More Precise Yet Efficient Type Inference
for Logic Programs

Claudio Vaucheret and Francisco Bueno

Technical University of Madrid (UPM), Spain
{claudio,bueno}@fi.upm.es

Abstract. Type analyses of logic programs which aim at inferring the
types of the program being analyzed are presented in a unified ab-
stract interpretation-based framework. This covers most classical ab-
stract interpretation-based type analyzers for logic programs, built on
either top-down or bottom-up interpretation of the program. In this set-
ting, we discuss the widening operator, arguably a crucial one. We present
a new widening which is more precise than those previously proposed.
Practical results with our analysis domain are also presented, showing
that it also allows for efficient analysis.

1 Introduction

In type analyses, the widening operation has much influence in the results. If the
widening is too aggressive in making approximations then the analysis results
may be too imprecise. On the other hand, if it is not sufficiently aggressive then
the analysis may become too inefficient.

Widening operators are aimed at identifying the recursive structure of the
types being inferred. All widening operators already proposed in the literature
are based on locating type nodes with the same functors, which are possible
sources of recursion. However, they disregard whether such nodes come in fact
from a recursive structure in the program or not. This may originate an unnec-
essary loss of precision, since the widening result may then impose a recursive
structure on the resulting type in argument positions where the concrete pro-
gram is in fact not recursive. We propose a widening operator to try to remedy
this problem.

We present our widening operator for regular type inference in an analy-
sis framework based on abstract interpretation of the program. In order for the
paper to be self contained, we first revisit regular types (Section 2) and, in partic-
ular, deterministic ones. We focus on deterministic types for ease of presentation;
however, there is nothing in our widening which prevents it to be applicable also
to non-deterministic types. The abstract interpretation framework is set up in
Section 3. Section 4 reviews previous widenings in the literature, and Section 5
presents ours. In Section 6 experimental results are presented, and Section 7
concludes and discusses future work.

2 Regular Types

A regular type [3] is a type representing a class of terms that can be described
by a regular term grammar. A regular term grammar, or grammar for short,
describes a set of finite terms constructed from a finite alphabet F of ranked
function symbols or functors. A grammar G = (S,T,F,R) consists of a set of
non-terminal symbols 7, one distinguished symbol S € T, and a finite set R of
productions T' — rhs, where T' € T is a non-terminal and the right hand side
rhs is either a non-terminal or a term f(7%,...,T,) constructed from an n-ary
function symbol f € F and n non-terminals.

The non-terminals 7T are types describing (ground) terms built from the func-
tors in F. The concretization y(T') of a non-terminal T' is the set of terms deriv-
able from its productions, that is,

1Ty = |J (ks

(I'—rhs)ER
V(f(Th .- JTTL)) = {f(tb s atn) | t; € ’Y(Tz)}

The types of interest are each defined by one grammar: each T; is defined by
a grammar (T3, 7;, F,R;), so that for any two types of interest 77 and T3 on F,
Ti N T2 = (. Sometimes, we will be interested in types defined by non-terminals
of a grammar (T, 7T, F,R) other than the distinguished non-terminal 7. This is
formalized by defining a type T; € T as the grammar

(T AT € T | T, "5 T}, F, {(T — rhs) € R | T, S TH (1)

. R* . .
where all the non-terminals are renamed apart, — 5 is the reflexive and tran-

. h
sitive closure of *5'z and
reach .
T; —)RT]' lfsz' —R Tj orT; —nr f(...,Tj,...).

A grammar is in normal form if none of the right hand sides are non-
terminals. A particular class of grammars are deterministic ones. A grammar
is deterministic if it is in normal form and for each non-terminal T' the function
symbols are all distinct in the right hand sides of the productions for 7.

Deterministic grammars are less expressive than non-deterministic ones. De-
terministic grammars can only express sets of terms which are tuple-distributive;
informally speaking, which are “closed under exchange of arguments”. Le., if
the set contains two terms of the same functor, then it also contains terms with
the same principal functor obtained by exchanging subterms of the previous
two terms in the same argument positions. Basically, no dependencies between
arguments of a term can be expressed with deterministic grammars.

FEzample 1. Consider the type T denoting the set {f(a,b), f(c,d)}, which is non-
deterministic,

T— f(A,B) A—a C —c

T — f(C,D) B—b D—d

A deterministic type T" with a concretization which included v(T') would also
have to include {f(c,b), f(a,d)}, that is,

T"— f(AC,BD) AC —a BD — b
AC — ¢ BD — d

To facilitate the presentation non-terminals with a single production will often
be “inlined” and multiple right hand sides combined so that 7" above will be
written T — f(a,b) | f(c,d) and T' as

T' —s f(AC,BD) AC —sa|c BD —b|d

To be able to describe terms containing numbers and variables we introduce
two distinguished symbols num and any, plus an additional L. The concretiza-
tion of num is the set of all numbers, the concretization of any is the set of
all terms (including variables), and the concretization of L is the empty set of
terms. These symbols are non-terminals but they are considered terminals to the
effect of regarding a grammar as deterministic.

Let G be the set of all grammars, if T, T5 belong to G, the relation T} = Tr &
~v(T1) = v(T>») is an equivalence relation. The quotient set G/ = is a complete
lattice with top element any and bottom element L based on the relation of
containment, or type inclusion: for every T1,T, € G/ =, T) C Ty & ~(Ty) C
7(Ty). We will denote T; simply by T;.

The least upper bound is given by type union, (T} U T»), and the greatest
lower bound by type intersection, (Th MT») [3]. It can be shown that intersection
describes term unification:

t; - 'Y(Tl) /\t; - ’Y(Tg) At10 = t20 = (tlg)* - ’Y(Tl [l Tg)

where t* denotes the set of ground terms which are instances of the term ¢.

3 Abstract Domain for Type Inference

In an abstract interpretation-based type analysis, a type is used as an abstract
description of a set of terms. Given variables of interest {z1,...,z,}, any substi-
tution 8 = {z; + t1,...,2, + t,} can be approximated by an abstract substi-
tution {zx1 < Ty,,...,2n < T, } where t; € v(T3;) and each type T,, € G/ =.
We will write abstract substitutions as tuples (T1,...,T,), and sometimes also
abbreviate a tuple simply as 7.

Concretization is lifted up to abstract substitutions straightforwardly,

YT, ..., Tp)) ={ {z1 < t1,...,zn < tu} | ti € ¥(T3) }

as well as the equivalence relation =. Additionally, we consider a distinguished
abstract substitution L as a representative of any (T1,...,T,) such that there
is T; = L. Of course, y(L) = 0.

An ordering on the domain is obtained as the natural element-wise extension
of the ordering on types:

1cTn
(Th,..., T,y Z L
(Th,...,Tp) CTY,...,T)) = Vi<i<n T cCT}

The domain is a lattice with bottom element L and top element (Ti,...,T,)
such that Ty = ... = T, = any. The greatest lower bound and least upper
bound domain operations are lifted also element-wise, as follows,

lurmr=r"uylL=T"
(Ty,..., Ty U ({Ty,....,T))=(ThuTy,..., T, UT})

1l n7Tr=Trn L=_1
(T1,...,T,) N {1y,.... T}y =(TnTy,...,T,,NT}))

Using the adjoint a of v as abstraction function, it can be shown that
(2%, @, £2,v) is a Galois insertion, where © is the domain of concrete substi-
tutions and (2 that of abstract substitutions.

The following abstract unification operator can be shown to approximate the
concrete one. Let x = t be a concrete unification equation, with x a variable,t
any term, and T™ the current abstract substitution, and let y;, j = 1,...,m be
the variables of ¢, the new abstract substitution is:

amgu(T™, z = t) = T[T, /i Ty [Thy, - Ty /T] (2)
with each T replaced by T" in the tuple, T), = T, Mtp, p = {y1 + Ty, .1 Ym
Ty,.}, and solve(t,T;) = {y1 = T,,,...,ym = T, }, a set of equations that
define the types of the variables of a term ¢ € y(7T,), obtained as:

{t=T} if ¢ is a variable
solve(t,T) = U U solve(t;, T;) if tis f(t1,...,tn)

T f(Th,...; Tn) i=1,..m

In this abstract interpretation-based setting, analysis with a monotonic se-
mantic function can be easily shown correct. However, it is not guaranteed to
terminate, since (2 has infinite ascending chains. To guarantee termination, a
widening operator is required.

Ezxample 2. Consider the following program which defines the regular type lists
of lists of numbers:

list_of_lists([]). num_list([]).
list_of_lists([L|Ls]):- num_list([N|Xs]):-
num_list (L), number (N) ,

list_of_lists(Ls). num_list(Xs).

For the argument of num_list, without a widening operator, an analysis would
obtain the following first three approximations:

To— [T —[]|.(oum,To) To — [| .(num,Ty)

where each T; represents a list of 4 numbers. Analysis will never terminate, since
it would keep on obtaining a new type representing a list with one more number.
A widening operator would be required that over-approximates some type 7; to
something like

T, — [| -.(num, T;)

which is the expected type, and allows termination of the analysis.

4 Widenings

The widening operation is required to guarantee that an analysis terminates
when the abstract domain has infinite ascending chains as is the case of regular

types.

Functor Widening This is probably the simplest widening operator which still
keeps information from the recursive structure of the program that “produces”
the corresponding terms. The idea behind it is to create a type and a produc-
tion for each functor symbol in the original type. All arguments of the function
symbols are replaced with the new types [10].

Ezxample 3. Consider predicate list_of_lists of Example 3.2, its argument
should ideally have the following type:

Ty — [(11, Tu) Ti — [] .(num,T))
but the functor widening will yield

T — [| num | .(T,T)

Type Jungle Widening A type jungle is a grammar where each functor always
has the same arguments. It was originally proposed as a finite type domain [9] ,
since in a domain where all grammars are of the type jungle class all ascending
chains are finite. However, it can be used as a subdomain to provide a widening
operator.

Example 4. Applying this widening to the previous type T}, the following will
be obtained:

T—[|.h,T) Th — [| pum | .(T1,T)

Note that this widening is strictly more precise than the functor widening. In
the example, the new type captures the upper level of lists, but it loses precision
when describing the type of the list elements. This is due to the restriction of
forcing functors to always have the same arguments.

Shortening A grammar can be seen as a graph where the nodes correspond to the
non-terminals (or-nodes) and to the right hand sides of productions (and-nodes),
and the edges correspond to the production relation or the relation between a
functor and its arguments in a right hand side of a production. Given an or-node,
its principal functors are the functors appearing in its children nodes.

Ezample 5. The type Ty; of the previous examples can be seen as the graph:

[]
@/

\JI/ rgl

Gallagher and de Waal [6] defined a widening which avoids having two or-
nodes, which have the same pr1nc1pal functors, connected by a path. If two such
nodes exist, they are replaced by their least upper bound.

num

Example 6. In the above example graph, nodes Tj; and T} have the same principal
functors ([] and .) so that they are replaced, yielding:

T—1[]|.(Th,T) T — [| num | .(num,T)

Note the precision improvement with respect to the result in the previous
example. Note also that still the result is imprecise.

Restricted Shortening Saglam and Gallagher [11] propose a more precise variant
of the previous widening. Shortening is restricted so that two or-nodes T' and T"
which are connected by a path from T to T” and have the same principal functors
are replaced only if 7' C T'. If this is the case, only T’ needs be replaced, since
the least upper bound is T’

Example 7. Continuing previous examples, since nodes Tj; and 7; have the same
principal functors but 7; £ Ty, the widening operation will make no change. In
this case, the most precise type is achieved.

Note, however, that restricted shortening does not guarantee termination in
general (and thus, it is not, strictly speaking, a widening). There are cases in
which analysis may not terminate using only this widening operator [10].

Depth Widening Janssens and Bruynooghe [8] proposed a type analysis in which
the widening effect is achieved by a “pruning” of the type depth up to a certain
bound. A parameter k establishes the maximum number of occurrences of a func-
tor in-depth in a type. The idea is similar to the well-known depth-k abstraction
for term structure analysis. The resulting type analysis uses normal restricted
type graphs, which are basically deterministic types satisfying the depth limit.
Obviously, precision of this analysis depends on the value of the parameter k.

Ezxample 8. The widening of our previous type Ty with k=1 will yield the same
result than the functor widening (Example 4.3), whereas with k=2 will yield the
same result as restricted shortening (Example 4.7).

Topological Clash Widening Van Hentenryck et al. [12] proposed the first widen-
ing operator that takes into account two consecutive approximations to the type
being inferred. After merging the two —i.e., calculating their least upper bound,
the result is compared with the previous approximation to try to “guess” where
the type is growing. This is done by locating topological clashes: functors that
differ or appear at different depth in each type graph. The clashes are resolved
by replacing them with the recently calculated least upper bound.

Example 9. Consider the program:

sorted([]).
sorted([_X]).
sorted([X,Y|L]):- X =< Y, sorted([Y|L]).

and the moment during analysis when the final widening is performed. The
resulting type for the argument of sorted/1 is the one on the left below for the
first two clauses, and the one on the right for the last one:

To — [] | -(any,[]) 71 — .(num,.(num, T;))
Ty — [] | -(num, T;)

Their least upper bound is T, on the left below, which exhibits a clash with T
in the second argument of functor ./2. Thus, the result of widening is T}:

T, — [| -(any,T;) Ts —[] | -(any,Ts)

All widening operators are based on locating recursive structures in the type
definitions where there are nodes with the same functors. This may originate an
unnecessary loss of precision, since the widening may impose a recursive structure
on the resulting type in argument positions where the concrete program is in
fact not recursive. In the following section we present a new widening operator
that tries to remedy this problem.

5 Structural Type Widening

In this section we define an extended domain for type analysis which incorpo-
rates a widening operator aimed at improving the precision of the analysis. The
domain is defined so as to keep track of information on the program structure, so
that recursion on the types produced by the analysis is imposed by the widening
operator only in the cases where it corresponds to a recursive structure in the
program being analyzed. To this end, type names will be used.

A type name is roughly a (distinguished) non-terminal that represents a type
produced during the analysis. Type names are created for each variable in each
argument, of each variant of each program atom for each predicate (note how
this is different from, for example, set-based analyses [1], where variants are not
taken into account).

Type names provide information on how types are being formed from other
types during analysis. This makes it possible to precisely identify places where

to impose recursion on the types: in a subterm of the type which happens to
refer to the name of that type. To this end, type names contain references to the

position of its constituent types. To determine positions, selectors are used, as
defined below.

Definition 1 (selector). Define t/s, the subterm of a concrete term t refer-
enced by a selector s, inductively as follows. The empty selector € refers to the
term t, that is, t/e = t. If t/s = t', t' is a compound term f(t1,...,t;i,...,tn)
(where f is an n-ary function symbol) then t/s- (f.i) =1t;, 1 <i < n.

For every two selectors s, p, if t/s = t' and if ¢'/p exists then t/s-p =t'/p.
The initial € of a non-empty selector will often be omitted, so €-p will be written
simply as p.

We define a set of type names A such that N NG = 0 and a set 2V*9 of
relations X € 2V*9 between type names and types, of the form X C N x G.

Definition 2 (label). Let X' a relation between type names and types. Given a
type name N, a selector s, and a type name N', a tuple (s, N'} is a label of N
iff (N,T)€ X, (N', T") € X, and T' C T/s.

Labels of a type name N indicate subterms of the type T" defining N where
other type names occur.

Ezample 10. Let a relation X such that {(4,71),(B,T2)} C X, and let gram-
mars (11,71, F,R1) and (T», T2, F, R2), such that the only rule for T} is (T3 —
f(b)) € Ry and (T — g(c,T3)) € Ra, (Tz — b | f(b)) € R2. Consider a label
{(9-2), A) of B. We have that Ty C T»/(9.2) = Ts.

Definition 3 (type descriptor). Let G a set of types (regular term grammars),
N a set of type names, and X C N x G. A type descriptor is a tuple (N, E,T)
where N e N, T e G, (N,T) € X, and E is a set of labels of N.

In the new domain, type descriptors will be used instead of types. Let D
be the set of all type descriptors from given sets of types G and of type names
N. Concretization is defined as y((N, E,T)) = v(T). The domain ordering and
operations on D are the same as on G except for type names. In this case, they
have to take into account the possible labels of the type name.!

Inclusion (Nl,El,Tl) C (NQ,EQ,TQ) & T CToNE CEs.
Union (N, E,T) = (Nl,El,Tl) (] (NQ,EQ,TQ) T = T1 L T2 ANE = E1 U EQ.

Intersection (N, E, T) = (Nl,El,Tl)ﬂ(NQ,EQ,TQ) T = T1|_|T2/\E = E1UE2.

! Note that these operations do not manipulate the type names: they are assigned
independently during analysis. In particular, the name N of the type resulting from
union and intersection is always a new name.

Again, we may be interested in types defined by non-terminals other than
the distinguished non-terminal T' of a grammar (7,7, F,R). A type descriptor
(N;, E;, T;), where T; € T, is formally defined from (N, E,T) as follows: Tj is
the grammar of Equation 1, N; is a new type name, and

E;={(p,N') | (s -p,N'y € EAT/s = T}}.

Abstract substitutions for variables of interest {x1,...,2,} are now defined
as tuples of the form ((N1, E1,Ty,),- -, (Nn, En, Ty,)). Concretization and the
domain ordering and operations are lifted to abstract substitutions element-wise,
in the same way as in Section 3, including the widening operator defined below.
If now {2 is the domain of type descriptors, it can be shown that (22, a, £2,7) is
a Galois insertion, where « is the adjoin of . Abstract unification is defined as
in Equation 2, but using type descriptors instead of types. During unification,
all type names in the “input” abstract substitution 7" to amgu are preserved;
in the labels, the selectors for those names are changed so as to refer to the
resulting type graph instead of to that of T™.

Definition 4 (structural widening). The widening between an approzima-
tion T» to type name N and a previous approzimation Ty to N is (N, E1,T1) v
(N,E5,T5) = (N,E; U E»,T), such that T is defined by (T,T,F,R) where
T={T; | T —% T:}, and R is obtained by the following algorithm:

T' := Ty UT, defined by (T, 7", F,R')

S:={s|(s,N) € By UE>}

Seen :=)

for each (T" — f(A1,...,4,)) € R' add to R production
T — f(widen(A;,R',(f.1)),...,widen(4,,R’', (f-n)))

widen(N, R/, Sel) :
if N = any return any
if IM (N, M) € Seen return M
let M a new non-terminal
Seen := SeenU {(N, M)}
for each (N — f(4i,...,A,)) € R' add to R production
M — f(widen(A;,R’,Sel-(f.1)),...,widen(A,,R',Sel - (f-n)))
if Sel € S then
add to R production M — T
return M

Structural widening basically identifies subterms of the new type Ty LI Ty
where a reference to the type IV being widened appears, and makes this “self-
reference” explicit in the definition of the new type. Note that the widening
operation starts with the least upper bound and, basically, adds new grammar
rules to that type. Therefore, the result is always a correct approximation of such
an upper bound. This justifies its correctness. Moreover, this approach based
on type names is potentially more precise than any of the previous widening
operators discussed, as the following examples show:

Exzample 11. Consider program sorted in Example 4.9. A top-down analysis
with topological clash was roughly described there. Let us now look at analysis
using restricted shortening. The resulting type happens to be the same one.

Analysis of program atom sorted ([Y|L]) approximates variable Y always as
num, both in the calls and in the successes. The first two success approximations
for variable L are [] and .(num, []). Their lub (and widening) is:

T — [| -(num,[))

The next approximation to the type of L is .(num, 7). Its lub with T} is T, —
[] | -(num,T}), and since T» and T; have the same functors, and T; is included
in Ty, the widening of T5 is:

T3 — [] | .(num,T3)

i.e., list of numbers. The next approximation to the type of L is .(num, T3) (i.e.,
a list with at least one number). It is included in T3, so fixpoint is reached.

The success of principal goal sorted(X) is approximated after analyzing the
two non-recursive clauses by 7y — [] | .(any,[]). Analysis of the third clause
yields .(num, .(num, T5)). Its lub with T4 is Ts — [] | .(any,T3). The widening
of Ty finds that T5 and T3 have the same functors and T3 C T, since num C
any. Thus, the result of widening is:

Ts — [] | -(any, Ts)

i.e., list of terms. This is the final result after one more iteration. Note that the
information about successes where the tail of lists of length greater than one is
a list of numbers is lost.

Let us now consider structural widening. Analysis of atom sorted([Y|L])
always approximates the type of Y by (Ni3,), num). For variable L the two first
approximations are (N14,0,[]) and (N4, E14, .(num, [])), where the set of labels
is Big = { (°.7.1,N13), (°.7.2,N14) }. The result of widening is (N14, E14,T1)
where T} is defined as:

71 — [] | -(num,Ty)

i.e., list of numbers. This is the final result after one more iteration.

The success of principal goal sorted(X) is approximated after analyzing the
two non-recursive clauses by (N3, 0, T>) where T — [] | .(any, []). Analysis of
the third clause yields (N3, E3, .(num, .(num, 77))), where

E;={(.72-2.71,Ny3), (*.7.2-7.7.2,N14) }
Its widening with the previous approximation Ty is (N3, E3,T3), where
Ts — (] | -(any, T1)

which amounts to their lub, since the widening operator does not produce any
change, because N3 is not among its own labels. Therefore, the final result, after
one more iteration, is T3, where indeed lists of length greater than one have a
tail which is a list of numbers.

However, structural widening does not guarantee termination. It is effective
as long as the new approximation is built from the previous approximation of
the type being inferred. This case is identified, in essence, by locating a reference
to the type name of the previous approximation within the definition of the new
one. However, there are contrived cases in which a type is constructed during
analysis which loses the reference to the previous approximation. In these cases,
a more restrictive widening has to be applied to guarantee termination.

Example 12. Consider the program:

main:- p(a). p(a). q(a,f(a)).
p(X):- q(X,Y), p(V). q(£(2),£(L)):- q(Z,L).

The calling substitution for atom p(Y) is the sequence

T — f(a) To — f(f(a)) T3 — f(f(f(a)))

whereas the type T — f(a) | f(T) correctly describes such calls. However, the
analysis is not able to infer such a type.

The problem in the above example is that none of the approximations T;
contains a reference to the previous approximation. This is originated in the
program fact for predicate q/2 which causes the loss of the reference to the
previous approximation because of the double occurrence of constant a.

In our analysis, termination is guaranteed by a bound on the number of times
the widening operation can be applied to a type name. A counter is associated to
each type name, so that when the bound is reached a more restrictive widening
that guarantees termination is applied.

6 Analysis Results

We have implemented analyses based on most of the widenings discussed in this
paper, including structural widening. The implementation is in Prolog and has
been incorporated to the CiaoPP system [7], which uses the top-down analysis
algorithm of PLAI The analysis of [6], based on regular approximations, which
uses a bottom-up algorithm, is also incorporated into the system. This analysis
uses shortening. We want to compare the top-down and bottom-up approaches
with the same widening and similar implementation technology,? as well as the
precision and efficiency, within the same analysis framework, of the widening
operators previously discussed.

We have used two sets of benchmark programs: the one used in the PLAI
framework and that used in the GAIA [2] framework. A summary of the bench-
marking follows. The analysis times in miliseconds are shown in Table 1. The
first column (rul) is for the regular approximation analysis and the other three
for the PLAI-based analyses: column short for shortening, column clash for
topological clash, and column struct for structural widening.

% Similar in the programming technique. Of course, the regular approximation method

is rather different from the method of program interpretation on an abstract domain:
Evaluating this difference is part of the aim of the comparison.

||Pr0gram|| rul |short|c1ash|struct||

aiakl 568| 469 529 900
bid 1480| 2209| 2529| 4730
boyer 3450| 3890| 4989| 9629
browse 758| 380| 389 539

€S-0 3840| 1889| 2689| 2580
cs.r 18549(10720|24479| 19560
disjr 4468| 1819 6399 2440

gabriel 1549| 1430 1870 1760
grammar|| 330| 160 160 190
hanoiapp| 620{ 719| 1889| 1150
kalah r 1520 79 79 89
mmatrix 310{ 190 209 119

occur 380f 219 330 289
palin 590 840| 980 850
pg 839| 2020 2980 3990
plan 1138| 819 960 1009
progeom || 979| 1840 2530 3640
gsort 310| 590{ 659 680

gsortapp 369 1000 2898 1210
queens 329| 179| 190 180

query 720, 360| 370 410
serialize 478| 810| 969 899
witt 2929| 4890 1399| 1169
zebra 560(3490(14958| 12830

Table 1. Timing results

Table 2 shows results in terms of precision. The precision of struct is never
improved by any of the others. The improved precision of struct has been
measured as follows. The left subcolumns under rul, short, and clash show
the number of types with a more precise definition inferred by struct. The
right subcolumns show the number of types where the previous ones appear
(and are thus, also, more precise). The former are types directly inferred from
program predicates; the latter are types which are defined from the former, due
to the data flow in the program.

The following conclusions can be drawn from the tables. First, the regular
approximation approach seems to behave better in terms of efficiency than the
program interpretation approach, at least for the bigger programs. This conclu-
sion, however, has to be taken with some care, since the current implementation
of rul performs some caching of the type grammars that the PLAI-based analy-
sis does not. This should be subject of a more thorough evaluation, which is out
of the scope of this paper. The fact that it improves in bigger programs seems
to suggest that the effect of this caching is most surely not negligible.

Regarding the analyses based on program interpretation, it can be concluded
that the better the precision the worse the efficiency: short takes less than

||Program|| rul ||short||c1ash||

aiakl 1| 1)1 1
bid 9(12|(9 12
cS_0 4(18]||4| 18(|2| 9
cs.r 4(28](4| 28(|2| 19
disj.r 6(13|(6| 13
mmatrix||2| 2|2 2
occur 1| 1)1 1
palin 2| 4|2 4
pg 1 1|1} 1
gsort 1| 1j)1 1
serialize ||2| 4|2 4
zebra 3| 3||3] 3|1 1

Table 2. Precision results

clash, and this one takes less than struct; this one is more precise than clash,
which is more precise than short. This conclusion seems evident at first sight,
but it is not: in analysis, an improvement in precision can very well trigger an
improvement in efficiency. This can also be seen in the tables in some cases, the
most significant probably being zebra. Overall, one can arguably conclude that
the efficiency loss found is not a high price in exchange for the gain in precision.

We have also carried out another test. For practical purposes, the CiaoPP
system includes a back-end to the analysis that simplifies the types inferred,
in the sense that equivalent types are identified, so that they are then reduced
to a single type. This facilitates the interpretation of the output. It is the case
that the structural widening includes certain amount of type simplification, so
that the analysis creates less different types which are in fact equivalent. For
this reason, we have included the same tests as above, but adding now the times
taken in the back-end simplification phase.

The times including the simplification are shown in table 3. The columns
read as before. It can be seen that in this case structural widening outperforms
all of the other analyses, except, in some cases, rul.

It also can be observed that rul behaves usually better than short also when
simplification is included. This seems to suggest that incorporating our widening
into the regular approximation approach would probably give the best results in
practice.?

7 Conclusions

We have presented a new widening operator on regular types within an abstract
interpretation-based characterization of type inference. The idea behind it is
similar to set-based analyses [4, 1] in that we assign and fix type names, but it

3 This, however, may not be trivial. It is subject for future work.

||Pr0gram || rul | short | clash |struct||

aiakl 697 3009| 3738 1409
bid 2899| 31278| 35949| 15259
boyer 19620(201169|206917| 92117
browse 987 2848| 2987 1698

€S-0 11958| 17389 32959| 4878
cs.r 50760(303430(238788| 30169
disjr 6508| 18598 26077 6408

gabriel 2098| 13388 22379| 5208
grammar| 759 3169 3169| 1279
hanoiapp|| 840{ 3988| 13738| 3378
kalah_r 2069| 1187| 1188 888
mmatrix || 757| 1769 2078 488

occur 530 1647 2628 767
palin 997 8520 11878 2180
pg 1349| 15380(22870| 7370
plan 1587| 6167 6559 2288
progeom || 1358| 12800 17598 6679
gsort 520| 3439 4168| 1409

gsortapp 569| 7789 9669 2900
queens 457| 1128| 1138 429
query 1627| 22458| 22788| 11818
serialize 937| 8429 11957| 2217
witt 3438|188419| 42699| 25709
zebra 717| 55100|189949| 44540

Table 3. Timing results (including simplification)

is applied here with more generality. The most comparable aproach among the
set-based analyses would be [5]. It can be seen as a generalization of the idea of
“guessing” the growth of the types during analysis which is behind [12]. Instead
of guessing, our technique determines exactly where the type is growing. The
resulting widening operator has been presented on deterministic regular types.
However, its extension to non-deterministic regular types should be straightfor-
ward.

Our operator is more precise than previous approaches, but it is still efficient.
This has been shown with (preliminary) practical results. However, it does not
guarantee termination. We are currently working on the non-termination prob-
lem. A moded type domain will help in this. The idea is to enhance abstract
unification so that it is able to identify the “transference” of type names from
the input to the output types, so that the names are not dropped. This will rem-
edy the problem of Example 12 and, hopefully, allow us to prove termination of
analyses with the proposed widening operator.

Finally, this work has revealed two issues that may be worth investigating
for practical purposes: the impact on the efficiency of analysis of the different

implementation techniques for different analysis methods, on one hand, and of
the simplification of types, on the other hand.

Acknowledgements

We would like to thank John Gallagher for very useful discussions, and Pedro
Lépez for his help with the implementation and the availability of his library on
type manipulation. This work has been partially supported by Spanish MCYT
project EDIPTA TIC99-1151 and by EU funded projects AMOS IST-2001-34717
and ASAP IST-2001-38059.

References

1.

10.

11.

12.

W. Charatonik, A. Podelski, and J.-M. Talbot. Paths vs. Trees in Set-based Pro-
gram Analysis. In Principles of Programming Languages, pages 330-338. ACM
Press, January 2000.

B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. ACM Transactions on Programming
Languages and Systems, 16(1):35-101, 1994.

P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In
F. Pfenning, editor, Types in Logic Programming, pages 157-187. MIT Press, 1992.

. T. Friwirth, E. Shapiro, M.Y. Vardi, and E. Yardeni. Logic Programs as Types

for Logic Programs. In Proc. LICS’91, pages 300-309, 1991.

J. Gallagher and G. Puebla. Abstract Interpretation over Non-Deterministic Finite
Tree Automata for Set-Based Analysis of Logic Programs. In Fourth International
Symposium on Practical Aspects of Declarative Languages, LNCS, pages 243-261.
Springer-Verlag, January 2002.

J.P. Gallagher and D.A. de Waal. Fast and Precise Regular Approximations of
Logic Programs. In Pascal Van Hentenryck, editor, Proc. of the 11th International
Conference on Logic Programming, pages 599-613. MIT Press, 1994.

M. Hermenegildo, F. Bueno, G. Puebla, and P. Lépez-Garcia. Program Analy-
sis, Debugging and Optimization Using the Ciao System Preprocessor. In 1999
International Conference on Logic Programming, pages 52—66, Cambridge, MA,
November 1999. MIT Press.

G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Values of Pro-
gram Variables by means of Abstract Interpretation. Journal of Logic Program-
ming, 13(2 and 3):205-258, July 1992.

T. Lindgren and P. Mildner. The Impact of Structure Analysis on Prolog Compila-
tion. Technical Report 140, Computing Science Departament, Uppsala University,
April 1997.

P. Mildner. Type Domains for Abstract Interpretation: A Critical Study. PhD
thesis, Computing Science Department - Uppsala University, 1999.

H. Saglam and J. Gallagher. Approximating Logic Programs Using Types and
Regular Descriptions. Technical Report CSTR-94-19, Department of Computer
Science, University of Bristol, Bristol BS8 1TR, 1994.

P. Van Hentenryck, A. Cortesi, and B. Le Charlier. Type Analysis of Prolog Using
Type Graphs. Journal of Logic Programming, 22(3):179-209, 1995.

