
A Flexible, (C)LP-based Approach to the
Analysis of Object-Oriented Programs

Mario Méndez-Lojo1, Jorge Navas1, and Manuel V. Hermenegildo1,2

1 University of New Mexico (USA)
2 Technical University of Madrid (Spain)

Abstract. Static analyses of object-oriented programs usually rely on
intermediate representations that respect the original semantics while
having a more uniform and basic syntax. Most of the work involving
object-oriented languages and abstract interpretation usually omits the
description of that language or just refers to the Control Flow Graph
(CFG) it represents. However, this lack of formalization on one hand re-
sults in an absence of assurances regarding the correctness of the trans-
formation and on the other it typically strongly couples the analysis to
the source language. In this work we present a framework for analysis
of object-oriented languages in which in a first phase we transform the
input program into a representation based on Horn clauses. This allows
on one hand proving the transformation correct attending to a simple
condition and on the other being able to apply an existing analyzer for
(constraint) logic programming to automatically derive a safe approxima-
tion of the semantics of the original program. The approach is flexible in
the sense that the first phase decouples the analyzer from most language-
dependent features, and correct because the set of Horn clauses returned
by the transformation phase safely approximates the standard semantics
of the input program. The resulting analysis is also reasonably scalable
due to the use of mature, modular (C)LP-based analyzers. The overall
approach allows us to report results for medium-sized programs.

1 Introduction

Analysis of object-oriented languages using abstract interpretation [10] is cur-
rently the subject of significant research (see, e.g., [21] and its references). The
abstract interpretation approach brings an interesting and useful combination of
characteristics: it is automatic and practical, producing useful results for a good
number of applications, while at the same time being rigorous and semantics-
based. The gap between programs and semantics is greater in the case of object-
oriented languages than in, for example, declarative languages. For this reason,
static analyses of object-oriented programs usually rely on intermediate lan-
guages that respect the original semantics while having a more uniform and
basic syntax (e.g., block-based representations) and a more declarative seman-
tics (e.g., static single assignment transformations). Some significant concrete
examples which have been proposed of such intermediate representations for
object-oriented programs are Jimple [31] for Java or BoogiePL [11] for .NET.

In this paper we propose the use of a Horn clause-based representation as
an intermediate language. Our objective is twofold. On one hand we would like
to take advantage of existing analyzers for (constraint) logic programs. On the
other, we want to be able to offer assurances that the output of the process
of transformation into the intermediate representation safely approximates the
standard semantics of the input program. Performing the analysis using logic
programming tools offers a number of advantages, such as the relative maturity
and sophistication of the solutions available, like abstract interpreters [13, 16]
(which offer parametric, efficient, and modular fixpoint algorithms) and veri-
fiers. A second strength of our transformational approach is that the framework
can be easily adapted to the analysis of other languages without having to re-
define the fixpoint algorithm [23]. In fact, using the intermediate representation
that we propose, from the analyzer point of view an object-oriented program is
indistinguishable from, e.g., a Prolog one (although of course different abstract
domains and definitions of pseudo-builtins are used). This brings in the addi-
tional advantage of being able to analyze multiple languages within the same
framework.

We start by describing our methodology (Section 2) and our approach to en-
suring correctness using some fundamental parts of the transformation of Java
programs into our representation as examples (Section 3). Section 4 shows how
analysis of specific aspects of Java can be optimized using metainformation. We
then illustrate the application of our approach to other languages, such as C#
(Section 5). We also report on an implementation of the ideas presented in this
paper using the abstract interpretation-based CiaoPP [16] framework. It can
be configured for many different analyses by simply plugging the corresponding
abstract domain. The examples try to detect null pointer dereferences (nullity
analysis) and eliminate dynamic dispatch (class analysis) in Java programs. The
experiments in Section 6 show that the technique scales well in non trivial sce-
narios, and results in smaller analysis times than similar previous work. Related
abstract interpretation-based frameworks, and how they differ from ours, are
discussed in Section 7, and Section 8 presents our conclusions.

2 Methodology

Our framework is composed of a front-end preprocessor and a back-end analyzer,
as shown in Figure 1. The preprocessor transforms an input in Java source for-
mat into a set of Horn clauses that represent a safe approximation of its standard
semantics (Sect 3). Sometimes the source code is not available, so we also accept
Java bytecode as a valid input format. In this case the (de)compilation from
bytecode to Horn clauses is based on a postprocessing of the Jimple represen-
tation returned by the Soot [31] tool. It is beyond the scope of this paper to
provide a detailed description of this particular transformation; the reader is
referred to [23] (which presents the transformation and a specific fixpoint al-
gorithm) for details. In both cases the same subset of the language is covered
by the framework. Our ultimate objective is to support the full Java language

soot (*)

AnalysisTransformation

javac

Java bytecode

Java Source

Fixpoint

algorithmHorn clauses
 +

Domains

Pre/Post pairs
Prog. Point Info

...

C#

(CiaoPP)Metainformation

Fig. 1. Pipeline of transformation and analysis

but the current implementation has some limitations: it does not support dy-
namic loading of classes, threads, or runtime exceptions. Also, analysis of the
JDK libraries is done under a worst-case assumption. We have distinguished in
the figure the two implemented transformations with dotted arrows to clearly
separate them from already existing phases.

Different languages can be incorporated into the framework (i.e., analyzed)
by providing a correct transformation for them. For example, programs written
in Ciao are obviously also accepted by the system as input. Compatibility with
other object-oriented languages written in languages like C#, that share many
syntactic and semantics features with Java, is easily achievable as illustrated in
Section 5.

The resulting Horn-clause intermediate representation is then analyzed using
the CiaoPP framework [16] and benefits from its advanced features: efficient com-
putation of fixpoints using memoization, context-sensitivity, modularity, etc. The
programmer needs only to implement (in Ciao) the particular abstract domain of
interest, which includes also defining the abstract meaning of a set of “built-in”
predicates that represent the language-dependent semantics of the basic opera-
tions of the source language. On the other hand, our approach does liberate the
designer of an analysis from the burden of coding a fast, reliable, and efficient
abstract interpretation platform. Analysis results are given in the standard form
(p, σ), where p uniquely identifies a program point and σ is an abstract state
which safely approximates all the possible states at that program point during
runtime. Metainformation computed during the transformation process allows
relating those line numbers with the ones of the original bytecode or source
program, making it possible to reflect back the results on the original program
text (as JML-like assertions [18]), pinpoint errors in the original program, or
implement compiler optimizations.

3 Correctness of the transformation phase

Our Horn clause representation of a Java program is basically an unfolded,
three-address version of the source where the operational semantics of some in-
structions is made explicit. The transformed code is denoted by the c subindex:
for example, the result of transforming a virtual invocation v.m(v1, . . . , vn) is
vc.mc(v1c

, . . . , vnc
) = v.mc(v1, . . . , vn), since variable expressions are not trans-

formed (vc = v).
Correctness of the transformation requires that the original program prog

be emulated by progc thus CJprogK = CJprogcK, where the semantics operator
CJK : com 7→ (D 7→ D) takes as input a command com and a concrete state,
and returns the output state. The operator has been defined in [15] and (from
a denotational point of view) in [2, 29]. Correctness of the preprocessing and
analysis requires that if the set of Horn clauses program is safely approximated
(using a given abstract domain) by the analysis, so is the original: C∗JprogK =
C∗JprogcK. The operator C∗JK : com 7→ (D∗ 7→ D∗) is the abstract counterpart of
CJK.

We will take a slightly different approach by interpreting Java semantics as
a particular case of SLD [17] resolution, in which the computation rule in use
is left-to-right (commands are executed in the order they appear in the pro-
gram) and the search rule used to determine the target method in an invocation
does not really matter, since execution of the Java program is deterministic
and therefore for any literal there is exactly one clause that unifies with it at
runtime. Therefore, if SJK : com 7→ (D 7→ P(D)) is the SLD semantics opera-
tor, the condition SJprogK = {CJprogK} ensures S∗JprogK = C∗JprogK. Again,
S∗JK : com 7→ (D∗ 7→ D∗) is the (collecting) abstract version of SJK.

This formalization is useful since it helps in understanding the Java source as
a set of Horn clauses (methods) composed by zero or more goals, the commands.
It is also helpful because our transformation introduces new clauses such that
now more than one clause might unify with a given literal. This is equivalent
to saying that the execution of the transformed program on some input state
might result in multiple output states, of which one is the unique state that the
original program would return: SJprogK ⊆ SJprogcK. An interesting property of
that transformed program is that its abstract semantics S∗JprogcK still correctly
approximates that of the original, i.e., S∗JprogK ≤ S∗JprogcK. Therefore, all we
have to prove in order to show that the results of the analysis are correct is that
SJprogK ⊆ SJprogcK (or CJprogK ∈ SJprogcK) holds. Space limitations prevent us
from including the proofs for the whole transformation algorithm. Instead, we
provide the proof for the case of the virtual invocations expression, which is one
of the most complex operations supported.

3.1 Correctness of a virtual invocation

The description of the standard semantics in this section is a slightly simplified
version of the more formal specification described in [29]. We distinguish be-
tween two different kinds of invocations: virtual and static. Assume that calls

staticCallSemantics(k$m(v, v1, . . . , vn), σ)

s = signature(call)
body = getBody(k$m, s)
return(bodySemantics(body, σ))

virtualCallSemantics(k?m(v, v1, . . . , vn), σ)

s = signature(call)
c = lookup(runtime class(v), s)
return staticSemantics(c$m(v, v1, . . . , vn), σ)

lookup(k, s)
a = k

do

if declares(a, s)
return(a)

a = ancestor(a)

while (true)

compileStaticCall(k$m(v, v1, . . . , vn), progc)

return k$m(v, v1, . . . , vn)

compileVirtualCall(k?m(v, v1, . . . , vn), progc)

s = signature(call)
C = resolve(k, s)
forall c ∈ C add to progc the clause

k$dyn*m(v, v1, . . . , vn) : −
c$m(v, v1, . . . , vn)

return k$dyn*m(v, v1, . . . , vn)

resolve(k, s)

result = ∅
Sub = subclasses(k) ∪ {k}
forall sub ∈ Sub

sk = lookup(sub, s)
result = result ∪ sk

return result

Fig. 2. Standard semantics (left) and transformation (right) of method calls

of the first type have been rewritten as k?m(v, v1, . . . , vn) and the static ones
as k$m(v, v1, . . . , vn) , where k is the declared type of v. Note that we rewrote
the call syntax so the invoked object v is now the first actual parameter. The
main difference between the two is that while in virtual invocations we need to
figure out the particular class of v through a lookup in the class hierarchy, that
operation is unnecessary in static calls since there is only one possible receiver.

In the left column of Figure 2 we present the pseudocode for the semantics
of a static call (here denoted by staticCallSemantics) and a virtual call (here
denoted by virtualCallSemantics). The particular signature of the invocation
has to be calculated in order to distinguish which implementation to choose,
since in Java (as in the Horn clauses) there can be many methods with the same
name and arity, but here they will differ in the type of at least one of the formal
parameters. Also, we will assume that there exists a function runtime class

that returns the runtime type of the object passed as parameter.
We refer to the tuple (v, v1, . . . , vn) as pars. The standard semantics of

the call in the original program is CJk?m(pars)Kσ = CJc$m(pars)Kσ, where c
is the value returned by lookup(runtime class(v), s). The SLD semantics of
the transformed version is SJk?mc(pars)Kσ, which the transformation ensures
to be SJk$dyn*m(pars)Kσ =

⋃
i SJci$m(pars)Kσ, where ci ∈ resolve(k, s). The

correctness condition is now reduced to proving that c is equal to some ci. This
is equivalent to showing that lookup(runtime class(v), s) ∈ resolve(k, s), which
can be further rewritten as lookup(runtime class(v), s) ∈ {lookup(sub, s) | sub ∈
subclasses(k)∪ {k}}. But the runtime type of v can only be k or a subclass of
it in a type safe language as Java, and therefore the condition always holds.

Example 1. Assume a hierarchy of classes like in Figure 3. The root class A

declares a method foo which is further redefined (overwritten) in subclasses B,
C, and Z. If the original program in Figure 3a) contains a virtual invocation
to foo in an instance declared as being of class X, our compiler automatically

Y

B

Z

C

A

X

public void foo()

public void foo()

public void foo()

public void foo()

someMethod(){
X v;
...
v.foo();

}

(a) snippet of the original program

SomeClass$someMethod():-
...
X$dyn*foo(v).

X$dyn*foo(w):-
B$foo(w)

X$dyn*foo(w):-
Z$foo(w).

(b) snippet of the transformed program

Fig. 3. Transformation of a virtual invocation

transforms it into a call to a new method with two new clauses (methods) that
represent all the possible receiver implementations for the call. Because X is a
direct subclass of B, it can never inherit the original A implementation but only
the B one, represented by the first clause of xdynfoo. Alternatively, any object
of type Y and Z is also of type X and therefore we include a call to the Z version
of foo in the second clause. The C implementation is discarded because of type
incompatibility.

The process described has many interesting properties. First, it is based on
assuming SLD resolution semantics for the transformed Horn clause program.
This allows reusing existing analyzers without having to redefine the abstract
unification operator in order to deal with language-dependent features, as in
the case of virtual invocation. We implemented our Java analyses on top of
the CiaoPP Prolog analyzer [16] without modifying its code, even when specific
abstract domains and “builtin” definitions for Java language constructs had
to be provided. A second strength is that correctness of the transformation
depends only on showing that CJcommK ∈ SJcommcK holds for every command
(and expression) in the source language. Although not trivial, the proof can be
slightly modified for similar languages to Java, so neither the compiler nor the
abstract domains need to be completely rewritten. In the case of Ciao, the proof
is trivial since progc = prog.

4 Metainformation

Full independence from the language cannot be achieved only through program
transformations. Sometimes the fixpoint algorithm can be optimized if some
characteristics related to the original source are known. In other occasions the
abstract domain needs information about the program that cannot be found in

package examples;

public class Vector {

Element first;

public void add(int value){
Element e = new Element();
e.value = value;
Vector v = new Vector();
v.first = e;
append(v);

}
public void append(Vector v){

Element e = first;

if (e == null)
first = v.first;

else{
while (e.next != null)

e = e.next;

e.next = v.first;
}

}
}

class SubVector extends Vector{

public void append(Vector v){
//...

}
}

class ancestor

Vector Object
SubVector Vector
Element Object

method entry

Vector$init y
Vector$add y
Vector$dyn*append y
Vector$append y
Vector$append#1#2 n
Vector$append#3#4 n
SubVector$init y
SubVector$append y
Element$init y

Fig. 4. Vector example: source code and corresponding metainformation

the intermediate representation. Both demands are solved via metainformation

files. We illustrate this point with the example in Figure 4, which shows an
alternative version of the JDK Vector class. The descendant SubVector contains
an alternative version of the append method. The corresponding (Ciao) code
(represented as a Control Flow Graph) is shown in Figure 5; we omitted the
constructor (init) clauses for simplicity.

Space reasons prevent us from listing a complete description of the metain-
formation; only hierarchy and method type tables are shown in Figure 4. In
the case of the parent-child relations, the purpose is to provide access for the
abstract domain to the class tree, the more obvious application being class anal-
ysis [3]. The second table contains a classification for each method, which can be
y (entry) or n (internal). It is used to optimize the performance of the fixpoint
engine, avoiding projection and extension operations [5] (e.g., for blocks that
share variable scope with the calling context, such as conditionals).

An entry method corresponds in the original program to the first clause [15]
of the Java method of the same name and shares its signature, except for an extra
parameter that represents the value returned. The other clauses present in the
Java method are compiled into (components of) internal methods which share
the same set of variables: all the formal parameters and local variables they refer-
ence. Examples of constructions converted into internal clauses are if, while or
for loops. In the example, we can see how the if (e==null)...else conditional
in the Vector implementation of append is converted into two different clauses,
one for each branch, which actually share the same name Vector$append#1#2

(Figure 5). In this case, the internal method is composed of two clauses which

asg(R0_,Vector,R0,Vector)
asg(R1_,Vector,R1,Vector)
gtf(R2,Element,R0_,Vector,first,Element)

Vector$append(Res,R0,R1)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

ne(R4,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

gtf(R2,Element,R2,Element,next,Element)
SubVector$append(Res,R0,R1)

ne(R2,Element,null,null_type)eq(R2,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

gtf(R4,Element,R2,Element,next,Element)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

eq(R4,Element,null,null_type)

Vector$append#3#4(Res,R0_,R1_,R2,R3,R4,R5)

stf(R0_,Vector,first,Element,R3,Element)
gtf(R3,Element,R1_,Vector,first,Element)

stf(R2,Element,next,Element,R5,Element)

gtf(R5,Element,R1_,Vector,first,Element)

stf(R3,Vector,first,Element,R2,Element)

Vector$dyn*append(Res,R0_,R3)

asg(R3,Vector,R4,Vector)
Vector$<init>#1650(_Void,R4)
new(R4,Vector)
stf(R2,Element,value,int,I0,int)
asg(R2,Element,R1,Element)
Element$<init>(_Void,R1)
new(R1,Element)
asg(R0_,Vector,R0,Vector)

Vector$add(Res,R0,I0)

Vector$append#1#2(Res,R0_,R1_,R2,R3,R4,R5)

tot(R0_, [SubVector])
SubVector$append(Res,R0_,R3)

Vector$dyn*append(Res,R0_,R3)

tot(R0_, [Vector])
Vector$append(Res,R0_,R3)

Vector$dyn*append(Res,R0_,R3)

...

Fig. 5. Call Graph for the example in Figure 4

are indistinguishable from the caller’s point of view, thus causing invocations to
the method to be non-deterministic (i.e., causing the execution of one clause or
another). Entry clauses are marked in grey, internal ones in white; dotted arrows
denote non-deterministic flows while the continuous ones symbolize deterministic
calls.

Another flow transformation (extra clauses) tries to expose the internal struc-
ture of some complex Java features, which sometimes encode sophisticated op-
erations. That is the case of the virtual invocations studied in Section 3. Com-
ing back to the example in Figure 4, note that the call to append within add

is polymorphic: it might execute the implementation in Vector or the one in
SubVector. We make this semantics explicit by inspecting the application hier-
archy and replacing the virtual invocation with a set of resolved calls, one for
each possible implementation. The method acting as a “hub” is called an ex-

tra clause; in the example we have two, Vector$dyn*append, marked in black.
They behave in a very similar way to the conditional discussed previously, since
the program flow might go through two alternative paths (clauses), one for each
implementation of append. Each branch contains a guard (tot, see the first state-
ment in each of the Vector$dyn*append clauses) listing the acceptable types for
the callee.

It is interesting how, in an analogous way to the clause case, we introduced
extra statements to further simplify analysis. For example, the mentioned tot

(type of this) builtin filters the execution of subsequent statements when the class
of the instance is not listed in the set of possibilities; guard statements have a
similar goal in clauses that come from conditional constructions. In Figure 5 the
eq call at the beginning of the leftmost Vector$append#1#2 clause refers to the
condition for executing the first branch, while the ne call contains its negated
version, for the second alternative. Also, those methods that are entry but not
extra contain assignments to shadow variables that simulate the call-by-reference
semantics [23].

public class Lang{

public void foo(Location loc){
String lang = loc.getDefaultLanguage();
...

}
}

class Location {
public String getDefaultLanguage(){

return "English";
}

}

class China extends Location{
public String getDefaultLanguage(){

return "Mandarin";
}

}

class Sichuan extends China{
}

Lang$foo(Res,R0,R1):-
asg(R0_,Lang,R0,Lang),
asg(R1_,Location,R1,Location),
Location$dyn*getDefaultLanguage(R4,R1_),
ret.

Location$getDefaultLanguage(Res,R0):-
asg(R0_,Location,R0,Location),
asg(Res,java.lang.String,"English",java.lang.String),
ret.

China$getDefaultLanguage(Res,R0):-
asg(R0_,China,R0,China),
asg(Res,java.lang.String,"Mandarin",java.lang.String),
ret.

Location$dyn*getDefaultLanguage(Res,R1_):-
tot(R1_, [China,Sichuan]),
China$getDefaultLanguage(Res,R1_).

Location$dyn*getDefaultLanguage(Res,R1_):-
tot(R1_, [Location]),
Location$getDefaultLanguage(Res,R1_).

Fig. 6. Transformation for dynamic dispatch in Java

5 Explicit semantics in other OO languages

Our framework can be adapted to other languages apart from Java (and Ciao),
especially for those like C# that share similar syntax and statement semantics
to Java. The examples in Figures 6 and 7 illustrate this point. In Figure 6, the
value returned by the getDefaultLanguage invocation in the foo method re-
turns English if loc has runtime type Location and Mandarin if the runtime
type is China or Sichuan, since this last class inherits the implementation of
getDefaultLanguage from China according to standard Java semantics [15].
The C# language is quite similar in most aspects, but polymorphic invocations
have been further refined (and complicated). In Figure 7 only class China over-
shadows the default definition for the getDefaultLanguage method given in
the superclass; HongKong inherits the Location implementation. Therefore, an
invocation like (new Hong Kong()).getDefaultLanguage() returns English.

When analyzing a virtual invocation like the one in the first line of foo,
we could have implemented internal mechanisms in the analyzer for differen-
tiating the two possible interpretations that the call might have in each lan-
guage. That implies an undesirable, double implementation of either the fix-
point algorithm or the abstract domains, since the analyzer would then be
language-dependent. To bypass this problem, we introduce additional pseudo-
builtins that contain language-dependent features. We can see in Figures 6 and 7
how the Horn clause representation is almost identical in both cases, except for
the bodies of the two Location$dyn*getDefaultLanguage clauses. In the case
of Java, we indicate that the first clause is executed if the runtime type of
this (tot) is either China or Sichuan, while the second requires that variable
to be of runtime type Location. The situation is reversed in the C# exam-
ple, in which instances of Location and HongKong share the implementation

namespace Lang{

public class Lang{
public void foo(Location loc){

string lang = loc.getDefaultLanguage();
...

}
}
class Location {

public string getDefaultLanguage(){
return "English";

}
}
class China:Location{

private string getDefaultLanguage(){
return "Mandarin";

}
}
class HongKong:China{}
}

Lang$foo(Res,R0,R1):-
asg(R0_,Lang,R0,Lang),
asg(R1_,Location,R1,Location),
Location$dyn*getDefaultLanguage(R4,R1_),
ret.

Location$getDefaultLanguage(Res,R0):-
asg(R0_,Location,R0,Location),
asg(Res,string,"English",string),
ret.

China$getDefaultLanguage(Res,R0):-
asg(R0_,China,R0,China),
asg(Res,string,"Mandarin",string),
ret.

Location$dyn*getDefaultLanguage(Res,R1_):-
tot(R1_, [China]),
China$getDefaultLanguage(Res,R1_).

Location$dyn*getDefaultLanguage(Res,R1_):-
tot(R1_, [Location,HongKong]),
Location$getDefaultLanguage(Res,R1_).

Fig. 7. Transformation for dynamic dispatch in C#

Location$getDefaultLocation while invocations on objects of (exactly) class
China are redirected to China$getDefaultLocation.

The abstract domain is not required to know anything about which actual
language is to be analyzed but only to provide a common, correct transfer func-
tion for the tot builtin, which will return as output state the same input state
if the instance happens to have a runtime type included in the list of accepted
classes, and ⊥ if not.

6 Experimental results

We have completed a preliminary implementation of our framework within the
CiaoPP preprocessor [16]. CiaoPP offers a parametric and efficient top-down
analysis engine with a good number of abstract domains, including the ones
illustrated in this section. The efficiency of the algorithm relies on keeping de-
pendencies between different predicates during analysis so that only the really
affected parts need to be revisited after a change during the fixpoint process.
In addition, recomputation is avoided using memoization[12]. Another charac-
teristic is that it is multivariant (i.e., abstract calls to a given predicate that
represent different input patterns are automatically analyzed separately) and
follows a top-down approach, in order to allow modeling properties that depend
on the data flow characteristics of the program.

We have performed two experiments with our framework using the bench-
marks corresponding to the JOlden suite [9]. The first experiment is summa-
rized in Figure 8 and shows the scalability of the transformation phase. The first
three columns contain basic metrics about the application: number of classes
(k), methods (m) and instructions (i). Since the latter corresponds to the byte-
code representation of the source, we also list how many program points (pp)

name k m i pp ct

jolden.health.Health 8 30 637 933 1.1
jolden.bh.BH 9 70 1208 1739 3.2
jolden.voronoi.Voronoi 6 73 988 1340 2.2
jolden.mst.MST 6 36 445 665 0.1
jolden.power.Power 6 32 1017 1270 2.1
jolden.treeadd.TreeAdd 2 12 193 274 2.0
jolden.em3d.Em3d 4 22 447 669 0.1
jolden.perimeter.Perimeter 10 45 543 814 0.1
jolden.bisort.BiSort 2 15 323 476 0.1
jolden.all.All 50 317 5839 7251 11.0

Fig. 8. Statistics of the transformation phase.

are present in the Horn clause program analyzed. This metric slightly differs
from the number of instructions in the sense that extra clauses and builtins
make it somewhat larger; pp also provides a better approximation of the size
and complexity of the program analyzed because the semantics of the object-
oriented program is made explicit, as seen in Section 2. The fifth column (ct)
shows the time invested (given in seconds) in transforming the input program
and producing the Horn clause version and the metainformation.

The second experiment shown in Figure 9 illustrates the scalability, efficiency,
and precision of the analysis component of our framework. We first use a simple
abstract domain, Nullity, capable of approximating which variables are definitely
null and which ones definitely point to a non-null location. The second abstract
domain is a Class Hierarchy Analysis [3], which uses the combination of the
statically declared type of an object and the class hierarchy of the program
to determine the set of possible targets of a virtual invocation. The use of a
Class Hierarchy Analysis shows the scalability of our framework for a domain
with non-linear worst-case complexity in its operations. Additionally, it also
reflects the usefulness of metainformation files since they are required by the
CHA domain in order to access the hiercharchy tree. The columns labeled pp′

show the number of program points reachable by the analyses. Therefore, pp′

may differ from pp because the number of analyzed program points is not always
the total number of program points in the program: some commands are found
to be unreachable. Since our framework is multivariant and can thus keep track
of different contexts at each program point, at the end of analysis there may
be more than one abstract state associated with each program point. Thus,
the number of abstract states is typically larger than the number of reachable
program points. Columns ast provide the total number of these abstract states
inferred by analyses. The level of multivariance is the ratio ast/pp′, presented in
columns st. In general, such a larger number for st tends to indicate more precise
results. Running times are listed in columns pt (time invested in preprocessing
the program which includes the extraction of metainformation for each method
in the Horn clause program and the construction of the class hierarchy) and at
(analysis time); both are also given in seconds.

The benchmarks have been tested in both experiments on a Pentium M
1.73Ghz with 1Gb of RAM , and averaging several runs after eliminating the best
and worst values. We chose to show separately the total times of the two phases

Nullity CHA

pt pp′ ast st at pp′ ast st at

jolden.health.Health 2.1 921 5836 6.3 9.6 933 3542 3.8 52.1
jolden.bh.BH 2.2 1739 12384 7.1 50.1 1739 4757 2.7 59.4
jolden.voronoi.Voronoi 2.2 1277 5492 4.3 11.5 1340 5147 3.8 81.3
jolden.mst.MST 2.1 496 1503 3.0 1.1 665 1609 2.4 11.6
jolden.power.Power 2.1 1270 10560 8.3 29.9 1270 2908 2.3 32.7
jolden.treeadd.TreeAdd 2.0 274 880 3.2 0.6 274 729 2.6 6.1
jolden.em3d.Em3d 2.0 669 5565 8.3 0.9 669 3320 4.9 49.5
jolden.perimeter.Perimeter 2.1 814 2653 3.2 1.7 814 3731 4.5 25.0
jolden.bisort.BiSort 2.1 476 3353 7.0 5.8 476 1614 3.4 15.6
jolden.all.All 2.6 7188 48476 6.7 145.9 7251 29586 4.1 391.2

Fig. 9. Statistics for the Nullity and Class Hierarchy (CHA) domains.

(transformation and analysis) because we expect the transformation process to
be fully run only once. Later executions can use incremental compilation for
those files that changed, so that the overhead of the preprocessing phase should
be almost negligible in medium and large programs. Although the same approach
can be taken for the analysis [27], the current implementation is not incremental.

7 Related work

Most of the previous research in analysis of object-oriented programs concen-
trates on finding new abstract domains that better approximate a particular
concrete property of the program analyzed in order to optimize compilation
(e.g., [4, 28]) or statically verify certain properties about the runtime behavior
of the code (e.g., [14, 19]). In contrast to this concentration and progress on the
development of new, refined domains there has been comparatively little work
on the formal specification of the intermediate language to which the analyzed
program is transformed or in the application of existing logic programming tech-
niques. In [24] the authors describe how to automatically derive Prolog versions
of Java programs that share the same operational semantics. However, the com-
pilation applies to a smaller subset of Java than that supported in our work and
no experimental results are provided. Also, the technique is presented from a
more informal perspective and no analysis is attempted over the transformed
logic programs.

More closely related to ours is the work presented in [1], which draws in
part on the ideas of [25]. The authors also focus on how to reuse existing logic
programming tools, in order to analyze Java bytecode. The approach is based
on encoding an interpreter of the Java Virtual Machine bytecode in a logic
language, Ciao [6], and then partially evaluating this interpreter with respect to
the concrete program to be analyzed. This results in a residual program which
has the same semantics as the original one but is often easier to analyze than the
original set of bytecode+interpreter. As in our case, the analysis and verification
experiments are performed using the CiaoPP [16] tool.

While the approach of [1] is obviously very interesting, it also has the short-
coming that it is quite dependent on the quality of the results obtained by the
partial evaluator. Given the state of the art in partial evaluation, this clearly

varies significantly depending on the input program. Our approach is based
instead on a direct translation from the Java program into a Horn clause repre-
sentation, which obviates this problem (at the cost of having to write and prove
correct the transformer). Also, in our translation we do not try to mimic the
operational semantics of the Java program in the Horn clause version (i.e., the
resulting program if run, e.g., on a Prolog system, would not necessarily produce
equivalent results to those of the Java program). Instead, our aim is to safely ap-

proximate the semantics of the Java program in the Horn clause representation
by taking advantage of the (collecting) SLD semantics assumed by the analyzer.
This allows flexibility in the translation and eliminates the burden of having to
simulate exactly the operational semantics of the source language since we do
not want to execute the program but only to obtain safe results by analyzing it.
The flexibility and directness of our approach also allows us to support a much
larger subset of the language than in [1], including many features such as ex-
ceptions, inheritance, interfaces, etc. Furthermore, since the fixpoint algorithm
is sensitive to the size and characteristics of the intermediate representation, the
fact that our direct translation guarantees a compact intermediate representa-
tion can arguably result in a more scalable solution. For example, in this work
(see Section 6) we have been able to report on examples that are about twenty
times larger and can be analyzed in less time.

In most of the (non CLP-based) abstract interpretation framework for anal-
ysis of Java (e.g., [4, 7]) the authors prefer to focus on particular properties and
therefore their solutions (abstract domains and analysis algorithms) are tied to
them, even when if they may be explicitly labeled as multipurpose [20]. In [26]
the authors use a framework that is closely related to Gaia [8]. However, the
intermediate representation is not described and the semantics of the interpro-
cedural operations is again tied to the Java language. Also, the benchmarks used
are smaller than those that we report on. The more recent Julia framework [30]
is intended to be generic from the point of view of domains but once more also
targets Java as unique source language. This framework is capable of analyzing
large programs in a top-down way, as in our approach, the main other difference
being that we support multivariance, inherited from the CiaoPP analyzer. Fi-
nally, in [22] another interesting generic static analyzer for the modular analysis
and verification of Java classes is presented. The algorithm presented is also top
down but is again tailored specifically to Java source.

8 Conclusions and future work

We have presented a transformation-based framework for analysis of object-
oriented programs, which is generic in terms of the source language and abstract
domain in use. The framework consists of a two-step process: a transformation of
the program into a set of Horn clauses that represents a correct approximation
of its standard semantics, and a mature and sophisticated fixpoint algorithm.
We claim that our approach is flexible in the sense that the first phase decou-
ples the fixpoint algorithm from any language-dependent feature. Furthermore,

our experimental evaluations support the scalability of our framework showing
results for medium-sized programs as well as its efficiency analyzing them in a
reasonable amount of time, and precision showing high rates of multivariance.

We have performed some promising experiments on an ample subset of Java,
as shown in this paper, but our aim is to support the full Java language. Also,
we are currently incorporating more sophisticated abstract domains (e.g., points-
to/sharing analysis). Moreover, we expect to increase the scalability of our ap-
proach, analyzing larger programs than shown in this paper. To this end, we
are studying the inclusion of modular and incremental features in our fixpoint
algorithm.

References

1. E. Albert, M. Gómez-Zamalloa, L. Hubert, and G. Puebla. Verification of Java
Bytecode using Analysis and Transformation of Logic Programs. In Ninth Inter-
national Symposium on Practical Aspects of Declarative Languages, number 4354
in LNCS, pages 124–139. Springer-Verlag, January 2007.

2. Jim Alves-Foss, editor. Formal Syntax and Semantics of Java, volume 1523 of
Lecture Notes in Computer Science. Springer, 1999.

3. David F. Bacon and Peter F. Sweeney. Fast static analysis of c++ virtual function
calls. In OOPSLA, pages 324–341, 1996.

4. Bruno Blanchet. Escape Analysis for Object Oriented Languages. Application to
Java(TM). In Conference on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’99), pages 20–34, Denver, Colorado, November 1999.

5. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic
Programs. Journal of Logic Programming, 10:91–124, 1991.

6. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla
(Eds.). The Ciao System. Reference Manual (v1.10). Technical report, School of
Computer Science (UPM), 2004. Available at http://www.ciaohome.org.

7. Bor-Yuh Evan Chang and K. Rustan M. Leino. Abstract interpretation with alien
expressions and heap structures. In VMCAI, pages 147–163, 2005.

8. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic
Abstract Interpretation Algorithm for Prolog. ACM Transactions on Programming
Languages and Systems, 16(1):35–101, 1994.

9. JOlden Suite Collection. http://www-ali.cs.umass.edu/DaCapo/benchmarks.

html.
10. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for

Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Fourth ACM Symposium on Principles of Programming Languages, pages 238–252,
1977.

11. Rob DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural language for
checking object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft
Research, 2005.

12. S. W. Dietrich. Extension Tables: Memo Relations in Logic Programming. In
Fourth IEEE Symposium on Logic Programming, pages 264–272, September 1987.

13. Christian Fecht. Gena - a tool for generating prolog analyzers from specifications.
In SAS ’95: Proceedings of the Second International Symposium on Static Analysis,
pages 418–419, London, UK, 1995. Springer-Verlag.

14. S. Genaim and F. Spoto. Information Flow Analysis for Java Bytecode. In Proc.
of VMCAI, LNCS. Springer-Verlag, 2005.

15. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language Speci-
fication, The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley Professional,
2005.

16. M. Hermenegildo, G. Puebla, F. Bueno, and P. López-Garćıa. Program Develop-
ment Using Abstract Interpretation (and The Ciao System Preprocessor). In Proc.
of SAS’03, pages 127–152. Springer LNCS 2694, 2003.

17. R. Kowalski and D. Kuehner. Linear resolution with selection function. Artificial
Intelligence, 2:227–260, 1971.

18. Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary design of jml: a
behavioral interface specification language for java. SIGSOFT Softw. Eng. Notes,
31(3):1–38, 2006.

19. Xavier Leroy. Java bytecode verification: An overview. In CAV, pages 265–285,
2001.

20. Tal Lev-Ami and Shmuel Sagiv. TVLA: A system for implementing static analyses.
In SAS, 2000.

21. F. Logozzo and A. Cortesi. Abstract interpretation and object-oriented languages:
quo vadis? In Proc. of the 1st. Int’l. Workshop on Abstract Interpretation of Object-
oriented Languages (AIOOL’05), ENTCS. Elsevier Science, January 2005.

22. Francesco Logozzo. Cibai: An abstract interpreation-based static analyzer for mod-
ular analysis and verification of java classes. In VMCAI’07. To appear, Jan 2007.

23. J. Navas, M. Méndez-Lojo, and M. Hermenegildo. An Efficient, Context and Path
Sensitive Analysis Framework for Java Programs. In 9th Workshop on Formal
Techniques for Java-like Programs FTfJP 2007, July 2007. To appear.

24. J. Peralta and J.Cruz-Carlon. From static single-assignment form to definite pro-
grams and back. Extended abstract in International Symposium on Logic-based
Program Synthesis and Transformation (LOPSTR), July 2006.

25. J.C. Peralta, J. Gallagher, and H. Sağlam. Analysis of imperative programs
through analysis of constraint logic programs. In G. Levi, editor, Static Anal-
ysis. 5th International Symposium, SAS’98, Pisa, volume 1503 of LNCS, pages
246–261, 1998.

26. Isabelle Pollet. Towards a generic framework for the abstract interpretation of Java.
PhD thesis, Catholic University of Louvain, 2004. Dept. of Computer Science.

27. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Anal-
ysis of Logic Programs. In International Static Analysis Symposium, number 1145
in LNCS, pages 270–284. Springer-Verlag, September 1996.

28. Erik Ruf. Effective synchronization removal for java. In PLDI, pages 208–218,
2000.

29. Stefano Secci and Fausto Spoto. Pair-sharing analysis of object-oriented programs.
In SAS, pages 320–335, 2005.

30. F. Spoto. Julia: A Generic Static Analyser for the Java Bytecode. In Proc.
of the 7th Workshop on Formal Techniques for Java-like Programs, FTfJP’2005,
Glasgow, Scotland, July 2005.

31. Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,
and Phong Co. Soot - a Java optimization framework. In Proceedings of CASCON
1999, pages 125–135, 1999.

