the consumer
still keeps the original abstraction, it is possible to provide, together with the
program increment, only the difference of both abstractions, i.e., the incremental
certificate. Essentially, the incremental certificate will contain the subset of the
extended fixpoint which has been modified w.r.t. the original fixpoint. The first
obvious advantage of our incremental approach is that the size of the certificate
may be substantially reduced by submitting only the increment.

The second issue in incremental PCC is that the task performed by the
checker can also be further reduced. In principle, a non-incremental checker (like
the one in [2]) requires a whole traversal of the analysis graph where the en-

2

tire extended program is checked against the full certificate. However, it is now
possible to define an incremental checking algorithm which, given the program
increment and its incremental certificate, only rechecks the part of the anal-
ysis graph for the procedures which have been affected by the extension and,
also, propagates and rechecks the effect of these changes. In order to perform
such propagation of changes, the dependencies between the nodes of the original
analysis graph have to be stored by the consumers, together with the original
certificate. With this, the checking process is carried out in a single pass over
the subgraph affected by the extension. Thus, the second advantage of our in-
cremental approach is that checking time is further reduced. We believe that the
incremental ACC proposed in this work contributes to the practical uptake of
PCC systems since it can significantly reduce certificate size and checking time
in the context of program extensions.

2 A General View of Abstraction-Carrying Code

We assume some familiarity with abstract interpretation (see [5]), (Constraint)
Logic Programming (C)LP (see, e.g., [10] and [9]) and PCC [11].

An abstract interpretation-based certifier is a function certifier : Prog ×
ADom × AInt 7→ ACert which for a given program P ∈ Prog , an abstract
domain Dα ∈ ADom and an abstract safety policy Iα ∈ AInt generates an ab-
stract certificate Certα ∈ ACert , by using an abstract interpreter for Dα, which
entails that P satisfies Iα. In the following, we denote that Iα and Certα are
specifications given as abstract semantic values of Dα by using the same α.

The basics for defining such certifiers (and their corresponding checkers) in
ACC are summarized in the following five points:

Approximation. We consider an abstract domain 〈Dα,v〉 and its corresponding
concrete domain 〈2D,⊆〉, both with a complete lattice structure. Abstract values
and sets of concrete values are related by an abstraction function α : 2D → Dα,
and a concretization function γ : Dα → 2D. An abstract value y ∈ Dα is a
safe approximation of a concrete value x ∈ D iff x ∈ γ(y). The concrete and
abstract domains must be related in such a way that the following holds [5]
∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y. In general v is induced
by ⊆ and α. Similarly, the operations of least upper bound (t) and greatest lower
bound (u) mimic those of 2D in a precise sense.

Analysis. We consider the class of fixed-point semantics in which a (monotonic)
semantic operator, SP , is associated to each program P . The meaning of the
program, [[P]], is defined as the least fixed point of the SP operator, i.e., [[P]] =
lfp(SP). If SP is continuous, the least fixed point is the limit of an iterative
process involving at most ω applications of SP starting from the bottom element
of the lattice. Using abstract interpretation, we can usually only compute [[P]]α,
as [[P]]α = lfp(Sα

P). The operator Sα
P is the abstract counterpart of SP .

analyzer(P,Dα) = lfp(Sα
P) = [[P]]α (1)

Correctness of analysis ensures that [[P]]α safely approximates [[P]], i.e., [[P]] ∈
γ([[P]]α). Thus, such abstraction can be used as certificate.

3

Certificate. Let Certα be a safe approximation of P . If an abstract safety
specification Iα can be proved w.r.t. Certα, then P satisfies the safety policy
and Certα is a valid certificate:

Certα is a valid certificate for P w.r.t. Iα if Certα v Iα (2)

Together, equations (1) and (2) define a certifier which provides program fix-
points, [[P]]α, as certificates which entail a given safety policy, i.e., by taking
Certα = [[P]]α.

Checking. A checker is a function checker : Prog × ADom × ACert 7→ bool
which for a program P ∈ Prog , an abstract domain Dα ∈ ADom and certificate
Certα ∈ ACert checks whether Certα is a fixpoint of Sα

P or not:

checker(P,Dα, Certα) returns true iff (Sα
P (Certα) ≡ Certα) (3)

Verification Condition Regeneration. To retain the safety guarantees, the
consumer must regenerate a trustworthy verification condition –Equation 2– and
use the incoming certificate to test for adherence of the safety policy.

P is trusted iff Certα v Iα (4)

A fundamental idea in ACC is that, while analysis –equation (1)– is an iterative
process, checking –equation (3)– is guaranteed to be done in a single pass over
the abstraction.

3 Incremental Certificates

Our proposal will be illustrated through a running example, implemented in the
context of (C)LP. Very briefly, a constraint is essentially a conjunction of expres-
sions built from predefined predicates (such as term equations or inequalities over
the reals) whose arguments are constructed using predefined functions (such as
real addition). An atom has the form p(t1, ..., tn) where p is a predicate symbol
and ti are terms. A literal is either an atom or a constraint. A goal is a finite
sequence of literals. A rule is of the form H:-D where H, the head, is an atom
and D, the body, is a possibly empty finite sequence of literals. A constraint
logic program, or program, is a finite set of rules. Program rules are assumed
to be normalized: only distinct variables are allowed to occur as arguments to
atoms. Furthermore, we require that each rule defining a predicate p has iden-
tical sequence of variables xp1

, . . . xpn
in the head atom, i.e., p(xp1

, . . . xpn
). We

call this the base form of p. This is not restrictive since programs can always be
normalized, and it will facilitate the presentation of the checking algorithm.

Example 1 (running example). Our running example is borrowed from [7] and
shows a piece of a code which contains the following (normalized) implementation
for the naive reversal of a list, while the definition of app/3 is not yet available in
it. This example illustrates the situation where some procedures which appear
in the code are not really operational since they rely on other procedures not
yet implemented, but which may become available in further extensions.

rev(X, Y) : − X = [], Y = [].
rev(X, Y) : − X = [U|V], rev(V, W), T = [U], app(W, T, Y).

4

We assume that the module contains other procedures which will not be “af-
fected” by our next extension, hence, we do not need to show them here. 2

3.1 The Original Certificate

Example 2 (abstract domain and call pattern). The description domain that we
use in our examples is the definite Boolean functions [3], denoted Def . The key
idea in this description is to use implication to capture groundness dependencies.
The reading of the function x → y is “if the program variable x is (becomes)
ground, so is (does) program variable y.” For example, the best description of the
constraint f(X, Y) = f(a, g(U, V)) is X ∧ (Y ↔ (U ∧ V)). Groundness information is
useful for many program optimizations and is also of great importance as a
safety property, in order to verify that (C)LP programs are “well moded”. The
most general description > does not provide information about any variables
in V. The least general substitution ⊥ assigns the empty set of values to each
variable. For the analysis of our running example, we consider the calling pattern
rev(X, Y) : >, i.e., no entry information is provided on X nor Y. 2

For concreteness, we rely on an abstract interpretation-based analysis algorithm
in the style of the generic analyzer of [7]. This goal-dependent analysis algorithm,
which we refer to as Analyze, given a program P and abstract domain Dα,
receives a set Sα ∈ AAtom of Abstract Atoms (or call patterns) and constructs
an analysis graph [4] for Sα. The elements of Sα are pairs of the form A : CP
where A is a procedure descriptor and CP is an abstract substitution (i.e.,
a condition of the run-time bindings) of A expressed as CP ∈ Dα.3 Then, the
analysis graph is an abstraction of the (possibly infinite) set of (possibly infinite)
trees explored by the concrete execution of initial calls described by Sα in P .
The program analysis graph computed by Analyze(Sα) for P in Dα can be
implicitly represented by means of two data structures, the answer table and the
dependency arc table (which are in fact the result of the analysis algorithm).

– The answer table contains entries of the form A : CP 7→ AP where A is
always an atom in base form. Informally, its entries should be interpreted as
“the answer pattern for calls to A satisfying precondition (or call pattern),
CP, accomplishes postcondition (or answer pattern), AP.”

– The intended meaning of a dependency A : CP ⇒ [] B : CP1 in the depen-
dency arc table is that the answer for A : CP depends on the answer for
B : CP1, say AP1. Thus, if the value of AP1 increases during analysis, then
the arc A : CP ⇒ [] B : CP1 must be relaunched in order to compute the
new answer for A : CP . I.e., the rule for A is processed again starting from
its body atom B.

All the details and the formalization of the algorithm can be found in [7]. Cer-
tification in ACC [2] consists on using the complete set of entries stored in the
answer table as certificate. Therefore, the elements in ACert are set of entries
of the form A : CP 7→ AP. The information in the dependency arc table is not
included in the certificate, thought it will be used later for incremental checking.
3 We sometimes omit the subscript α from Sα when it is clear from the context.

5

Definition 1 (original certificate). Let P ∈ Prog, Dα ∈ ADom and Sα ∈
AAtom. We define Orig Cert ∈ ACert, the original certificate for P and Sα,
as the set of entries A : CPA 7→ APA stored in the answer table computed by
Analyze(Sα) [7] for P in Dα.

Example 3 (original certificate). For our running example and the abstract do-
main and call pattern of Ex. 2, the analysis algorithm of [7] returns the following
answers (a detailed description of the steps performed by the analysis algorithm
in order to infer the next entries can be found in [7]):

rev(X, Y) : > 7→ X ∧ Y app(X, Y, Z) : X 7→ ⊥

Intuitively, the answer for rev(X, Y) : > is inferred from the analysis of the first
rule. This clause binds the two variables to the empty list, hence, they are triv-
ially ground. The analysis of the second rule for rev does not provide any further
information since the code for app is not available, and the analyzer has to as-
sume the answer ⊥. It should be noted that the entry for app(X, Y, Z) has as call
pattern X since, if we assume the answer X ∧ Y for rev(X, Y) : >, procedure app

is called from the second rule of rev with the first variable being a ground term.
Additionally, the analysis algorithm stores (in the dependency arc table) all

the existing dependencies between call patterns. For the example at hand, such
dependencies are:

(1) rev(X, Y) : > ⇒ [X ↔ (U ∧ V)] rev(V, W) : >
(2) rev(X, Y) : > ⇒ [(X ↔ (U ∧ V)) ∧ V ∧ W ∧ (T ↔ U)] app(W, T, Y) : W

(2) means that the answer for rev(X, Y) : > may change if the answer for app(W, T,
Y) : W changes. In such a case, the second rule for rev must be processed again
starting from atom app(W, T, Y) in order to recompute the fixpoint for rev(X, Y) : >.
(1) reflects the recursivity of rev(X, Y) : >, since it depends on itself. 2

3.2 Incremental Certificates and Incremental Certifiers

Given a program P , an increment of P (written as ∇P ∈ EProg) is a new set
of rules which are added to P resulting in an extended program P ′ = P ¯∇P .
As already mentioned, the increment ∇P may include both the addition of new
procedures and data as well as the addition of new rules (or functionality) for
already existing procedures. Note that a program increment ∇P contains both
the new code to be added to the program and instructions on where to place such
new code. On an implementation perspective, this can easily be done by using a
program in the spirit of the traditional Unix patch command as ¯ operator and
by using a diff format for coding program increments.

Consider the case where a program P with a certificate Orig Cert has already
been validated on a consumer. If now, P is incremented with ∇P , it appears
inefficient to generate, transmit, and check a certificate Ext Cert for the extended
program P ′ defined as P ′ = P¯∇P . Our proposal is that it is possible to submit
only the new program extension ∇P together with the incremental certificate
Inc Cert, i.e., the difference of both abstractions (Inc Cert = Ext Cert − Orig-
Cert). The bottom line is that the global fixpoint Ext Cert for the extended

program differs from the original fixpoint Orig Cert in 1) the new fixpoint for

6

each procedure affected by the extension and 2) the update of other fixpoints
possibly affected by the propagation of the effect of 1. However, there may be
large parts of Orig Cert which have not been affected by the changes and which
do not need to be submitted nor checked again. In order to materialize this idea,
it is necessary that the consumer stores Orig Cert and properly extends it with
the upcoming incremental certificates for achieving a compositional approach to
incremental PCC. Some storage vs time trade-offs are discussed in Sect. 5.

Definition 2 (incremental certificate). In the conditions of Def. 1, let ∇P ∈
EProg be an increment for P . Let Orig Cert be the original certificate for P and
Sα. Let Ext Cert be the certificate for P ¯ ∇P and Sα. We define Inc Cert, the
incremental certificate for ∇P w.r.t. Orig Cert, as the difference of certificates
Ext Cert − Orig Cert.

The difference of two certificates, Ext Cert − Orig Cert, is defined as the set
of entries B : CPB 7→ APB ∈ Ext Cert such that:

1. B : CPB 7→ 6∈ Orig Cert or,
2. A : CPA 7→ APA ∈ Orig Cert such that A : CPA = B : CPB and APA 6=

APB (modulo renaming)

Intuitively, Inc Cert contains the subset of Ext Cert which corresponds to the
extensions and modifications w.r.t. Orig Cert. The first obvious advantage of the
incremental approach is that Inc Cert can be much smaller than Ext Cert. On the
other, the following example illustrates that incrementing a program with new
clauses can require the change in the analysis information previously computed
for other procedures whose fixpoint is affected by the increment (although their
definitions have not been directly extended).

Example 4 (incremental certificate). We now add the following rules for app/3:

(app1) app(X, Y, Z) : − X = [], Y = Z.
(app2) app(X, Y, Z) : − X = [U|V], Z = [U|W], app(V, Y, W).

Again, the steps performed by an (incremental) analysis algorithm and the as-
sociated analysis graph can be found in [7]. As result, the answers (Ext Cert)
obtained for the extended program are:

(a) rev(X, Y) : > 7→ X ↔ Y (b) app(X, Y, Z) : X 7→ X ∧ (Y ↔ Z)
(c) app(X, Y, Z) : > 7→ (X ∧ Y) ↔ Z

which will necessarily be part of Inc Cert (all fixpoints have changed w.r.t. Orig-
Cert and a new entry has been added). 2

The next definition introduces the notion of incremental certifier which, given
the original certificate and an increment of the program, returns the incremental
certificate iff the safety policy can still be entailed from the extended program.

Definition 3 (incremental certifier). We define function Inc Certifier:
Prog×EProg×ADom×AAtom×AInt×ACert 7→ ACert which takes P ∈ Prog,
∇P ∈ EProg, Dα ∈ ADom, Sα ∈ AAtom, Iα ∈ AInt, a certificate Orig -
Cert ∈ ACert for P and Sα. Let Ext Cert ∈ ACert be the full certificate for
P ¯ ∇P . The function Inc Certifier returns Ext Cert − Orig Cert, i.e., the
incremental certificate for ∇P w.r.t. Orig Cert, iff Ext Cert v Iα.

7

Note that the above definition does not depend on the particular analysis algo-
rithm used to generate Ext Cert. Incremental analysis algorithms (like the ones
in [7, 12, 14]) are very well suited to do this task. They reanalyze only the part
of the analysis graph affected by the increment. Thus, the time required to
generate the certificate on the producer side can be reduced. Although this opti-
mization on the producer side is always desirable, it is not as critical within the
PCC scheme as the reduction of the package transmission time or the checking
time, which take place on the consumer side and that we discuss in the next
section.

4 Incremental Checking

We present an incremental checking algorithm in two steps. We first define a
checking algorithm for full certificates which is instrumented with a Dependency
Arc Table (DAT for short) which stores the dependencies among atoms in the
analysis graph. This structure is not required by existing checkers of full certifi-
cates [2] but it is instrumental in the design of our incremental checker. In the
second step, we introduce the extensions required for validating an incremental
certificate w.r.t. a program increment.

4.1 A Checking Algorithm with Dependencies

In essence, our abstract interpretation-based checking algorithm receives an orig-
inal certificate Orig Cert, an answer table ATmem (initially empty) and a set
of dependencies DATmem (initially empty), and constructs a program analysis
graph in a single iteration by assuming the fixpoint information in Orig Cert.
While the graph is being constructed, the obtained answers are compared with
the corresponding fixpoints stored in Orig Cert. If any of the computed answers is
not consistent with the certificate (i.e., it is greater than the fixpoint), the certifi-
cate is considered invalid and the program is rejected. Otherwise, Orig Cert gets
checked.

Algorithm 1 presents our checker which is parametric w.r.t. the abstract
domain of interest. It is hence defined in terms of five abstract operations on a
selected abstract domain Dα:

– Arestrict(CP, V) performs the abstract restriction of a description CP to the
set of variables in the set V , denoted vars(V);

– Aextend(CP, V) extends the description CP to the variables in the set V ;
– Aadd(C,CP) performs the abstract operation of conjoining the actual con-

straint C with the description CP;
– Aconj(CP1,CP2) performs the abstract conjunction of two descriptions;
– Alub(CP1,CP2) performs the abstract disjunction of two descriptions.

Example 5. For the domain Def in Example 2, these abstract operations are
defined as follows:

Arestrict(CP, V) = ∃−V CP Aextend(CP, V) = CP
Alub(CP1,CP2) = CP1 t CP2 Aconj(CP1,CP2) = CP1 ∧ CP2

Aadd(C,CP) = αDef (C) ∧ CP αDef (X = t) = (X ↔
∧
{Y ∈ vars(t)})

8

Algorithm 1 Checking with Support for Incrementality

1: function check(P, S, Cert,ATmem ,DATmem)
2: ATmem := ∅; DATmem := ∅
3: for all A : CP ∈ S do process node(P, A : CP, Cert,ATmem ,DATmem)
4: return Valid

5: function process node(P, A : CP, Cert,ATmem ,DATmem)
6: if (∃ a renaming σ s.t. σ(A : CP 7→ AP) in Cert) then

7: add (A : CP 7→ σ−1(AP)) to ATmem

8: else return Error
9: process set of rules(P, P |A, A : CP 7→ σ−1(AP), Cert,ATmem ,DATmem)

10: function process set of rules(P, R, A : CP 7→ AP, Cert,ATmem ,DATmem)
11: for all rule Ak ← Bk,1, . . . , Bk,nk

in R do

12: W := vars(Ak, Bk,1, . . . , Bk,nk
)

13: CPb :=Aextend(CP, vars(Bk,1, . . . , Bk,nk
)) ; CPRb := Arestrict(CPb, Bk,1)

14: CPa :=process rule(P ,A : CP ,Ak ← Bk,1, . . . , Bk,nk
,W ,CPb ,CPRb ,

Cert,ATmem ,DATmem)
15: AP1 := Arestrict(CPa, vars(Ak)) ; AP2 := Alub(AP1, AP)
16: if (AP <> AP2) then return Error

17: function process rule(P, A : CP, Ak ← Bk,j , . . . , Bk,nk
, W,CPb ,CPRb , Cert,

ATmem ,DATmem)
18: for all Bk,i in the rule body i = j, ..., nk do

19: CPa := process arc(P ,A : CP ,Bk,i : CPRb, CPb, W, Cert,ATmem ,DATmem)
20: if (i <> nk) then CPRa := Arestrict(CPa, var(Bk,i+1))
21: CPb := CPa

22: CPRb := CPRa

23: return CPa

24: function process arc(P ,A : CP ,Bk,i : CPRb, CPb, W, Cert,ATmem ,DATmem)
25: if (Bk,i is a constraint) then CPa := Aadd(Bk,i, CPb)
26: else
27: add A : CP ⇒ [CPb]Bk,i : CPRb to DATmem

28: if (6 ∃ a renaming σ s.t. σ(Bk,i : CPRb 7→ AP ′) in ATmem) then

29: process node (P ,Bk,i : CPRb, Cert,ATmem , DATmem)
30: AP1 := Aextend (ρ−1(AP), W) where ρ is a renaming s.t.
31: ρ(Bk,i : CPRb 7→ AP) in ATmem

32: CPa := Aconj (CPb, AP1)
33: return CPa

where ∃−V CP represents ∃v1, . . . , vnF , where {v1, . . . , vn} = vars(F) − V , and
t is the least upper bound (lub) operation over the Def lattice. For instance,
Aconj(X,Y ↔ (X∧Z))=X∧(Y ↔ Z). Aadd(X = [U |V], Y)=(X ↔ (U∧V))∧Y .
Alub(X,Y)=X ∨ Y . 2

Let us briefly explain the main functions of Algorithm 1.

1. Function check(P ,S,Orig Cert,ATmem ,DATmem), receives as parameters a
program P , a set S of call patterns, the original certificate Orig Cert re-
turned by Analyze, and two output variables ATmem and DATmem which
are initialized to ∅ (Line 2 of function check). If it succeeds (L4), ATmem

coincides with Orig Cert, and DATmem stores all dependencies generated
during the checking process.

9

2. For each abstract atom A : CP ∈ S, check calls process node (L3). This
function checks if there exists an answer for A : CP in Orig Cert and stores it
in ATmem (L6-7). All calls must have an entry in Orig Cert or the certificate
is not valid, and an error is issued (L8). It then proceeds to compute an
answer for A : CP by processing all rules (L9) defining A in a depth-first,
left-to-right fashion.

3. This is done in function process set of rules where the answers obtained for
each rule in (L14) are lubbed (L15) with those stored in ATmem (the fixpoint)
to check that they are less or equal than the fixpoint. Otherwise an error is
issued (L16).4 As notation, given the set of rules (or arcs) R, R|A denotes
the set of rules (or arcs) in R applicable to atom A.

4. Each particular rule is dealt with by function process rule, which traverses
the rule body (L18) and processes its corresponding atoms from left-to-right.
In the algorithm, function process arc looks up for an answer (L28) in ATmem

(i.e., the answer copied from Orig Cert). If it does not exist, then a (recursive)
call to process node (L29) computes a solution for the atom.

The main difference between the checking Algorithm 1 and the one in [2] is that
our checker stores the dependencies. This is done in function process arc (L27).
Dependencies are used in analyzers for achieving efficient implementations of
fixed-point re-computations. Naturally, they are not used in non incremental
checking algorithms since recomputation should never happen when one assumes
the fixpoint. In contrast, DATmem will be fundamental in the design of our
incremental checker, as we will see in the next section.

Definition 4 (checker). We define function checker:Prog×ACert×AAtom×
ADom 7→ boolean which takes a program P ∈ Prog and its original certificate
Orig Cert ∈ ACert for Sα ∈ AAtom in Dα ∈ ADom and

1. It returns the result of check(P, Sα,Orig Cert,ATmem , DATmem).
2. If it does not issue an Error, then it stores in memory ATpersist := ATmem ,

DATpersist := DATmem and Ppersist := P .

In order to support incrementality, the final values of the data structures ATmem ,
DATmem and P must be available after the end of the execution of the checker.
Thus, we denote by ATpersist , DATpersist and Ppersist the copy in persistent
memory (i.e., in disk) of such structures.

4.2 Incremental Checking

Intuitively, the task performed by an incremental checking algorithm has to
be optimized such that it only: 1) rechecks the part of the analysis graph for
the procedures which have been affected by the extension and, 2) propagates
and rechecks the effect of these changes. In order to do this, we will take as

4 This is the main difference with an analyzer. The latter needs to iterate if the new lub
is different from the previously stored one (i.e., the fixpoint has not been reached).
To do this iteration efficiently, dependencies detect the parts of the analysis graph
which need to be reprocessed.

10

Algorithm 2 Incremental Checking

1: function incremental checking(∇P ,Inc Cert,ATmem ,DATmem)
2: CPupdate :=update entries(ATmem ,Inc Cert)
3: DATcheck :=dependencies to check(P ,DATmem ,CPupdate)
4: process new rules(P ,∇P ,Inc Cert,ATmem ,DATmem)
5: process dependencies(P ,Inc Cert,ATmem ,DATmem ,DATcheck)

6: function update entries(ATmem ,Inc Cert)
7: CPupdate := ∅
8: for all entry A : CP 7→ AP in ATmem do

9: if (there exists a renaming σ such that A : CP = σ(A1 : CP1) and A1 :
CP1 7→ AP1 belongs to Inc Cert) then

10: replace A : CP 7→ AP in ATmem by A : CP 7→ σ(AP1)
11: add A : CP to CPupdate

12: return CPupdate

13: function process new rules(P ,∇P ,Inc Cert,ATmem ,DATmem)
14: for all entry A : CP 7→ AP in ATmem do

15: process set of rules(P ,∇P |A, A : CP 7→ AP, Inc Cert,ATmem ,DATmem)

16: function process dependencies(P ,Inc Cert,ATmem ,DATmem ,DATcheck)
17: for all arc Ak : CP0 ⇒ [CP1]Bk,i : CP2 ∈ DATcheck do

18: let Ak : −Bk,1, . . . , Bk,nk
its associated rule in P

19: W := vars(Ak : −Bk,1, . . . , Bk,nk
)

20: CPa:=process rule(P ,Ak : CP0,Ak : −Bk,i, . . . , Bk,nk
,W ,CP1,CP2,

21: Inc Cert,ATmem ,DATmem)
22: AP1 := Arestrict(CPa, vars(Ak))
23: let AP the answer for Ak : CP0 in ATmem (modulo renaming)
24: AP2 := Alub(AP1, AP)
25: if (AP <> AP2) then return Error

starting point the checker in Algorithm 1. This allows the incremental checker
to propagate the changes and carry out the process in a single pass over the
subgraph affected by the extension. Algorithm 2 presents our implementation
of this intuition. The new checker is defined as follows: replace the function
check in Algorithm 1 by the new function incremental checking, use the remain-
ing functions defined in Algorithm 1 and add the new functions update entries,
process new rules and process dependencies. Essentially, the additional tasks that
the incremental checker has to perform w.r.t. the non incremental one in Algo-
rithm 1 are the following:

1. Retrieve stored data. After checking the original package, the structures
ATpersist , DATpersist and the program Ppersist have been stored in persistent
memory. Our checker retrieves such stored data and initializes, respectively,
the parameters ATmem , DATmem and P with them.

2. Update entries. Prior to proceeding with the checking proper, we need to
update the answers for those call patterns in ATmem which have a different
(updated) answer in Inc Cert (L7-11). The function update entries performs
this task. Furthermore, it returns in CPupdate the set of call patterns whose
answer has been updated (L12).

3. Dependencies to check. Not all dependencies stored in DATmem must be
revisited. We use function dependencies to check, which receives as input

11

parameters the program P , DATmem and CPupdate , and selects the depen-
dencies from DATmem which need to be processed for achieving the effect
2) mentioned above. We first have to remove those dependencies A : CP ⇒

B : CP1 such that B : CP1 does not belong to CPupdate . In addition to
them, we get rid also of those dependencies Hk : CP ⇒ Bkj : such that
there is Hk : CP ⇒ Bki : with i < j, i.e., for a given atom Hk (head of
clause), we only maintain the dependency corresponding to the body atom at
a leftmost position. The reason for this is that the processing of the leftmost
atom will then launch the required arcs to its right. The code of function
dependencies to check can be found in an extended version of this paper [1].

4. Check new procedures. The checking starts by processing, as described in
the previous section, the new rules of the extension (∇P) which have some
associated entry in ATmem . This process is carried out by function pro-

cess new rules (L14-15) . Note that a new rule which does not match any
entry in ATmem does not need to be processed by now. Its processing may
be required by some other new rule or they can simply not be affected by
the checking process.

5. Propagate effects. After processing the new rules, function process dependen-
cies launches all arcs in DATcheck which are affected by the extension. This
is done by using function process rule (L20-21) from the non incremental
checker.

6. Store data. Upon return, the checker has to store the computed ATmem ,
DATmem and P ¯∇P , respectively, in ATpersist , DATpersist , and Ppersist for
achieving a compositional design of our incremental approach.

Example 6. In our running example, function update entries returns as updated
answer table, ATmem , the entries (a) and (b) of Example 4. CPupdate contains
the call patterns rev(X, Y) : > and app(X, Y, Z) : X. After executing function de-

pendencies to check, DAT check contains dependency (1) of Example 3 only. 2.

Definition 5 (incremental checker). We define function Incr Checker:
EProg × ACert× 7→ boolean which takes an extension ∇P ∈ EProg of Ppersist

and its incremental certificate Inc Cert ∈ ACert and

1. It retrieves from memory ATmem := ATpersist , DATmem := DAT persist and
P = ∇P ¯ Ppersist.

2. It returns the result of incremental checking(∇P , Inc Cert, ATmem ,DATmem)
for P .

3. If it does not issue an Error, then it stores ATpersist := ATmem , DATpersist

:= DATmem and Ppersist := P .

An important difference between the above definition and the checker in [2] is
that the safety policy has to be tested w.r.t. the answer table for the extended
program –Equation (2). Therefore, the checker must reconstruct, from Inc Cert,
the answer table returned by Analyze for the extended program, Ext Cert, in
order to test for adherence to the safety policy –Equation (4).

12

Example 7. Consider the extended program in Example 4 and its incremental
certificate Inc Cert. A call to incremental checking(∇P ,Orig Cert,ATmem , DATmem),
where ∇P := {app1, app2}, proceeds5 as follows:

– ATmem , DATmem , CPupdate and DAT check are initialized as in Example 6.
– A call to process new rules is generated. Since ATmem contains an entry for

app(X, Y, Z) : X, a call to process set of rules(∇P ,app(X, Y, Z) : X 7→ X ∧ (Y ↔
Z)) is made. In the following, we use AP to name X ∧ (Y ↔ Z). The execution
of this call produces the following two new calls:
• process rule(app(X, Y, Z) : X 7→ AP, app1, W1, X, X), where W1 = {X, Y,Z}. Next,

a call to process arc(app(X, Y, Z) : X, X = [] : X, X, W1) is made, and X is re-
turned as result (L25) since we are processing a constraint.
Similarly a call to process arc(app(X, Y, Z) : X, Y = Z : >, X, W1), returning
X ∧ (Y ↔ Z) as solution (L25) is made. Since we are in the last body lit-
eral, process rule returns CPa = X ∧ (Y ↔ Z) (L23). Because CPa and AP
are equal, the algorithm does not issue Error (L16) and app2 is checked.

• process rule(app(X, Y, Z) : X 7→ AP, app2, W2, X, X), where W2 = {X,Y, Z, U, V,
W}. After computing the solutions for the first two constraints (by calling
to process arc as in app1), a call to process arc(app (X, Y, Z) : X, app(V, Y, W)
: V, CP, W2), where CP = X ∧(X ↔ (U ∧ V)) ∧ (Z ↔ (U ∧ W)), occurs. Since
we are processing an atom (L27), the dependency (3) app(X, Y, Z) : X ⇒
[CP] app(V, Y, W) : V is added to DATmem . The answer table contains
ρ(AP) as answer for app(V, Y, W) : V, where ρ = {X/V, Z/W}. Thus, pro-

cess arc returns as answer the abstract conjunction between CP and
ρ(AP) (L32), which is CPa = X ∧ U ∧ V ∧ (Z ↔ W) ∧(Y ↔ W). The restric-
tion of CPa to variables {X, Y, Z} (L15) returns AP as solution for the
rule. Hence the rule has been checked without issuing an Error (L15).

– Now, process dependencies is executed and the unique arc (1) from DATcheck

is launched (L20). The call to process rule, for the call pattern rev(X, Y) : >
and the arc rev(X, Y) :- rev(V, W), T = [U], app(W, T, Y) is executed. After two
calls to process arc for the call patterns rev(V , W) : > and T = [U] : >, the call
process arc (rev(X, Y) : >, app(W, T, Y) : >, X ↔ (U ∧ W) ∧ (V ↔ W)∧ (T ↔ U), {X,
Y, V, W T, U}) occurs and the dependency

(2new) rev(X, Y) : > ⇒ [(X ↔ (U ∧ V)) ∧ (V ↔ W)∧(T ↔ U)] app(W, T, Y) : >

is added to DATmem , replacing the old one (2). Since ATmem does not con-
tain an entry for app(W, T, Y) : > (L28), a call to process node (app(W, T, Y) : >)
is generated and the entry app(X, Y, Z) : > 7→ (X ∧ Y) ↔ Z is added to ATmem

(L7). Now, the algorithm checks if (X ∧ Y) ↔ Z is a fixpoint for app(X, Y, Z) : >
by processing all rules for app. The process finishes without Error and the
dependency (associated to the second rule for app) is added to DATmem .

(4) app(X, Y, Z) : > ⇒ [(X ↔ (U ∧ V)) ∧ (Z ↔ (U ∧ W))] app(V, Y, W) : >

Once Inc Cert has been validated, the consumer stores the answer table ATmem

(which is in fact Ext Cert), DATmem (composed of the arcs (1), (2new), (3) and
(4)) and P ¯∇P . 2

5 For clarity, we omit parameters P , Inc Cert, ATmem and DATmem of function calls.

13

Correctness of the checking process is ensured by demonstrating that our incre-
mental checker is able to reconstruct the extended certificate and the dependen-
cies in a single pass over (part of) the analysis graph.

Theorem 1 (correctness). Let P ∈ Prog, ∇P ∈ EProg, Dα ∈ ADom and
Sα ∈ AAtom. Let Orig Cert ∈ ACert be the original certificate for P and Sα,
Ext Cert ∈ ACert be the full certificate for P ¯∇P and Sα, and Inc Cert be the
incremental certificate for ∇P w.r.t. Orig Cert. If Incr Checker(∇P , Inc Cert)
does not issue an Error, then it holds that:

– ATpersist ≡ ATmem ≡ Ext Cert;
– DATpersist ≡ DATmem

where ATmem and DATmem are, respectively, the answer table and dependencies
returned by check(P ¯∇p, Sα,Ext Cert,ATmem ,DATmem), and the validation of
Inc Cert is done in a single pass.

The proof of this theorem can be found in [1].

5 Conclusions

Incremental certificates and incremental checkers for ACC aim at reducing, re-
spectively, the size of certificates and the checking time when a supplier provides
an increment (or extension) of a previously validated package. Essentially, when
a program is extended with new procedures or extended functionality for existing
ones, the incremental certificate we propose contains only the difference between
the certificate for the original program and the full certificate for the extended
one. Checking time is reduced by traversing only those parts of the analysis graph
which are affected by the changes, rather than traversing the whole graph. An
important point to note is that our incremental approach requires the original
certificate and the dependency arc table to be stored on the consumer side in
order to have it available for upcoming extensions. The appropriateness of us-
ing the incremental approach will therefore depend on the particular features
of the consumer system and the frequency of software updates. In general, our
approach seems to be more suitable when the consumer prefers to minimize as
much as possible the waiting time for receiving and validating the certificate
while storage requirements are not scarce. We believe that, in everyday practice,
time-consuming safety tests would be avoided by many users, while they would
probably accept to store the safety certificate and dependencies associated to
the package. Nevertheless, there can sometimes be situations where storage re-
sources can be very limited, while runtime resources for performing upcoming
checkings could still be sufficient. In this work, we have considered the extension
of a program with new procedures and possible additions of new functionalities
over an already existing procedure. As future work, we plan to study whether
our proposal applies to other possible (untrusted) modifications over a program,
like the deletion and arbitrary changes of procedures, which affect certificates in
different ways.

14

Acknowledgments

This work was funded in part by the Information Society Technologies program
of the European Commission, Future and Emerging Technologies under the IST-
15905 MOBIUS project, by the Spanish Ministry of Education under the TIN-
2005-09207 MERIT project, and the Madrid Regional Government under the
S-0505/TIC/0407 PROMESAS project.

References

1. E. Albert, P. Arenas, and G. Puebla. Incremental Certificates and Checkers for
Abstraction-Carrying Code. Technical Report CLIP3/2006, Technical University
of Madrid (UPM), School of Computer Science, UPM, February 2006.

2. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In Proc.

of LPAR’04, number 3452 in LNAI, pages 380–397. Springer-Verlag, 2005.
3. T. Armstrong, K. Marriott, P. Schachte, and g H. Søndergaard. Boolean func-

tions for dependency analysis: Algebraic properties and efficient representation. In
Springer-Verlag, editor, Static Analysis Symposium, SAS’94, number 864 in LNCS,
pages 266–280, Namur, Belgium, September 1994.

4. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91–124, 1991.

5. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principles of Programming Languages, pages 238–252,
1977.

6. M. Hermenegildo, E. Albert, P. López-Garćıa, and G. Puebla. Abstraction Carry-
ing Code and Resource-Awareness. In Proc. of PPDP’05. ACM Press, July 2005.

7. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of
Constraint Logic Programs. ACM Transactions on Programming Languages and

Systems, 22(2):187–223, March 2000.
8. Xavier Leroy. Java bytecode verification: algorithms and formalizations. Journal

of Automated Reasoning, 30(3-4):235–269, 2003.
9. J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edi-

tion, 1987.
10. Kim Marriot and Peter Stuckey. Programming with Constraints: An Introduction.

The MIT Press, 1998.
11. G. Necula. Proof-Carrying Code. In Proc. of POPL’97, pages 106–119. ACM

Press, 1997.
12. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal-

ysis of Logic Programs. In Proc. of SAS’96, pages 270–284. Springer LNCS 1145,
1996.

13. K. Rose, E. Rose. Lightweight bytecode verification. In OOPSLA Workshop on

Formal Underpinnings of Java, 1998.
14. B. Ryder. Incremental data-flow analysis algorithms. ACM Transactions on Pro-

gramming Languages and Systems, 10(1):1–50, 1988.

15

