
An Incremental Approach to

Abstraction-Carrying Code?

Elvira Albert1, Puri Arenas1, and Germán Puebla2

1 Complutense University of Madrid, {elvira,puri}@sip.ucm.es
2 Technical University of Madrid, german@fi.upm.es

Abstract. Abstraction-Carrying Code (ACC) has recently been pro-
posed as a framework for Proof-Carrying Code (PCC) in which the code
supplier provides a program together with an abstraction (or abstract
model of the program) whose validity entails compliance with a prede-
fined safety policy. Existing approaches for PCC are developed under
the assumption that the consumer reads and validates the entire pro-
gram w.r.t. the full certificate at once, in a non incremental way. In
the context of ACC, we propose an incremental approach to PCC for
the generation of certificates and the checking of untrusted updates of a
(trusted) program, i.e., when a producer provides a modified version of
a previously validated program. Our proposal is that, if the consumer
keeps the original (fixed-point) abstraction, it is possible to provide only
the program updates and the incremental certificate (i.e., the difference

of abstractions). Furthermore, it is now possible to define an incremen-

tal checking algorithm which, given the new updates and its incremental
certificate, only re-checks the fixpoint for each procedure affected by the
updates and the propagation of the effect of these fixpoint changes. As
a consequence, both certificate transmission time and checking time can
be reduced significantly.

1 Introduction

Proof-Carrying Code (PCC) [13] is a general technique for mobile code safety
which proposes to associate safety information in the form of a certificate to
programs. The certificate (or proof) is created at compile time by the certifier
on the code supplier side, and it is packaged along with the code. The consumer
who receives or downloads the (untrusted) code+certificate package can then
run a checker which by an efficient inspection of the code and the certificate can
verify the validity of the certificate and thus compliance with the safety policy.
The key benefit of this “certificate-based” approach to mobile code safety is that
the consumer’s task is reduced from proving to checking, a task which should be
much simpler, efficient, and automatic than generating the original certificate.

? This work was funded in part by the Information Society Technologies program of
the European Commission, Future and Emerging Technologies under the IST-15905
MOBIUS project, by the Spanish MEC under the TIN-2005-09207 MERIT project,
and the Regional CAM under the S-0505/TIC/0407 PROMESAS project.

Abstraction-Carrying Code (ACC) [4] has been recently proposed as an en-
abling technology for PCC in which an abstraction (i.e., an abstract model of
the program) plays the role of certificate. An important feature of ACC is that
not only the checking, but also the generation of the abstraction (or fixpoint) is
automatically carried out by a fixed-point analyzer. In this paper, we will con-
sider analyzers which construct a program analysis graph which is interpreted
as an abstraction of the (possibly infinite) set of states explored by the concrete
execution. Essentially, the certification/analysis carried out by the supplier is
an iterative process which repeatedly traverses the analysis graph until a fix-
point is reached. A key idea in ACC is that, since the certificate is a fixpoint,
a single pass over the analysis graph is sufficient to validate the certificate in
the consumer side. The ACC framework and our work here are applied at the
source-level while in existing PCC frameworks the code supplier typically pack-
ages the certificate with the object code rather than with the source code (both
are untrusted). This is without loss of generality because both the ideas in ACC
and in our current incremental proposal could also be applied to bytecode.

Non incremental models for PCC (ACC among them) are based on checkers
which receive a “certificate+program” package and read and validate the entire
program w.r.t. its certificate at once . However, there are situations which are not
well suited to this simple model. In particular, we consider possible untrusted
updates of a validated (trusted) code, i.e., a code producer can (periodically)
send to its consumers new updates of a previously submitted package. By up-
dates, we mean any modification over a program including: 1) the addition of
new data/procedures and the extension of already existing procedures with new
functionalities, 2) the deletion of procedures or parts of them and 3) the re-
placement of certain (parts of) procedures by new versions for them. In such a
context of frequent software updates, it appears inefficient to submit a full cer-
tificate (superseding the original one) and to perform the checking of the entire
updated program from scratch, as needs to be done with current systems. In the
context of ACC, we investigate an incremental approach to PCC by considering
any arbitrary program update over the original program.

When a program is updated, a new fixpoint has to be computed for the
updated program. Such fixpoint differs from the original fixpoint stored in the
certificate in a) the new fixpoint for each procedure affected by the changes and
b) the update of certain (existing) fixpoints affected by the propagation of the
effect of a). However, certain parts of the original certificate may not be affected
by the changes. Thus, if the consumer still keeps the original abstraction, it
is possible to provide, along with the program updates, only the difference of
both abstractions, i.e., the incremental certificate. The first obvious advantage
of an incremental approach is that the size of the certificate may be substantially
reduced by submitting only the increment.

Moreover, the task performed by the checker can also be further reduced in
incremental PCC. In principle, a non-incremental checker (like the one in [4])
requires a whole traversal of the analysis graph where the entire program + up-
dates is checked against the (full) certificate. However, it is now possible to define

an incremental checking algorithm which, given the updates and its incremental
certificate, only rechecks the part of the analysis graph for the procedures which
have been affected by the updates and, also, propagates and rechecks the effect
of these changes. In order to perform such propagation of changes, the dependen-
cies between the nodes of the original analysis graph have to be computed and
stored by the consumers, together with the original certificate. With this, the
checking process is carried out in a single pass over the part of the abstraction
affected by the updates. Thus, the second advantage of our incremental approach
is that checking time is further reduced.

2 Abstraction-Carrying Code

We assume some familiarity with abstract interpretation (see [6]), (Constraint)
Logic Programming (C)LP (see, e.g., [11, 10]) and PCC [13].

An abstract interpretation-based certifier is a function Certifier: Prog ×
ADom × Approx 7→ Approx which for a given program P ∈ Prog , an abstract
domain Dα ∈ ADom and an abstract safety policy Iα ∈ Approx generates an
abstract certificate Certα ∈ Approx , by using an abstract interpreter for Dα,
such that the certificate entails that P satisfies Iα. An abstract safety policy
Iα is a specification of the safety requirements given in terms of the abstract
domain Dα. We denote that Iα and Certα are specifications given as abstract
semantic values of Dα by using the same subscript α. The basics for defining
such certifiers (and their corresponding checkers) in ACC are summarized in the
following five points:

Approximation. We consider a description (or abstract) domain 〈Dα,v〉 ∈
ADom and its corresponding concrete domain 〈2D,⊆〉, both with a complete
lattice structure. Description (or abstract) values and sets of concrete values are
related by an abstraction function α : 2D → Dα, and a concretization function
γ : Dα → 2D. The pair 〈α, γ〉 forms a Galois connection. The concrete and
abstract domains must be related in such a way that the following condition
holds [6] ∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y. In general v
is induced by ⊆ and α. Similarly, the operations of least upper bound (t) and
greatest lower bound (u) mimic those of 2D in a precise sense.

Analysis. We consider the class of fixed-point semantics in which a (monotonic)
semantic operator, SP , is associated to each program P . The meaning of the
program, [[P]], is defined as the least fixed point of the SP operator, i.e., [[P]] =
lfp(SP). If SP is continuous, the least fixed point is the limit of an iterative
process involving at most ω applications of SP starting from the bottom element
of the lattice. Using abstract interpretation, we can usually only compute [[P]]α,
as [[P]]α = lfp(Sα

P). The operator Sα
P is the abstract counterpart of SP .

analyzer(P,Dα) = lfp(Sα
P) = [[P]]α (1)

Correctness of analysis ensures that [[P]]α safely approximates [[P]], i.e., [[P]] ∈
γ([[P]]α). Thus, such abstraction can be used as certificate.

Certificate. Let Certα be a safe approximation of [[P]]α. If an abstract safety
specification Iα can be proved w.r.t. Certα, then P satisfies the safety policy
and Certα is a valid certificate:

Certα is a valid certificate for P w.r.t. Iα iff Certα v Iα (2)

Together, Equations (1) and (2) define a certifier which provides program fix-
points, [[P]]α, as certificates which entail a given safety policy, i.e., by taking
Certα = [[P]]α.

Checking. A checker is a function Checker: Prog × ADom × Approx 7→ bool

which for a program P ∈ Prog , an abstract domain Dα ∈ ADom and certificate
Certα ∈ Approx checks whether Certα is a fixpoint of Sα

P or not:

checker(P, Dα, Certα) returns true iff (Sα
P (Certα) ≡ Certα) (3)

Verification Condition Regeneration. To retain the safety guarantees, the
consumer must regenerate a trustworthy verification condition –Equation (2)–
and use the incoming certificate to test for adherence of the safety policy.

P is trusted iff Certα v Iα (4)

A fundamental idea in ACC is that, while analysis –Equation (1)– is an iterative
process, checking –Equation (3)– is guaranteed to be done in a single pass over
the abstraction.

3 Notions on Certificates

Although ACC and Incremental ACC are general proposals not tied to any par-
ticular programming paradigm, our developments for incremental ACC (as well
as for the original ACC framework [4]) are formalized in the context of (C)LP.
Very briefly, a constraint is essentially a conjunction of expressions built from pre-
defined predicates (such as term equations or inequalities over the reals) whose
arguments are constructed using predefined functions (such as real addition). An
atom has the form p(t1, ..., tn) where p is a predicate symbol and ti are terms.
A literal is either an atom or a constraint. A goal is a finite sequence of literals.
A rule is of the form H:-D where H, the head, is an atom and D, the body, is a
possibly empty finite sequence of literals. A constraint logic program P ∈ Prog ,
or program, is a finite set of rules. Program rules are assumed to be normalized:
only distinct variables are allowed to occur as arguments to atoms. Furthermore,
we require that each rule defining a predicate p has identical sequence of vari-
ables xp1

, . . . xpn
in the head atom, i.e., p(xp1

, . . . xpn
). We call this the base form

of p. This is not restrictive since programs can always be normalized, and it will
facilitate the presentation of the checking algorithms.

3.1 The Notion of Full Certificate

For concreteness, we rely on an abstract interpretation-based analysis algorithm
in the style of the generic analyzer of [7]. This goal-dependent analysis algorithm,

which we refer to as analyzer, given a program P and abstract domain Dα,
receives a set Qα ∈ AAtom of Abstract Atoms (or call patterns) and constructs
an analysis graph [5] for Qα. The elements of Qα are pairs of the form A : CP
where A is a procedure descriptor and CP is an abstract substitution (i.e.,
a condition of the run-time bindings) of A expressed as CP ∈ Dα.1 Then, the
analysis graph is an abstraction of the (possibly infinite) set of (possibly infinite)
trees explored by the concrete execution of initial calls described by Qα in P .
The program analysis graph computed by analyzer(Qα) for P in Dα can be
implicitly represented by means of two data structures, the answer table and the
dependency arc table (which are in fact the result of the analysis algorithm).

– Answer Table (AT). Its entries correspond to the nodes in the analysis graph.
They are of the form A : CP 7→ AP, where A is always an atom in base form.
They should be interpreted as “the answer pattern for calls to A satisfying
precondition (or call pattern), CP, accomplishes postcondition (or answer
pattern), AP.” AP and CP are abstract substitutions in Dα.

– Dependency Arc Table (DAT). Dependencies correspond to the arcs in the
analysis graph. The intended meaning of a dependency Ak : CP ⇒ Bk,i :
CP1 associated to a program rule Ak:-Bk,1, . . . , Bk,n with i ∈ {1, ..n}, is
that the answer for Ak : CP depends on the answer for Bk,i : CP1, say AP1.
Thus, if AP1 changes with the update of some rule for Bk,i then, the arc
Ak : CP ⇒ Bk,i : CP1 must be reprocessed in order to compute the new
answer for Ak : CP . This is to say that the rule for Ak has to be processed
again starting from atom Bk,i.

All the details and the formalization of the analysis algorithm analyzer can be
found in [7]. Certification in ACC [4] consists in using the complete set of en-
tries stored in the answer table as certificate. Dependencies are not needed for
certificate generation neither for non-incremental checking though they will be
fundamental later for incremental certificate checking.

Definition 1 (certificate [4]). Let P ∈ Prog, Dα ∈ ADom and Qα ∈ AAtom.
We define Cert ∈ Approx , the certificate for P and Qα, as the set of entries
stored in the answer table computed by analyzer(Qα) [7] for P in Dα.

Example 1. The next example shows a piece of a module which contains the
following (normalized) program for the naive reversal of a list and uses an im-
plementation of app with several base cases (e.g., added automatically by a
partial evaluator [8] for efficiency purposes).

(rev1) rev(X, Y) : − X = [], Y = [].
(rev2) rev(X, Y) : − X = [U|V], rev(V, W), T = [U], app(W, T, Y).

(app1) app(X, Y, Z) : − X = [], Y = Z.

(app2) app(X, Y, Z) : − X = [U], Z = [U|Y].
(app3) app(X, Y, Z) : − X = [U, V], Z = [U, V|Y].
(app4) app(X, Y, Z) : − X = [U|V], Z = [U|W], app(V, Y, W).

1 We sometimes omit the subscript α from Qα when it is clear from the context.

The description domain that we use in our examples is the domain Pos of Pos-
itive Boolean functions [12]. The key idea in this description is to use implica-
tion to capture groundness dependencies. The reading of the function x → y is
“if the program variable x is (becomes) ground, so is (does) program variable
y.” For example, the best description of the constraint f(X, Y) = f(a, g(U, V)) is
X ∧ (Y ↔ (U ∧ V)). Groundness information is of great importance as a safety
property in order to verify that (C)LP programs are “well moded” (i.e., argu-
ments are correctly instantiated). The most general description > does not pro-
vide information about any variable. The least general substitution ⊥ assigns
the empty set of values to each variable.

For the analysis of our running example, we consider the calling pattern
rev(X, Y) : >, i.e., no entry information is provided on X nor Y. analyzer(rev(X, Y) :
>) produces State 0 composed of the following answers and dependencies:

(A1) rev(X, Y) : > 7→ X↔ Y (D1) rev(X, Y) : > ⇒ rev(V, W) : >
(A2) app(X, Y, Z) : > 7→ (X ∧ Y)↔ Z (D2) rev(X, Y) : > ⇒ app(W, T, Y) : >

(D3) app(X, Y, Z) : > ⇒ app(V, Y, W) : >

Intuitively, D2 denotes that the answer for rev(X, Y) : > may change if the an-
swer for app(W, T, Y) : > changes. In such a case, the second rule for rev must
be processed again starting from atom app(W, T, Y) in order to recompute the
fixpoint for rev(X, Y) : >. D1 and D3 reflect the recursivity of rev(X, Y) : > and
app(W, T, Y) : >, respectively, since they depend on themselves. The detailed steps
performed by the algorithm can be found in [7] for the same program without
the rules app2 and app3. However these rules do not add any further informa-
tion to the fixpoint computation and the steps performed there still apply to
our example. According to Definition 1, the certificate Cert for this example is
composed of all entries in the answer table, i.e., A1 and A2 . 2

3.2 The Notion of Incremental Certificate

Given a program P , we define an update of P , written as Upd(P) ∈ UProg , as
a set of tuples of the form 〈A,Add(A),Del(A)〉, where A = p(x1, . . . , xn) is an
atom in base form, Add(A) is the set of rules which are to be added to P for
predicate p2 and Del(A) is the set of rules which are to be removed from P for
predicate p.

When a program is updated, depending on the kind of update, the new
certificate for the modified program can be either equal, more or less precise
than the original one, or even not comparable. In any case, it appears inefficient
to generate, transmit, and check the full certificate Ext Cert for the updated
program UP defined as UP = P ⊕ Upd(P).3 Our proposal is that it is possible
to submit only the new program update Upd(P) together with the incremental
certificate Inc Cert, i.e., the difference of Ext Cert w.r.t. the original Cert.

2 This includes both the case of addition of new procedures, when p did not exist in
P , as well as the extension of additional rules (or functionality) for p, if it existed.

3 The operator “⊕” applies the update to P and generates UP = P ⊕ Upd(P). This
can be implemented by using a program in the spirit of the traditional Unix patch

command as ⊕ operator.

Definition 2 (incremental certificate). In the conditions of Def. 1, we con-
sider Upd(P) ∈ UProg. Let Cert be the certificate for P and Qα. Let Ext Cert be
the certificate for P ⊕Upd(P) and Qα. We define Inc Cert, the incremental cer-
tificate for Upd(P) w.r.t. Cert, as Ext Cert−Cert, where Ext Cert−Cert is defined
as the set of entries B : CPB 7→ APB ∈ Ext Cert such that:

1. B : CPB 7→ 6∈ Cert or,
2. A : CPA 7→ APA ∈ Cert, A : CPA = B : CPB and APA 6= APB (modulo

renaming).

The definition of incremental certificate for the particular case of program ex-
tensions can be found in [2]. The following example illustrates that updating
a program can require the change in the analysis information previously com-
puted for other procedures whose fixpoint is indirectly affected by the updates,
although their definitions have not been directly changed.

Example 2. Consider the following new definition for app, which is a specializa-
tion of the previous app to concatenate lists of a’s of the same length :

(Napp1) app(X, Y, Z) : − X = [], Y = [], Z = [].
(Napp2) app(X, Y, Z) : − X = [a|V], Y = [a|U], Z = [a, a|W], app(V, U, W).

The update consists in deleting all rules for app in Ex. 1, and replacing them by
Napp1 and Napp2. After running the (incremental) analysis algorithm in [7], the
following answer table and dependencies are computed (State 1):

(NA1) rev(X, Y) : > 7→ X ∧ Y (ND1) rev(X, Y) : > ⇒ rev(V, W) : >
(NA2) app(X, Y, Z) : > 7→ X ∧ Y ∧ Z (ND2) rev(X, Y) : > ⇒ app(W, T, Y) : W
(NA3) app(X, Y, Z) : X 7→ X ∧ Y ∧ Z (ND3) app(X, Y, Z) : X⇒ app(V, U, W) : V

Note that the analysis information has changed because the new definition of
app allows inferring that all its arguments are ground upon success (NA2 and
NA3). This change propagates to the answer of rev and allows inferring that,
regardless of the calling pattern, both arguments of rev will be ground on the
exit (NA1). According to Def. 2, the incremental certificate Inc Cert contains
NA3 , as it corresponds to a new calling pattern (by point 1), and also NA1 and
NA2 since their answers have changed w.r.t. the ones in State 0 (by point 2).
2

Note that in a non incremental framework, the size of certificates can be
reduced by using compression techniques as in [3]. This approach is not compat-
ible with the incremental setting we are going to discuss in this paper, because
certain information essential for the incremental checker can have been removed
by the fixpoint reduction.

4 A Checking Algorithm with Support for Incrementality

In this section, we present a checking algorithm for full certificates which is in-
strumented with a Dependency Arc Table (DAT in the following). The DAT
stores the dependencies between the atoms in the analysis graph (see Section 3).

1: procedure checking(P, Q, Cert,ATmem ,DATmem)
2: ATmem := ∅; DATmem := ∅; CPchecked := ∅;
3: for all A : CP ∈ Q do
4: process node(P,A : CP , Cert,ATmem ,DATmem ,CPchecked);
5: return Valid;
6: procedure process node(P,A : CP , Cert,ATmem ,DATmem ,CPchecked)
7: if (∃ a renaming σ s.t. σ(A : CP 7→ AP) in Cert) then

8: add A : CP 7→ σ−1(AP) to ATmem ; CPchecked := CPchecked ∪ {A : CP};

9: else return Error;
10: process set of rules(P, P |A,A : CP 7→ σ−1(AP), Cert,

ATmem ,DATmem , CPchecked);
11: procedure process set of rules(P, R,A : CP 7→ AP , Cert,

ATmem ,DATmem ,CPchecked)
12: for all rule Ak ← Bk,1, . . . , Bk,nk

in R do

13: W := vars(Ak, Bk,1, . . . , Bk,nk
);

14: CPb :=Aextend(CP, vars(Bk,1, . . . , Bk,nk
));

15: CPRb := Arestrict(CPb, Bk,1);
16: CPa :=process rule(P ,A : CP ,Ak ← Bk,1, . . . , Bk,nk

,W ,CPb ,CPRb , Cert,
ATmem ,DATmem ,CPchecked);

17: AP1 := Arestrict(CPa, vars(Ak)) ; AP2 := Alub(AP1, AP);
18: if (AP <> AP2) then return Error;
19: procedure process rule(P,A : CP , Ak ← Bk,j , . . . , Bk,nk

, W,CPb ,CPRb , Cert,
ATmem ,DATmem ,CPchecked)

20: for all Bk,i in the rule body i = j, ..., nk do
21: CPa := process arc(P ,A : CP ,Bk,i : CPRb, CPb, W, Cert,

ATmem ,DATmem , CPchecked);
22: if (i <> nk) then CPRa := Arestrict(CPa, var(Bk,i+1));
23: CPb := CPa; CPRb := CPRa;
24: return CPa;
25: procedure process arc(P ,A : CP ,Bk,i : CPRb, CPb, W, Cert,

ATmem ,DATmem ,CPchecked)
26: if (Bk,i is a constraint) then CPa := Aadd(Bk,i, CPb);
27: else
28: if (6 ∃ a renaming σ s.t. σ(Bk,i : CPRb 7→ AP ′) in ATmem) then
29: process node (P ,Bk,i : CPRb, Cert,ATmem , DATmem ,CPchecked);
30: AP1 := Aextend (ρ−1(AP), W); where ρ is a renaming s.t.

ρ(Bk,i : CPRb 7→ AP) in ATmem

31: CPa := Aconj (CPb, AP1);
32: add A : CP ⇒ Bk,i to DATmem ;
33: return CPa;

Fig. 1. Checking with Support for Incrementality (Algorithm 1)

This structure is not required by non incremental checkers [4] but it is funda-
mental to support an incremental design.

Algorithm 1 presents our checker, which receives as parameters a program
P , a set Q of call patterns, the certificate Cert returned by analyzer, and two
input/output variables ATmem and DATmem (initially empty) and constructs
a program analysis graph in a single iteration by assuming the fixpoint infor-
mation in Cert. While the graph is being constructed, the obtained answers are

stored in ATmem and compared with the corresponding fixpoints stored in Cert.
If any of the computed answers is not consistent with the certificate (i.e., it is
greater than the fixpoint), the certificate is considered invalid and the program
is rejected. Otherwise, Cert gets checked. The checker returns the reconstructed
answer table ATmem and the set of dependencies DATmem which have been tra-
versed. A detailed explanation of this algorithm can be found in [2] (where only
program extensions are considered and the parameter CPchecked is not needed).
Algorithm 1 is parametric w.r.t. the abstract domain of interest Dα and it is
hence defined in terms of five abstract operations on Dα:

– Arestrict(CP, V) performs the abstract restriction of a description CP to the
set of variables in the set V , denoted vars(V);

– Aextend(CP, V) extends the description CP to the variables in the set V ;
– Aadd(C,CP) performs the abstract operation of conjoining the constraint C

with the description CP;
– Aconj(CP1,CP2) performs the abstract conjunction of two descriptions;
– Alub(CP1,CP2) performs the abstract disjunction of two descriptions.

Example 3. The abstract operations for the domain Pos (Ex. 1) are:

Arestrict(CP, V) = ∃−V CP Aconj(CP1,CP2) = CP1 ∧ CP2

Alub(CP1,CP2) = CP1 t CP2 Aextend(CP, V) = CP

Aadd(C,CP) = αDef (C) ∧ CP αDef (X = t) = (X ↔
V

{Y ∈ vars(t)})

where ∃
−V F represents ∃v1, . . . , vnF , {v1, . . . , vn} = vars(F) − V , and t is the

least upper bound (lub) operation over the Pos lattice. For instance, Aconj(X,Y ↔
(X∧Z))=X∧(Y ↔ Z). Aadd(X = [U |V], Y)=(X ↔ (U∧V))∧Y . Alub(X,Y)=X∨
Y . As an example of checking, we illustrate the steps carried out by the checker
to validate the rules app1 and app4 of Ex. 1 w.r.t. a certificate Cert composed of
the entry A2. We take as call pattern app(X, Y, Z) : >. Consider the call to pro-
cedure process node for app(X, Y, Z) : >. The entry A2 is added (L8) to ATmem

(initially empty), and app(X, Y, Z) : > is marked as checked by inserting it in
CPchecked . A call to process set of rules is generated for the call at hand w.r.t.
app1 and app4 (L10). Consider the processing of the two rules.

1. The call to process rule for app1 (L16) executes process arc (L21) for each of
the two constraints in the body. The final answer CPa ≡ X ∧ (Y ↔ Z) (L16)
for app1 is built up from the abstract conjunction (L31) between X (partial
answer from first constraint) and Y ↔ Z (from second constraint). Since the
least upper bound (L17) between CPa and the answer A2 is A2, then no
Error is issued (L18) and the first rule app1 gets successfully checked.

2. As before, the call to process rule for app4 executes process arc for the first two
constraints and computes as (partial) solution CPa ≡ (X ↔ (U ∧ V)) ∧ (Z ↔ (U
∧W)) (L21). Since we are not in the last atom of the rule (L22), CPa is re-
stricted to the variables in app(V, Y, W), giving as result CPRa ≡ >. Now,
the next call to process arc for the rightmost body atom app(V, Y, W) : > com-
putes as final solution (X ↔ (U ∧ V)) ∧ (Z ↔ (U∧ W)) ∧ (V ∧ (Y ↔ W)), which
is simplified to A2. The corresponding dependency is stored in DATmem .

Thus, the call to process rule for app4 computes as solution A2 (L16), the
same answer stored in Cert, and no Error is issued (L18).

Therefore, both rules have been successfully checked in one pass over them and
the checker returns Valid. 2

In order to support an incremental extension, the final values of the data struc-
tures ATmem , DATmem and P must be available after the end of the execution
of the checker. We denote by ATpersist , DATpersist and Ppersist the copy in per-
sistent memory (i.e., in disk) of such structures.

Definition 3 (checker). We define function checker:Prog×Approx×AAtom
×ADom 7→ boolean which takes a program P ∈ Prog and its certificate Cert ∈
Approx for Qα ∈ AAtom in Dα ∈ ADom and it returns the result of checking(P,

Qα,Cert,ATmem , DATmem). If it does not issue an Error, then it stores in mem-
ory ATpersist := ATmem , DATpersist := DATmem and Ppersist := P .

5 Incremental Checking

In this section, we propose an incremental checking algorithm which deals with
all possible updates over a program in a unified form. The basic idea is that
the task performed by an incremental checker has to be optimized such that it
only: a) rechecks the part of the abstraction for the procedures which have been
directly affected by an update and, b) propagates and rechecks the indirect effect
of these changes. In order to do this, we will take as starting point the checker
in Algorithm 1. Its DAT will allow the incremental algorithm to propagate the
changes and carry out the process in a single pass over the subgraph affected by
the updates. Algorithm 2 presents our implementation of this intuition. We start
by removing all (possibly incorrect or inaccurate) information directly affected
by the updates from the answer table and DAT (i.e., the information for the
updated procedures) and, then, we check it from scratch against the answers
provided in the incremental certificate. If the “direct” checking succeeds, we
proceed to check the information indirectly affected by such changes in a similar
way (i.e., delete the information for them from answer and DAT and recheck it
from scratch). This iterative process successfully finishes when all directly and
indirectly affected information gets checked. Otherwise, an Error is issued.

The incremental checker is defined as follows: replace the procedure checking

by the new procedure incremental checking in Algorithm 2 and use the remaining
procedures defined in Algorithm 1. Below we enumerate the points which should
be done in a way or another in any incremental checking algorithm beyond the
analysis of logic programs.

1. Retrieve stored data. After checking the original package, the structures
ATpersist , DATpersist and the program Ppersist have been stored in persis-
tent memory (see Definition 3). Our checker retrieves such stored data and
initializes, respectively, the parameters ATmem , DATmem and P with them.

1: procedure incremental checking(P ,Upd(P),Inc Cert,ATmem ,DATmem)
2: Pmem := P ⊕ Upd(P); update answer table(ATmem ,Inc Cert);
3: call patterns to check(Upd(P),ATmem ,CPtocheck);
4: CPchecked := ∅; % call patterns already checked

5: check affected entries(Pmem ,Inc Cert,ATmem ,DATmem ,CPtocheck ,CPchecked);
6: return Valid;
7: procedure update answer table(ATmem ,Inc Cert)
8: for all entry A : CP 7→ AP in ATmem do
9: if (∃ A : CP 7→ APA in Inc Cert and AP 6= APA (modulo renaming))

then replace entry for A : CP 7→ AP in ATmem by A : CP 7→ APA;
10: procedure call patterns to check(Upd(P),ATmem ,CPtocheck)
11: CPtocheck := ∅; % call patterns required to be checked

12: for all entry A : CP 7→ ∈ ATmem do
13: if A is updated in Upd(P) then CPtocheck :=CPtocheck∪{A : CP};
14: procedure check affected entries(Pmem ,Inc Cert,ATmem ,DATmem ,

CPtocheck ,CPchecked)
15: while CPtocheck ! = ∅ do
16: select A : CP from CPtocheck ;
17: remove previous info(A : CP ,ATmem ,DATmem);
18: if A : CP 6∈ Inc Cert then
19: let A : CP 7→ AP the entry for A : CP in ATmem ;
20: Inc Cert = Inc Cert ∪ {A : CP 7→ AP}; propagate:= false;
21: else propagate:= true;
22: process node(Pmem ,A : CP , Inc Cert,ATmem ,DATmem , CPchecked);
23: CPtocheck := CPtocheck− CPchecked ;
24: if propagate then propagate effects(A : CP ,DATmem ,

CPtocheck ,CPchecked);
25: procedure remove previous info(A : CP ,ATmem , DATmem)
26: remove entry for A : CP from ATmem ;
27: remove from DATmem all dependencies of the form A : CP ⇒ ;
28: procedure propagate effects(A : CP ,DATmem , CPtocheck ,CPchecked)
29: for all B : CPB ⇒ A : CP ∈ DATmem do
30: if B : CPB 6∈ CPchecked∪ CPtocheck then
31: CPtocheck :=CPtocheck∪{B : CPB};

Fig. 2. Incremental Checking (Algorithm 2)

2. Update program and answer table. Prior to proceeding with the proper check-
ing, the incoming updates Upd(P) are applied (by means of the operator ⊕)
to P in order to generate Pmem (L2). Also, the procedure update answer table

updates the answers for those call patterns in ATmem which have a different
answer in Inc Cert (L8-9). The new entries not yet present in ATmem will be
asserted upon request, as in the usual checking process (L8 of Algorithm 1).

3. Initialize call patterns to check. The procedure call patterns to check initial-
izes the set CPtocheck with those call patterns with an entry in ATmem which
correspond to a rule directly affected by an update (L12-13). During the ex-
ecution of the checker, the set CPtocheck will be dynamically extended to
include the additional call patterns whose checking is indirectly affected by
the propagation of changes (L31).

4. Check affected procedures. Procedure check affected entries launches the check-
ing of all procedures affected by the updates, i.e., the call patterns in CPtocheck

− CPchecked . The set CPchecked is used to avoid rechecking the same call pat-

tern more than once, if it appears several times in the analysis subgraph to
be checked. Three actions are taken in order to check a call pattern:4 remove
its analysis information (L17), proceed to check it by calling process node

of Algorithm 1 (L22) and, propagate the effects of type b) if needed (L24).
We only propagate effects if the answer provided in Inc Cert for the call
pattern at hand is different from that originally stored in ATpersist (L21).
As a technical detail, in L20, we add to Inc Cert the information which, al-
though has not changed w.r.t. ATmem , needs to be checked and, therefore,
it must be available in Inc Cert (or process node would issue an error in L9
of Algorithm 1).

5. Remove previous analysis information. Before proceeding with the checking,
we need to get rid of previous (possibly incorrect or inaccurate) analysis in-
formation. Procedure remove previous info eliminates the entry to be checked
from ATmem (L26) and all its dependencies from DATmem (L27).

6. Propagate effects. After processing the updated rules, the procedure propa-

gate effects introduces in the set CPtocheck (L31) the calling patterns whose
answer depends on the updated one, i.e., those which are indirectly affected
by the updates. Their checking will be later required in L15.

7. Store data. Upon return, the checker has to store the computed ATmem ,
DATmem and Pmem, respectively, in ATpersist , DATpersist , and Ppersist for
achieving a compositional design of our incremental approach.

Definition 4 (incremental checker). We define function Incr Checker:
UProg ×Approx× 7→ boolean which takes Upd(P) ∈ UProg and its incremen-
tal certificate Inc Cert ∈ Approx and 1) it retrieves from memory ATmem :=
ATpersist , DATmem := DAT persist and P := Ppersist and 2) it returns the result
of incremental checking(P,Upd(P), Inc Cert, ATmem , DATmem) for P . If it does not
issue an Error, then it stores ATpersist := ATmem , DATpersist := DATmem and
Ppersist := Pmem .

Note that the safety policy has to be tested w.r.t. the answer table for the
extended program. Therefore, the checker has reconstructed, from Inc Cert, the
answer table returned by analyzer for the extended program, Ext Cert, in order to
test for adherence to the safety policy –Equation (4), i.e., AT persist ≡ Ext Cert.

The following example illustrates a situation in which the task performed by
the incremental checker is optimized to only check a part of the abstraction.

Example 4. Consider the deletion of rules app2 and app3 of Example 1. The anal-
ysis algorithm of [7] returns the same state (State 0) since the eliminated rules
do not affect the fixpoint result, i.e., they do not add any further information.
Thus, the incremental certificate Inc Cert associated to such an update is empty.
The checking algorithm proceeds as follows. Initially, ATmem and DATmem are
initialized with the values in State 0. Pmem is composed of the rules rev1, rev2,

4 Note that an updated rule which does not match any entry in ATmem does not need
to be processed by now. Its processing may be required by some other new rule or
they can simply not be affected by the checking process.

app1 and app4. Procedure update answer table (L2) does not modify ATmem . The
execution of procedure call patterns to check (L3) adds E1 ≡ app(X, Y, Z) : >
to CPtocheck . Procedure check affected entries selects E1 from CPtocheck . The
next call to remove previous info (L17) removes A2 from ATmem and D3 from
DATmem . It then inserts A2 in Inc Cert. The variable “propagate” takes the value
false. We now jump to the non incremental checking with a call to procedure pro-

cess node (L22). This process corresponds exactly to the checking illustrated in
Example 3. Upon return from process node (since variable “propagate” is false),
no effects have to be propagated.

The important point to note is that the incremental checker has not had to
recheck the rules for rev since its answer is not affected by the deletion. Once
Inc Cert has been validated, the consumer memoizes ATmem , DATmem (which
are those of State 0) and Pmem in disk. 2

Our second example is intended to show how to propagate the effect of a change
to the part of the analysis graph affected by such update.

Example 5. Let us illustrate the checking process carried out to validate the
update proposed in Example 2 with an incremental certificate, Inc Cert, which
contains the entries NA1 , NA2 and NA3 . The incremental checker retrieves
State 0 from disk. Next, procedure update answer table returns as new ATmem

the entries NA1 and NA2 which replace the old entries A1 and A2, respec-
tively. Then, the set CPtocheck is initialized with E1 ≡ app(X, Y, Z) : >. Proce-
dure check affected entries first executes remove previous info, which eliminates
E1 from ATmem and dependency D3 from DATmem . Moreover, the variable
“propagate” is initialized to true. This annotates that effects have to be prop-
agated later. The execution of process node for E1 succeeds and adds the de-
pendency D3 to DATmem and the set CPchecked is returned with E1 marked as
checked. Upon return, since the variable “propagate” is true, a call to propa-

gate effects is generated which forces the checking of rev. After inspecting D2

and D3 (the two dependencies for E1), only the entry E2 ≡ rev(X, Y) : > is
added to CPtocheck . The dependency for D3 will not be checked because E1

has been already processed (hence, it belongs to CPchecked). Now, procedure
check affected entries takes E2 from CPtocheck , and similarly to the previous case,
successfully executes process node, and replaces D2 by ND2 . During the check-
ing of rule rev2, a new call to process node is generated for E3 ≡ app(X , Y, Z) : X
which introduces E3 in CPchecked , and replaces the dependency D3 in DATmem

by the new one ND3 of Example 2. Upon return, since the variable “propagate” is
true, a call to propagate effects is generated from it. But the affected dependency
D1 is not processed because E1 was processed already and belongs to CPchecked .
The conclusion is that a single pass has been performed on the three provided
entries in order to validate the certificate. 2

The following theorem establishes the correctness of incremental checking. The
proof can be found in [1].

Theorem 1 (correctness). Let P ∈ Prog, Upd(P) ∈ UProg, Dα ∈ ADom
and Qα ∈ AAtom. Let Cert be the certificate for P and Qα, Ext Cert the cer-

tificate for P ⊕ Upd(P) and Qα and Inc Cert the incremental certificate for
Upd(P) w.r.t. Cert. If Incr Checker(Upd(P), Inc Cert) does not issue an Er-

ror, then the validation of Inc Cert is done in a single pass over Inc Cert and
ATpersist ≡ ATmem , DATpersist ≡ DATmem , where ATmem and DATmem are,
respectively, the answer table and DAT returned by checking(P ⊕ Upd(p), Qα,

Ext Cert, ATmem ,DATmem).

Efforts for coming up with incremental approaches are known in the context
of program analysis (see [17, 7, 14, 15]) and program verification (see [18, 9, 16]).
Our work is more closely related to incremental program analysis, although the
design of our incremental checking algorithm is notably different from the design
of an incremental analyzer (like the ones in [7, 14]). In particular, the treatment
of deletions and arbitrary changes is completely different. In our case, we can
take advantage of the information provided in the certificate in order to avoid
the need to compute the strongly connected components (see [7]). This was
necessary in the analyzer in order to ensure the correctness of the incremental
algorithm. Unlike [7, 14], we have integrated in a single algorithm all incremental
updates over a program in a seamless way. In [2], we have identified the particular
optimization for the addition of rules to a program.

6 Conclusions

Our approach to incremental ACC aims at reducing the size of certificates and
the checking time when a supplier provides an untrusted update of a (previously)
validated package. Essentially, when a program is subject to an update, the in-
cremental certificate we propose contains only the difference between the original
certificate for the initial program and the new certificate for the updated one.
Checking time is reduced by traversing only those parts of the abstraction which
are affected by the changes rather than the whole abstraction. An important
point to note is that our incremental approach requires the original certificate
and the dependency arc table to be stored on the consumer side for upcoming
updates. The appropriateness of using the incremental approach will therefore
depend on the particular features of the consumer system and the frequency of
software updates. In general, our approach seems to be more suitable when the
consumer prefers to minimize as much as possible the waiting time for receiving
and validating the certificate while storage requirements are not scarce. We be-
lieve that, in everyday practice, time-consuming safety tests would be avoided by
many users, while they would probably accept to store the safety certificate and
dependencies associated to the package. We are now in the process of extending
the ACC implementation already available in the CiaoPP system to support in-
crementality. Our preliminary results in certificate reduction are very promising.
We expect optimizations in the checking time similar to those achieved in the
case of incremental analysis (see, e.g., [7]).

References

1. E. Albert, P. Arenas, and G. Puebla. An Incremental Approach to Abstraction-
Carrying Code. Technical Report CLIP3/2006, Technical University of Madrid
(UPM), School of Computer Science, UPM, March 2006.

2. E. Albert, P. Arenas, and G. Puebla. Incremental Certificates and Checkers for
Abstraction-Carrying Code. In Proc. of WITS 2006, March 2006.

3. E. Albert, P. Arenas, G. Puebla, and M. Hermenegildo. Reduced Certificates for
Abstraction-Carrying Code. In Proc. of ICLP 2006, Springer LNCS. To appear.

4. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In Proc.

of LPAR’04, Springer LNAI 3452, pp. 380–397, 2005.
5. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic

Programs. Journal of Logic Programming, 10:91–124, 1991.
6. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Proc. POPL 1977, ACM, pp.238–252, 1977.

7. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of
Constraint Logic Programs. ACM Transactions on Programming Languages and

Systems, 22(2):187–223, March 2000.
8. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Pro-

gram Generation. Prentice Hall, New York, 1993.
9. Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. Incremental verification by

abstraction. In Proc. 7th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, Springer LNCS 2031, pp. 98–112, 2001.
10. J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edi-

tion, 1987.
11. Kim Marriot and Peter Stuckey. Programming with Constraints: An Introduction.

The MIT Press, 1998.
12. K. Marriott and H. Søndergaard. Precise and efficient groundness analysis for logic

programs. ACM Letters on Programming Languages and Systems, 2(4):181–196,
1993.

13. G. Necula. Proof-Carrying Code. In Proc. of POPL 1997, pp. 106–119. ACM
Press, 1997.

14. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal-
ysis of Logic Programs. In Proc. SAS’96, Springer LNCS 1145,pp. 270–284, 1996.

15. B. Ryder. Incremental data-flow analysis algorithms. ACM Transactions on Pro-

gramming Languages and Systems, 10(1):1–50, 1988.
16. O.V. Sokolsky and S.A. Smolka. Incremental model checking in the modal µ-

calculus. In Computer Aided Verification, Proc. 6th International Conference,
Springer LNCS 818, pp. 351–363, 1994.

17. Tim A. Wagner and Susan L. Graham. Incremental analysis of real programming
languages. In Proc. PLDI’97, pp. 31–43, 1997.

18. M. Wildmoser, A. Chaieb, and T. Nipkow. Bytecode Analysis for Proof Carrying
Code. In Proc. Bytecode’05, ENTCS 141, pp. 19–34. Elsevier, 2005.

