
Automatic Inference of Determinacy and
Mutual Exclusion for Logic Programs
Using Mode and Type Analyses

Pedro LOPEZ-GARCIA1,2, Francisco BUENO3 and

Manuel HERMENEGILDO1,3

1IMDEA Software, Madrid, Spain
{pedro.lopez,manuel.hermenegildo}@imdea.org
2Spanish Research Council (CSIC), Spain
3Technical University of Madrid (UPM), Spain
{bueno,herme}@fi.upm.es

Received 17 August 2009

Abstract We propose an analysis for detecting procedures and goals
that are deterministic (i.e., that produce at most one solution at most
once), or predicates whose clause tests are mutually exclusive (which im-
plies that at most one of their clauses will succeed) even if they are not
deterministic. The analysis takes advantage of the pruning operator in or-
der to improve the detection of mutual exclusion and determinacy. It also
supports arithmetic equations and disequations, as well as equations and
disequations on terms, for which we give a complete satisfiability testing
algorithm, w.r.t. available type information. Information about deter-
minacy can be used for program debugging and optimization, resource
consumption and granularity control, abstraction carrying code, etc. We
have implemented the analysis and integrated it in the CiaoPP system,
which also infers automatically the mode and type information that our
analysis takes as input. Experiments performed on this implementation
show that the analysis is fairly accurate and efficient.

Keywords Determinacy Inference and Checking, Types, Program
Analysis, Debugging, Optimization.

1

§1 Introduction
Knowing that certain predicates are deterministic for a given class of

calls has a number of interesting applications such as detecting programming er-
rors, performing certain high-level program transformations for improving search
efficiency, optimizing low level code generation and parallel execution, and esti-
mating tighter upper bounds on the computational costs of goals and data sizes,
which can be used for program debugging, resource consumption and granularity
control, abstraction carrying code, etc.

By a predicate being deterministic we mean that it produces at most one
solution at most once. It is also interesting to detect predicates whose clauses
are mutually exclusive (which implies that at most one of them will succeed)
even if they are not deterministic because they call other predicates that can
produce more than one solution (i.e., that are not deterministic). In this paper
we propose a method whereby we can detect procedures and goals that are deter-
ministic, or predicates whose clauses are mutually exclusive. Moreover, we show
that, given (upper approximations of) mode and type information, it is feasible
to fully automatize our approach, yielding an effective automatic determinacy
analysis. The paper is an extended version of our previous proposal 17), which
includes more detailed descriptions of the algorithms, more illustrative exam-
ples, and more theorems about the termination, correctness or completeness of
the algorithms.

There has been much interest on determinacy detection in the litera-
ture (see 14, 12) and its references), using several different forms of determinism.
Arguably, one of the first practical determinacy analyses was the one proposed
by Sahlin 23), in the context of the Mixtus partial evaluator. This analysis was
later reconstructed and semantically justified, using a denotational semantics of
Prolog programs with cut, by Mogensen 20). The motivation behind this deter-
minacy analysis was, indeed, to be able to unfold predicates with cuts in their
clauses. Therefore, the analysis concentrated on the cut and the control flow
of the program: interestingly, the proposal in 23) does not take into account
predicate arguments. Using a small database of number of possible solutions of
built-ins and an analysis of the control structure of the program, estimations
of the number of solutions of predicates were performed. The accuracy of this
approach has limitations and this is one of the reasons why we explore instead
an approach based on the handling of built-ins as tests.

The line of work closest to ours starts with 6), in which functional com-

2

putations are detected and exploited. However, the notion of mutual exclusion
in this work (and in our proposal 17), of which this paper is an extended version,
as already mentioned) is not based on constraint satisfaction. This concept is
also used in the analysis presented in 5), where, nonetheless, no algorithms are
provided for the detection of mutual exclusion and also the cut is not taken
into account. In 9) a combined analysis of modes, types, and determinacy is
presented, as well as in the more accurate 2). As we will show, our analysis
improves on these proposals.

A notion of constraint satisfaction is also present in the approach of 19, 14),
which might be considered complementary to ours. Their analyses differ from
ours in that they are not goal-oriented and in the mutual exclusion conditions.
In particular, the first work 19) does not handle the cut, and cannot exploit cer-
tain program tests that select clauses on execution (e.g., arithmetic tests) which
our proposal handles. The second work 14) remedies these deficiencies. Still, it
concentrates on inferring determinacy conditions, not on checking them. The
conditions of 14) are richer than ours, since they use success pattern analysis
to infer them, based on size relationships between arguments and depth-k ab-
stractions, together with backward analysis. Determinacy conditions are then
synthesised in the form of rigidity formulas. For checking them a rigidity analy-
sis is required, to test whether the (propositional) formula holds or not. Instead,
we focus on the checking and not on building the conditions. For conditions,
we use tests on the instantiation state of arguments which are simply collected
from the program text. For the checking, classical mode and type analyses are
instrumental. Indeed, our main contribution is a procedure to check satisfiability
of the tests which is complete, disregarding how conditions are synthesised.

Several programming systems also make use of determinacy, e.g., Mer-
cury 24, 10) and HAL 7). The Mercury and HAL systems allow the programmer
to declare that a predicate will produce at most one solution, and attempt to
verify this with respect to the Herbrand terms with unification tests. As far as
we know, both systems use the same analysis 10), which does not handle dis-
unification tests on the Herbrand domain. This approach also does not handle
arithmetic tests, except in the context of the if-then-else construct. As such, it
is considerably weaker than the approach described here. Also, our approach
does not require any annotations from programmers, since the types and modes
on which it is based are inferred. In other words, in addition to proposing
concrete algorithms, we also show in this paper that our determinacy analysis

3

can be performed automatically, and is feasible, accurate, and efficient. We do
this by integrating it into the Ciao programming system, in particular, into its
preprocessor, CiaoPP 11), which performs analysis, debugging, verification and
optimization tasks, and thus connecting the determinacy analysis with state-of-
the-art type and mode analyses.

§2 Preliminaries
A goal, a class of goals, or a predicate (i.e., all goals for it) are deter-

ministic when they produce at most one solution at most once. When reasoning
about determinacy, it is a necessary condition (but not sufficient) that clauses of
the predicate be pairwise mutually exclusive, i.e., that only one clause will pro-
duce solutions. Additionally, it has to produce only one solution. For reasoning
about mutual exclusion one needs to gather success patterns for each predicate
clause, i.e., constraints that the solutions produced by the clause satisfy. Then
the basic condition for mutual exclusion is that such success patterns cannot be
satisfied simultaneously. This is checked for against available information on the
goals being analyzed for determinacy.

We will be using as success patterns tests, which will be unification
equations and disequations on terms, and linear equations and disequations on
integers or reals. For the checking, we will assume that type information is
available, generally as the result of a previous analysis. For concreteness, the
determinacy analysis we describe is based on regular types 4), which are specified
by regular term grammars, as explained below, although the concepts should be
easily adaptable to other type systems.

2.1 Regular Types
A type is a set of (Herbrand) terms, and can be defined by using a num-

ber of different representations, such as type terms and regular term grammars
as in 4), or type graphs as in 13)), or simply predicates as in the Ciao system 3).
We will use the formalism of 4), and summarize below the relevant concepts.

A type symbol is an abstraction of a set of Herbrand terms (i.e., of a
type). We use the Greek letter α for referring to type symbols in general (with
subscripts if necessary). The γ function maps each type symbol to the set of
Herbrand terms that it represents. Given a type symbol α, the set of terms (i.e.,
the type) represented by it is denoted as γ(α). To enhance readability, we abuse
notation and use α instead of γ(α) when no ambiguity is possible.

4

We assume the existence of an infinite set of type symbols, which is dis-
joint with the sets of constant symbols, function symbols, and variables. There
are two special type symbols: µ, that represents the type of the entire Herbrand
universe; and φ, that represents the empty type (i.e., γ(φ) = ∅). There is a
distinguished non-empty finite subset of the set of type symbols called the set
of base type symbols, which represent base types. For any base type α, we as-
sume that γ(α) is infinite and there are effective tests for membership of a given
Herbrand term in γ(α).

Example 2.1

Examples of base type symbols that we use in our determinacy analysis are: int,
such that the base type γ(int) is the set of all constant symbols that represent
integer numbers; and atm, such that the base type γ(atm) is the set of all
constant symbols that do not represent numbers.

A type term is either a constant symbol, a variable, a type symbol, or a
term f(ω1, . . . , ωn), where f is an n-ary function symbol, and each ωi is a type
term. Note that all type symbols are type terms, however, the converse is not
true. A pure type term is one which does not contain variables. A Herbrand term
is a type term which does not contain type symbols (it can contain variables).

A type rule is an expression of the form α → Υ, where α is a type
symbol, and Υ is a set of pure type terms. We denote sets of type rules, that is,
regular term grammars, by the letter T (as in 4)). A (non-base) type symbol α
is defined in, or by, a set of type rules T if there exists a type rule (α→ Υ) ∈ T .
A pure type term ω is defined by a set of type rules T if each type symbol in
ω is either µ, φ, a base type symbol, or a (non-base) type symbol defined in T .
We assume that, for each type rule (α → Υ) ∈ T , each element (i.e., pure type
term) of Υ is defined in T , and that each type symbol defined in T has exactly
one defining type rule in T . Moreover, we will also assume that every type rule
is deterministic, i.e., every element of Υ is a base type symbol or a pure type
term of the form f(α1, . . . , αn), n ≥ 0, and there is no pair of pure type terms
ω1, ω2 ∈ Υ, such that ω1 6= ω2, ω1 = f(ω1

1 , . . . , ω
1
n), and ω2 = f(ω2

1 , . . . , ω
2
n) (i.e.,

there is no pair of pure type terms in Υ with the same principal functor). The
class of types that can be described by deterministic type rules is the same as the
class of tuple-distributive regular types 4). Additional background on type-related
issues may be found in 4, 13).

5

Example 2.2

The type rule list→ {[], [µ|list]} defines the type symbol list, that denotes the
set of all lists. The type rule intlist→ {[], [int|intlist]} defines the type symbol
intlist, that denotes the set of all lists of integer numbers.

It is also possible to provide polymorphism in our setting. Since we use
types for describing instantiation patterns, a polymorphic type such as, e.g.,
list(α)→ {[], [α|list(α)]} is useful only in the description of the list structure,
but not of the elements. Thus, the instance type list(µ) (i.e., list) serves the
same purposes. Instances of polymorphic types are thus “computed away” (so
that, e.g., list(int) yields intlist) and our approach handles them in this way.

Given a predicate q in a program P , type[q] denotes a tuple of pure type
terms representing the types of the arguments of predicate q. In the interest of
simplicity, we abuse terminology and say that type[q] is the type of predicate q.
In this paper, we are concerned exclusively with calling types for predicates —in
other words, when we say “a predicate q in a program P has type type[q]”, we
mean that in any execution of the program P starting from some class of queries
of interest, whenever there is a call q(t̄) to the predicate q, the argument tuple
t̄ in the call will be an element of the set denoted by type[q].

Definition 2.1 (type assignment)

Given a (finite) tuple of variables x̄ = (x1, . . . , xn), a type assignment ρ over x̄
maps each variable xi for 1 ≤ i ≤ n to a (nonempty) pure type term ωi, i.e.,
ρ(xi) = ωi. We write the type assignment ρ as x̄ : ω̄, where ω̄ is the tuple of pure
type terms (ω1, . . . , ωn). However, we sometimes abuse of notation and write ρ
as (x1 : ω1, . . . , xn : ωn).

2.2 Tests (and Modes)
We define a test to be either a primitive test, or a conjunction τ1 ∧

τ2, or a disjunction τ1 ∨ τ2, or a negation ¬τ1, where τ1 and τ2 are tests. A
primitive test is a positive literal whose predicate symbol is a built-in such as
the unification or some arithmetic built-in predicate (<,>,≤,≥, 6=, etc.) which
acts as a “test” (note that with our assumptions of having available both mode
and type information for each variable in a program, it is straightforward to
identify primitive tests in a program). Primitive tests which are true of the
successes of a given clause are gathered together to form the test of that clause.
For concreteness, in our experiments (Section 5) we will gather for each clause

6

the primitive tests occurring in the program text of that clause. One could
use more sophisticated approaches, such as backwards analysis with a depth-k
abstraction 12). Our approach remains valid regardless of the means used to
build the tests. For example, if term structure information is available it will be
used in the algorithms below as if it appeared in the program text.

Because of limitations of state-of-the-art technology in type analysis,
primitive tests have to be carefully selected. Actual, working type analyses infer
types which denote sets of terms that are closed under substitution. On the
contrary, our algorithms will be based on types which denote sets of ground
terms. The gap between these two classes of types is covered with the use of
modes.

In practice, the difference amounts to the interpretation of the universal
type symbol µ. In the ground interpretation, µ denotes the set of all ground
terms. Otherwise, µ (i.e., the classical top in type analyses) also denotes terms
which may contain variables. This issue is important in deciding whether certain
(unification) literals can act as tests or not and, therefore, whether they can be
used in mutual exclusion conditions or not. For example, consider two tests
X=[a] and X=[b] for different clauses. Assume we are analyzing goals which
satisfy the type assignment (X) : (α) with type rule α → {[µ]}. In the ground
interpretation the two tests are mutually exclusive, but they are not in the
other interpretation (since the head of the list constructor in X might be a free
variable). Mode information is then essential in distinguishing such cases.

In our experiments, we will use groundness and freeness information ob-
tained from a sharing analysis to establish the modes. This information is used to
classify primitive tests, and only those regarded as input tests will be considered
when building tests for clauses. Input tests perform a comparison of (numerical)
values or a matching of terms, rather than a proper unification. Given mode
and type information on the program, it is straightforward to identify them.

Example 2.3

Consider the literal X is Y+1 appearing in the body of a clause. If the available
mode and type information asserts that, just before calling this literal, variables
X and Y are bound to integer numbers, then the literal is considered a primitive
(arithmetic) input test. However, if the mode and type information asserts that
X is an unbound variable and Y is bound to an integer, then the literal acts
as an assignment and thus is not considered a test. If there is a body literal
of the form X = Y and the information asserts that variables X and Y will be

7

bound to ground terms upon call, then the literal is considered to be a primitive
(unification) input test. If the information asserts that any of the variables X or
Y are free, then the literal is not considered a test.

Where necessary to emphasize the input test in a clause we will write
the clause in “guarded” form. As an example, consider a predicate that is called
as abs(X, Y), where X is bound to an integer and Y is a free variable, to obtain
the absolute value of X. Its definition will be written as:

abs(X, Y) :− X ≥ 0 [] Y = X.

abs(X, Y) :− X < 0 [] Y is − X.

Obviously, for any particular call in the class above, only one of the tests X ≥ 0

or X < 0 will succeed (i.e., the tests are mutually exclusive).
Note that the distinction between tests and input tests is due only to

limitations in the technology used in our experiments. In fact, we will be us-
ing the word test throughout the rest of the paper when talking about mutual
exclusion conditions. The following definition characterizes tests and will be
instrumental in the formal results:

Definition 2.2 (solutions of a test)

Given a test τ(x̄), Sols(τ(x̄)) is the set of all tuples of ground terms ē which are
instances of x̄ such that x̄ = ē ∧ τ(x̄) is satisfiable (i.e., test τ(ē) succeeds).

2.3 Mutual Exclusion
Fundamental to our approach to detecting determinacy is the notion of

tests being “exclusive” w.r.t. a type assignment:

Definition 2.3

Two tests τ1(x̄) and τ2(x̄) are exclusive w.r.t. a type assignment x̄ : ω̄, if for
every t̄ ∈ γ(ω̄), x̄ = t̄ ∧ τ1(x̄) ∧ τ2(x̄) is unsatisfiable.

Definition 2.4 (mutual exclusion)

Let C1, . . . , Cn, n > 0, be a sequence of clauses, with input tests τ1(x̄), . . . , τn(x̄)
respectively. Let ρ be a type assignment. We say that C1, . . . , Cn is mutually
exclusive w.r.t. ρ if either, n = 1, or, for every pair of clauses Ci and Cj ,
1 ≤ i, j ≤ n, i 6= j, τi(x̄) and τj(x̄) are exclusive w.r.t. ρ.

Consider a predicate p defined by n clauses C1, . . . , Cn, with input tests

8

τ1(x̄), . . . , τn(x̄) respectively. Let predicate p have type type[p]: in the interest
of simplicity, we sometimes say that predicate p is mutually exclusive w.r.t. the
type type[p] (or simply that predicate p is mutually exclusive) if the sequence
of clauses C1, . . . , Cn defining p is mutually exclusive w.r.t. the type assignment
x̄ : type[p]. Given a call c to predicate p in the body of a clause, we also say that
c is mutually exclusive if p is. Note that if the predicate p is mutually exclusive,
then at most one of its clauses will succeed for any call p(t̄), with t̄ ∈ γ(type[p]).

§3 Determinacy Analysis
In this section we explain our algorithm for detecting predicates and

calls that are deterministic. Before introducing our algorithm, we give some
instrumental definitions. We define the “calls” relation between predicates in a
program as follows: p calls q, written p ; q, if and only if a literal with predicate
symbol q appears in the body of a clause defining p. Let ;? denote the reflexive
transitive closure of ;. The following result shows the importance of mutual
exclusion information for detecting determinacy.

Theorem 3.1

A predicate p in the program is deterministic if, for each predicate q such that
p ;? q, q is mutually exclusive.

Proof Assume that p is not deterministic, i.e., there is a goal p(t̄), with
t̄ ∈ type[p], which is not deterministic. It is a straightforward induction on the
number of resolution steps to show that there is a q such that p ;? q and q is
not mutually exclusive.

Our algorithm for detecting determinacy consists of first determining
which predicates are mutually exclusive (which is in fact the convoluted part,
and is explained in detail in Section 4). Then, inferring determinacy is straight-
forward: from Theorem 3.1, analysis of determinacy reduces to the determina-
tion of reachability in the call graph of the program. In other words, a predicate
p is deterministic if there is no path in the call graph of the program from p to
any predicate q that is not mutually exclusive. It is straightforward to propa-
gate this reachability information in a single traversal of the call graph in reverse
topological order. The idea is illustrated by the following example.

Example 3.1

Consider the classical quicksort program with a main calling mode in which the
first argument is ground and the second one is free. Figure 1 shows the guarded

9

qs(L,SL) :− L = [] [] SL = [].

qs(L,SL) :− L = [H|T] [] part(H,T,Littles,Bigs),

qs(Littles,SLs), qs(Bigs,SBs), app(SLs,[H|SBs],SL).

part(L, C,Left,Right) :− L = [] [] Left = [], Right = [].

part(L,C,Left,Right) :− L = [E|R], E < C [] Left = [E|Left1],

part(R,C,Left1,Right).

part(L,C,Left,Right) :− L = [E|R], E >= C [] Right = [E|Right1],

part(R,C,Left,Right1).

app(L1,L2,L3) :− L1 = [] [] L2 = L3

app(L1,L2,L3) :− L1 = [X|Xs] [] L3 = [X|Zs], app(Xs,L2,Zs).

Fig. 1 A quicksort program.

version of the program for this mode. Assume calling type (intlist, -) for qs/2.
The calling types for part/4 and app/3 are (intlist, int, -, -) and (intlist,
intlist, -) respectively. Since determinacy analysis traverses the call graph in
reverse topological order, it considers first predicates part/4 and app/3.

The input tests for the clauses of part(L,C,Left,Right) are τpart1 (L, C)
≡ L = [], τpart2 (L, C) ≡ L = [E|R] ∧ E < C and τpart3 (L, C) ≡ L = [E|R] ∧ E >= C.
According to the calling type, the analysis uses the type assignment ρpart ≡
(L, C) : (intlist, int), and infers that τparti (L, C), i = 1, 2, 3 are mutually exclu-
sive w.r.t. ρpart (we will explain the details in Section 4). It means that at most
one of these tests will succeed. Thus, clauses of part/4 are mutually exclusive.
It follows that calls to part/4 which satisfy the calling types are deterministic.

Similarly, the input tests for the sequence of clauses of app(L1,L2,L3)
are τapp1 (L1, L2) ≡ L1 = [] and τapp2 (L1, L2) ≡ L1 = [X|Xs]. The type as-
signment ρapp corresponding to the calling types for app/3 is (L1, L2) :
(intlist, intlist). The analysis infers that τapp1 (L1, L2) and τapp2 (L1, L2) are
exclusive w.r.t. the type assignment ρapp. Thus, it follows that calls to app/3
which satisfy the calling types are also deterministic.

Finally, the input tests for the sequence of clauses of qs(L,SL) are
τ qs1 (L) ≡ L = [] and τ qs2 (L) ≡ L = [H|T]. The type assignment ρqs corresponding
to the calling types is (L) : (intlist). We have that τ qs1 (L) and τ qs2 (L) are ex-
clusive w.r.t. type assignment ρqs. Thus, clauses of qs/2 are mutually exclusive.
Moreover, since the calls to the predicates part/4 and app/3 in the body of the

10

clauses defining qs/2 have been proved to be deterministic, it follows that calls
to qs/2 with the first argument bound to a list of integers are deterministic.

3.1 Improving Determinacy Analysis using Cut
The presence of pruning operators in program clauses can be exploited to

improve the overall process of detecting deterministic predicates. Besides helping
the detection of mutual exclusion of clauses (as we will see below in Section 4.4),
it can also improve the propagation algorithm given above. Assume that we want
to infer whether a predicate p is deterministic. Consider any clause defining p
in which one or more cuts appear, and any body literals that appear to the
left of the rightmost cut in that clause. Those literals are not required to be
deterministic. In other words, in Theorem 3.1, we can use a restricted definition
(;r) of the “call” relation (;) between predicates in a program, defined as
follows: p ;r q, if and only if a literal with predicate symbol q appears in the
body of a clause defining p, and there is no cut to the right of this literal in the
clause. Similarly, ;?

r denotes the reflexive transitive closure of ;r.

§4 Checking Mutual Exclusion
Our approach to the problem of determining whether a set of tests τi(x̄)

for i = 1, . . . , n are mutually exclusive w.r.t. a type assignment x̄ : ω̄, consists
of reducing the problem to subproblems, each subproblem involving tests of the
same type, i.e., defining a particular constraint system. Each subproblem is
solved by applying an algorithm that is specific to the corresponding constraint
system that checks mutual exclusion. In this paper we consider two commonly
encountered constraint systems: Herbrand terms with unification and disunifi-
cation tests, on variables with tuple-distributive regular types 4) (see Section 2.1)
and linear arithmetic tests on integer variables.

Example 4.1

Consider the predicate part/4 taken from the quicksort program shown in Fig-
ure 1. For the sequence of clauses of part(L,C,Left,Right) we have three
input tests τi(x̄), i = 1, 2, 3, where x̄ ≡ (L, C) in this case. As commented in
Example 3.1, the input tests are (omitting x̄ and the superscript part for sim-
plicity): τ1 ≡ L = [], τ2 ≡ L = [E|R]∧E < C and τ3 ≡ L = [E|R]∧E >= C. We will
separate Herbrand tests from arithmetic tests and write τ1 as τH1 ∧ τA1 , where
τH1 ≡ L = [] and τA1 ≡ true. Similarly, τH2 ≡ L = [E|R] and τA2 ≡ E < C, and

11

τH3 ≡ L = [E|R] and τA3 ≡ E >= C.
We have to check that the tests τi(x̄), i = 1, 2, 3, are mutually exclusive

w.r.t. the type assignment ρ ≡ (L, C) : (intlist, int). This problem is reduced
to two subproblems: a) Checking that the tests L = [] and L = [E|R] are exclusive
w.r.t. ρ, which prove that τ1 and τ2 (as well as τ1 and τ3) are exclusive (since the
Herbrand parts of the tests are exclusive), and b) Checking that the tests E < C

and E >= C are exclusive w.r.t. the type assignment (C, E) : (int, int), which
prove that τ2 and τ3 are exclusive. In this second subproblem, the Herbrand
parts of the tests are not exclusive (in fact, both of them are the same test,
L = [E|R]), and hence, it is necessary to check the exclusion of the arithmetic
parts.

4.1 Checking Mutual Exclusion in the Herbrand Domain
We present a decision procedure for checking mutual exclusion of tests

that is inspired by a result, due to Kunen 15), that establishes that the emptiness
problem is decidable for Boolean combinations of (notations for) certain “basic”
subsets of the Herbrand Universe of a program. It also uses straightforward
adaptations of some operations described by Dart and Zobel 4). The reason the
mutual exclusion checking algorithm for Herbrand is as convoluted as it is, is
that we want a complete algorithm for unification and disunification tests. It is
possible to make it more clear if we are interested in unification tests only.

Before describing the algorithm, we introduce some definitions and no-
tation. We denote the Herbrand Universe (i.e., the set of all ground terms) as
H, and the set of n–tuples of elements of H as Hn. We use the notions (to be
defined in the following) of type-annotated term, and in general elementary set,
as representations which denote some subsets of Hn (for some n ≥ 1). These
subsets can be, for example, the set of n-tuples for which a test succeeds, or a
calling type for a predicate p (i.e., the set denoted by type[p]). Given a represen-
tation S (elementary set or type-annotated term), the denotation of S, Den(S)
refers to the subset of Hn denoted by S.

Definition 4.1 (type-annotated term)

A type-annotated term δ is a pair (t̄δ, ρδ), where t̄δ is a tuple of terms, and ρδ is
a type assignment.

We will represent type-annotated terms with the symbol δ possibly sub-
scripted. Given a type-annotated term δ = (t̄δ, ρδ), the denotation of δ, Den(δ)

12

is the set of all the ground terms t̄δθ, where θ is some substitution, such that
xθ ∈ γ(ρδ(x)) for each variable in t̄δ. In other words, Den(δ) is the set of all
the ground instances of t̄δ resulting from replacing the variables in t̄δ by a term
belonging to the type assigned to those variables by ρδ.

Example 4.2

We define some examples of type-annotated terms δ1, δ2, and δ3 as follows: δ1 =
((x, y), (x, y) : (α1, α2)), where α1 → {f(µ)} and α2 → {g(µ), h(µ)}; δ2 is the
type-annotated term (t̄2, ρ2) such that t̄2 ≡ (f(z), w) and ρ2 ≡ (z, w) : (µ, α2)
(note that δ1 and δ2 denote the same subset of H2, i.e., Den(δ1) = Den(δ2)); δ3
is the type-annotated term (t̄3, ρ3) with t̄3 ≡ (f(v1), g(v2), v3, v4, f(a), f(v5), v6)
and ρ3 ≡ (v1, v2, v3, v4, v5, v6) : (µ, list, α2, α3, α3, list), where α3 → {a, b} and
list→ {[], [µ|list]}.

Given a type-annotated term (t̄, ρ), the tuple of terms t̄ can be regarded
as a Herbrand term (i.e., a type-symbol-free type term) and ρ can be considered
to be a type substitution,∗1 so that, if we apply this type substitution to t̄, we
get a pure type term (a variable-free type term). This is useful for defining the
“intersection” and “inclusion” operations over type-annotated terms (that we
define later), using the algorithms described by Dart and Zobel 4) for performing
these operations over pure type terms. When we have a type-annotated term
(t̄, ρ) such that ρ(x) = µ for each variable x in t̄, we omit the type assignment
ρ for brevity and use the tuple of terms t̄. Thus, a tuple of terms t̄ with no
associated type assignment can be regarded as a type-annotated term which
denotes the set of all ground instances of t̄.

Definition 4.2 (elementary set)

An elementary set is defined as follows:
• Λ is an elementary set.
• A type-annotated term (t̄, ρ) is an elementary set.
• If A and B are elementary sets, then A ⊗ B, A ⊕ B and comp(A) are

elementary sets.

Since we have already defined the denotation of type-annotated terms, we define
now the denotation of the rest of elementary sets.
• Den(Λ) = ∅ (the empty set).

∗1 A type substitution is similar to a substitution that maps variables to type terms. A
detailed definition of type substitutions is given in 4).

13

• If A and B are elementary sets, then Den(A ⊗ B) = Den(A) ∩ Den(B),
Den(A⊕B) = Den(A) ∪Den(B) and Den(comp(A)) = Hn \Den(A).

We also define the following relations between elementary sets:
• A v B iff Den(A) ⊆ Den(B).
• A < B iff Den(A) ⊂ Den(B).
• A ' B iff Den(A) = Den(B).

We define below two particular classes of elementary sets, namely, coba-
sic sets and minsets, which are suitable representations of tests for the algorithms
that we present in this paper. A test τ(x̄) that is a conjunction of unification and
disunification tests is represented as a minset that denotes the set of ground in-
stances of x̄ (i.e., subsets of Hn, assuming that x̄ is a n-tuple) for which the test
succeeds. A disunification test is represented by a cobasic set (which denotes
the complementary set of a subset of Hn).

Definition 4.3 (cobasic set)

A cobasic set is an elementary set of the form comp(t̄), where t̄ is a tuple of
terms.

Definition 4.4 (minset)

A minset is either Λ or an elementary set of the form t̄0 ⊗ comp(t̄1) ⊗ · · · ⊗
comp(t̄n), for some n ≥ 0, where:
• t̄0 is a tuple of terms,
• comp(t̄1), . . . , comp(t̄n) are cobasic sets,
• for all i, 1 ≤ i ≤ n, t̄i < t̄0 (which implies that t̄i = t̄0θi for some

substitution θi), and
• for all i, j such that 1 ≤ i, j ≤ n and i 6= j, it holds that t̄i 6v t̄j .

For brevity, we write a minset of the form t̄0 ⊗ comp(t̄1) ⊗ · · · ⊗ comp(t̄n) as
t̄0⊗C, where C = {comp(t̄1), . . . , comp(t̄n)}. The minset representation of a test
is given by the test2minset function defined below.

Definition 4.5 (exact representation of a test)

A minset β is an exact representation of a test τ(x̄) if Den(β) = Sols(τ(x̄)).
That is, for any tuple of ground terms ē it holds that ē ∈ Den(β) if and only if
x̄ = ē ∧ τ(x̄) is satisfiable (i.e., the test τ(ē) succeeds).

Definition 4.6 (test2minset function)

We define the test2minset(τ(x̄)) function which takes a test τ(x̄) and returns a

14

minset β which is an exact representation of τ(x̄). We assume without lost of
generality that τ(x̄) is a conjunction of unification and disunification tests and
is of the form E ∧D1∧· · ·∧Dn, where E is the conjunction of all unification tests
of τ(x̄) (i.e., a system of equations) and each Di a disunification test (i.e., a
disequation). The returned value β is computed as follows:

1. Let θ0 be the substitution associated with the solved form of E (this
can be computed by using the techniques of Lassez et al. 16)).

2. If θ0 does not exist, then make β = Λ.
3. Otherwise, let θi, for 1 ≤ i ≤ n, be the substitution associated with

the solved form of E ∧ Ni, where Ni is the negation of Di.
4. Let β′ = t̄0⊗ comp(t̄1)⊗· · ·⊗ comp(t̄n), where t̄i = x̄θi, if θi exists, for

0 ≤ i ≤ n (if θi does not exist, then comp(t̄i) does not appear in the
definition of β′).

5. If t̄0 v t̄i, for some cobasic set comp(t̄i), then make β = Λ.
6. Otherwise, perform a simplification step on β′ by removing all cobasic

sets comp(t̄i) for which there is a cobasic set comp(t̄j), 1 ≤ i, j ≤ n

and i 6= j, such that t̄i v t̄j . Make β be the resulting minset.

Theorem 4.1

Let τ(x̄) be a conjunction of unification and disunification tests, and β =
test2minset(τ(x̄)). Then β is an exact representation of τ(x̄).

Proof

• Since we use the techniques of Lassez et al. 16)) for computing solved
forms of systems of equations over Herbrand terms, it follows that if θ0

does not exist (step 2), then E is unsatisfiable and hence τ(x̄) also is, thus
β = Λ is an exact representation of τ(x̄).

• For the same reason, if θ0 exists (step 3), then it is a most general unifier,
and thus t̄0 is an exact representation of E . We can prove it because for
any tuple of ground terms ē it holds that if ē ∈ Den(t̄0) then ē = t̄0θe

for some ground substitution θe. Since t̄0 = x̄θ0, we have that ē = x̄θ0θe.
Let θ′e = θe ◦ θ0, i.e., ē = x̄θ′e. By definition, θ0 is more general than θ′e,
and thus x̄ = ē ∧ E is satisfiable. Conversely, if x̄ = ē ∧ E is satisfiable
then ē = x̄θ′e for some ground substitution θ′e which is more specific than
θ0, i.e., θ′e = θe ◦ θ0, thus ē ∈ Den(t̄0).

• In step 4 we have that Den(β′) = Den(t̄0⊗ comp(t̄1)⊗ · · ·⊗ comp(t̄n)) =
Den((t̄0⊗ comp(t̄1))⊗· · ·⊗ (t̄0⊗ comp(t̄n))) = Den(t̄0⊗ comp(t̄1))∩· · ·∩

15

Den(t̄0⊗ comp(t̄n)) = Sols(E ∧D1)∩ · · · ∩ Sols(E ∧Dn)) = Sols(E ∧D1 ∧
· · · ∧ Dn) = Sols(τ(x̄)).

• In step 5 we have that if t̄0 v t̄i, for some cobasic set comp(t̄i), then
Den(t̄0) ⊆ Den(t̄i) and Den(t̄0⊗ comp(t̄i)) = Den(t̄0)∩Den(comp(t̄i)) =
∅ = Sols(E ∧ Di). Thus Den(β) = ∅ = Sols(τ(x̄)).

• In step 6, if t̄i v t̄j , then Den(comp(t̄i)) ⊆ Den(comp(t̄j)) and Den(t̄0 ⊗
comp(t̄i)) ∩ Den(t̄0 ⊗ comp(t̄j)) = Den(t̄0 ⊗ comp(t̄j)), thus Den(β) =
Den(β′).

Example 4.3

In order to illustrate the construction of minsets we have created the program
below, instead of using the previous quicksort program or a real application.
This program exhibits features that can appear in different real cases, and thus
allows us to illustrate almost all cases of the algorithm using a single example.

p(X1,X2,X3) :− X1 = f(Y1, Y2), Y1 6= r(Z1), Y2 6= s(Z2) [] X3 = a.

p(X1,X2,X3) :− X1 = f(Y1, Y2), Y1 = s(Z1), Y2 6= r(Z2) [] X3 = b.

The guarded program assumes a mode in which the first two arguments of p/3
are ground and the third one is free. Let the calling type be (α1, α1, -), where
the type symbols α1 and α2 are defined as follows:

α1 → {f(α2, α2), g(α2, α2)} α2 → {r(µ), s(µ)}

Let us take τ(x̄) in test2minset(τ(x̄)) to be the test of the first clause
of p/3. That is, x̄ = (X1, X2) and τ(x̄) = τ(X1, X2) ≡ X1 = f(Y1, Y2) ∧ Y1

6= r(Z1) ∧ Y2 6= s(Z2). We have that τ(X1, X2) is written as E ∧ D1 ∧ D2,
where E ≡ X1 = f(Y1, Y2), D1 ≡ Y1 6= r(Z1) and D2 ≡ Y2 6= s(Z2). The
minset β which represents τ(X1, X2) is computed as follows:

1. θ0 = {X1 = f(Y1, Y2)}
2. θ1 = {X1 = f(r(Z1), Y2), Y1 = r(Z1)} is the substitution associated

with the solved form of X1 = f(Y1, Y2) ∧ Y1 = r(Z1), i.e., the system
of equations E ∧ N1, where N1 is the negation of Y1 6= r(Z1).

3. θ2 = {X1 = f(Y1, s(Z2)), Y2 = s(Z2)} is the substitution associated
with the solved form of X1 = f(Y1, Y2) ∧ Y2 = s(Z2).

4. Applying θ0 to (X1, X2) we obtain t̄0, i.e., (f(Y1, Y2), X2). Also,
x̄θ1 = t̄1 = (f(r(Z1), Y2), X2) and x̄θ2 = t̄2 = (f(Y1, s(Z2)),

16

X2). Thus β′ = (f(Y1, Y2), X2) ⊗ comp((f(r(Z1), Y2), X2)) ⊗
comp((f(Y1, s(Z2)), X2)).

5. Finally, the simplification steps does not remove any cobasic set from
β′, thus β = β′.

If we apply the algorithm to the second clause, we obtain the minset:
(f(s(Z1), Y2), X2) ⊗ comp((f(s(Z1), r(Z2)), X2)).

Definition 4.7 (type-annotated term instance)

Let δ1 = (t̄1, ρ1) and δ2 = (t̄2, ρ2) be two type-annotated terms. We say that δ1
is an instance of δ2 if δ1 v δ2 and there is a substitution θ such that t̄1 = t̄2θ.

Reduction of the Checking Exclusion Problem

Let τ1(x̄) and τ2(x̄) be tests which are conjunctions of unification and disunifica-
tion tests, and ρ a type assignment. Let δ be a type-annotated term represent-
ing the type assignment ρ. Let βi be a minset representing τi, for i = 1, 2, i.e.,
βi = test2minset(τi) (where the test2minset function is given in Definition 4.6).
We have that τ1(x̄) and τ2(x̄) are exclusive w.r.t. ρ if and only if δ⊗β1⊗β2 ' Λ.
Let β be the minset resulting of computing β1 ⊗ β2 (this intersection can be
trivially defined in terms of most general unifiers of the tuples of terms com-
posing the minsets β1 and β2). Then, the fundamental problem is to devise an
algorithm to test whether δ ⊗ β ' Λ, where δ is a type-annotated term and β a
minset.

Example 4.4

Consider the mutual exclusion problem for the input tests and calling type given
in Example 4.3 for predicate p/3. Such calling type is written as the type
assignment ((X1, X2) : (α1, α1)), which is represented as the type-annotated
term δ, where δ = ((X1, X2), (X1 : α1, X2 : α1)). The tests and minsets
representing them respectively are:

τ1(x̄) = τ1(X1, X2) ≡ X1 = f(Y1, Y2) ∧ Y1 6= r(Z1) ∧ Y2 6= s(Z2),
τ2(x̄) = τ2(X1, X2) ≡ X1 = f(Y1, Y2) ∧ Y1 = s(Z1) ∧ Y2 6= r(Z2),
β1 = (f(Y1, Y2), X2) ⊗ comp((f(r(Z1), Y2), X2))⊗ comp((f(Y1,
s(Z2)), X2)), and
β2 = (f(s(Z1), Y2), X2) ⊗ comp((f(s(Z1), r(Z2)), X2)).
Thus, β ' β1⊗β2 ≡ (f(s(X3), X4), X5) ⊗ comp(f(s(X6), s(X7)), X8) ⊗
comp(f(s(X9), r(X10)), X11).

17

A High Level Description of the Algorithm

We first provide a high level description of the algorithm that we propose,
whose detailed description is given by the boolean function empty(δ, β) in Defi-
nitions 4.13, 4.14 and 4.15:∗2

• First, perform the “intersection” of the type-annotated term δ and
the tuple of terms t̄0 of the minset β (we assume that β = t̄0 ⊗ C
and that β 6' Λ). Let δ′ denote the type-annotated term result-
ing from this intersection (i.e., δ′ = δ ⊗ t̄0). This operation is im-
plemented by the intersec(δ, t̄0) function described in Definition 4.10
(recall that a tuple of terms is a type-annotated term). Consider
for example δ and β given in Example 4.4. In this case, t̄0 de-
notes the tuple of terms (f(s(X3), X4), X5) and C denotes the set of
cobasic sets {comp(f(s(X6), s(X7)), X8), comp(f(s(X9), r(X10)), X11)}.
Thus, the “intersection” of δ and t̄0 is the type-annotated term δ′ =
((f(s(X12), X13), X14), (X12 : µ,X13 : α2, X14 : α1).

• If δ′ is empty (i.e., δ′ ' Λ), then it can be reported that δ ⊗ β ' Λ.
Otherwise, if t̄0 is “included” in δ′ (i.e., t̄0 v δ′), then it can be reported
that δ ⊗ β 6' Λ (note that it always holds that β v t̄0). The “inclu-
sion” operation can be defined by using a straightforward adaptation of
the subsetT (ω1, ω2) function described in 4), that determines whether the
type denoted by a pure type term (a variable-free type term) is a subset of
the type denoted by another. We denote our “inclusion” operation by the
included(δ1, δ2) function, which returns true if and only if δ1 v δ2, where
δ1 and δ2 are type-annotated terms. In our example, none of these con-
ditions hold (recall that the tuple of terms (f(s(X3), X4), X5) represents
the type-annotated term ((f(s(X3), X4), X5), (X3 : µ,X4 : µ,X5 : µ)),
and that a type-annotated term can be trivially rewritten as a pure type
term).

• Otherwise, the problem is reduced to checking whether δ′ ⊗ C ' Λ (this
is done by the auxiliary function empty1 , described in detail in Defini-
tion 4.14). Note that δ′ ⊗ C can be seen as a system of one equation
(corresponding to δ′) and zero or more disequations (each of them cor-
responding to a cobasic set in C). Thus the problem can be seen as
determining whether such system has no solutions.

∗2 We use the type representation of 4), and assume that there is a common set of rules where
type symbols are described. For brevity, we omit such set of type rules in the description
of the algorithms.

18

• This way, if δ′ is “included” in the tuple of terms of some cobasic set in
C, then it can be reported that δ′ ⊗ C ' Λ.

• Otherwise, it means that δ′ is “too big”, and thus, it is “expanded” to a
set of “smaller” type-annotated terms (with the hope that each of them
will be “included” in the tuple of terms of some cobasic set in C). This
way, the initial problem is reduced to a finite number of subproblems,
one subproblem for each element in the set of “smaller” type-annotated
terms to which δ′ has been “expanded”. This holds in the example,
where the type-annotated term δ′ is “expanded” to a set of two “smaller”
type-annotated terms {δ′1, δ′2} (expanding variable X13) where δ′1 denotes
((f(s(X15), r(X16)), X17), (X15 : µ,X16 : µ,X17 : α1)) and δ′2 denotes
((f(s(X18), s(X19)), X20), (X18 : µ,X19 : µ,X20 : α1)). Then, two sub-
problems arise:

– Checking whether δ′1 ⊗ comp(f(s(X6), r(X7)), X8) ' Λ, which holds
because δ′1 is “included” in (f(s(X6), r(X7)), X8), the tuple of terms of
the cobasic set comp(f(s(X6), r(X7)), X8); and

– Checking whether δ′2 ⊗ comp(f(s(X9), r(X10)), X11) ' Λ is empty,
which also holds because δ′2 is “included” in (f(s(X9), r(X10)), X11).

• Thus, it can be concluded that δ′ ⊗ C ' Λ and hence δ ⊗ β ' Λ.

Termination of this algorithm is granted because a) the original problem
is divided into a finite number of subproblems, since the type-annotated term of
the problem is expanded into a finite number of type-annotated terms, each one
giving rise to a subproblem, b) the number of cobasic sets in the initial problem
is finite, and c) the number of cobasic sets decreases at least by one in each
subproblem (recursive call).

A Detailed Description of the Algorithm

The detailed description of the empty(δ, β) function requires some (instrumen-
tal) definitions, namely the definition of “useless” cobasic set and the aliased ,
intersec, and expansion functions.

Definition 4.8 (useless cobasic set)

Given a type-annotated term δ, a set of cobasic sets C, and a cobasic set
comp(t̄) ∈ C, we say that comp(t̄) is useless for determining whether δ ⊗ C ' Λ,
whenever if δ⊗(C−{comp(t̄)}) 6' Λ, then δ⊗C 6' Λ (or, equivalently, if δ⊗C ' Λ,
then δ ⊗ (C − {comp(t̄)}) ' Λ).

19

It is easy to prove that the reciprocal also holds. If δ⊗(C−{comp(t̄)}) '
Λ, then obviously δ ⊗ C ' Λ (note that (δ ⊗ C) v (δ ⊗ (C − {comp(t̄)}))).
Thus, if comp(t̄) ∈ C is an useless cobasic set, then δ ⊗ C ' Λ if and only if
δ ⊗ (C − {comp(t̄)}) ' Λ.

Definition 4.9 (aliased(δ, t̄) function)

Let δ be the type-annotated term (t̄δ, ρδ), δ 6' Λ, t̄ a tuple of terms, and θ =
mgu(t̄δ, t̄). We define the aliased function as follows:

aliased(δ, t̄) = { x ∈ vars(t̄δ) | xθ is a variable, and exists x′ ∈ vars(t̄δ),
x 6= x′, such that xθ = x′θ }.

Given a type-annotated term δ and a tuple of terms t̄, the intersec(δ, t̄)
function returns a type-annotated term whose meaning is the same as δ ⊗ t̄

(recall that a tuple of terms is also a type-annotated term). This function can
be defined as a straightforward adaptation of the unify(ω1, ω2, T,Θ) function
described in 4), that performs a type unification, where ω1 and ω2 are the type
terms to be unified, Θ a type substitution for the variables in ω1 and ω2, and T a
set of type rules defining the type symbols appearing in ω1Θ, ω2Θ, and Θ. The
output of the function unify is a triple (ωf , Tf ,Θf), where ωf is a type term, Θf

a type substitution for the variables in ωf , and Tf a set of type rules defining the
type symbols appearing in the pure type term ωfΘf , such that T ⊆ Tf . Since
type terms can be trivially rewritten as type-annotated terms, we can define
function intersec(δ, t̄) as follows:

Definition 4.10 (intersec(δ, t̄) function)

Given a type-annotated term δ and a tuple of terms t̄, the process of function
intersec(δ, t̄) is:

• Let δ be the pair (t̄δ, ρδ), and (ωf , Tf ,Θf) = unify(t̄δ, t̄, T,Θ) (note that
a tuple of terms is a particular case of type term, and that t̄δ and t̄ are
tuples of terms), where Θ is a type substitution constructed as follows:

xΘ =

{
ω if x ∈ vars(δ) and ρδ(x) = ω

x otherwise.

and T a set of type rules defining the type symbols in t̄δΘ.
• Rewrite ωfΘf as a type-annotated term δ′ and return it. For simplicity,

we assume that the function returns only a type-annotated term δ′, but
in fact it returns a pair (δ′, Tf), where Tf is a set of type rules defining
the type symbols appearing in δ′.

20

Theorem 4.2

Given a type-annotated term δ and a tuple of terms t̄, then: (i) intersec(δ, t̄)
terminates, (ii) intersec(δ, t̄) ' δ ⊗ t̄, and (iii) intersec(δ, t̄) = Λ iff δ ⊗ t̄ ' Λ.

Proof It follows from Theorem 5.60 of 4), since the function intersec is an
adaptation of the function unify(ω1, ω2, T,Θ).

The expansion of a type-annotated term into a set of smaller type-
annotated terms is performed by the expansion function defined below.

Definition 4.11 (expansion(δ, comp(t̄)) function)

Let δ be a type-annotated term (t̄δ, ρδ), δ 6' Λ, and comp(t̄) a cobasic set such
that δ ⊗ t̄ 6' Λ and δ 6v t̄. We also assume that vars(tδ) ∩ vars(t̄) = ∅. The
function expansion(δ, comp(t̄)) returns a pair (δ′,∆) which is a “partition” of δ,
i.e.:

• δ′ is a type-annotated term instance of δ, (t̄δ′ , ρδ′), δ′ 6' Λ. δ′ is obtained
by expanding δ to some “decision depth” that allows to detect if the
cobasic set comp(t̄) is useless (see Definition 4.8 of useless cobasic set);

• ∆ is a set of type-annotated terms;
• for all x ∈ vars(δ′), it holds that: ρδ′(x) = µ, ρδ(x) is a base type symbol,

or xθ is a variable, where θ is the most general unifier of t̄δ′ and t̄ (note
that the variables of δ whose type is µ or a base type are not “expanded”);

• (∪δ′′∈∆Den(δ′′)) ∪Den(δ′) = Den(δ) (i.e., δ ' (
⊕
δ′′∈∆

δ′′)⊕ δ′); and

• for all δ′′ ∈ ∆, δ′′ ⊗ t̄ ' Λ (this is ensured because type rules are deter-
ministic).

We define the expansion function as:

expansion(δ, comp(t̄)) = expands(vars(tδ),mgu(t̄δ, t̄), δ, ∅)

where the expands function is defined below:

Definition 4.12 (expands(V, θ, δ,∆) function)

Let δ be a type-annotated term (t̄δ, ρδ), V a set of variables V ⊆ vars(tδ), θ a
substitution for the variables in tδ, and ∆ a set of type-annotated terms which
are pairwise disjoint and disjoint with δ. The expands function returns a pair
(δ′,∆′), where δ′ is a type-annotated term and ∆′ a set of type-annotated terms,
and is defined by the following algorithm:

21

1: V ′ ← {x ∈ V | xθ is not a variable, ρδ(x) 6= µ, and ρδ(x) is not a base type
symbol}

2: if V ′ = ∅ then return the pair (δ,∆)
3: else

4: Take a variable x ∈ V ′

5: Let xθ = f(t1, . . . , tn), where n ≥ 0 and t1, . . . , tn are terms (if xθ is a
constant, it is treated as the particular case where n = 0).

6: α ← ρδ(x)
7: if α is a type symbol then

8: Let the type rule defining α be α→ Υ
9: Let ω ∈ Υ, such that ω = f(α1, . . . , αn), i.e., ω has the same principal

function symbol (and arity) than xθ (note that such ω always exists, since
δ ⊗ t̄ 6' Λ, and type rules are deterministic.)

10: Υ′ ← Υ− {ω}
11: else (necessarily α is a pure type term of the form f(α1, . . . , αn))
12: ω ← α

13: Υ′ ← ∅
14: end if

15: t̄′δ ← t̄δ[x/f(y1, . . . , yn)], where y1, . . . , yn are new and distinct variables,
and t̄δ[y/t] denotes the instance of the tuple of terms t̄δ obtained by substi-
tuting all occurrences of variable y by term t in t̄δ

16: ρ′δ ← (ρδ −{x : α})∪{y1 : α1, . . . , yn : αn}, i.e., ρ′δ is the type assignment
obtained by removing x : α from ρδ, and adding y1 : α1, . . . , yn : αn to the
result

17: δ′ ← (t̄′δ, ρ
′
δ)

18: V ′′ ← (V ′ − {x}) ∪ {y1, . . . , yn}
19: θ′ ← (θ − {x = xθ}) ∪ {y1 = t1, . . . , yn = tn}
20: ∆′ ← (∪ω′∈Υ′{(t̄δ, ρω

′

δ)}) ∪∆
where ρω

′

δ is the type assignment obtained by removing x : α from ρδ,
and adding x : ω′ to ρδ.

21: return expands(V ′′, θ′, δ′,∆′)
22: end if

Example 4.5

Reconsider the type annotated term:

δ′ = ((f(s(X12), X13), X14), (X12 : µ,X13 : α2, X14 : α1)

22

and the set of cobasic sets:

C = {comp(f(s(X6), s(X7)), X8), comp(f(s(X9), r(X10)), X11)}

of Example 4.4.
Let us choose the cobasic set comp(t̄) = comp(f(s(X6), s(X7)), X8) from C (note
that δ′ is not included in the tuple of terms t̄ = (f(s(X6), s(X7)), X8)). We
expand δ′ by calling the expansion function (in Definition 4.11) as follows:

expansion(δ′, comp(t̄)) = expands(vars(tδ′),mgu(t̄δ′ , t̄), δ′, ∅) =
expands({X12, X13, X14}, {X12 = X6, X13 = s(X7), X14 = X8}, δ′, ∅) = (δ1,∆1)

where δ1 = ((f(s(X15), r(X16)), X17), (X15 : µ,X16 : µ,X17 : α1)) and
∆1 = {((f(s(X18), s(X19)), X20), (X18 : µ,X19 : µ,X20 : α1))}. This is done by
choosing variable X13 in step 4 of the expands function (see Definition 4.12) and
using its type, α2, in step 7.

Definition 4.13 (empty(δ, β) function)

Given a type-annotated term δ and a minset β such that β 6' Λ (β = t̄0 ⊗ C,
where t̄0 is a tuple of terms, and C a set of cobasic sets), we define:

empty(δ, β) =

true if δ′ = Λ
false if included(t̄0, δ′)
empty1 (C, δ′, ∅) otherwise

where δ′ = intersec(δ, t̄0).

Definition 4.14 (empty1 (C, δ,Γ) function)

Given a type-annotated term δ (i.e., a pair (t̄δ, ρδ)) such that δ 6' Λ, a set of
cobasic sets C, and a set Γ of triples of the form (δ1,V, comp(t̄)) where:
• δ1 is a type-annotated term δ1 = (t̄1, ρ1), such that δ1 6' Λ,
• comp(t̄) is a cobasic set,
• vars(δ1) ∩ vars(comp(t̄)) = ∅,
• θ = mgu(t̄1, t̄),
• for all x ∈ vars(δ1), xθ is a variable, and
• v ∈ V iff v ∈ vars(δ1), ρδ1(v) 6= µ, ρδ1(v) is not a base type symbol, and
∃v′ ∈ vars(δ1), v 6= v′, such that vθ = v′θ (i.e., V is the set of variables
in vars(δ1) which are aliased with some other variable in vars(δ1) by θ).

we define the empty1 function in Algorithm 1.

23

The empty1 (C, δ,Γ) function performs a “first pass” over the cobasic
sets in C. This pass results in the removal of cobasic sets that are inferred to be
useless. Some useless cobasic sets are removed in step 1: if intersec(δ, t̄) = Λ, for

Algorithm 1 empty1

Input: a type-annotated term δ, a set of cobasic sets C and a set Γ of triples of
the form (δ1,V, comp(t̄))

Output: true if δ ⊗ C1 ' Λ, where C1 = C ∪ {comp(t̄) | (δ1,V, comp(t̄)) ∈ Γ}.
false otherwise.

1: C′ ← {comp(t̄) ∈ C | intersec(δ, t̄) 6' Λ}
2: if C′ = ∅ then

3: Γ′ ← {ξ ∈ Γ | ξ ≡ (δ1,V, comp(t̄)), intersec(δ, t̄) 6' Λ}
4: Γ′′ ← {ξ ∈ Γ′ | ξ ≡ (δ1,V, comp(t̄)), θ = mgu(t̄δ, t̄δ1), and for all x ∈ V,
y ∈ vars(xθ): ρδ(y) is finite }

5: return empty2 (Γ′′, δ)
6: else if included(δ, t̄) for some cobasic set comp(t̄) in C′ then

7: return true

8: else

9: select a cobasic set comp(t̄) ∈ C′

10: C′′ ← C′ − {comp(t̄)}
11: (δ′,∆) ← expansion(δ, comp(t̄))
12: if included(δ′, t̄) then
13: return

∧
δ′′∈∆

empty1 (C′′, δ′′,Γ)

14: else

15: V ← aliased(δ′, t̄)
16: θ′ ← mgu(t̄δ′ , t̄)
17: if for some x ∈ vars(δ′) s.t. ρδ′(x) = µ or ρδ′(x) is a base type symbol:

x ∈ V or xθ′ is not a var. then

18: return empty1 (C′′, δ,Γ)
19: else

20: Γ′ ← Γ ∪ {(δ′,V, comp(t̄))}
21: return empty1 (C′′, δ′,Γ′) ∧

∧
δ′′∈∆

empty1 (C′′, δ′′,Γ)

22: end if

23: end if

24: end if

24

some comp(t̄) ∈ C, then comp(t̄) is useless for determining whether δ ⊗ C ' Λ,
because none of the instances of δ meet the equality constraint imposed by t̄, and
hence all the instances of δ meet the inequality constraint imposed by comp(t̄).
Thus, δ ⊗ C ' Λ if and only if the rest of cobasic sets, C − {comp(t̄)}, impose
(inequality) constraints that are not met by any instance of δ. If included(δ, t̄) for
some cobasic set comp(t̄) in C′ (as it is checked in step 6), then all the instances of
δ meet the equality constraint imposed by t̄, and hence, none of the instances of δ
meet the inequality constraint imposed by comp(t̄). Thus, in this case, δ⊗C ' Λ.
The rationale behind steps 9 to 11 is that at this point (where not included(δ, t̄)
nor intersec(δ, t̄) = Λ) δ is “too big,” and thus it is “expanded” to a set of
“smaller” type-annotated terms {δ′} ∪∆ (using the expansion function given in
definition 4.11), in the hope that each of them will be “included” in the tuple of
terms of some cobasic set in C′. In this expansion, δ′ is obtained by expanding
variables v ∈ vars(δ) to at most a depth given by vσ, where σ = mgu(t̄δ, t̄).
When inclusion is checked at step 12, if included(δ′, t̄), then necessarily for all
x ∈ vars(δ′) it holds that xθ′ is a variable, where θ′ = mgu(t̄δ′ , t̄) (step 16).
In this case, comp(t̄) is not considered in the recursive calls in step 13 since
(according to definition 4.11) for all δ′′ ∈ ∆, δ′′ ⊗ t̄ ' Λ, and thus, comp(t̄) is
useless for all of these subproblems. If not included(δ′, t̄), then: a) t̄ imposes
some equality constraints over some variables in δ (such variables are gathered
together in step 15, where the set V is created using the aliased function given
in Definition 4.9), or b) t̄ restricts the values of some variable(s) in δ′ whose
type is µ, unifying them to some term (which is not a variable). If the condition
checked at step 17 holds, then there is always an instance of δ′ which does not
meet the former constraints a) or b), and thus comp(t̄) is useless. In step 20,
cobasic sets which are not deemed useless at this point are stored in Γ, which
is an accumulation parameter. δ′ and V (besides comp(t̄)) are recorded in this
parameter, because aliased variables whose type is infinite (or which after having
been expanded are bound to a term containing variables whose type is infinite)
allow us to detect useless cobasic sets, since it is always possible to find an
instance of δ′ which does not meet the equality constraints imposed by t̄ (case
a)). Useless cobasic sets are then subsequently removed in steps 3 and 4, before
empty2 (Γ′, δ) is called in step 5. The first pass over the cobasic sets ends in step 2
when condition C′ = ∅ holds. Note that when this condition holds, step 4 checks
that a type expression denotes a finite set of terms, and there are straightforward
algorithms to test this. The empty2 function performs a second pass over the

25

Algorithm 2 empty2
Input: a type-annotated term δ and a set Γ of triples of the form (δ′,V, comp(t̄))
Output: a boolean

1: if Γ = ∅ then

2: return false

3: else

4: select an item ξ ∈ Γ; assume ξ ≡ (δ′,V, comp(t̄))
5: Γ′ ← Γ− {ξ}
6: σ ← mgu(t̄δ′ , t̄δ)
7: if included(δ, t̄) then

8: return true

9: else

10: initialize a set ∆
11: for all variables x ∈ V do

12: for all variables y such that y ∈ vars(xσ) do

13: ∆ ← ∆ ∪ { δ[y/t] | t ∈ γ(ρδ(y)) }
14: end for

15: end for

16: ∆′ ← {δ′′ ∈ ∆ | intersec(δ′′, t̄) ' Λ}
17: if ∆′ = ∅ then

18: return true

19: else

20: return
∧

δ′′∈∆′

empty2 (Γ′, δ′′)

21: end if

22: end if

23: end if

remaining cobasic sets, checking whether the constraints described previously
in case a) hold. Since the types of the variables involved in such constraints
are finite (i.e., they represent finite sets of terms), the process performed by the
empty2 function is simple, sound, complete, and terminating.

Definition 4.15 (empty2 (Γ, δ) function)

Given a type-annotated term δ, such that δ 6' Λ, and a set Γ of triples of the
form (δ1,V, comp(t̄)) similar to those in the third parameter of the function
empty1 (C, δ,Γ) in definition 4.14, but with the following additional constraint:

26

for all x ∈ V, ρδ1(x) is finite (note that for all v ∈ vars(δ1) such that
v 6∈ V, ρδ1(v) can be any type, including µ or a base type symbol),

we define the function empty2 in Algorithm 2, where δ[y/t] denotes an instance
of type annotated term δ obtained by substituting variable y by term t.

The function empty2 (Γ, δ) selects a cobasic set comp(t̄) in Γ, and, if δ
is not included in t̄, then δ is expanded (in step 13) to a set of type-annotated
terms ∆ by substituting only “decision variables.” Such expansion ensures that
every δ′′ ∈ ∆ is either “included” in t̄ or “disjoint” with it. It also ensures that
δ is not infinitely expanded: the type of such variables is finite. Note that, at
step 13, necessarily y ∈ vars(δ), and ρδ(y) is finite. Note also that, at step 16,
necessarily, for all δ′′ ∈ ∆ and δ′′ /∈ ∆′, it holds that δ′′ v t̄. For this reason,
comp(t̄) is removed from the recursive call at step 20.

Soundness and Completeness Results

The function empty(δ, S) is sound and complete for tuple-distributive regular
types (a detailed proof is given in 18)). While sound, the function is not complete
for regular types in general. However, our experience (as we will see in Section 5)
is that it is fairly accurate in practice. Note that our applications do not require
analysis algorithms to be complete (impossible in general) but rather always safe
and as accurate as possible 11).

Theorem 4.3

Let δ be a type-annotated term such that all types appearing in it are tuple-
distributive regular types, and β a minset with the conditions of definitions 4.13,
4.14, and 4.15. Let also functions empty , empty1 , and empty2 defined there.
We have that:

1. empty , empty1 , and empty2 terminate.
2. empty2 (Γ, δ) = true if and only if δ ⊗ C ' Λ, where C = {comp(t̄) |

(δ′,V, comp(t̄)) ∈ Γ for some δ′ and V} (i.e., C is the set of cobasic sets
in Γ).

3. empty1 (C, δ,Γ) = true if and only if δ ⊗ C1 ' Λ, where C1 = C ∪
{comp(t̄) | (δ1,V, comp(t̄)) ∈ Γ for some δ1 and V}.

4. empty(δ, β) = true if and only if δ ⊗ β ' Λ.

27

4.2 Checking Mutual Exclusion in Linear Arithmetic
In this section, we give an algorithm for checking whether two linear

arithmetic tests τi(x̄) and τj(x̄) are exclusive w.r.t. the type assignment of int
to each variable in x̄. This amounts to determining whether (∃x̄)(τi(x̄) ∧ τj(x̄))
is unsatisfiable. The system τi(x̄) ∧ τj(x̄) can be transformed into disjunc-
tive normal form as in equation (1) below, where each of the tests φkl(x̄) is
of the form φkl(x̄) ≡ a0 + a1x1 + · · · + apxp ©? 0, with ©? ∈ {=, <,≤, >,≥}.
For this transformation, note that a test a0 + a1x1 + · · · + apxp 6= 0 can be
written in terms of two tests involving only ‘>’ and ‘<’, as in equation (2).

(τi(x̄) ∧ τj(x̄)) =
n∨
k=1

m∧
l=1

φkl(x̄) (
p∑
i=0

aixi > 0) ∨ (
p∑
i=0

aixi < 0)

(1) Disjunctive normal form (2) Rewriting of disequalities

The resulting system, transformed to disjunctive normal form, defines a
set of integer programming problems: the answer to the original mutual exclu-
sion problem is “yes” if and only if none of these integer programming problems
has a solution. Since a test can give rise to at most finitely many integer pro-
gramming problems in this way, it follows that the mutual exclusion problem
for linear integer tests is decidable. Since determining whether an integer pro-
gramming problem is solvable is NP-complete 8), the following complexity result
is immediate:

Theorem 4.4

The mutual exclusion problem for linear arithmetic tests over the integers is
co-NP-hard.

It should be noted, however, that the vast majority of arithmetic tests
encountered in practice tend to be fairly simple: our experience has been that
tests involving more than two variables are rare. The solvability of integer
programs in the case where each inequality involves at most two variables, i.e.,
is of the form ax + by ≤ c, can be decided efficiently in polynomial time by
examining the loops in a graph constructed from the inequalities 1). The integer
programming problems that arise in practice, in the context of mutual exclusion
analysis, are therefore efficiently decidable.

The ideas explained in this section for linear arithmetic over integers ex-
tend directly to linear tests over the reals, which turn out to be computationally
somewhat simpler.

28

4.3 Checking Mutual Exclusion: Putting it All Together
Consider a predicate p defined by n clauses C1, . . . , Cn, with input tests

τ1(x̄), . . . , τn(x̄) respectively. Assume, without loss of generality, that each τk(x̄),
1 ≤ k ≤ n is a conjunction of primitive tests (note that it is always possible to
obtain an equivalent sequence of clauses where disjunctions have been removed).
Assume also that each τk(x̄), 1 ≤ k ≤ n, is written as τHk ∧ τAk , where τHk and
τAk are a conjunction of primitive unification and arithmetic tests respectively
(i.e., we write arithmetic tests after unification tests). Consider also each τHk

written as a minset βk (the function test2minset , given in Definition 4.6, returns
the minset representation of a test).

Assume that predicate p has type type[p]. In order to check whether
p is mutually exclusive (i.e., its clauses are mutually exclusive w.r.t. the type
assignment x̄ : type[p]) we need to solve the problem of determining whether any
pair of tests τi(x̄) and τj(x̄), 1 ≤ i, j ≤ n, i 6= j, is exclusive w.r.t. x̄ : type[p].

Before describing a sufficient condition for ensuring that these tests are
exclusive, we define some instrumental elements. Let βij be the minset inter-
section of βi and βj . Let θi (resp. θj), be the most general unifier of the tuple
of terms of βij and βi (resp. βj). That is, if βi ≡ t̄i ⊗ Ci, βj ≡ t̄j ⊗ Cj , and
βij ≡ t̄ij ⊗ Cij , then θi = mgu(t̄i, t̄ij), t̄ij ≡ t̄iθi, θj = mgu(t̄j , t̄ij), t̄ij ≡ t̄jθj

(note that there exists a substitution µij , such that µij = mgu(t̄i, t̄j)). Let ρ
be the type assignment x̄ : type[p] but written as a type-annotated term δ. We
have that the tests τi(x̄) and τj(x̄), are exclusive w.r.t. ρ if:

1. δ ⊗ βi ⊗ βj ' Λ (which can be checked as explained in Section 4.1), or
2. δ⊗ βi⊗ βj 6' Λ and τAi θi ∧ τAj θj is unsatisfiable (which can be checked

as explained in Section 4.2).

Example 4.6

Reconsider Example 4.1 with predicate part/4 from the quicksort program of
Figure 1. We had reduced the mutual exclusion problem to two subproblems: a)
checking that the tests L = [] and L = [E|R] are exclusive w.r.t. type assignment
ρ, and b) checking that the tests E < C and E >= C are exclusive w.r.t. ρ. In
this case, we have that δ is ((L, C), (L : intlist, C : int)). Also, β1 ≡ ([], C),
β2 ≡ ([E|R], C), and β3 ≡ ([E|R], C). We now have that part/4 is mutually
exclusive because: δ ⊗ βi ⊗ βj ' Λ, for i = 1 and j ∈ {2, 3}, and (although
δ ⊗ β2 ⊗ β3 6' Λ) also E < C ∧ E ≥ C is unsatisfiable (note that β2,3 ≡ ([E|R], C),
and θ2 and θ3 are the identity).

29

4.4 Checking Mutual Exclusion: Dealing with the Cut
The presence of a pruning operator (cut) in program clauses can help

the detection of mutual exclusion. In order to take the cut into account, we
simply redefine the concept of mutually exclusive clauses in Definition 2.4 as:

Definition 4.16 (mutual exclusion in the presence of cut)

Let C1, . . . , Cn, n > 0, be a sequence of clauses, with input tests τ1, . . . , τn
respectively. Let ρ be a type assignment. We say that C1, . . . , Cn is mutually
exclusive w.r.t. ρ if either, n = 1, or, for every pair of clauses Ci and Cj ,
1 ≤ i, j ≤ n, i 6= j: Ci has a cut and i < j, or Cj has a cut and j < i, or
τi(x̄) and τj(x̄) are exclusive w.r.t. ρ.

We also have to take into account that the pruning operator intro-
duces implicit tests. Consider a predicate p defined by a sequence of n clauses
C1, . . . , Cn, with input tests τ1(x̄), . . . , τn(x̄) respectively. Let I be the set of in-
dexes k of clauses Ck which have a cut and are before the clause Ci (i.e., k < i).
Let τ bk be the test (conjunction of tests) that is before the cut in clause Ck (i.e.,
τk ≡ τ bk ∧ τak , where τak is the test that is after the cut in clause Ck). Now,
instead of considering the test τi, for 1 ≤ i ≤ n, in Definition 4.16, we take the
test τ ci defined as follows:

τ ci = (
∧
k∈I

¬τ bk) ∧ τi

Example 4.7

Consider predicate abs/2 mentioned in page 8. Usually, this predicate is defined
with a cut in the first clause and no check in the second. In this case, the test
for the second clause will be ¬ X ≥ 0.

Note that the introduction of negation in the tests τ ci is not a problem,
since it is always possible to reduce the problem of determining whether a pair
of tests τ ci and τ cj are exclusive w.r.t. a given type assignment to one or more
exclusion subproblems where the pair of tests involved in each subproblem are
conjunctions of primitive tests (transforming tests to disjunctive normal form).

§5 A Prototype Implementation
In order to evaluate the effectiveness and efficiency of our approach to

determinacy analysis we have constructed a prototype which performs such anal-

30

ysis in an automatic way. The system takes Prolog programs as input,∗3 which
include a module definition in the standard way. In addition, the types and
modes of the arguments of exported predicates are either given or obtained from
other modules during modular type and mode analysis (including the interven-
ing type definitions). The system uses the CiaoPP PLAI analyzer to derive
mode information, using, for the reported experiments, the Sharing+Freeness
domain 21), and the eterms domain to derive the types of predicates 25). The
resulting type- and mode-annotated programs are then analyzed using the algo-
rithms presented for Herbrand and linear arithmetic tests.

Herbrand mutual exclusion is checked by a naive direct implementation
of the analyses presented. Testing of mutual exclusion for linear arithmetic tests
is implemented directly using the Omega test 22). This test determines whether
there is an integer solution to an arbitrary set of linear equalities and inequalities,
referred to as a problem.

We have tested the prototype first on a number of simple standard bench-
marks, and then on more complex ones. The latter are taken from those used
in the cardinality analysis of Braem et al. 2), which, as mentioned in Section 1,
is the closest related previous work that we are aware of. In the case of Kalah,
we have inserted the missing cuts as is also done in 2), to make the comparison
meaningful. Some relevant results of these tests are presented in Table 1. Pro-

gram lists the program names, N the number of predicates in the program, D

the number of them detected by the analysis as deterministic, M the number
of predicates whose tests are mutually exclusive, C the number of determinis-
tic predicates detected in 2), TD the time required by the determinacy analysis
(Ciao/CiaoPP version 1.13, rev 10683, on an Intel Pentium M 1.86GHz, 1Gb of
RAM memory, running Ubuntu Linux 8.04, and averaging several runs, elimi-
nating the best and worst values), TM the time required to derive the modes and
types, and TT the total analysis time (all times are in milliseconds). Averages
(per predicate in the case of analysis time) are also provided in the last row of
the table.

The results are quite encouraging, showing that the developed analysis is
fairly accurate. The analysis is more powerful in some cases than the cardinality
analysis 2), and at least as accurate in the others. It is pointed out in 2) that
determinacy information can be improved by using a more sophisticated type

∗3 In fact, the input language currently supported includes also a number of extensions —
such as functions or feature terms— which are translated by the first (expansion) passes
of the Ciao compiler to clauses, possibly with cut.

31

Table 1 Accuracy and efficiency of the determinacy analysis (times in mS).

Program N D (%) M (%) C TD TM TT

Hanoi 2 2 (100) 2 (100) N/A 48 55 103

Fib 1 1 (100) 1 (100) N/A 16 21 37

Mmatrix 3 3 (100) 3 (100) N/A 24 39 63

Tak 1 1 (100) 1 (100) N/A 24 23 47

Subs 1 1 (100) 1 (100) N/A 12 16 28

Reverse 2 2 (100) 2 (100) N/A 21 20 41

Qsort 3 3 (100) 3 (100) 3 (100) 40 34 74

Qsort2 5 5 (100) 5 (100) 5 (100) 64 43 107

Queens 6 3 (50) 5 (83) 2 (33) 65 36 101

Gabriel 20 6 (30) 11 (55) 4 (20) 308 241 549

Kalah 44 40 (91) 42 (95) 40 (91) 952 2432 3384

Plan 16 8 (50) 12 (75) 3 (19) 402 811 1213

Credit 25 18 (72) 21 (84) 16 (64) 1032 321 1353

Pg 10 6 (60) 9 (90) 6 (60) 372 177 549

Mean – 71% 85% 61% 24 (/p) 31 (/p) 55 (/p)

domain. This is also applicable to our analysis, and the types inferred by our
system are similar to those used in 2). The determinacy analysis times are also
encouraging, despite the currently relatively naive implementation of the system
(for example, the call to the Omega test is done by calling an external process).
The overall analysis times are also reasonable, even when including the type
and mode analysis times, which are in any case very useful in other parts of the
compilation process.

§6 Conclusion
We have proposed an analysis for detecting procedures and goals that are

deterministic (i.e., that produce at most one solution at most once), or predicates
whose clause tests are mutually exclusive, even if they are not deterministic
(because they call other predicates which are nondeterministic). Our approach
has advantages w.r.t. previous approaches in that it provides an algorithm for
detecting mutual exclusion and it handles disunification tests on the Herbrand
domain and arithmetic tests.

32

We have implemented the proposed analysis and integrated it into the
CiaoPP system, which also infers automatically the mode and type informa-
tion that the proposed analysis takes as input. The results of the experiments
performed on this implementation show that the analysis is fairly accurate and
efficient, providing more accurate or similar results, regarding accuracy, than
previous proposals, while offering substantially higher automation, since typi-
cally no information is needed from the user.

Acknowledgment This work has been supported in part by
the Information Society Technologies program of the European Commission,
FP6 FET IST-15905 MOBIUS, IST-215483 SCUBE, and 06042-ESPASS, Min-
istry of Science projects TIN-2008-05624 DOVES, TIN2005-09207-C03 MERIT-
COMVERS, Ministry of Industry project FIT-340005-2007-14, and CAM project
S-0505/TIC/0407 PROMESAS.

References

1) B. Aspvall and Y. Shiloach. A polynomial time algorithm for solving systems
of linear inequalities with two variables per inequality. In Proc. 20th ACM
Symposium on Foundations of Computer Science, pages 205–217, October 1979.

2) C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality
analysis of prolog. In Proc. International Symposium on Logic Programming,
pages 457–471, Ithaca, NY, November 1994. MIT Press.

3) F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo,
J. Maluszynski, and G. Puebla. On the Role of Semantic Approximations in
Validation and Diagnosis of Constraint Logic Programs. In Proc. of the 3rd. Int’l
Workshop on Automated Debugging–AADEBUG’97, pages 155–170, Linköping,
Sweden, May 1997. U. of Linköping Press.

4) P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In
Types in Logic Programming, pages 157–187. MIT Press, 1992.

5) S. Dawson, C.R. Ramakrishnan, I.V. Ramakrishnan, and R.C. Sekar. Extract-
ing Determinacy in Logic Programs. In 1993 International Conference on Logic
Programming, pages 424–438. MIT Press, June 1993.

6) S. K. Debray and D. S. Warren. Functional computations in logic programs.
ACM Transactions on Programming Languages and Systems, 11(3):451–481,
1989.

7) B. Demoen, M. Garćıa de la Banda, W. Harvey, K. Marriott, and P. Stuckey.
An Overview of HAL. In Joxan Jaffar, editor, 5th International Conference
on Principles and Practice of Constraint Programming (CP’99), volume 1713
of Lecture Notes in Computer Science, pages 174–188. Springer-Verlag, October
1999.

33

8) M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, New York, 1979.

9) Roberto Giacobazzi and Laura Ricci. Detecting Determinate Computations
by Bottom-up Abstract Interpretation. In Bernd Krieg-Brückner, editor, 4th
European Symposium on Programming (ESOP’92), volume 582 of Lecture Notes
in Computer Science, pages 167–181. Springer-Verlag, February 1992.

10) Fergus Henderson, Zoltan Somogyi, and Thomas Conway. Determinism Analy-
sis in the Mercury Compiler. In Ramamohanarao Kotagiri, editor, Proceedings
of the 9th Australian Computer Science Conference, volume 18 of Australian
Computer Science Communications, pages 337–346. RMIT, The University of
Melbourne, January 1996.

11) M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Integrated Pro-
gram Debugging, Verification, and Optimization Using Abstract Interpretation
(and The Ciao System Preprocessor). Science of Computer Programming, 58(1–
2):115–140, October 2005.

12) P.M. Hill and A. King. Determinacy and determinacy analysis. Journal of
Programming Languages, 5(1):135–171, December 1997.

13) G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Values
of Program Variables by means of Abstract Interpretation. Journal of Logic
Programming, 13(2 and 3):205–258, July 1992.

14) Andy King, Lunjin Lu, and Samir Genaim. Detecting Determinacy in Prolog
Programs. In Sandro Etalle and Miroslaw Truszczynski, editors, Logic Program-
ming, 22nd International Conference, ICLP 2006, Seattle, WA, USA, August
17-20, 2006, Proceedings, volume 4079 of Lecture Notes in Computer Science,
pages 132–147. Springer, 2006.

15) K. Kunen. Answer Sets and Negation as Failure. In Proc. of the Fourth
International Conference on Logic Programming, pages 219–228, Melbourne,
May 1987. MIT Press.

16) J.-L. Lassez, M. Maher, and K. Marriott. Unification Revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587–
626. Morgan Kaufman, 1988.

17) P. López-Garćıa, F. Bueno, and M. Hermenegildo. Determinacy Analysis for
Logic Programs Using Mode and Type Information. In Proceedings of the 14th
International Symposium on Logic-based Program Synthesis and Transformation
(LOPSTR’04), number 3573 in LNCS, pages 19–35. Springer-Verlag, August
2005.

18) P. López-Garćıa, F. Bueno, and M. Hermenegildo. Inferring Determinacy and
Mutual Exclusion in Logic Programs Using Mode and Type Analysis. Tech-
nical Report CLIP2/2009.0, Technical University of Madrid (UPM), School of
Computer Science, UPM, February 2009.

19) Lunjin Lu and Andy King. Determinacy Inference for Logic Programs. In
Mooly Sagiv, editor, Programming Languages and Systems, 14th European Sym-
posium on Programming (ESOP 2005), volume 3444 of Lecture Notes in Com-
puter Science, pages 108–123. Springer, 2005.

34

20) Torben Æ. Mogensen. A Semantics-Based Determinacy Analysis for Prolog with
Cut. In Perspectives of System Informatics, Second International Andrei Ershov
Memorial Conference, volume 1181 of Lecture Notes in Computer Science, pages
374–385. Springer, 1996.

21) K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing
and Freeness of Program Variables Through Abstract Interpretation. In 1991
International Conference on Logic Programming, pages 49–63. MIT Press, June
1991.

22) W. Pugh. A Practical Algorithm for Exact Array Dependence Analysis. Com-
munications of the ACM, 35(8):102–114, August 1992.

23) Dan Sahlin. Determinacy Analysis for Full Prolog. In Proceedings of the 1991
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based Pro-
gram Manipulation (PEPM’91), pages 23–30. ACM Press, 1991.

24) Z. Somogyi, F. Henderson, and T. Conway. The Execution Algorithm of Mer-
cury: an Efficient Purely Declarative Logic Programming Language. Journal
of Logic Programming, 29(1–3):17–64, October 1996.

25) C. Vaucheret and F. Bueno. More Precise yet Efficient Type Inference for Logic
Programs. In International Static Analysis Symposium, volume 2477 of Lecture
Notes in Computer Science, pages 102–116. Springer-Verlag, September 2002.

35

