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Abstract interpretation [3] allows constructing sound program analysis tools which can extract properties
of a program by safely approximating its semantics. Static analysis tools are a crucial component of the
development environments for many programming languages. Abstract interpretation proved practical
and effective in the context of (Constraint) Logic Programming ((C)LP) [15, 12, 14, 13, 1, 10, 9] which
was one of its first application areas (see [6]), and the techniques developed in this context have also
been applied to the analysis and verification of other programming paradigms by using semantic trans-
lation to Horn Clauses (see the recent survey [4]). Unfortunately, the implementation of (sound, precise,
efficient) abstract domains usually requires coding from scratch a large number of domain-related oper-
ations. Moreover, due to undecidability, a loss of precision is inevitable, which makes the design (and
implementation) of more domains, as well as their combinations, eventually necessary to successfully
prove arbitrary program properties. In this paper we focus on the latter problem by proposing a rule-
based methodology for the design and rapid prototyping of new domains for logic programs, as well
as composing and combining existing ones. Our techniques are inspired by those used in logic-based
languages for implementing constraint domains at different abstraction levels.

Proposal. The construction of analyses based on abstract interpretation requires the defintion of some
basic domain operations (v,u,t and, optionally, the widening ∇ operator); the abstract semantics of the
primitive constraints (representing the built-ins, or basic operations of the source language) via transfer
functions ( f α ); and possibly some other additional instrumental operations over abstract substitutions. In
addition, the classical top-down analysis approach requires a number of additional definitions of derived
operations used by the analysis framework to implement procedure call, return, recursion, etc. Detailed
descriptions of all these operations can be found in [12, 11, 2, 7, 5]. We propose a rule language inspired
in rewriting to derive, script, and combine abstract domains. The objective is to reduce the time and
effort required to write new abstract domains, both from scratch and as combinations of other domains

The proposed rule-based language. Given s+1 sets of constraints, L ,C1, . . . ,Cs, we define
AND(L ,C1, . . . ,Cs) as the set of rules of the form l1, . . . , ln | g1, . . . ,gl ⇒ r1, . . . ,rm # label, where s, n,
m, and l are arbitrary positive integers, and the rule meets the following condition:

∀i, j,k s.t. i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m} and k ∈ {1, . . . , l} : (li,r j ∈L and ∃u ∈ {1, . . . ,s} s.t. gk ∈ Cu)

The elements l1, . . . , ln constitute the left side of the rule; r1, . . . ,rm the right side; and g1, . . . ,gl the
guards. Given t + s sets of constraints L1, . . . ,Lt ,C1, . . . ,Cs such that ∀v ∈ {1, . . . , t} : Lv ⊆ L , we
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inf(X, top) | X = [] ==> inf(X, 0.Inf). # empty

inf(L, X) | L = [H|T] ==> inf(T, X). # list_const1

inf(T, X) | L = [H|T], H =< X ==> inf(L, H). # list_const2

inf(L, X) | L = S ==> inf(S, X). # unif_prop

inf(L, X) | Y =< X ==> inf(L, Y). # reduction

inf(X, A) ; inf(X, B) | A =< B ==> inf(X, A). # lub_1

inf(X, A) ; inf(X, B) | A >= B ==> inf(X, B). # lub_2

Figure 2: A subset of the inf-domain rules.

define OR(L ,C1, . . . ,Cn) as the set of rules of the form l1; . . . ; ln | g1, . . . ,gl ⇒ r1, . . . ,rm # label, where
s, t, n, m, and l are arbitrary positive integers, and the rule meets the following condition:

∀i, j,k s.t. i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m} and k ∈ {1, . . . , l} :
∃v ∈ {1, . . . , t}∃u ∈ {1, . . . ,s} s.t. (li ∈Lv,r j ∈L and gk ∈ Cu)

Notice that while in AND−rules all the elements li belong to the same set of constraints L , in the OR-
rules they belong to (possibly) different subsets of a set of constraints L . The operational meaning of
AND−rules is similar to that of rewriting rules. If the left side holds in the set where the rule is being
applied to, and the guards also hold, then the left-side elements are replaced by the right-side elements.
The operational meaning of OR−rules is similar, but instead of rewriting over the “same” set the right-
side elements are written in a “new” set. When no more rules can be applied, different strategies can be
followed. In general we can rewrite the pending elements to a given element or simply delete them.
In the context of abstract interpretation the sets of constraints that we have mentioned have to be seen
as abstract domains being the rules applied then over abstract substitutions/constraints. AND-rules are
intended to capture the behaviour of operations over one abstract substitution with the knowledge that can
be inferred from other substitutions that meet the guards. This is useful for example when defining the
greatest lower bound. Moreover, these rules are also useful for refining abstract substitutions, performing
abstractions, combining different abstract domains, etc. On the other hand, OR-rules are intended to
capture the behaviour of operations applied over multiple abstract substitutions of an abstract domain,
such as the least upper bound or the widening.�

1 partition([], _, [], []).
2 partition([E|R], C, Left,

[E|Right1]) :-
3 E >= C,
4 partition(R, C, Left, Right1).
5 partition([E|R], C, [E|Left1],

Right) :-
6 E < C,
7 partition(R, C, Left1, Right).� �

Figure 1: A Prolog program.

An example. Fig. 1 shows a classic Prolog predicate for
partitioning a list. A call partition(L, X, L1, L2) is
expected to satisfy some properties; for example, that ∀v ∈
L2,X ≤ v, which we can express as inf(L2, X). With the
help of two auxiliary domains to deal with structures con-
taining variables and with constraints (resp. depth− k and
polyhedra) we can derive an abstract domain for the inf/2
property. A subset of the rules can be seen in Fig. 2. These
rules allow, when connected with the abstract domain op-

erations, to exploit the information gathered from the previous domains and use it to infer inf(L2,
X). Similarly, we can also capture the equivalent sup(L1, X), or multiset properties capturing that
L⊆ L1∪L2 and L1∪L2⊆ L. Moreover, we can infer the sortedness property for the classical quicksort
implementation.

Conclusions & future work. We have presented a framework for simplifying the development of ab-
stract domains for logic programs in the context of abstract interpretation frameworks, and concretely that
of CiaoPP. While some domains are easier to specify with a rule-based language, keeping a constraint-
based representation for abstract substitutions may not be efficient compared with specialized represen-
tations and operations. In this respect, we plan to explore the use of rules both as an input language for
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abstract domain compilation and as a specification language for debugging or verifying properties of
hand-written domains. In our experience so far, the proposed approach seems promising for prototyp-
ing and experimenting with new domains, enhancing the precision for particular programs, and adding
domain combination rules, without the need for understanding the analysis framework internals.
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