
Poster Presentation: Abstract

Interpretation-based Mobile Code Certification?

Elvira Albert1, Germán Puebla2, and Manuel Hermenegildo2,3

1 SIP, Complutense University of Madrid, elvira@sip.ucm.es
2 Fac. de Informática, Technical U. of Madrid, {german,herme}@fi.upm.es

3 Depts. of Comp. Sci. and El. and Comp. Eng., U. of New Mexico, herme@unm.edu

Current approaches to mobile code safety—inspired by the technique of
Proof-Carrying Code (PCC) [4]—associate safety information (in the form of
a certificate) to programs. The certificate (or proof ) is created by the code sup-
plier at compile time, and packaged along with the untrusted code. The consumer
who receives the code+certificate package can then run a checker which, by a
straightforward inspection of the code and the certificate, is able to verify the
validity of the certificate and thus compliance with the safety policy. The main
practical difficulty of PCC techniques is in generating safety certificates which
at the same time: i) allow expressing interesting safety properties, ii) can be
generated automatically and, iii) are easy and efficient to check.

We propose an automatic approach to PCC which makes use of abstract in-

terpretation [2] techniques for dealing with the above issues. While our approach
is general, we develop it for concreteness in the context of (Constraint) Logic
Programming, (C)LP, because this paradigm offers a good number of advan-
tages, especially the maturity and sophistication of the analysis tools available.
Assertions are used to define the safety policy. Such assertions are syntactic ob-
jects which allow expressing “abstract”—i.e. symbolic—properties over different
abstract domains. The first step in our method then involves automatically in-
ferring a set of safety assertions (corresponding to the analysis results), using
abstract interpretation, and taking as a starting input the program, the pre-
defined assertions available for library predicates, and any (optional) assertions
provided by the user for user-defined predicates. The safety policy consists in
guaranteeing that the safety assertions hold for the given program in the context
of the desired abstract domain. This is automatically provided by the inference
process and its correctness ensured by the proved correctness of the process.

The certification process—i.e., the generation of a safety certificate by the
code supplier which is as small as possible—is in turn based on the idea that only
a particular subset of the analysis results computed by abstract interpretation-
based fixpoint algorithms needs to be used to play the role of certificate for

? This work was funded in part by projects ASAP (EU IST FET Programme Project
Number IST-2001-38059) and CUBICO (MCYT TIC 2002-0055). Part of this work
was performed during a research stay of Elvira Albert and Germán Puebla at UNM
supported by respective grants from the Secretaŕıa de Estado de Educación y Uni-
versidades. Manuel Hermenegildo is also supported by the Prince of Asturias Chair
in Information Science and Technology at UNM.



attesting program safety. In our implementation, the high-level assertion lan-
guage of [5] is used and the certificate is automatically generated from the results
computed by the goal dependent fixpoint abstract interpretation-based analyzer
of [3]. These analysis results are represented by means of two data structures
in the output: the answer table and the arc dependency table. We show that a
particular subset of the analysis results—namely the answer table—is sufficient
for mobile code certification. A verification condition generator computes from
the assertions and the answer table a verification condition in order to attest
compliance of the program with respect to the safety policy. Intuitively, the ver-
ification condition is a conjunction of boolean expressions whose validity ensures
the consistency of a set of assertions. The automatic validator attempts to check
its validity. When the verification condition is indeed checked, then the answer
table is considered a valid certificate.

In order to retain the safety guarantees, the consumer, after receiving the pro-
gram together with the certificate from the supplier, can trust neither the code
nor the certificate. Thus, in the validation process, the consumer not only checks
the validity of the answer table received but it also (re-)generates a trustworthy
verification condition, as it is done by the supplier. The crucial observation in
our approach is that the validation process performed by the code consumer is
similar to the above certification process but replacing the fixpoint analyzer by
an analysis checker which does not need to compute a fixpoint. It simply checks

the analysis, using an algorithm which is a very simplified one-pass analyzer.
Intuitively, since the certification process already provides the fixpoint result as
certificate, an additional analysis pass over it cannot change the result. Thus,
as long as the answer table is valid, a single cycle over the code validates the
certificate.

We believe that our proposal can bring the expressiveness and automation
which is inherent to abstract interpretation-based techniques to the area of mo-
bile code safety. In particular, the expressiveness of existing abstract domains
will be useful to define a wider range of safety properties. Furthermore, in the
case of (C)LP the approach inherits the inference power and automation of the
abstract interpretation engines developed for this paradigm. A complete descrip-
tion of the method (and related techniques) can be found in [1].

References

1. E. Albert, G. Puebla, and M. Hermenegildo. An Abstract Interpretation-based
Approach to Mobile Code Safety. TR CLIP8/2003.0, T. U. of Madrid, Nov. 2003.

2. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. POPL’77,
pages 238–252, 1977.

3. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of
Constraint Logic Programs. ACM TOPLAS, 22(2):187–223, March 2000.

4. G. Necula. Proof-Carrying Code. POPL’97, pages 106–119. ACM Press, 1997.
5. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for CLP.

In Analysis and Visualization Tools for Constraint Programming, pages 23–61.
Springer LNCS 1870, 2000.

2


