
Memory Performance of AND-parallel Prolog

on Shared-Memory Architectures

M. Hermenegi ldo - M C C
E. Tick - Stanford Univers i ty

Abst rac t

The goal of the RAP-WAM AND-parallel Prolog ab­
stract architecture is to provide inference speeds signif­
icantly beyond those of sequential systems, while sup­
porting Prolog semantics and preserving sequential per­
formance and storage efficiency. This paper presents sim­
ulation results supporting these claims with special em­
phasis on memory performance on a two-level shared-
memory multiprocessor organization. Several solutions
to the cache coherency problem are analyzed. It is shown
that RAP-WAM offers good locality and storage effi­
ciency and that it can effectively take advantage of broad­
cast caches. It is argued that speeds in excess of 2 ML IPS
on real applications exhibiting medium parallelism can be
attained with current technology.

1 I n t r o d u c t i o n

The RAP-WAM execution model [10,11] is aimed at provid­
ing, through the use of parallelism, inference speeds to logic
programs beyond those attainable in sequential systems, while
supporting the conventional "don't know" non-deterministic se­
mantics of logic languages. Of the various sources of parallelism
present in Logic Programs [3] the RAP-WAM architecture ex­
ploits Goal Independence AND-parallelism [11], an extension
of DeGroot's Restricted AND-parallelism [4j which provides
backward execution semantics and improved execution graph
expressions.1 Sets of goals which are independent (i.e., which do
not share any non-ground variables, determined by a combined
compile-time, run-time analysis) are run in parallel. Parallelism
can be programmed by the user by annotating the program with
Conditional Graph Expressions (CGEs)2 or it can be generated
automatically by the compiler, through a combination of local
and global (abstract interpretation-based) analysis [17] which
often makes run-time independence checks unnecessary.

At the implementation level, the RAP-WAM architecture
is designed to exploit both parallelism and advanced compiler
technology. The techniques used for supporting parallel execu­
tion are extensions of those used in the Warren Abstract Ma­
chine (WAM)[15], which have already brought high inferencing
speeds to sequential Prolog systems. Special attention is given
to the preservation of WAM sequential performance and storage
efficiency, and to the use of low overhead mechanisms for con-

:The model is currently being extended to support OR-parallelism -using
techniques similar to those proposed by other researchers, see for example
[16,18] and their references- and a form of dependent AND-parallelism.

2CGEs offer Prolog syntax and permit conjunctive checks, thus lifting
limitations in the expressions proposed by DeGroot: given "f(X,Y,Z):-
g(X,Y), h(Y,Z) ." the most natural annotation for this clause, that g and
h can run in parallel if the terms in X and Z don't share variables and Y is
bound to a ground term, can be expressed easily with CGEs ("f (X,Y,Z) :-
(indep(X.Z), ground(Y) | g(X,Y) & h(Y.Z)).") but is very difficult
with DeGroot's expressions.

trolling parallel execution. Most of the WAM performance and
storage optimizations are still supported during parallel execu­
tion. The CGE semantics has been integrated naturally into the
WAM storage model in the form of specialized stack frames and
storage areas which are used during parallel execution. Thus
the default (sequential) model is that of a standard WAM ex­
hibiting the same high sequential performance.

The RAP-WAM architecture can be viewed as a collection
of abstract machines (workers) which cooperate in the execution
of a program. Each of these abstract machines is similar to a
standard WAM (featuring a complete set of registers and data
areas, called a Stack Set), with the addition of a Goal Stack
(used for on-demand scheduling), a Message Buffer, and two
new types of stack frames: Parcall Frames and Markers. Par-
call Frames coordinate and synchronize the execution of parallel
goals both during forward execution and backtracking. Mark­
ers delimit Stack Sections (horizontal cuts through the Stack
Set of a given abstract machine, corresponding to the execution
of one parallel goal) and they implement the storage recovery
mechanisms during backtracking[ll]. In practice, the stack is
divided into separate Control (Choice Point and Markers) and
Local stacks (Environments) for reasons of locality and locking.
Table 1 summarizes the types of objects allocated in these areas
and their locality. Space limitations make a complete descrip­
tion of the RAP-WAM execution model impossible. The reader
is referred to [11] for further details.

Frame ty pe
Envts./control
Envts . /P . Vars.
Choice points
Heap
Trail entries
PDL entries
Parcall F./Local
Parcall F./Global
Parcall F. /Counts
Markers
Goal Frames
Messages

area
Stack
Stack
Stack
Heap
Trail
PDL
Stack
Stack
Stack
Stack
G. Stack
M. Buff.

W A M ?
yes
yes
yes
yes
yes
yes
no
no
no
no
no
no

lock
no
no
no
no
no
no
no
no
yes
no
yes
yes

local i ty
Local
Global
Local
Global
Local
Local
Local
Global
Global
Local
Global
Global

Table 1: Characteristics of RAP-WAM Storage Objects

This paper presents simulation results for RAP-WAM sup­
porting the claims of performance and efficiency. Although an
evaluation of the implementation of the model on an existing
shared-memory machine (Sequent) is currently also under way
it only provides a single data point corresponding to a particu­
lar organization.3 In addition, many statistics are very difficult

Note also that the Balance model being used in this implementation
uses write-through caches, which will be shown later in this paper to be not
ideally suited for Parallel Prolog execution. Performance results from this
implementation will be reported on elsewhere.

to gather from running hardware. Simulations can provide data
over a wide range of architectural and organizational parame­
ters and that is the approach taken in this study. Because high
performance processing elements (PE's) are limited by available
memory bandwidth (an even more important factor in parallel
systems) this paper concentrates on memory performance.

The rest of the paper is organized as follows: results ob­
tained from high-level simulations of the architecture are first
summarized. A two-level shared-memory organization model
and alternative solutions to the cache coherency problem are
then proposed. Finally, RAP-WAM simulation results for the
different coherency protocols proposed are presented and dis­
cussed.

-emulation*
parameters.

Prolog + CGK*s^>

| Compiler |

Cparal le l WAM_cod£>

(Assembler) / Loader

Parallel WAM
emulator Debugge~r"|

G n n h d - i t a ^ C ^ " 1 0 1 7 t^3^> (''"'instrumentation
* ' " \ ^ ' ^ - - - — data .

Coherent cache simulators I

_. + J ~
(.'ache performance d a t a " ^

Figure 1: Simulation tools

2 Simulation Environment and High-level Results

A series of measurement tools have been built in order to eval­
uate the potential performance of the execution model and the
associated architectural tradeoffs (Figure 1). Because the RAP-
WAM model (as the WAM) is specified at a level above that of
memory organization, simulations were first performed under
the ideal assumption of a uniform, single shared-memory and
no contention. The measurements were thereby made indepen­
dent of the particular architectural organization on which the
model is implemented. The emulator generated instrumenta­
tion data such as instruction frequencies, number of references
classified by data areas, ratios of local vs. remote references,
maximum amount of storage used per area, estimated timings,
and speedups. Results from simulations at this level can be
found in [12,11] and can be summarized as follows:

The overhead in the RAP-WAM model due to the man­
agement of parallelism is low: it has, for example, been ob­
served to be in the order of 15% for up to 40 processors even
for fine granularity cases (i.e., high overhead cases) such as that
of the "deriv" benchmark, as shown in Figure 2. In this fig­
ure, work represents the number of references generated by all
PEs while doing actual processing (i.e., not waiting or idle).
Overhead, the difference between the work (references) done by
RAP-WAM and that of WAM, is in Figure 2 the distance be­
tween the work curve and the "uniprocessor" line corresponding

% Of
WAM 14°
work work (PWAM)

20 30 40

of processors

Figure 2: RAP-WAM Overheads for "deriv"

to WAM work. All data in this figure is presented as percentages
of WAM work (executing the sequential version of the bench­
mark). Note that RAP-WAM work on 1 PE is very close to
WAM work. Speedup (i.e. significantly faster execution than
a high-performance sequential implementation -WAM- for sim­
ilar performance PE's) is thus obtained even if the application
exhibits only low levels of parallelism. The stack-based mem­
ory management approach[ll] also appears to be very efficient
recovering local storage upon procedure exit (with last call op­
timization) and all storage on backtracking as in the WAM.

Although these results are encouraging, practical memory
organizations deviate from the ideal behavior assumed above
and it is thus important to assess the effect of this deviation
if realistic performance figures are to be obtained. This issue
is addressed in the next sections by quantifying the effect of a
particular memory organization with limited bandwidths, cache
coherence maintenance overhead, etc.

ntvrconiu'ction Network (Common/Hierarchical Bus)

Main (Shared)
Memory | r e d) |

| Memory I red)
Memory

Figure 3: The Two-Level Shared-Memory Architecture Model

3 Two-Level Shared-Memory Results

Figure 3 shows a practical shared-memory system presenting
a two-level structure where a local cache memory is located
between each PE and the system bus. Such a hierarchical orga­
nization, characteristic of many current shared-memory multi­
processors, serves a dual purpose: first, in allowing faster execu­
tion because of the generally lower effective memory access time
seen by a PE, essential in obtaining performance that is com-

18

petitive with that of sequential systems. Second, in absorbing a
(hopefully) significant part of the traffic to main memory which
needs to go through the system bus, particularly important in
shared-memory multiprocessors because the system bus is often
the most significant bottleneck in the system. The locality of
Prolog/WAM was shown by Tick[14]. In the next sections it is
shown that Prolog/RAP-WAM also offers sufficient locality to
take advantage of cache memories.

3.1 C a c h e C o h e r e n c y

Except for simple buffers which hold only local data, most of the
local memory designs used in conventional or special-purpose
sequential machines for the implementation of logic programs
(such as, for example, those used in [5] or those studied by
Tick[14]) cannot be used directly in a parallel machine because
of cache coherency problems. Coherent caches ensure that all
the PEs in the system have a consistent view of the storage
model. Although at certain times during the operation of RAP-
WAM coherency is not required, it appears that ensuring co­
herency continually is easier than enforcing coherency only at
specific points (and has the additional benefit of generality).
Therefore, traditional coherent caches are considered in this
study.

Historically, the first coherent caches[7], used a write-through
strategy, where all write references were issued to both the local
cache and shared memory, and copies residing on a cache other
than the cache issuing the write request were invalidated. This
coherency protocolis inexpensive in terms of hardware, but offers
low performance because of excessive traffic on the system bus.
Recently, a family of fully distributed broadcast cache protocols
have been proposed and built [8,1,2] which are based on the
ability of the cache organization to modify all copies of a cached
item in all caches which share this item in a single bus cycle.
Information is maintained for each cache block as to whether
it is private or shared, making it possible to avoid coherency
overheads for private blocks and implement write-back policies.
Different designs differ essentially in the treatment of a write
to a possibly shared block. A write-through broadcast strategy
updates remote copies and possibly shared memory. A write-in
broadcast strategy invalidates remote copies. Descriptions and
measurements of the relative performance of various broadcast
protocol attributes for conventional architectures are given in
Archibald[l].

The broadcast protocol offers high performance at the ex­
pense of additional hardware. With the objective of reducing
this expense by exploiting attributes of the RAP-WAM archi­
tecture, a (firmware) controlled hybrid cache protocol was devel­
oped. This scheme attempts to combine the efficiency of broad­
cast caches with the simplicity and low cost of a traditional
write-through cache using information provided by the PE (in
the form of tags, derived from the information in Table 1) as
to the locality characteristics of each reference. The protocol
is referred to as "hybrid" because based on these tags poten­
tially shared (global) data is written-through and local data is
copied back. An underlying tenet of the hybrid protocol is to
avoid some of the complexity of broadcast caches by keeping
shared memory consistent with local memory. The cost asso­
ciated with this simplification is the traffic required to wr i t e -
through to memory the write requests marked as global which
are not actually shared. The gain with respect to the tradi­

tional write-through approach is that data marked as local is
not written-through.

P a r a m e t e r
Instructions executed
References (RAP-WAM)
References (WAM)
Goals actually in / /

de r iv
33520
85477
82519
97

t a k
75254
178967
169599
263

q s o r t
237884
502717
499526
97

m a t r i x
95349
96013
95357
24

Table 2: Statistics for the Benchmarks Used (8 processors)

cache size
(w o r d s)

512
1024

Etr | trtr

l a rge b e n c h

0.164
0.108

0.0626
0.0569

(tr - E,r)/<T,r

d e r i v

1.1
2.0

tak
-1.9
-1.1

q s o r t

0.83
1.6

m e a n

1.3
1.6

Table 3: Fit of Small Benchmarks to Large Benchmarks

3.2 S i m u l a t i o n s

In order to compare the performance of the various types of
caches presented above, the RAP-WAM emulator was modified
to generate a trace file of memory references (Figure 1). These
references are marked with a PE identifier, a tag describing
the particular storage area and object being accessed, and a
read/write flag. All of the coherent cache models are simulated
with the same parameterized multiprocessor cache simulator [14]
which can be reconfigured to support the various consistency
protocols. Caches are modeled as fully associative memories
with perfect LRU replacement.

The results presented correspond to the execution of the fol­
lowing set of benchmarks: symbolic derivation ("deriv", which
finds the symbolic derivative of a given arithmetic expression),
Takeuchi ("tak", which computes Takeuchi's function), Quick­
sort ("qsort", written using difference lists), and Matrix Mul­
tiplication ("matrix", a naive matrix multiplication program).
Each benchmark was executed on relatively large input data.
Table 2 shows some statistics regarding the benchmarks used,
running on 8 PE's . Note that the number of references shows
reasonable size. These benchmarks and their input data were
chosen for several reasons: their small granularity (except for
"matrix") provides a worst-case type of analysis with respect to
parallelism management overhead. They also offer reasonable
degrees of parallelism so that the parallel portion of the abstract
machine is exercised. Also, their sequential memory referenc­
ing behavior and locality resemble those of much larger Prolog
programs, such as the ones studied by Tick[14]: table 3 shows
that the fit is quite good ensuring that the benchmarks exercise
the sequential storage model (the foundation of the RAP-WAM
storage model) in a reasonable, typical way.

Figure 4 shows the mean traffic ratios (as a function of total
cache size and averaged over the four benchmarks) of the write-
in broadcast, hybrid, and conventional write-through cache pro­
tocols, using four word lines. Caches of sizes 64, 128, and 256
words were simulated with no-write-allocate (a write miss does
not fetch the corresponding block to cache). Caches of sizes
512 and 1024 words were simulated with write-allocate, except
for hybrid caches which used no-write-allocate for 512 words.
These selections were made on the basis of the policy which
produced the lowest traffic. A clear result of the simulations
is that no-write-allocate is best for small caches; however, miss
ratio increases with no-write-allocate. Another result is that

broadcast

-Q-

-•-
-•-
- O -

1PE
2PE
4PE
8PE

~i 1 1 1 1 1 r
64 128 256 512 1024 2048 4096 8192

cache size in words

128 256 512 1024 2048 4096 8192
cache size in words

write-thru

128 256 512 1024 2048 4096 8192

cache size in words

Figure 4: Traffic of Coherency Schemes

a more efficient replacement policy (e.g., copyback) produced
lower traffic with write-allocate than a less efficient policy (e.g.,
hybrid) for the same cache size. The write-through broadcast
cache statistics (not shown in Figure 4) are almost identical to
those of the write-in broadcast cache, an indication that com­
munication traffic in RAP-WAM is low.

A result seen from the curves is that the hybrid cache does
quite well in reducing traffic, almost to the level of the copyback
cache. The copyback cache does exceedingly well for 1024 word
caches, and this trend is expected to continue with larger sizes,
because the hybrid caches have already bottomed-out. The id­
iosyncrasies in the curves are due to the effects of averaging
the benchmarks. Also, the advantageous effect (that of reduc­
ing memory traffic) of partitioning an algorithm's working set
across several caches is seen to sometimes outweigh the increase
in communication overheads. Lack of space makes it impossible
to offer many simulation results. See [12] for more details on
the benchmarks and simulations.

3.3 D i scus s ion

As stated before, the hierarchical memory organization serves
the dual purpose of lowering the effective memory access time
and reducing the memory bandwidth requirement of a PE. Ac­
cording to the results of the simulations presented in the previ­
ous section, the hybrid cache generates an amount of traffic be­
tween that generated by the broadcast and conventional write-
through caches. The broadcast schemes retain a (sometimes
slight) advantage throughout the range of caches simulated.

It should be noted that these results measure performance
only in terms of traffic ratio. For example, the simulation data
shows that eight PEs with write-in broadcast caches (of 128
words or greater) generate a traffic ratio of less than 0.3 (the
hybrid cache is also close to this performance); i.e. more than
70% of the traffic generated by the processors is captured in the
local memories and will not appear on the bus. However, in
order to accurately estimate the actual performance of a multi­
processor the time penalty to access shared memory due to con­
tention must also be analyzed. Although beyond the scope of
this paper a queueing model for this purpose is proposed in [14].
Results presented therein for RAP-WAM execution show that
with a relatively fast bus and an interleaved memory shared
memory efficiency can be high.

It is of obvious interest, if only to stimulate further research,
to speculate about the potential performance levels attainable
given the results presented in the previous sections. Even cur­
rent low- to medium-cost shared-memory systems offer high PE
to memory bandwidths by implementing multiple or overlapped
busses and interleaved memories. This makes it reasonable to
predict that speeds in the order of 2 million application* infer­
ences per second are possible on shared-memory multiprocessors
built using current technology.5 A "back of the envelope" cal­
culation, in order to justify this claim and based on the results
obtained from the present and previous studies can be made as
follows: studies of large Prolog benchmarks show that in the
average 15 (WAM or RAP-WAM) instructions are executed per
actual inference and that each instruction averages 3 (word) ref­
erences. This represents 45 words/LI, or 180 bytes/LI for a 32
bit word size. Therefore, a system executing at a speed of 2
MLIPS would require a cumulative memory bandwidth of 360
Mbytes/sec. If the caches are able to capture 70% of this traffic,
only 108 Mbytes/sec have to be delivered by the bus/memory
system, a performance which is perfectly achievable using cur­
rent off-the-shelf technology.6

4 Conclusions

The paper has presented memory referencing characteristics of a
parallel logic programming architecture, RAP-WAM, based on
Independent/Restricted AND-parallel execution of Prolog, and

"Application" inferences refer to inference steps of the average size
found in large Prolog programs, i.e. in the order of 15 WAM instructions.
This results in much lower but more realistic figures than those obtained
using the conventional "LIPS" measurement based on "naive reverse."

Note that the Japanese FGCS Project is also predicting similar infer-
encing speeds for the PIM[9].

6These conclusions, although resulting from more detailed simulations
than those presented in a related study by Fagin[6], are in disagreement
with Fagin's results and his contention that Prolog programs cannot effec­
tively make use of multiprocessing. The discrepancies are probably due to
differences in the execution mo'dels used and to the small size of the bench­
marks/data simulated by Fagin. They do agree, however, with those of Lin
[13].

its behavior and potential performance on shared-memory mul­
tiprocessor organizations. The measurements presented here
indicate that RAP-WAM is well-suited to high performance
execution on tightly-coupled shared-memory multiprocessors,
from cost-effective small-scale systems to higher-performance
medium-sized systems. It has been argued that actual speeds
of 2 Million application inferences per second are possible with
currently available technology for applications which exhibit
medium degrees of parallelism. It has been shown that the ar­
chitecture offers high memory referencing locality so that it can
take advantage of two-level memory organizations. The memory
referencing study included comparison of cache coherency proto­
cols and the "broadcast" and "hybrid" protocols were shown to
offer superior performance to write-through mechanisms, present
in some multiprocessors.

Because the memory organizations studied are characteristic
of many current and next-generation multiprocessors, it is ar­
gued that the results obtained are relevant to the estimation of
the performance of AND-parallel Prolog/RAP-WAM on them
and also to determining the advantages and shortcomings of
such machines in the parallel implementation of other don't—
know non-deterministic logic programming languages and mod­
els. In addition, the results can also be used as a guideline in
the design of small to medium-sized special purpose multipro­
cessors. Although the goal of small to medium systems may
seem rather unambitious, it is important to have evidence of
actual speedups at these levels before attempting the design of
large-scale systems. In the words of the adage, "Walk before
you run..."

[4] D. DeGroot. Restricted AND-Parallelism. In Interna­
tional Conference on Fifth Generation Computer Systems,
pages 471-478, November 1984.

[5] T. P. Dobry et. al. Performance Studies of a Prolog Ma­
chine Architecture. In 12th Int. Symp. on Comp. Arch.,
pages 180-190, December 1985.

[6] B. Fagin and A. Despain. Performance Studies of a Parallel
Prolog Architecture. In 14th Annual International Sym­
posium on Computer Architecture, pages 108-116, IEEE
Computer Society, June 1987.

[7] D. H. Gibson. Considerations in Block-Oriented Systems
Design. In AFIPS Conference Proceedings, pages 75-80,
Spring Joint Computer Conference, Academic Press, April
1967.

[8] J. R. Goodman. Using Cache Memory to Reduce
Processor-Memory Traffic. In 10th Annual International
Symposium on Computer Architecture, pages 124-131,
IEEE Computer Society, 1983.

[9] A. Goto. Parallel Inference Machine Research in FGCS
Project. In Proceedings of the First Japan-U.S. AI Sympo­
sium, pages 21-36, December 1987.

[10] M. V. Hermenegildo. An Abstract Machine for Restricted
AND-parallel Execution of Logic Programs. In Proceedings
of the Third International Conference on Logic Program­
ming, pages 25-40, Springer-Verlag, 1986.

[11] M. V. Hermenegildo. Independent AND-Parallel Prolog
and its Architecture. Kluwer Academic Publishers, Nor-
well, MA 02061, 1988.

[12] M. V. Hermenegildo and E. Tick. Memory Performance
of AND-Parallel Prolog on Shared-Memory Architectures.
Technical Report PP-036-88, Microelectronics and Com­
puter Technology Corporation (MCC), Austin, TX 78759,
January 1988.

[13] Y.-J. Lin. A Parallel Implementation of Logic Programs.
PhD thesis, Dept. of Computer Science, University of Texas
at Austin, Austin, Texas 78712, August 1988.

[14] E. Tick. Studies In Prolog Architectures. PhD thesis, Stan­
ford University, Stanford, CA 94305, June 1987.

[15] D. H. D. Warren. An Abstract Prolog Instruction Set.
Technical Report 309, SRI International, 1983.

References

[1] J. Archibald. High Performance Cache Coherence Proto­
cols For Shared-Bus Multiprocessors. Technical Report 86-
06-02, University of Washington, Seattle, WA 98195, June
1986.

[2] P. Bitar and A. M. Despain. Multiprocessor Cache
Synchronization. In ISth Int. Symp. on Comp. Arch.,
pages 424-433, June 1986.

[3] J. S. Conery. Parallel Execution of Logic Programs. Kluwer
Academic Publishers, Norwell, MA 02061, 1987.

[16] D. H. D. Warren. The SRI Model for OR-Parallel Ex­
ecution of Prolog—Abstract Design and Implementation.
In 1987 Symposium on Logic Programming, pages 92-102,
IEEE Computer Society, August 1987.

[17] R. Warren, M. Hermenegildo, and S. Debray. On the Prac­
ticality of Global Flow Analysis of Logic Programs. In Pro­
ceedings of the Fifth International Conference and Sympo­
sium on Logic Programming, August 1988.

[18] H. Westphal and P. Robert. The PEPSys Model: Combin­
ing Backtracking, AND- and OR- Parallelism. In Symp. of
Logic Prog., pages 436-448, August 1987.

