
Determinacy Analysis for Logic Programs
Using Mode and Type Information

P. López-Garćıa1, F. Bueno1, and M. Hermenegildo1,2

1 School of Computer Science, Technical University of Madrid (UPM)
2 Depts. of Comp. Science and El. and Comp. Eng., U. of New Mexico (UNM)

{pedro.lopez,bueno,herme}@fi.upm.es

Abstract. We propose an analysis for detecting procedures and goals
that are deterministic (i.e. that produce at most one solution), or pre-
dicates whose clause tests are mutually exclusive (which implies that at
most one of their clauses will succeed) even if they are not deterministic
(because they call other predicates that can produce more than one so-
lution). Applications of such determinacy information include detecting
programming errors, performing certain high-level program transforma-
tions for improving search efficiency, optimizing low level code generation
and parallel execution, and estimating tighter upper bounds on the com-
putational costs of goals and data sizes, which can be used for program
debugging, resource consumption and granularity control, etc. We have
implemented the analysis and integrated it in the CiaoPP system, which
also infers automatically the mode and type information that our analy-
sis takes as input. Experiments performed on this implementation show
that the analysis is fairly accurate and efficient.

Keywords: Determinacy Inference, Program Analysis, Modes, Types.

1 Introduction

Knowing that certain predicates are deterministic for a given class of calls has a
number of interesting applications in program debugging, verification, transfor-
mation, and optimization. By a predicate being deterministic we mean that it
produces at most one solution. It is also interesting to detect predicates whose
clause tests are mutually exclusive (which implies that at most one of their
clauses will succeed) even if they are not deterministic because they call other
predicates that can produce more than one solution.

Perhaps the most important application of compile-time determinacy infor-
mation is in the context of program development. If we assume that the pro-
grammer has indicated that certain predicates should be deterministic for cer-
tain calling patterns (using suitable assertions as those used in Ciao [14]. Mer-
cury [25], or HAL [7]) and a predicate is determined to be non-deterministic in
one of those cases then, clearly, a compile-time error has been detected and can
be reported [14, 12]. This is quite useful since certain classes of programming
errors often result in turning predicates intended to be deterministic into non-
deterministic ones. Also, in addition to detecting programming errors at compile
time, determinacy inference can obviously be used to verify (i.e., prove correct)
such determinacy assertions [14].

Determinacy information can also be used for performing low-level optimiza-
tions [21, 25] as well higher-level program transformations for improving search
efficiency. In particular, literals can be reordered so that deterministic goals are
executed ahead of possibly non-deterministic goals where possible, improving the
efficiency of parallel search [24]. Determinacy information is also very useful dur-
ing program specialization. In addition, the implementation of (and-)parallelism
is greatly simplified in presence of determinacy information: knowing that a goal
is deterministic allows one to eliminate significant run-time overhead (due to
markers) [11] and, in addition, performing data parallelism transformations [13].

Finally, determinacy (and mutual exclusion) information can be used to es-
timate much tighter upper bounds on the computational costs of goals [5]. Since
it is generally not known in advance how many of the solutions generated by a
predicate will be demanded, a conservative upper bound on the computational
cost of a predicate can be obtained by assuming that all solutions are needed,
and that all clauses are executed (thus the cost of the predicate is assumed
to be the sum of the costs of all of its clauses). It is straightforward to take
mutual exclusion into account to obtain a more precise estimate of the cost of
a predicate, using the maximum of the costs of mutually exclusive groups of
clauses. Moreover, knowing that all literals in a clause will produce at most one
solution allows one to assume that an upper bound on the cost of the clauses
is the sum of the cost of all literals in it, which simplifies the cost estimation
(as explained in [5]). These upper bounds can be used for improved granularity
control of parallel tasks [20] and for better performance/complexity debugging
and verification of programs [14].

In this paper we propose a method whereby, given (upper approximations
of) mode and type information, we can detect procedures and goals that are
deterministic (i.e., that produce at most one solution), or predicates whose clause
tests are mutually exclusive, even if they are not deterministic because they call
other predicates that can produce more than one solution (i.e. that are not
deterministic).

There has been much interest on determinacy detection in the literature
(see [15] and its references), using several different forms of determinism. The
line of work closest to ours starts with [6], in which functional computations
are detected and exploited. However, the notion of mutual exclusion in this
work is not based on constraint satisfaction. This concept is used in the analysis
presented in [4], where, nonetheless, no algorithms are defined for the detection
of mutual exclusion. The cut is not taken into account, either. In [10] a combined
analysis of modes, types, and determinacy is presented, as well as in the more
accurate [2]. As we will show, our analysis improves on these proposals.

Several programming systems also make use of determinacy, e.g., Mer-
cury [25, 12] and HAL [7]. The Mercury and HAL systems allow the programmer
to declare that a predicate will produce at most one solution, and attempts to
verify this with respect to the Herbrand terms with equality tests. As far as we
know, both systems use the same analysis [12], which does not handle disequa-
lity constraints on the Herbrand domain. Nor does it handle arithmetic tests,

except in the context of the if-then-else construct. As such, it is considerably
weaker than the approach described here. Also, our approach does not require
any annotations from programmers, since the types and modes on which it is
based are inferred (in our case by CiaoPP [14]).

2 Modes, Types, Tests, and Mutual Exclusion

We assume an acquaintance with the basic notions of logic programming. In
order to reason about determinacy, it is necessary to distinguish between unifi-
cation operations that act as tests (and which may fail), and output unifications
that act as assignments (and always succeed). To this end, we assume that mode
information is available, as a result of a previous analysis, i.e., for each unification
operation in each predicate, we know whether the operation acts as a test or cre-
ates an output binding. Note that this is weaker than most conventional notions
of moding in that it does not require input arguments to be completely ground,
and allows an output argument to occur as a subterm of an input argument.

We also assume that type information is available, generally also as the result
of a previous analysis. A type refers to a set of terms, and can be denoted by
using several type representations (e.g. type terms and regular term grammars as
in [3], or type graphs as in [16] or simply predicates as in the Ciao system). We
include below the definitions of type term, type rule, and deterministic type rule
from [3], for a better understanding of the algorithms that we have developed,
and in order to make this paper more self-contained.

We assume the existence of an infinite set of type symbols (each type symbol
refers to a set of terms, i.e., to a type). There are two special type symbols: µ,
that represents the type of the entire Herbrand universe and the type symbol φ,
that represents the empty type.

Definition 1. [Type term] A type term is defined inductively as follows:

1. A constant symbol is a type term.
2. A variable is a type term.
3. A type symbol is a type term.
4. If f is a n-ary function symbol, and each ωi is a type term, then f(ω1, . . . , ωn)

is a type term.

A pure type term is a variable-free type term. A logical term is a type-symbol-free
type term.

In this paper, we refer to logical terms as Herbrand terms. Note that according
to this definition, all type symbols are type terms, however, the converse is not
true.

There is a distinguished non-empty finite subset of the set of type symbols
called the set of base type symbols. The set of Herbrand terms represented by
a base type symbol is called a base type. For example, the set of all constant
symbols that represent integer numbers is a base type represented by the base
type symbol integer.

Definition 2. [Type rule] A type rule is an expression of the form α → Υ , where
α is a type symbol, and Υ is a set of pure type terms.

Example 1. The following type rule defines the type symbol intlist, that denotes
the set of all lists of integer numbers:

intlist → {[], [integer|intlist]}

2

Definition 3. A (non-base) type symbol α, is defined in, or by, a set of type
rules T if there exists a type rule (α → Υ) ∈ T .

Definition 4. A pure type term ω is defined by a set of type rules T if each
type symbol in ω is either µ, φ, a base type symbol, or a (non-base) type symbol
defined in T .

We assume that for each type rule (α → Υ) ∈ T it holds that each element
(i.e. pure type term) of Υ is defined in T , and that each type symbol defined in
T has exactly one defining type rule in T .

Definition 5. [Deterministic type rule] A type rule α → Υ is deterministic if no
element of Υ is a type symbol and there is no pair of pure type terms ω1, ω2 ∈ Υ ,
such that ω1 6= ω2, ω1 = f(ω1

1 , . . . , ω1
n), and ω2 = f(ω2

1 , . . . , ω2
n).

For instance, the type rule in Example 1 is deterministic. The class of types that
can be described by deterministic type rules is the same as the class of tuple-
distributive regular types [3]. Additional background on type-related issues may
be found in [3, 16].

For concreteness, the determinacy analysis we describe is based on regular
types [3], which are specified by regular term grammars in which each type symbol
has exactly one defining type rule, although it can easily be generalized to other
type systems.

Let type[q] denote the type of each predicate q in a given program. In this
paper, we are concerned exclusively with “calling types” for predicates —in other
words, when we say “a predicate p in a program P has type type[p]”, we mean
that in any execution of the program P starting from some class of queries of
interest, whenever there is a call p(t̄) to the predicate p, the argument tuple t̄ in
the call will be an element of the set denoted by type[p].

A primitive test is an “atom” whose predicate is a built-in such as the unifi-
cation or some arithmetic predicate (<,>,≤,≥, 6=, etc.) which acts as a “test”
(note that with our assumptions of having available both mode and type infor-
mation for each variable in a program, it is straightforward to identify primitive
tests in a program). We define a test to be either a primitive test, or a conjunc-
tion τ1 ∧ τ2, or a disjunction τ1 ∨ τ2, or a negation ¬τ1, where τ1 and τ2 are
tests.

We denote the Herbrand Universe (i.e., the set of all ground terms) as H,
and the set of n–tuples of elements of H as Hn. Given a (finite) set of variables

V = {x1, . . . , xn}, a type assignment ρ over V is a mapping from V to a set of
types, written as (x1 : ω1, . . . , xn : ωn), where ρ(xi) = ωi, for 1 ≤ i ≤ n, and
ωi is a (nonempty) type representation (a type term in the algorithms that we
present). Given a term t and a type representation ω, in an abuse of terminology
we say that t ∈ ω, meaning that t belongs to the set of terms denoted by ω.

We now define some notions related to clause tests and determinacy. Where
necessary to emphasize the input test in a clause (i.e. the conjunction of primitive
tests in the body), we will write the clause in “guarded” form, as:

p(x1, . . . , xn) :− input tests(x1, . . . , xn) [] Body .

As an example, consider a predicate defined by the clauses:

abs(X, Y) :− X ≥ 0 [] Y = X.
abs(Y,Z) :− Y < 0 [] Z = −Y.

Assume we know that this predicate will always be called with its first argument
bound to an integer. Obviously, for any particular call, only one of the tests
‘X ≥ 0’ or ‘X < 0’ will succeed (i.e. the tests are mutually exclusive).

Fundamental to our approach to detecting determinacy is the notion of tests
being “exclusive” w.r.t. a type assignment:

Definition 6. Two tests τ1(x̄) and τ2(x̄) are exclusive w.r.t. a type assignment
x̄ : ω̄, if for every t̄ ∈ ω̄, x̄ = t̄ ∧ τ1(x̄) ∧ τ2(x̄) is unsatisfiable.

Definition 7. Let C1, . . . , Cn, n > 0, be a sequence of clauses, with input tests
τ1(x̄), . . . , τn(x̄) respectively. Let ρ be a type assignment. We say that C1, . . . , Cn

is mutually exclusive w.r.t. ρ if either, n = 1, or, for every pair of clauses Ci and
Cj , 1 ≤ i, j ≤ n, i 6= j, τi(x̄) and τj(x̄) are exclusive w.r.t. ρ.

Consider a predicate p defined by n clauses C1, . . . , Cn, with input tests
τ1(x̄), . . . , τn(x̄) respectively:

p(x̄) :− τ1(x̄) [] Body1.
. . .
p(x̄) :− τn(x̄) [] Bodyn.

We assume, without loss of generality, that each τi(x̄) is a conjunction of prim-
itive tests (note that it is always possible to obtain an equivalent sequence of
clauses where disjunctions have been removed).

Suppose that the predicate p has type type[p]: in the interest of simplicity, we
sometimes say that the predicate p is mutually exclusive w.r.t. the type type[p]
(or simply say that the predicate p is mutually exclusive) if the sequence of
clauses C1, . . . , Cn defining p is mutually exclusive w.r.t. the type assignment
x̄ : type[p]. Given a call c to predicate p in the body of a clause, we also say that
c is mutually exclusive if p is. Note that if the predicate p is mutually exclusive,
then at most one of its clauses will succeed for any call p(t̄), with t̄ ∈ ω̄.

3 Determinacy Analysis

In this section we explain our algorithm for detecting predicates and goals that
are deterministic (i.e., that produce at most one solution). Before introducing our
algorithm, we give some instrumental definitions. We define the “calls” relation
between predicates in a program as follows: p calls q, written p ; q, if and only
if a literal with predicate symbol q appears in the body of a clause defining p.
Let ;? denote the reflexive transitive closure of ;. The following result shows
the importance of mutual exclusion information for detecting determinacy:

Theorem 1. A predicate p in the program is deterministic if, for each predicate
q such that p ;? q, q is mutually exclusive.

Proof Assume that p is not deterministic, i.e., there is a goal p(t̄), with
t̄ ∈ type[p], which is not deterministic. It is a straightforward induction on the
number of resolution steps to show that there is a q such that p ;? q and q is
not mutually exclusive.

Our algorithm for detecting determinacy consists on first determining which
predicates are mutually exclusive (which is in fact the complex part, and is
explained in detail in Section 4). Then, inferring determinacy is straightfor-
ward: from Theorem 1, analysis of determinacy reduces to the determination of
reachability in the call graph of the program. In other words, a predicate p is
deterministic if there is no path in the call graph of the program from p to any
predicate q that is not mutually exclusive. It is straightforward to propagate
this reachability information in a single traversal of the call graph in reverse
topological order. The idea is illustrated by the following example.
Example 2. Consider the following predicate taken from a quicksort program:

qs(X1,X2) :− X1 = [] [] X2 = [].
qs(X1,X2) :− X1 = [H|L] [] part(H,L,Sm,Lg),

qs(Sm,Sm1), qs(Lg,Lg1), app(Sm1,[H|Lg1],X2).

Assume that it has been inferred that qs/2 will be used with mode (in, out)
and type (intlist, -), and assume we have already shown that part/4 and
app/3 are mutually exclusive w.r.t. the types (integer, intlist, -, -) and
(intlist, intlist, -) inferred for their body literals in the recursive clause
above. The input tests for the sequence of clauses of qs/2 are X1 = [] , X1 =
[H|L], which are mutually exclusive w.r.t. the type intlist, which means that
at most one head unification will succeed for qs/2. It follows that a call to qs/2
with the first argument bound to a list of integers is deterministic, in the sense
that at most one of the clauses of qs/2 will succeed, and if it does, it succeeds
only once (thus, at most, only one solution will be produced). 2

4 Checking Mutual Exclusion

Our approach to the problem of determining whether two tests τ1(x̄) and τ2(x̄)
are exclusive w.r.t. a type assignment x̄ : ω̄, consists of partitioning the test
τ1(x̄) ∧ τ2(x̄) such that tests in different resulting partitions involve different

constraint systems, and then applying to each partition an algorithm specific to
the corresponding constraint system that checks mutual exclusion. In this pa-
per we consider two commonly encountered constraint systems: Herbrand terms
with equality and disequality tests, on variables with tuple-distributive regular
types [3] (i.e., as mentioned in Section 2, types which are specified by regular
term grammars in which each type symbol has exactly one defining type rule
and each type rule is deterministic); and for linear arithmetic tests on integer
variables.

4.1 Checking Mutual Exclusion in the Herbrand Domain

We present a decision procedure for checking mutual exclusion of tests that is
inspired by a result, due to Kunen [17], that the emptiness problem is decidable
for Boolean combinations of (notations for) certain “basic” subsets of the Her-
brand universe of a program. It also uses straightforward adaptations of some
operations described by Dart and Zobel [3].

The reason the mutual exclusion checking algorithm for Herbrand is as com-
plex as it is, is that we want a complete algorithm for equality and disequality
tests. It is possible to simplify this considerably if we are interested in equality
tests only. Before describing the algorithm, we introduce some definitions and
notation.

We use the notions (to be defined later in this section) of type-annotated term,
and in general elementary set, as representations which denote some subsets of
Hn (for some n ≥ 1). These subsets can be, for example, the set of n-tuples for
which a test succeeds, or a “calling type” for a predicate p (i.e. the set denoted
by type[p]). Given a representation S (elementary set or type-annotated term),
Den(S) refers to the subset of Hn denoted by S.

Definition 8. [type-annotated term] A type-annotated term is a pair M =
(t̄M , ρM), where t̄M is a tuple of terms, and ρM is a type assignment. A type-
annotated term (t̄M , ρM) denotes the set of all the ground terms t̄Mθ, where θ
is some substitution, such that xθ ∈ ρM (x) for each variable in t̄M .

Given a type-annotated term (t̄, ρ), the tuple of terms t̄ can be regarded as
a Herbrand term (i.e. a type-symbol-free type term) and ρ can be considered
to be a type substitution 3, so that, if we apply this type substitution to t̄, we
get a pure type term (a variable-free type term). This is useful for defining the
“intersection” and “inclusion” operations over type-annotated terms (that we
define later) using the algorithms described by Dart and Zobel [3] for performing
these operations over pure type terms. When we have a type-annotated term
(t̄, ρ) such that ρ(x) = µ for each variable x in t̄, we omit the type assignment
ρ for brevity and use the tuple of terms t̄ (recall that µ denotes the type of
the entire Herbrand universe). Thus, a tuple of terms t̄ with no associated type
assignment can be regarded as a type-annotated term which denotes the set of
all ground instances of t̄.
3 A type substitution is similar to a substitution that maps variables to type terms.

A detailed definition of type substitutions is given in [3].

Definition 9. [elementary set] An elementary set is defined as follows:

– Λ is an elementary set, and denotes the empty set (i.e., Den(Λ) = ∅);
– a type-annotated term (t̄, ρ) is an elementary set; and
– if A and B are elementary sets, then A ⊗ B, A ⊕ B and comp(A) are

elementary sets that denote, respectively, the sets of (tuples of) terms
Den(A) ∩Den(B), Den(A) ∪Den(B), and Hn \Den(A).

We define the following relations between elementary sets: A v B iff
Den(A) ⊆ Den(B). A < B iff Den(A) ⊂ Den(B). A ' B iff Den(A) = Den(B).

We define below two particular classes of elementary sets, namely, cobasic
sets and minsets, which are suitable representations of tests for the algorithms
that we present in this paper. A test τ(x̄) that is a conjunction of unification
and disunification tests, is represented as a minset that denotes the set of ground
instances of x̄ (i.e., subsets ofHn, assuming that x̄ is a n-tuple) for which the test
succeeds. In Figure 1 we will provide the test2minset function, which gives the
minset representation of a test. A disunification test is represented by a cobasic
set (which denotes the complementary set of a subset of Hn).

Definition 10. [cobasic set] A cobasic set is an elementary set of the form
comp(t̄), where t̄ is a tuple of terms (recall that t̄ is in fact a type-annotated
term (t̄, ρ) such that ρ(x) = µ for each variable x in t̄).

Definition 11. [minset] A minset is either Λ or an elementary set of the form
A ⊗ comp(B1) ⊗ · · · ⊗ comp(Bn), for some n ≥ 0, where A is a tuple of terms,
comp(B1), . . . , comp(Bn) are cobasic sets, and for all 1 ≤ i ≤ n, Bi = Aθi and
A 6v Bi for some substitution θi (i.e. Bi < A).

For brevity, we write a minset of the form A⊗ comp(B1)⊗· · ·⊗ comp(Bn) as
A/C, where C = {comp(B1), . . . , comp(Bn)}. We also denote the tuple of terms
of a cobasic set Cob ≡ comp(B) as t̄Cob, i.e. t̄Cob ≡ B.

Example 3. We define some examples of type-annotated terms A, B, and
C as follows: A = ((x, y), (x : α1, y : α2)), where α1 → {f(µ)}, and
α2 → {g(µ), h(µ)}; B is the type-annotated term such that t̄B ≡ (f(z), w)
and ρB ≡ (z : µ, w : α2) (note that A and B denote the same subset
of Hn, i.e., Den(A) = Den(B)); C is the type-annotated term with t̄C ≡
(f(v1), g(v2), v3, v4, f(a), f(v5), v6) and ρC ≡ (v1 : µ, v2 : list, v3 : α2, v4 : α3, v5 :
α3, v6 : list), where α3 → {a, b} and list → {[], [µ|list]}. 2

Definition 12. [type-annotated term instance] Let A and B be two type-
annotated terms. We say that A is an instance of B if A < B and there is
a substitution θ such that t̄A = t̄Bθ.

Let τ1 and τ2 be tests which are conjunctions of unification and disunification
tests, and ρ a type assignment. Let M be a type-annotated term representing the
type assignment ρ. Let Si be a minset representing τi, for i = 1, 2, the function

test2minset(τ):

Input: a conjunction of unification and disunification tests τ . We assume that τ is of
the form E ∧D1 ∧ · · · ∧Dn, where E is the conjunction of all unification tests of τ
(i.e., a system of equations) and each Di a disunification test (i.e., a disequation).

Output: a minset S representing the test τ (i.e., the set of tuples of terms Den(S) is
equal to the set of solutions of τ).

1. Let θ be the substitution associated with the solved form of E (this can be
computed by using the techniques of Lassez et al. [18]).

2. Let θi, for 1 ≤ i ≤ n, be the substitution associated with the solved form of
E ∧Ni, where Ni is the negation of Di.

3. S = A ⊗ comp(B1) ⊗ · · · ⊗ comp(Bn), where A = (x̄)θ and Bi = (x̄)θi, for
1 ≤ i ≤ n.

Fig. 1. Definition of the function test2minset.

test2minset , defined in Figure 1, gives the minset representation of a test, i.e.,
Si = test2minset(τi).

We have that τ1 and τ2 are exclusive w.r.t. ρ if and only if M⊗S1⊗S2 ' Λ. Let
S be the minset resulting of computing S1⊗S2 (this intersection can be trivially
defined in terms of most general unifiers of the tuples of terms composing the
minsets S1 and S2). Then, the fundamental problem is to devise an algorithm
to test whether M ⊗S ' Λ, where M is a type-annotated term and S a minset.
The algorithm that we propose is given by the boolean function empty(M,S).
Due to space limitations, we provide a high level description of this function. A
detailed algorithm for its implementation can be found in [19].

– First, perform the “intersection” of M and the tuple of terms A of the
minset S (we assume that S = A/C). Let R denote this intersection (i.e.
M⊗A). For example, assume that M denotes ((X), (X : list)) and S denotes
(X3)/{comp([]), comp([X1|X2])}. In this case, A denotes the tuple of terms
(X3) and C denotes the set of cobasic sets {comp([]), comp([X1|X2])}. Thus,
the “intersection” of M and A is the type-annotated term ((X4), (X4 : list))
(denoted by R).

– If R is empty (i.e., R ' Λ), or A is “included” in R (i.e. A v R), then it can be
reported that M ⊗S ' Λ (the “inclusion” operation can be defined by using
a straightforward adaptation of the function subsetT (ω1, ω2) described in [3],
that determines whether the type denoted by a pure type term is a subset
of the type denoted by another). In our example, none of these conditions
hold (recall that the tuple of terms (X3) represents the type-annotated term
((X3), (X3 : µ))).

– Otherwise, the problem is reduced to checking whether R/C ' Λ.
– This way, if R is “included” in some tuple of terms of some cobasic set in C,

then it can be reported that R/C ' Λ.
– Otherwise, it means that R is “too big”, and thus, it is “expanded” to a

set of “smaller” type-annotated terms (with the hope that each of them will

be “included” in the tuple of terms of some cobasic set in C). This way,
the initial problem is reduced to a set of subproblems, one subproblem for
each element in the set of “smaller” type-annotated terms to which R has
been “expanded”. This holds in the example, where the type-annotated term
((X4), (X4 : list)) is “expanded” to a set of two “smaller” type-annotated
terms {R1, R2} where R1 denotes (([X5|X6]), (X5 : µ,X6 : list)) and R2

denotes (([]), ∅) (∅ denotes an empty type assignment, since ([]) has no
variables). Then, two subproblems arise:
• Checking whether R1/C ' Λ, which holds because (([X5|X6]), (X5 :

µ, X6 : list)) is “included” in ([X1|X2])) (the tuple of terms of the
cobasic set comp([X1|X2])); and

• Checking whether R2/C ' Λ is empty, which also holds because (([]), ∅)
is “included” in the tuple of terms of the cobasic set comp([]).

– Thus, it can be concluded that R/C ' Λ and hence M ⊗ S ' Λ.

In [19] conditions are defined for ensuring that type-annotated terms are not
infinitely expanded, and hence ensuring termination. Intuitively, these conditions
are based on detecting and removing “useless” cobasic sets from C, and also on
expanding the type-annotated term R into type-annotated terms whose depth
is bounded (it is always possible to detect when it is not necessary to expand
type-annotated terms to more than a “decision depth” in order to solve the
corresponding subproblem). We say that a cobasic set Cob is “useless” whenever
if R/(C − {Cob}) 6' Λ, then R/C 6' Λ. For example, if the tuple of terms of
a cobasic set Cob in C is “disjoint” with R, then it is useless. This way, if C
becomes empty, then R/C 6' Λ.

4.2 Checking Mutual Exclusion in Linear Arithmetic over Integers

In this section, we give an algorithm for checking whether two linear arithmetic
tests τi(x̄) and τj(x̄) are exclusive w.r.t. the type assignment of integer to
each variable in x̄. This amounts to determining whether (∃x̄)(τi(x̄) ∧ τj(x̄)) is
unsatisfiable.

The system τi(x̄)∧τj(x̄) can be transformed into disjunctive normal form as:

(τi(x̄) ∧ τj(x̄)) =
∨n

k=1

∧m
l=1 φkl(x̄)

where each of the tests φkl(x̄) is of the form φkl(x̄) ≡ a0 +a1x1 + · · ·+apxp ©? 0,
with ©? ∈ {=, <,≤, >,≥}. For doing this transformation, note that a test of the
form

∑p
i=0 aixi 6= 0 can be written in terms of two tests involving the operators

‘>’ and ‘<’:

(
∑p

i=0 aixi > 0) ∨ (
∑p

i=0 aixi < 0)

The resulting system, transformed to disjunctive normal form, defines a set
of integer programming problems: the answer to the original mutual exclusion
problem is “yes” if and only if none of these integer programming problems has a
solution. Since a test can give rise to at most finitely many integer programming

problems in this way, it follows that the mutual exclusion problem for linear
integer tests is decidable.

Since determining whether an integer programming problem is solvable is
NP-complete [9], it is straightforward to show that the mutual exclusion prob-
lem for linear arithmetic tests over the integers is co-NP-hard. It should be noted,
however, that the vast majority of arithmetic tests encountered in practice tend
to be fairly simple: our experience has been that tests involving more than two
variables are rare. The solvability of integer programs in the case where each
inequality involves at most two variables, i.e., is of the form ax + by ≤ c, can be
decided efficiently in polynomial time by examining the loops in a graph con-
structed from the inequalities [1]. The integer programming problems that arise
in practice, in the context of mutual exclusion analysis, are therefore efficiently
decidable.

The ideas explained in this section for linear arithmetic over integers extend
directly to linear tests over the reals, which turn out to be computationally
somewhat simpler.

4.3 Checking Mutual Exclusion: Putting it All Together

Consider a predicate p defined by n clauses C1, . . . , Cn, with input tests
τ1(x̄), . . . , τn(x̄) respectively:

p(x̄) :− τ1(x̄) [] Body1.
. . .
p(x̄) :− τn(x̄) [] Bodyn.

Assume that the predicate p has type type[p]. We also assume, without loss
of generality, that each τi(x̄) is a conjunction of primitive tests (see Section 2).

In order to check whether the predicate p is mutually exclusive (i.e. its clauses
are mutually exclusive w.r.t. the type assignment x̄ : type[p]) we need to solve
the problem of determining whether a pair of tests τi(x̄) and τj(x̄), 1 ≤ i, j ≤
n, i 6= j, are exclusive w.r.t. x̄ : type[p]. Let ρ be the type assignment x̄ :
type[p]. Consider the type assignment ρ written as a type-annotated term M ,
and consider each τi(x̄) written as τH

i ∧τA
i , where τH

i and τA
i are a conjunction of

primitive unification and arithmetic tests respectively (i.e., we write arithmetic
tests after unification tests). Consider also each τH

i written as a minset Di (the
function test2minset , defined in Figure 1, gives the minset representation of a
test). We have that the pair of tests τi(x̄) and τj(x̄), are exclusive w.r.t. ρ if:

1. M ⊗Di ⊗Dj ' Λ (this can be checked as explained in Section 4.1), or
2. M ⊗ Di ⊗ Dj 6' Λ and τA

i θi ∧ τA
j θj is unsatisfiable, where θi (resp. θj),

is the most general unifier of the tuple of terms of Dij and Di (resp. Dj),
and Dij is the minset intersection of Di and Dj . That is, if Di ≡ Ai/Bi,
Dj ≡ Aj/Bj , and Dij ≡ Aij/Bij , then θi = mgu(Ai, Aij), Aij ≡ Aiθi,
θj = mgu(Aj , Aij), Aij ≡ Ajθj (note that there exists a substitution µij ,
such that µij = mgu(Ai, Aj)). We use the algorithm described in Section 4.2
for checking whether τA

i θi ∧ τA
j θj is unsatisfiable.

Example 4. Let p be the predicate partition/4 from the familiar quicksort
program. Let X = [], (X = [H|L] ∧ H > Y), (X = [H|L] ∧ H ≤ Y) be the
sequence of tests for the clauses in p and let ρ be (X : intlist, Y : integer), where
intlist → {[], [integer|intlist]}. In this case, we have that M is ((X, Y), (X :
intlist, Y : integer)). τ1(x̄) ≡ X = [], τ2(x̄) ≡ X = [H|L]∧H > Y , and τ3(x̄) ≡
X = [H|L] ∧H ≤ Y . τ1(x̄) can be written as τH

1 ∧ τA
1 , where τH

1 ≡ X = [] and
τA
1 ≡ true. Similarly, τH

2 ≡ X = [H|L] and τA
2 ≡ H > Y , and τH

3 ≡ X = [H|L]
and τA

3 ≡ H ≤ Y . D1 ≡ ([], Y), D2 ≡ ([H|L], Y), and D3 ≡ ([H|L], Y). We have
that partition/4 is mutually exclusive because: M ⊗ Di ⊗ Dj ' Λ, for i = 1
and j ∈ {2, 3}, and (although M ⊗D2⊗D3 6' Λ), we have that H > Y ∧H ≤ Y
is unsatisfiable (note that D2,3 ≡ ([H|L], Y), and θ2 and θ3 are the identity). 2

4.4 Checking Mutual Exclusion: Dealing with the Cut

The presence of the pruning operator (cut) in the clauses of a program can
help the detection of mutual exclusion of clauses. In order to take the cut into
account, we simply redefine the concept of mutually exclusive clauses given in
Definition 7 as follows:

Definition 13. Let C1, . . . , Cn, n > 0, be a sequence of clauses, with input tests
τ1, . . . , τn respectively. Let ρ be a type assignment. We say that C1, . . . , Cn is
mutually exclusive w.r.t. ρ if either, n = 1, or, for every pair of clauses Ci and
Cj , 1 ≤ i, j ≤ n, i 6= j:

1. Ci has a cut and and i < j, or
2. Cj has a cut and and j < i, or,
3. τi(x̄) and τj(x̄) are exclusive w.r.t. ρ.

We also have to take into account that the pruning operator introduces im-
plicit tests. Consider a predicate p defined by n clauses C1, . . . , Cn, with input
tests τ1(x̄), . . . , τn(x̄) respectively:

p(x̄) :− τ1(x̄) [] Body1.
. . .
p(x̄) :− τn(x̄) [] Bodyn.

Let I be the set of indexes k of clauses Ck which have a cut and are before
the clause Ci (i.e. k < i). Let τ b

k be the test (conjunction of tests) that is before
the cut in clause Ck (i.e. τk ≡ τ b

k ∧ τa
k , where τa

k is the test that is after the cut
in clause Ck).

Now, instead of considering the test τi, for 1 ≤ i ≤ n, in Definition 13, we
take the test τ c

i defined as follows:

τ c
i =

{
τi if I = ∅
(
∧

k∈I ¬τ b
k) ∧ τi otherwise.

Note that the introduction of the negation in the tests τ c
i is not a problem,

since it is always possible to reduce the problem of determining whether a pair
of tests τ c

i and τ c
j are exclusive w.r.t. a given type assignment, to one o more

exclusion subproblems where the pair of tests involved in each subproblem are
conjunctions of primitive tests (transforming tests to disjunctive normal form).

5 Improving Determinacy Analysis using Cut

The presence of the pruning operator in the clauses of a program not only im-
proves detection of mutual exclusion, but it can also help in the overall process
of detecting deterministic predicates. Besides helping the detection of mutual
exclusion of clauses (as we have seen before), it can also improve the propa-
gation algorithm given in Section 3. Assume that we would like to infer that
a predicate p is deterministic. Consider any clause defining p in which one or
more cuts appear, and any body literals that appear to the left of the rightmost
cut in that clause. Those literals are not required to be deterministic (we say
that a literal with predicate symbol q is deterministic if q is). In other words,
in Theorem 1, we can use a restricted definition (;r) of the “call” relation (;)
between predicates in a program, defined as follows: p ;r q, if and only if a
literal with predicate symbol q appears in the body of a clause defining p, and
there is no cut to the right of this literal in the clause. Similarly, ;?

r denotes the
reflexive transitive closure of ;r.

6 A Prototype Implementation

In order to evaluate the effectiveness and efficiency of our approach to determi-
nacy analysis we have constructed a relatively complete prototype which per-
forms such analysis in an automatic way. The system takes Prolog programs
as input,4 which include a module definition in the standard way. In addition,
the types and modes of the arguments of exported predicates are either given
or obtained from other modules during modular type and mode analysis (in-
cluding the intervening type definitions). The system uses the CiaoPP PLAI
analyzer to derive mode information, using, for the reported experiments, the
Sharing+Freeness domain [22], and an adaptation of Gallagher’s analysis to
derive the types of predicates [8]. The resulting type- and mode-annotated pro-
grams are then analyzed using the algorithms presented for Herbrand and linear
arithmetic tests.

Herbrand mutual exclusion is checked by a naive direct implementation of
the analyses presented. Testing of mutual exclusion for linear arithmetic tests is
implemented directly using the Omega test [23]. This test determines whether
there is an integer solution to an arbitrary set of linear equalities and inequalities,
referred to as a problem.

We have tested the prototype first on a number of simple standard bench-
marks, and then on more complex ones. The latter are taken from those used in
the cardinality analysis of Braem et al. [2], which is the closest related previous
work that we are aware of. In the case of Kalah, we have inserted the missing cuts
as is also done in [2], to make the comparison meaningful. Some relevant results
of these tests are presented in Table 1. Program lists the program names, N
4 In fact, the input language currently supported includes also a number of extensions

—such as functions or feature terms— which are translated by the first (expansion)
passes of the Ciao compiler to clauses, possibly with cut.

the number of predicates in the program, D the number of predicates detected
by the analysis as deterministic, M the number of predicates whose tests are
mutually exclusive, C the number of deterministic predicates detected in [2],
TD the time required by the determinacy analysis (Ciao version 1.9p111 and
CiaoPP-0.8, on a medium-loaded Pentium IV Xeon 2.0Ghz, 1Gb of RAM mem-
ory, running Red Hat Linux 8.0, and averaging several runs, eliminating the best
and worst values), TM the time required to derive the modes and types, and
TT the total analysis time (all times are given in milliseconds). Averages (per
predicate in the case of analysis time) are also provided in the last row of the
table.

Program N D (%) M (%) C TD TM TT

Hanoi 2 2 (100) 2 (100) N/A 69 79 148

Fib 1 1 (100) 1 (100) N/A 39 19 58

Mmatrix 3 3 (100) 3 (100) N/A 89 79 168

Tak 1 1 (100) 1 (100) N/A 49 29 78

Subs 1 1 (100) 1 (100) N/A 70 19 89

Reverse 2 2 (100) 2 (100) N/A 39 19 58

Qsort 3 3 (100) 3 (100) 3 (100) 50 69 119

Qsort2 5 5 (100) 5 (100) 5 (100) 99 70 169

Queens 6 3 (50) 5 (83) 2 (33) 99 59 158

Gabriel 20 6 (30) 11 (55) 4 (20) 360 279 639

Kalah 44 40 (91) 42 (95) 40 (91) 1110 3589 4699

Plan 16 8 (50) 12 (75) 3 (19) 459 949 1408

Credit 25 18 (72) 21 (84) 16 (64) 1209 359 1568

Pg 10 6 (60) 9 (90) 6 (60) 440 209 649

Mean – 71% 85% 61% 30 (/p) 42 (/p) 72 (/p)

Table 1. Accuracy and efficiency of the determinacy analysis (times in mS).

The results are quite encouraging, showing that the developed analysis is
fairly accurate. The analysis is more powerful in some cases than the cardinality
analysis [2], and at least as accurate in the others. It is pointed out in [2] that
determinacy information can be improved by using a more sophisticated type
domain. This is also applicable to our analysis, and the types inferred by our
system are similar to those used in [2]. The determinacy analysis times are also
encouraging, despite the currently relatively naive implementation of the system
(for example, the call to the omega test is done by calling an external process).
The overall analysis times are also reasonable, even when including the type
and mode analysis times, which are in any case very useful in other parts of the
compilation process.

7 Conclusions

We have proposed an analysis for detecting procedures and goals that are de-
terministic (i.e. that produce at most one solution), or predicates whose clause

tests are mutually exclusive, even if they are not deterministic (because they
call other predicates which are nondeterministic). This approach has advantages
w.r.t. previous approaches in that it provides an algorithm for detecting mutual
exclusion and it handles disequality constraints on the Herbrand domain and
arithmetic tests.

We have implemented the proposed analysis and integrated it into the
CiaoPP system, which also infers automatically the mode and type informa-
tion that the proposed analysis takes as input. The results of the experiments
performed on this implementation show that the analysis is fairly accurate and
efficient, providing more accurate or similar results, regarding accuracy, than
previous proposals, while offering substantially higher automation, since typi-
cally no information is needed from the user.

Acknowledgments

This work has been supported in part by the European Union IST program under
contracts IST-2001-38059 “ASAP”, by MCYT project TIC 2002-0055 “CUBICO”,
by FEDER infrastructure project UNPM-E012, and by the Prince of Asturias
Chair in Information Science and Technology at the University of New Mexico.
We would also like to thank the anonymous reviewers for their useful comments
on earlier versions of the paper.

References

1. B. Aspvall and Y. Shiloach. A polynomial time algorithm for solving systems of
linear inequalities with two variables per inequality. In Proc. 20th ACM Symposium
on Foundations of Computer Science, pages 205–217, October 1979.

2. C. Braem, B. Le Charlier, S. Modart, and P. Van Hentenryck. Cardinality analysis
of prolog. In Proc. International Symposium on Logic Programming, pages 457–
471, Ithaca, NY, November 1994. MIT Press.

3. P.W. Dart and J. Zobel. A Regular Type Language for Logic Programs. In Types
in Logic Programming, pages 157–187. MIT Press, 1992.

4. S. Dawson, C.R. Ramakrishnan, I.V. Ramakrishnan, and R.C. Sekar. Extract-
ing Determinacy in Logic Programs. In 1993 International Conference on Logic
Programming, pages 424–438. MIT Press, June 1993.

5. S.K. Debray and N.W. Lin. Cost analysis of logic programs. ACM Transactions
on Programming Languages and Systems, 15(5):826–875, November 1993.

6. S.K. Debray and D.S. Warren. Functional computations in logic programs. ACM
Transactions on Programming Languages and Systems, 11(3):451–481, 1989.

7. B. Demoen, M. Garcia de la Banda, W. Harvey, K. Marriott, and P. Stuckey. An
overview of HAL. In PPCP’99: Principles and Practice of Constraint Program-
ming, pages 174–178, 1999.

8. J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of
logic programs. In Pascal Van Hentenryck, editor, Proc. of the 11th International
Conference on Logic Programming, pages 599–613. MIT Press, 1994.

9. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, New York, 1979.

10. Roberto Giacobazzi and Laura Ricci. Detecting determinate computations by
bottom-up abstract interpretation. In Symposium proceedings on 4th European
symposium on programming, pages 167–181. Springer-Verlag, 1992.

11. G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execu-
tion of Prolog Programs: a Survey. ACM Transactions on Programming Languages
and Systems, 23(4):472–602, July 2001.

12. F. Henderson, Z. Somogyi, and T. Conway. Determinism analysis in the Mer-
cury compiler. In Proc. Australian Computer Science Conference, pages 337–346,
Melbourne, Australia, January 1996.

13. M. Hermenegildo and M. Carro. Relating Data–Parallelism and (And–) Parallelism
in Logic Programs. The Computer Languages Journal, 22(2/3):143–163, July 1996.

14. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In 10th
International Static Analysis Symposium (SAS’03), number 2694 in LNCS, pages
127–152. Springer-Verlag, June 2003.

15. P.M. Hill and A. King. Determinacy and determinacy analysis. Journal of Pro-
gramming Languages, 5(1):135–171, December 1997.

16. G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Values of Pro-
gram Variables by means of Abstract Interpretation. Journal of Logic Program-
ming, 13(2 and 3):205–258, July 1992.

17. K. Kunen. Answer Sets and Negation as Failure. In Proc. of the Fourth Interna-
tional Conference on Logic Programming, pages 219–228, Melbourne, May 1987.
MIT Press.

18. J.-L. Lassez, M. Maher, and K. Marriott. Unification Revisited. In J. Minker,
editor, Foundations of Deductive Databases and Logic Programming, pages 587–
626. Morgan Kaufman, 1988.

19. P. López-Garćıa, F. Bueno, and M. Hermenegildo. Towards Determinacy Anal-
ysis for Logic Programs Using Mode and Type Information. Technical Report
CLIP4/2005.0, Technical University of Madrid (UPM), School of Computer Sci-
ence, UPM, April 2005.

20. P. López-Garćıa, M. Hermenegildo, and S.K. Debray. A Methodology for Granu-
larity Based Control of Parallelism in Logic Programs. Journal of Symbolic Com-
putation, Special Issue on Parallel Symbolic Computation, 22:715–734, 1996.

21. J. Morales, M. Carro, and M. Hermenegildo. Improving the Compilation of Prolog
to C Using Moded Types and Determinism Information. In Proceedings of the Sixth
International Symposium on Practical Aspects of Declarative Languages, number
3507 in LNCS, pages 86–103, Heidelberg, Germany, June 2004. Springer-Verlag.

22. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and
Freeness of Program Variables Through Abstract Interpretation. In 1991 Interna-
tional Conference on Logic Programming, pages 49–63. MIT Press, June 1991.

23. W. Pugh. A Practical Algorithm for Exact Array Dependence Analysis. Commu-
nications of the ACM, 35(8):102–114, August 1992.

24. V. Santos-Costa, D.H.D. Warren, and R. Yang. Andorra-I: A Parallel Prolog
System that Transparently Exploits both And- and Or-parallelism. In Proceedings
of the 3rd. ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 83–93. ACM, April 1991. SIGPLAN Notices vol 26(7), July
1991.

25. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
an efficient purely declarative logic programming language. JLP, 29(1–3), October
1996.

