
Energy Consumption Analysis and Verification

using CiaoPP1

P. Lopez-Garcia1,2, M.V. Hermenegildo1,3, M. Klemen1,3 and U. Liqat1,3

1 IMDEA Software Institute
2 Spanish Council for Scientific Research (CSIC)
3 Universidad Politécnica de Madrid (UPM), Departamento de Inteligencia Artificial

{pedro.lopez,manuel.hermenegildo,maximiliano.klemen,umer.liqat}@imdea.org

Energy consumption and the environmental impact of computing technologies have become

important concerns. There is increased demand for complex computing systems which have to

operate on batteries or harvested energy, such as implantable/portable medical devices, space

systems, mobile phones, and other Internet of Things devices. At the same time, energy con-

sumption is also an important problem in high-performance computing and data centers.

Despite advances in power-efficient hardware, more

energy savings can be achieved by improving the soft-

ware. The estimation of the energy that program execu-

tions will consume is instrumental for program optimiza-

tion and verification, and energy-aware software devel-

opment in general. Performing such estimation stati-

cally (i.e., at compile-time, without running the program

with concrete data) is much more useful than perform-

ing it dynamically, and is required in many interesting

cases. However, this poses important challenges.

We have been developing an approach for: a) esti-

mating such energy consumption statically in the form

of functions on the input data sizes of procedures (and

possibly other hardware-dependent parameters, such as

clock frequency and voltage), and b) using such functions for verifying and finding errors with

respect to a rich class of energy consumption specifications for programs. The approach has

been implemented within the CiaoPP system. The purpose of this note is to provide a brief in-

troduction to this work and the results obtained so far, as well as pointers to the corresponding

papers, that provide the relevant details.

A fundamental observation is that determining program energy consumption requires the

analysis of low-level program representations, i.e., at the level of Instruction Set Architecture

(ISA), bytecodes, etc. This is because the necessary information regarding the energy-consuming

operations really performed by the program is only present with sufficient accuracy at those levels.

Our approach to the analysis and verification of energy consumption [22, 11, 16, 10, 8] is based

1 The research leading to these results has received funding from the European Union 7th Framework Pro-

gramme under grant agreement no 318337, ENTRA - Whole-Systems Energy Transparency, Spanish MINECO

TIN2015-67522-C3-1-R TRACES project, and the Madrid M141047003 N-GREENS program.

1



on a transformation of these low-level programs into a set of Horn clauses [20, 6]. These

Horn clauses encode the semantics of such low-level programs through different abstractions

determined by the set of abstract domains used. Such abstract domains approximate properties

that are instrumental for energy analysis, such as sized types [25], determinacy [12, 13], or non-

failure [4, 1], as well as of course the cost / energy consumption itself. An interesting aspect

of our approach to energy analysis (and to cost analysis in general), and which contrasts with

previous approaches to cost analysis, is that it is based directly on abstract interpretation [26].

As is usual in abstract interpretation of logic pro-

grams, given such a set of Horn clauses, the objective

of our analysis is to compute their abstract minimal

model for each abstract domain or combination of do-

mains. For this purpose we use the PLAI analyzer of

the CiaoPP system [7]. PLAI computes this abstract

minimal model using a top-down, memo table-based fix-

point algorithm, which can be seen as an extension of a

highly optimized SLDT resolution engine with the ab-

stract domains taking the traditional role of constraint

domains in the logic. This extended abstract tabling algorithm includes optimizations for fixpoint

acceleration such as dependency tracking or dynamic strongly-connected component detection.

It is incremental and, in contrast to bottom-up algorithms (also available in CiaoPP), multi-

variant (context sensitive). The result of the abstract model computation –the analysis– is a

set of memo tables which store all the abstract call-success pairs that occur in the program,

as well as dependencies between them. In the case of energy analysis these entries contain, for

each procedure, and for each possible abstract call state and path, a function that returns the

corresponding energy consumed by that procedure and class of calls, as a function of input data

sizes.

This work builds on our earlier work on cost analysis, initially developed for granularity control

during automatic program parallelization [2, 18, 17], which was later extended for inferring

both upper- and lower-bound functions [3, 5], and generalized for a wide class of user-definable

resources [24, 23]. This configurability of the system allowed us to specialize it for execution

time analysis [21] (using bytecode-level models obtained by regression), and is instrumental in

the energy application for representing low-level energy models.

In particular, we have applied this approach and

its implementation in CiaoPP to the energy analysis

of (X)C programs running on the XMOS XS1-L archi-

tecture, both specialized for embedded programs. We

have also performed a set of experiments comparing the

energy analysis estimations for such programs to the

actual energy consumption measured on the hardware,

obtaining promising results [11, 10, 8, 9]. Embedded

software developers can use this tool for determining

values for program parameters that ensure meeting a

given energy budget while minimizing losses in quality of service [16].

2



B1 
------ 
------ 

B2 
------ 
------ 

B3 
------ 
------ 

B4 
------ 
------ 

B5 
------ 
------ 

Energy	
  model at the	
  
instruction level	
  

B7 
------ 
------ 

B6 
------ 
------ 

In these experiments several different energy models have been

used. In [11, 10] the energy models used encoded energy consump-

tion information for each ISA or LLVM instruction. Our results con-

firm that energy models at lower levels (e.g. ISA) are more precise

than at higher levels (e.g., LLVM), but also that at lower levels more

program structure and data structure information is lost, which can

imply a loss of accuracy in the analysis. In our results the LLVM

level emerges as a good compromise.

B1 
------ 
------ 

B2 
------ 
------ 

B3 
------ 
------ 

B4 
------ 
------ 

B5 
------ 
------ 

Energy model at the 
basic-block level	
  

B7 
------ 
------ 

B6 
------ 
------ 

We have also explored using models of the energy consump-

tion of whole blocks (i.e., block-level energy models) [8, 9]. Our

approach combines static and dynamic (profiling-based) techniques

for the inference of safe energy bounds of blocks. The dynamic

technique uses an evolutionary algorithm to determine bounds on

the energy consumption of each basic block. The CiaoPP static an-

alyzer is then used to combine the energy values obtained for such

blocks according to the program control flow, and produce energy

consumption bounds of the whole program.

Our tools also perform verifica-

tion and (performance) error detec-

tion following the CiaoPP assertion

model [7, 15]. To this end, the

inferred abstract models of energy

consumption are compared to the

energy specifications. This can op-

tionally be done during the analy-

sis or after it. In our approach

specifications can include both lower

and upper bounds on energy usage,

and they can express intervals within

which energy usage is to be certified

to be within such bounds. The bounds of the intervals can be given in general as functions on

input data sizes. Our verification system can prove whether such energy usage specifications

are met or not. It can also infer the particular conditions under which the specifications hold.

To this end, these conditions are also expressed as intervals of functions of input data sizes,

such that a given specification can be proved for some intervals but disproved for others. The

specifications themselves can also include preconditions expressing intervals for input data sizes.

Note that the type of information to be inferred by the analysis is motivated by its final use:

program optimisation, verification, helping energy-aware software developers to make design

decisions, etc. For example, for optimization the analysis can infer probabilistic information [27].

For verification, safe approximations (upper and lower bounds) need to be inferred [14, 15, 16],

which poses some challenging problems. When the goal of the analysis is helping developers

make resource-related design decisions, what is really needed is information that helps identify

the parts (e.g., procedures) of a program responsible for highest fractions of the total resource

usage of its execution, or how such total resource usage is distributed over those parts. For

example, procedures which have lower costs but which are called more often may be responsible

for a larger part of the overall resource usage, so that their optimization may be most profitable.

3



We have further extended and generalized the CiaoPP resource analysis framework so that it can

now be specialized for inferring such kinds of information statically [19] (i.e., for static profiling).

We show that the framework is general and flexible enough to support a wide range of static

cost analyses, including both “accumulated” cost and the “standard notion” of cost.

References

[1] F. Bueno, P. López-Garćıa, and M. V. Hermenegildo. Multivariant Non-Failure Analysis via Standard

Abstract Interpretation. In 7th International Symposium on Functional and Logic Programming

(FLOPS 2004), number 2998 in LNCS, pages 100–116, Heidelberg, Germany, April 2004. Springer-

Verlag.

[2] S. K. Debray, N.-W. Lin, and M. V. Hermenegildo. Task Granularity Analysis in Logic Programs.

In Proc. 1990 ACM Conf. on Programming Language Design and Implementation (PLDI), pages

174–188. ACM Press, June 1990.

[3] S. K. Debray, P. López-Garćıa, M. V. Hermenegildo, and N.-W. Lin. Lower Bound Cost Estimation

for Logic Programs. In 1997 International Logic Programming Symposium, pages 291–305. MIT

Press, Cambridge, MA, October 1997.

[4] S.K. Debray, P. López-Garćıa, and M. V. Hermenegildo. Non-Failure Analysis for Logic Programs.

In 1997 International Conference on Logic Programming, pages 48–62, Cambridge, MA, June 1997.

MIT Press, Cambridge, MA.

[5] S.K. Debray, P. López-Garćıa, M. V. Hermenegildo, and N.-W. Lin. Estimating the Computational

Cost of Logic Programs. In Static Analysis Symposium, SAS’94, number 864 in LNCS, pages

255–265, Namur, Belgium, September 1994. Springer-Verlag.

[6] Kim S. Henriksen and John P. Gallagher. Abstract Interpretation of PIC Programs through Logic

Programming. In SCAM’06: Proceedings of the Sixth IEEE International Workshop on Source Code

Analysis and Manipulation, pages 184–196. IEEE Computer Society, 2006.

[7] M. V. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Integrated Program Debugging,

Verification, and Optimization Using Abstract Interpretation (and The Ciao System Preprocessor).

Science of Computer Programming, 58(1–2):115–140, October 2005.

[8] U. Liqat, Z. Banković, P. Lopez-Garcia, and M. V. Hermenegildo. Inferring Energy Bounds Statically

by Evolutionary Analysis of Basic Blocks. In Workshop on High Performance Energy Efficient

Embedded Systems (HIP3ES 2016), 2016. arXiv:1601.02800.

[9] U. Liqat, Z. Banković, P. Lopez-Garcia, and M. V. Hermenegildo. Inferring Energy Bounds Statically

by Evolutionary Analysis of Basic Blocks. In Pre-proceedings of the 27th International Symposium

on Logic-Based Program Synthesis and Transformation (LOPSTR’17), October 2017.

[10] U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V. Hermenegildo, J. P. Gallagher, and

K. Eder. Inferring Parametric Energy Consumption Functions at Different Software Levels: ISA

vs. LLVM IR. In M. Van Eekelen and U. Dal Lago, editors, Foundational and Practical Aspects of

Resource Analysis: 4th International Workshop, FOPARA 2015, London, UK, April 11, 2015. Re-

vised Selected Papers, volume 9964 of Lecture Notes in Computer Science, pages 81–100. Springer,

2016.

[11] U. Liqat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M. V. Hermenegildo,

and K. Eder. Energy Consumption Analysis of Programs based on XMOS ISA-level Models. In

Gopal Gupta and Ricardo Peña, editors, Logic-Based Program Synthesis and Transformation, 23rd

International Symposium, LOPSTR 2013, Revised Selected Papers, volume 8901 of Lecture Notes

in Computer Science, pages 72–90. Springer, 2014.

4



[12] P. López-Garćıa, F. Bueno, and M. V. Hermenegildo. Determinacy Analysis for Logic Programs

Using Mode and Type Information. In Proceedings of the 14th International Symposium on Logic-

based Program Synthesis and Transformation (LOPSTR’04), number 3573 in LNCS, pages 19–35.

Springer-Verlag, August 2005.

[13] P. López-Garćıa, F. Bueno, and M. V. Hermenegildo. Automatic Inference of Determinacy and Mu-

tual Exclusion for Logic Programs Using Mode and Type Information. New Generation Computing,

28(2):117–206, 2010.

[14] P. López-Garćıa, L. Darmawan, and F. Bueno. A Framework for Verification and Debugging of

Resource Usage Properties. In M. V. Hermenegildo and T. Schaub, editors, Technical Commu-

nications of the 26th Int’l. Conference on Logic Programming (ICLP’10), volume 7 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 104–113, Dagstuhl, Germany, July 2010.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[15] P. Lopez-Garcia, L. Darmawan, F. Bueno, and M. V. Hermenegildo. Interval-Based Resource Usage

Verification: Formalization and Prototype. In R. Pe na, M.V. Eekelen, and O. Shkaravska, editors,

Foundational and Practical Aspects of Resource Analysis. Second International Workshop FOPARA

2011, Revised Selected Papers, volume 7177 of Lecture Notes in Computer Science, pages 54–71.

Springer-Verlag, 2012.

[16] P. Lopez-Garcia, R. Haemmerlé, M. Klemen, U. Liqat, and M. V. Hermenegildo. Towards Energy

Consumption Verification via Static Analysis. In Workshop on High Performance Energy Efficient

Embedded Systems (HIP3ES), arXiv:1501.03064, 2015. arXiv:1512.09369.

[17] P. López-Garćıa and M. V. Hermenegildo. Efficient Term Size Computation for Granularity Control.

In International Conference on Logic Programming, pages 647–661, Cambridge, MA, June 1995.

MIT Press, Cambridge, MA.

[18] P. López-Garćıa, M. V. Hermenegildo, and S. K. Debray. A Methodology for Granularity Based

Control of Parallelism in Logic Programs. Journal of Symbolic Computation, Special Issue on

Parallel Symbolic Computation, 21(4–6):715–734, 1996.

[19] P. Lopez-Garcia, M. Klemen, U. Liqat, and M. V. Hermenegildo. A General Framework for Static

Profiling of Parametric Resource Usage. Theory and Practice of Logic Programming, 32nd Int’l.

Conference on Logic Programming (ICLP’16) Special Issue, 16(5-6):849–865, October 2016.

[20] M. Méndez-Lojo, J. Navas, and M. Hermenegildo. A Flexible (C)LP-Based Approach to the Analysis

of Object-Oriented Programs. In 17th International Symposium on Logic-based Program Synthesis

and Transformation (LOPSTR 2007), number 4915 in Lecture Notes in Computer Science, pages

154–168. Springer-Verlag, August 2007.

[21] E. Mera, P. López-Garćıa, M. Carro, and M. V. Hermenegildo. Towards Execution Time Estimation

in Abstract Machine-Based Languages. In 10th Int’l. ACM SIGPLAN Symposium on Principles and

Practice of Declarative Programming (PPDP’08), pages 174–184. ACM Press, July 2008.

[22] J. Navas, M. Méndez-Lojo, and M. Hermenegildo. Safe Upper-bounds Inference of Energy Con-

sumption for Java Bytecode Applications. In The Sixth NASA Langley Formal Methods Workshop

(LFM 08), pages 29–32, April 2008. Extended Abstract.

[23] J. Navas, M. Méndez-Lojo, and M. V. Hermenegildo. User-Definable Resource Usage Bounds

Analysis for Java Bytecode. In Proceedings of the Workshop on Bytecode Semantics, Verification,

Analysis and Transformation (BYTECODE’09), volume 253 of Electronic Notes in Theoretical

Computer Science, pages 65–82. Elsevier - North Holland, March 2009.

[24] J. Navas, E. Mera, P. López-Garćıa, and M. Hermenegildo. User-Definable Resource Bounds Analysis

for Logic Programs. In 23rd International Conference on Logic Programming (ICLP’07), volume

4670 of Lecture Notes in Computer Science. Springer, 2007.

5



[25] A. Serrano, P. Lopez-Garcia, F. Bueno, and M. V. Hermenegildo. Sized Type Analysis for Logic

Programs (technical communication). In T. Swift and E. Lamma, editors, Theory and Practice of

Logic Programming, 29th Int’l. Conference on Logic Programming (ICLP’13) Special Issue, On-line

Supplement, volume 13, pages 1–14. Cambridge U. Press, August 2013.

[26] A. Serrano, P. Lopez-Garcia, and M. V. Hermenegildo. Resource Usage Analysis of Logic Programs

via Abstract Interpretation Using Sized Types. Theory and Practice of Logic Programming, 30th

Int’l. Conference on Logic Programming (ICLP’14) Special Issue, 14(4-5):739–754, 2014.

[27] H. Soza, M. Carro, and P. López-Garćıa. Probabilistic Cost Analysis of Logic Programs: A First

Case Study. In XXXII Latin-American Conference on Informatics, August 2006.

6


