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Abstract

We present in a tutorial fashionCiaoPP , the preprocessor of the Ciao multi-paradigm

programming system, which implements a novel program development framework which

uses abstract interpretation as a fundamental tool. The framework uses modular, incremental

abstract interpretation to obtain information about the program. This information is used

to validate programs, to detect bugs with respect to partial specifications written using as-

sertions (in the program itself and/or in system libraries), to generate and simplify run-time

tests, and to perform high-level program transformations such as multiple abstract special-

ization, parallelization, and resource usage control, all in a provably correct way. In the case

of validation and debugging, the assertions can refer to a variety of program points such

as procedure entry, procedure exit, points within procedures, or global computations. The

system can reason with much richer information than, for example, traditional types. This

includes data structure shape (including pointer sharing), bounds on data structure sizes,

and other operational variable instantiation properties, as well as procedure-level properties

such as determinacy, termination, non-failure, and bounds on resource consumption (time or

space cost).

1 Introduction

We describe in a tutorial fashionCiaoPP , an implementation of a novel programming

framework which uses extensively abstract interpretation as a fundamental tool in the pro-

gram development process. The framework uses modular, incremental abstract interpreta-

tion to obtain information about the program, which is then used to validate programs, to

detect bugs with respect to partial specifications written using assertions (in the program

itself and/or in system libraries), to generate run-time tests for properties which cannot be
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checked completely at compile-time and simplify them, and to perform high-level program

transformations such as multiple abstract specialization, parallelization, and resource usage

control, all in a provably correct way.

CiaoPP is the preprocessor of theCiao program development system [3].Ciao is a

multi-paradigm programming system, allowing programming in logic, constraint, and func-

tional styles (as well as a particular form of object-oriented programming). At the heart

of Ciao is an efficient logic programming-based kernel language. This allows the use of

the very large body of approximation domains, inference techniques, and tools for abstract

interpretation-based semantic analysis which have been developed to a powerful and mature

level in this area (see, e.g., [37, 10, 20, 4, 12, 23, 27] and their references). These techniques

and systems can approximate at compile-time, always safely, and with a significant degree

of precision, a wide range of properties which is much richer than, for example, traditional

types. This includes data structure shape (including pointer sharing), independence, storage

reuse, bounds on data structure sizes and other operational variable instantiation proper-

ties, as well as procedure-level properties such as determinacy, termination, non-failure, and

bounds on resource consumption (time or space cost).

CiaoPP is a standalone preprocessor to the standard clause-level compiler. It performs

source-to-source transformations. The input toCiaoPP are logic programs (optionally with

assertions and syntactic extensions). The output areerror/warning messagesplus thetrans-

formed logic program, with:

• Results of analysis (as assertions).

• Results of static checking of assertions.

• Assertion run-time checking code.

• Optimizations (specialization, parallelization, etc.)

By design,CiaoPP is a generic tool that can be easily customized to different program-

ming systems and dialects and allows the integration of additional analyses in a simple way.

As a particularly interesting example, the preprocessor has been adapted for use with the

CHIP CLP(FD) system. This has resulted in CHIPRE, a preprocessor for CHIP which has

been shown to detect non-trivial programming errors in CHIP programs. More information

on the CHIPRE system and an example of a debugging session with it can be found in [39].

This tutorial is organized as follows: Section 2 gives the “getting started” basics, Sec-

tion 3 presentsCiaoPP at work for program transformation and optimization, while Sec-

tion 4 does the same for program debugging and validation, and Section 5 shows how

CiaoPP performs program analysis.
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2 Getting Started

A CiaoPP session consists in the preprocessing of a file. The session is governed by a menu,

where you can choose the kind of preprocessing you want to be done to your file among

several analyses and program transformations available. Clicking on the iconin the

buffer containing the file to be preprocessed displays the menu, which will look (depending

on the options available in the currentCiaoPP version) something like the “Preprocessor

Option Browser” shown in Figure 1.

Figure 1: Starting menu for browsingCiaoPP options.

Except for the first and last lines, which refer to loading or saving a menu configuration

(a predetermined set of selected values for the different menu options), each line corresponds

to an option you can select, each having several possible values. You can select either anal-

ysis (analyze ) or assertion checking (check assertions ) or certificate checking

(check certificate ) or program optimization (optimize ), and you can later com-

bine the four kinds of preprocessing. The relevant options for theaction group selected
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are then shown, together with the relevant flags. A description of the values for each option

will be given as it is used in the corresponding section of this tutorial.

3 Source Program Optimization

We first turn our attention to the program optimizations that are available inCiaoPP . These

include abstract specialization, multiple program specialization, integration of abstract in-

terpretation and partial evaluation, and parallelization (including granularity control). All of

them are performed as source to source transformations of the program. In most of them

static analysis is instrumental, or, at least, beneficial (See Section 5 for a tutorial on program

analysis withCiaoPP ).

3.1 Abstract Specialization:

Program specialization optimizes programs for known values (substitutions) of the input.

It is often the case that the set of possible input values is unknown, or this set is infinite.

However, a form of specialization can still be performed in such cases by means of abstract

interpretation, specialization then being with respect to abstract values, rather than concrete

ones. Such abstract values represent a (possibly infinite) set of concrete values. For example,

consider the following definition of the propertysorted num list/1 :

:- prop sorted_num_list/1.

sorted_num_list([]).

sorted_num_list([X]):- number(X).

sorted_num_list([X,Y|Z]):-

number(X), number(Y), X=<Y, sorted_num_list([Y|Z]).

and assume that regular type analysis infers thatsorted num list/1 will always be

called with its argument bound to a list of integers. Abstract specialization can use this

information to optimize the code into:

sorted_num_list([]).

sorted_num_list([_]).

sorted_num_list([X,Y|Z]):- X=<Y, sorted_num_list([Y|Z]).

which is clearly more efficient because nonumber tests are executed. The optimization

above is based on abstractly executing thenumber literals to the valuetrue , as discussed

in [27].
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3.2 Multiple Specialization:

Sometimes a procedure has different uses within a program, i.e. it is called from different

places in the program with different (abstract) input values. In principle, (abstract) program

specialization is then allowable only if the optimization is applicable to all uses of the pred-

icate. However, it is possible that in several different uses the input values allow different

and incompatible optimizations and then none of them can take place. InCiaoPP this prob-

lem is overcome by means of “multiple abstract specialization” where different versions of

the predicate are generated for each use. Each version is then optimized for the particular

subset of input values with which it is to be used. The abstract multiple specialization tech-

nique used inCiaoPP [43] has the advantage that it can be incorporated with little or no

modification of some existing abstract interpreters, provided they aremultivariant (the ab-

stract interpreter thatCiaoPP uses, called PLAI [37, 5], has this property, see Section 5 for

details).

This specialization can be used for example to improve automatic parallelization) in

those cases where run-time tests are included in the resulting program (see Section 3.6 for

a tutorial on parallelization). In such cases, a good number of run-time tests may be elim-

inated and invariants extracted automatically from loops, resulting generally in lower over-

heads and in several cases in increased speedups. We consider automatic parallelization of a

program for matrix multiplication using the same analysis and parallelization algorithms as

theqsort example used in Section 3.6. This program is automatically parallelized without

tests if we provide the analyzer (by means of anentry declaration) with accurate infor-

mation on the expected modes of use of the program. However, in the interesting case in

which the user does not provide such declaration, the code generated contains a large num-

ber of run-time tests. We include below the code for predicatemultiply which multiplies

a matrix by a vector:

multiply([],_,[]).

multiply([V0|Rest],V1,[Result|Others]) :-

(ground(V1),

indep([[V0,Rest],[V0,Others],[Rest,Result],[Result,Others]]) ->

vmul(V0,V1,Result) & multiply(Rest,V1,Others)

; vmul(V0,V1,Result), multiply(Rest,V1,Others)).

Four independence tests and one groundness test have to be executed prior to executing in

parallel the calls in the body of the recursive clause ofmultiply (these tests essentially

check that the arrays do not contain pointers that point in such a way that would make

the vmul andmultiply calls be dependent). However, abstract multiple specialization

generates four versions of the predicatemultiply which correspond to the different ways
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this predicate may be called (basically, depending on whether the tests succeed or not). Of

these four variants, the most optimized one is:

multiply3([],_,[]).

multiply3([V0|Rest],V1,[Result|Others]) :-

(indep([[Result,Others]]) ->

vmul(V0,V1,Result) & multiply3(Rest,V1,Others)

; vmul(V0,V1,Result), multiply3(Rest,V1,Others)).

where the groundness test and three out of the four independence tests have been eliminated.

Note also that the recursive calls tomultiply use the optimized versionmultiply3 .

Thus, execution of matrix multiplication with the expected mode (the only one which will

succeed in Prolog) will be quickly directed to the optimized versions of the predicates and

iterate on them. This is because the specializer has been able to detect this optimization as an

invariant of the loop. The complete code for this example can be found in [43]. The multiple

specialization implemented incorporates a minimization algorithm which keeps in the final

program as few versions as possible while not losing opportunities for optimization. For

example, eight versions of predicatevmul (for vector multiplication) would be generated

if no minimizations were performed. However, as multiple versions do not allow further

optimization, only one version is present in the final program.

3.3 Basic Partial Evaluation:

The main purpose ofpartial evaluation(see [28] for a general text on the area) is to specialize

a given program w.r.t. part of its input data—hence it is also known asprogram specializa-

tion. Essentially, partial evaluators are non-standard interpreters which evaluate expressions

while enough information is available and residualize them (i.e. leave them in the resulting

program) otherwise. The partial evaluation of logic programs is usually known aspartial

deduction[30, 19]. Informally, the partial deduction algorithm proceeds as follows. Given

an input program and a set of atoms, the first step consists in applying anunfolding ruleto

compute finite (possibly incomplete) SLD trees for these atoms. This step returns a set ofre-

sultants(or residual rules), i.e., a program, associated to the root-to-leaf derivations of these

trees. Then, anabstraction operatoris applied to properly add the atoms in the right-hand

sides of resultants to the set of atoms to be partially evaluated. The abstraction phase yields

a new set of atoms, some of which may in turn need further evaluation and, thus, the process

is iteratively repeated while new atoms are introduced.

We show a simple example where Partial Evaluation is used to specialize a program

w.r.t. known input data. In this case, the entry declaration states that calls to append will be

performed with a list starting by the prefix[1,2,3] always. The user program will look as
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follows:

:- module( app, [append/3], [assertions] ).

:- entry append([1,2,3|L],L1,Cs).

append([],X,X).

append([H|X],Y,[H|Z]):- append(X,Y,Z).

The default options foroptimization can be used to successfully specialize the pro-

gram (Figure 2 shows the default optimization menu).

Figure 2: Default menu options for optimization.

The following resulting partially evaluated program has specialized the third argument

by propagating the first three known values. There is an auxiliary predicateappend 2 used

to concatenate the remaining elements of the first and second lists.
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:- module( _app, [append/3], [assertions] ).

:- entry append([1,2,3|L],L1,Cs).

append([1,2,3],A,[1,2,3|A]).

append([1,2,3,B|C],A,[1,2,3,B|D]) :-

append_2(D,A,C) .

append_2(A,A,[]).

append_2([B|D],A,[B|C]) :-

append_2(D,A,C) .

3.4 Nonleftmost Unfolding in Partial Evaluation of Prolog Pro-

grams:

It is well-known thatnon-leftmostunfolding is essential in partial evaluation in some cases

for the satisfactory propagation of static information (see, e.g., [29]). Let us describe this

feature by means of the following program, which implements an exponentiation procedure

with accumulating parameter:

:- module(exponential_ac,[exp/3],[assertions]).

:- entry exp(Base,3,_) : int(Base).

exp(Base,Exp,Res):-

exp_ac(Exp,Base,1,Res).

exp_ac(0,_,Res,Res).

exp_ac(Exp,Base,Tmp,Res):-

Exp > 0,

Exp1 is Exp - 1,

NTmp is Tmp * Base,

exp_ac(Exp1,Base,NTmp,Res).

The default options for partial evaluation produce the following non-optimal residual pro-

gram where only leftmost unfolding have been used:
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:- module( exponentialac, [exp/3], [assertions] ).

:- entry exp(Base,3,1) : int(Base).

exp(A,3,B) :-

C is 1*A,

exp ac 1(B,C,A).

exp ac 1(C,B,A) :-

D is B*A,

exp ac 2(C,D,A).

exp ac 2(C,B,A) :-

C is B*A.

where the calls to the builtin “is” cannot be executed and hence they have been residualized.

This prevents the atoms to the right of the calls to “is” from being unfolded and intermediate

rules have to be created.

In order to improve the specialization some specific options of the system must be set.

We proceed by first selecting theexpert mode of the optimization menu (by toggling the

second option of the menu in Figure 2). An overview of the selected options is depicted in

Figure 3. The computation ruleno sideff jb allows us to jump over the residual builtins

as long as nonlefmost unfolding is “safe” [1] –in the sense that calls to builtins are pure

and hence the runtime behavior of the specialized program is preserved. We also select the

optionmono for abstract specialization so that a post-processing of unfolding is carried out.

The resulting specialized program is further improved:

:- module( exponentialac, [exp/3], [assertions] ).

:- entry exp(Base,3,1) : int(Base).

exp(A,3,B) :-

C is 1*A,

D is C*A,

B is D*A.
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Figure 3: Extended menu options for nonleftmost unfolding in partial evaluation.
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3.5 Integration of Abstract Interpretation and Partial Evalua-

tion:

Abstract multiple specialization, abstract interpretation, and partial evaluation techniques are

integrated intoCiaoPP and their relationship is exploited in order to achieve greater levels

of optimizations than those obtained by using these techniques alone.

Abstract specialization exploits the information obtained by multivariant abstract inter-

pretation where information about values of variables is propagated by simulating program

execution and performing fixpoint computations for recursive calls. In contrast, traditional

partial evaluators (mainly) use unfolding for both propagating values of variables and trans-

forming the program. It is known that abstract interpretation is a better technique for propa-

gating success values than unfolding. However, the program transformations induced by un-

folding may lead to important optimizations which are not directly achievable in the existing

frameworks for multiple specialization based on abstract interpretation. Herein, we illustrate

theCiaoPP ’s specialization framework [38] which integrates the better information prop-

agation of abstract interpretation with the powerful program transformations performed by

partial evaluation. We will use the challenge program of Figure 4.

It is a simpleCiao program which uses Peano’s arithmetic. Theentry declaration is

used to inform that all calls to the only exported predicate (i.e.,main/2 ) will always be of

the formmain(s(s(s(N))),R) with N a natural number in Peano’s representation and

R a variable. The predicatemain/2 performs two calls to predicateformula/2 . A call

formula(X,W) performs mode testsground(X) andvar(W) on its input arguments

and returnsW = (X − 2)× 2. Predicatetwo/1 returnss(s(0)) , i.e., the natural number

2. A call minus(A,B,C) returnsC = A − B. However, if the result becomes a negative

number,C is left as a free variable. This indicates that the result is not valid. In turn, a

call twice(A,B) returnsB = A× 2. Prior to computing the result, this predicate checks

whetherA is valid, i.e., not a variable, and simply returns a variable otherwise.

Figure 5 shows the extended option values needed in theoptimization menu to

produce the specialized code shown in Figure 6 using integrated abstract interpretation and

partial evaluation (rules are renamed apart).

We can see that calls to predicatesground/1 andvar/1 in predicateformula/2

have been removed. For this, we need to select theshfr abstract domain in the menu. The

abstract information obtained from (groundness and freeness) analysis states that such calls

will definitely succeed for initial queries satisfying theentry declaration (and thus, can be

replaced bytrue). Also, the code for predicatestwice/2 andtw/2 has been merged into

one predicate:tw 1/2 . This is also because the inferred abstract information states that the

call toground/1 in predicatetwice/2 will definitely succeed (and thus can be removed).

Also, the call to predicatevar/1 in the first clause of predicatetwice/2 will always fail
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:- module(,[main/2],[assertions]).

:- entry main(N, R) : (gttwo nat(N), var(R) ).

:- regtype gttwo nat/1.

gt two nat(s(s(s(N)))):- nat(N).

:- regtype nat/1

nat(0).

nat(s(N)) :- nat(N).

main(In,Out):-

formula(In,Tmp),

formula(Tmp,Out),

nonvar(Out).

formula(X,W):-

ground(X),

var(W),

two(T),

minus(X,T,X2),

twice(X2,W).

two(s(s(0))).

minus(X,0,X).

minus(s(Y),s(X),R):- minus(Y,X,R).

minus(0,s(X), R).

twice(X, Y):- var(X).

twice(X,Y):- ground(X), tw(X,Y).

tw(0,0).

tw(s(X),s(s(NX))):- tw(X,NX).

Figure 4: A simple Peano’s arithmetic program.
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Figure 5: Extended menu options for integration of abstract interpretation and partial evaluation.
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:- module( examplesd, [main/2], [assertions , regtypes , nativeprops] ).

:- entry main(N,R): ( gttwo nat(N), var(R) ).

main(s(s(s(B))),A) :-

tw 1(B,C),

formula 1(A,C).

tw 1(0,0).

tw 1(s(A),s(s(B))) :-

tw 1(A,B).

formula 1(0,0).

formula 1(s(s(B)),s(A)) :-

tw 1(A,B).

Figure 6: Optimized Peano’s arithmetic program with abstract interpretation and partial evalua-

tion integrated.

(and thus, this clause can be removed). These optimizations can be selected inCiaoPP

by choosing the option valuespec for Select Optimize and the option valueall

for Abstract Spec Definitions in the menu (See Figure 5). These points illustrate

hence the benefits ofexploiting abstract information in order to abstractly execute certain

atoms which may, in turn, allow unfolding of other atoms.

However, the use of an abstract domain which captures groundness and freeness in-

formation will in general not be sufficient to determine that, in the second execution of

formula/2 in predicatemain/2 , the testsground(X) andvar(W) will also succeed.

The reason is that, on success ofminus(T,X,X2) , X2 cannot be guaranteed to be ground

sinceminus/3 succeeds with a free variable in its third argument position. It can be ob-

served, however, that for all calls tominus/3 in the executions described by theentry

declaration, the third clause forminus/3 is useless. It will never contribute to a success

of minus/3 since such predicate is always called with a value greater than zero in its first

argument. Unfolding can make this explicit by fully unfolding calls tominus/3 since they

are sufficiently instantiated, and as a result, the “dangerous” third clause is disregarded. This

unfolding allows concluding that in our particular context all calls tominus/3 succeed with

a ground third argument. This can be selected inCiaoPP by choosing the values forlocal

andglobal control within the optimization menu shown in Figure 5. This illustrates the

importance ofperforming unfolding steps in order to prune away useless branches, and that
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this will result in improved success information.

3.6 Parallelization:

An example of a non-trivial program optimization performed using abstract interpretation

in CiaoPP is program parallelization [5]. It is also performed as a source-to-source trans-

formation, in which the input program isannotatedwith parallel expressions. The par-

allelization algorithms, or annotators [35], exploit parallelism under certainindependence

conditions, which allow guaranteeing interesting correctness and no-slowdown properties

for the parallelized programs [26, 14]. This process is complicated by the presence of shared

variables and pointers among data structures at run-time.

Consider the program of Figure 7 (themodule andentry directives will be explained

later).

:- module(qsort, [qsort/2], [assertions]).

:- entry qsort(A,B) : (list(A, num), var(B)).

qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L2,R2), qsort(L1,R1),

append(R1,[X|R2],R).

qsort([],[]).

partition([],_B,[],[]).

partition([E|R],C,[E|Left1],Right):-

E < C, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):-

E > C, partition(R,C,Left,Right1).

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).

Figure 7: A qsort program.
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A possible parallelization obtained with the selected options in the menu depicted in

Figure 8 is:

qsort([X|L],R) :-

partition(L,X,L1,L2),

( indep([[L1,L2]]) -> qsort(L2,R2) & qsort(L1,R1)

; qsort(L2,R2), qsort(L1,R1) ),

append(R1,[X|R2],R).

which indicates that, provided thatL1 andL2 do not have variables in common (at execution

time), then the recursive calls toqsort can be run in parallel.

Figure 8: Menu options for parallelization with no analysis information.

Given the information inferred by the abstract interpreter using, e.g., the mode and in-

dependence analysis (see Section 5), which determines thatL1 and L2 are ground after

partition (and therefore do not share variables), the independence test and the condi-

tional can be simplified via abstract executability and the annotator yields instead:
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qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L2,R2) & qsort(L1,R1),

append(R1,[X|R2],R).

which is much more efficient since it has no run-time test. This test simplification process

is described in detail in [5] where the impact of abstract interpretation in the effectiveness

of the resulting parallel expressions is also studied. The selected menu options needed to

produce this output are depicted in Figure 9.

Figure 9: Menu options for parallelization with analysis information.

The tests in the above example aim atstrict independent and-parallelism. However, the

annotators are parameterized on the notion of independence. Different tests can be used

for different independence notions: non-strict independence [9], constraint-based indepen-

dence [14], etc.
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Moreover, all forms of and-parallelism in logic programs can be seen as independent and-

parallelism, provided the definition of independence is applied at the appropriate granularity

level.1

3.7 Resource and Granularity Control:

Another application of the information produced by theCiaoPP analyzers, in this case cost

analysis, is to perform combined compile–time/run–time resource control. An example of

this is task granularity control [33] of parallelized code. Such parallel code can be the output

of the process mentioned above or code parallelized manually.

In general, this run-time granularity control process involves computing sizes of terms

involved in granularity control, evaluating cost functions, and comparing the result with

a threshold2 to decide for parallel or sequential execution. Optimizations to this general

process include cost function simplification and improved term size computation, both of

which are illustrated in the following example.

Consider again the qsort program in Figure 7. We useCiaoPP to perform a transfor-

mation for granularity control. An overview of the selected menu options to achieve this is

depicted in Figure 10.

In the resulting optimized code,CiaoPP adds a clause:

“qsort(_1,_2) :- g_qsort(_1,_2). ” (to preserve the original entry point) and

producesg qsort/2 , the version ofqsort/2 that performs granularity control (s qsort/2

is the sequential version):

g_qsort([X|L],R) :-

partition_o3_4(L,X,L1,L2,_1,_2),

( _2>7 -> (_1>7 -> g_qsort(L2,R2) & g_qsort(L1,R1)

; g_qsort(L2,R2), s_qsort(L1,R1))

; (_1>7 -> s_qsort(L2,R2), g_qsort(L1,R1)

; s_qsort(L2,R2), s_qsort(L1,R1))),

append(R1,[X|R2],R).

g_qsort([],[]).

Note that if the lengths of the two input lists to the qsort program are greater than a

threshold (a list length of 7 in this case) then versions which continue performing granular-

ity control are executed in parallel. Otherwise, the two recursive calls are executed sequen-

tially. The executed version of each of such calls depends on its grain size: if the length

1For example, stream and-parallelism can be seen as independent and-parallelism if the independence of “bind-

ings” rather than goals is considered.
2This threshold can be determined experimentally for each parallel system, by taking the average value resulting

from several runs.
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Figure 10: Menu options for parallelization with granularity control.

19



of its input list is not greater than the threshold then a sequential version which does not

perform granularity control is executed. This is based on the detection of a recursive invari-

ant: in subsequent recursions this goal will not produce tasks with input sizes greater than

the threshold, and thus, for all of them, execution should be performed sequentially and,

obviously, no granularity control is needed.

In general, the evaluation of the condition to decide which predicate versions are exe-

cuted will require the computation of cost functions and a comparison with a cost threshold

(measured in units of computation). However, in this example a test simplification has been

performed, so that the input size is simply compared against a size threshold, and thus the

cost function for qsort does not need to be evaluated.3 Predicatepartition o3 4/6 :

partition_o3_4([],_B,[],[],0,0).

partition_o3_4([E|R],C,[E|Left1],Right,_1,_2) :-

E<C, partition_o3_4(R,C,Left1,Right,_3,_2), _1 is _3+1.

partition_o3_4([E|R],C,Left,[E|Right1],_1,_2) :-

E>=C, partition_o3_4(R,C,Left,Right1,_1,_3), _2 is _3+1.

is the transformed version ofpartition/4 , which “on the fly” computes the sizes of its

third and fourth arguments (the automatically generated variables1 and 2 represent these

sizes respectively) [32].

4 Program Debugging and Assertion Validation

CiaoPP is also capable of combined static and dynamic validation, and debugging using the

ideas outlined so far. To this end, it implements the framework described in [24, 39] which

involves several of the tools which compriseCiaoPP . Figure 11 depicts the overall architec-

ture. Hexagons represent the different tools involved and arrows indicate the communication

paths among them.

Program verification and detection of errors is first performed at compile-time by infer-

ring properties of the program via abstract interpretation-based static analysis and comparing

this information against (partial) specifications written in terms of assertions (see [27] for a

detailed description of the sufficient conditions used for achieving thisCiaoPP functional-

ity).

Both the static and the dynamic checking are provablysafein the sense that all errors

flagged are definite violations of the specifications.
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Figure 11: Architecture of the Preprocessor

4.1 Assertions and Properties:

Assertions are a means of specifyingpropertieswhich are (or should be) true of a given

predicate, predicate argument, and/orprogram point. If an assertion has been proved to be

true it has a prefixtrue . Assertions can also be used to provide information to the analyzer

in order to increase its precision or to describe predicates which have not been coded yet

during program development. These assertions have atrust prefix [4]. For example, if we

commented out theuse module/2 declaration in Figure 12, we could describe the mode

of the (now missing)geq andlt predicates to the analyzer for example as follows:

:- trust pred geq(X,Y) => ( ground(X), ground(Y) ).

:- trust pred lt(X,Y) => ( ground(X), ground(Y) ).

The same approach can be used if the predicates are written in, e.g., an external lan-

guage such as, e.g., C or Java. Finally, assertions with acheck prefix are the ones used to

specify theintendedsemantics of the program, which can then be used in debugging and/or

validation, as we will see later in this section. Interestingly, this very general concept of

assertions is also particularly useful for generating documentation automatically (see [21]

for a description of their use by the Ciao auto-documenter).

Assertions refer to certain program points. Thetrue pred assertions above specify in

a combined way properties of both the entry (i.e., upon calling) and exit (i.e., upon success)

points ofall calls to the predicate. It is also possible to express properties which hold at

points between clause literals. As an example of this, the following is a fragment of the

output produced by CiaoPP for the program in Figure 12 when information is requested at

this level:
3This size threshold will obviously be different if the cost function is.
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:- module(qsort, [qsort/2], [assertions]).

:- use_module(compare,[geq/2,lt/2]).

qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L2,R2), qsort(L1,R1),

append(R1,[X|R2],R).

qsort([],[]).

partition([],_B,[],[]).

partition([E|R],C,[E|Left1],Right):-

lt(E,C), partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):-

geq(E,C), partition(R,C,Left,Right1).

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).

Figure 12: A modular qsort program.

qsort([X|L],R) :-

true((ground(X),ground(L),var(R),var(L1),var(L2),var(R2), ...

partition(L,X,L1,L2),

true((ground(X),ground(L),ground(L1),ground(L2),var(R),var(R2), ...

qsort(L2,R2), ...

In CiaoPP properties are just predicates, which may be builtin or user defined. For exam-

ple, the propertyvar used in the above examples is the standard builtin predicate to check

for a free variable. The same applies toground andmshare . The properties used by

an analysis in its output (such asvar , ground , andmshare for the previous mode anal-

ysis) are said to benative for that particular analysis. The system requires that properties

be marked as such with aprop declaration which must be visible to the module in which

the property is used. In addition, properties which are to be used in run-time checking (see

later) should be defined by a (logic) program or system builtin, and also visible. Properties

declared and/or defined in a module can be exported as any other predicate. For example:

:- prop list/1.

list([]).

list([_|L]) :- list(L).
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or, using the functional syntax package, more compactly as:

:- prop list/1. list := [] | [_|list].

defines the property “list”. A list is an instance of a very useful class of user-defined proper-

ties calledregular types[46, 11, 20, 18, 45], which herein are simply a syntactically restricted

class of logic programs. We can mark this fact by stating “:- regtype list/1. ” in-

stead of “:- prop list/1. ” (this can be done automatically). The definition above can

be included in a user program or, alternatively, it can be imported from a system library, e.g.:

:- use module(library(lists),[list/1]).

The idea of using analysis information for debugging comes naturally after observing

analysis outputs for erroneous programs. Consider the program in Figure 13.

The result of regular type analysis for this program includes the following code:

:- true pred qsort(A,B)

: ( term(A), term(B) )

=> ( list(A,t113), list(B,ˆx) ).

:- regtype t113/1.

t113(A) :- arithexpression(A).

t113([]).

t113([A|B]) :- arithexpression(A), list(B,t113).

t113(e).

wherearithexpression is a library property which describes arithmetic expressions

andlist(B,ˆx) means “a list ofx ’s.” A new name (t113 ) is given to one of the inferred

types, and its definition included, because no definition of this type was found visible to

the module. In any case, the information inferred does not seem compatible with a correct

definition ofqsort , which clearly points to a bug in the program.

4.2 Static Checking of Assertions in System Libraries:

In addition to manual inspection of the analyzer output,CiaoPP includes a number of au-

tomated facilities to help in the debugging task. For example,CiaoPP can find incompati-

bilities between the ways in which library predicates are called and their intended mode of

use, expressed in the form of assertions in the libraries themselves. Also, the preprocessor

can detect inconsistencies in the program and check the assertions present in other modules

used by the program.

For example, we can turn on compile-time error checking and selecting type and mode

analysis for our tentativeqsort program in Figure 13, by selecting the actioncheckassertions
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:- module(qsort, [qsort/2], [assertions]).

:- entry qsort(A,B) : (list(A, num), var(B)).

qsort([X|L],R) :-

partition(L,L1,X,L2),

qsort(L2,R2), qsort(L1,R1),

append(R2,[x|R1],R).

qsort([],[]).

partition([],_B,[],[]).

partition([e|R],C,[E|Left1],Right):-

E < C, !, partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):-

E >= C, partition(R,C,Left,Right1).

append([],X,X).

append([H|X],Y,[H|Z]):- append(X,Y,Z).

Figure 13: A tentative qsort program.

as shown in Figure 14. By default, the optionPerform Compile-Time Checksis set toauto,

which means that the system will automatically detect the analyses to be performed in or-

der to check the program, depending on the information available in the program assertions

(in the example in Figure 13, the entry assertion informs how the predicateqsort/2 will

be called using types and modes information only). Using the default options, and setting

Report Non-Verified Assrtsto error, we obtain the following messages (and the system high-

lights the line which produces the first of them, as shown in Figure 15):

WARNING (preproc_errors): (lns 3-7) goal partition(L,L1,X,L2) at

literal 1 does not succeed!

WARNING (ctchecks_messages): (lns 11-12) the head of clause

’partition/4/2’ is incompatible with its call type

Head: partition([e|R],C,[E|Left1],Right)

Call Type: partition(list(num),term,num,term)

ERROR (ctchecks_messages): (lns 13-14) at literal 1 false calls assertion:

:- calls >=(A,B) : [[ground(A),ground(B)]]

because on call of >=(A,B) : mshare([[B],[A]]),var(B)

WARNING (preproc_errors): (lns 13-14) goal >=(E,C) at literal 1
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Figure 14: Static compile-time checking of assertions in system libraries.

does not succeed!

where the first message refers to the lines of the first clause ofqsort/2 , the second one

to the second clause ofpartition/4 , and the last two messages correspond to the third

clausepartition/4 .

First and last messages warn that all calls topartition and>=/2 will fail, something

normally not intended (e.g., in our case). The error message indicates a wrong call to a

builtin predicate, which is an obvious error. This error has been detected by comparing the

mode information obtained by global analysis, which at the corresponding program point

indicates that the second argument to the call to>=/2 is a variable, with the assertion:

:- check calls A>=B : (ground(A), ground(B)).

which is present in the default builtins module, and which implies that the two arguments

to >=/2 should be ground when this arithmetic predicate is called. The message signals

a compile-time, orabstract, incorrectness symptom [7], indicating that the program does

not satisfy the specification given (that of the builtin predicates, in this case). Checking the

indicated call topartition and inspecting its arguments we detect that in the definition
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Figure 15: Results of compile-time checking of assertions in system libraries.

of qsort , partition is called with the second and third arguments in reversed order –

the correct call ispartition(L,X,L1,L2) .

After correcting this bug, we proceed to perform another round of compile-time check-

ing, which continues producing the following message:

WARNING: Clause ’partition/4/2’ is incompatible with its call type

Head: partition([e|R],C,[E|Left1],Right)

Call Type: partition(list(num),num,term,term)

This time the error is in the second clause ofpartition . Checking this clause we see

that in the first argument of the head there is ane which should beE instead. Compile-time

checking of the program with this bug corrected does not produce any further warning or

error messages.
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Figure 16: Results of compile-time checking after correcting first errors.

4.3 Static Checking of User Assertions and Program Validation:

Though, as seen above, it is often possible to detect error without adding assertions to user

programs, if the program is not correct, the more assertions are present in the program the

more likely it is for errors to be automatically detected. Thus, for those parts of the program

which are potentially buggy or for parts whose correctness is crucial, the programmer may

decide to invest more time in writing assertions than for other parts of the program which

are more stable. In order to be more confident about our program, we add to it the following

check assertions:4

:- calls qsort(A,B) : list(A, num). % A1

:- success qsort(A,B) => (ground(B), sorted_num_list(B)). % A2

:- calls partition(A,B,C,D) : (ground(A), ground(B)). % A3

:- success partition(A,B,C,D) => (list(C, num),ground(D)). % A4

:- calls append(A,B,C) : (list(A,num),list(B,num)). % A5

4Thecheck prefix is assumed when no prefix is given, as in the example shown.
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:- comp partition/4 + not_fails. % A6

:- comp partition/4 + is_det. % A7

:- comp partition(A,B,C,D) + terminates. % A8

:- prop sorted_num_list/1.

sorted_num_list([]).

sorted_num_list([X]):- number(X).

sorted_num_list([X,Y|Z]):-

number(X), number(Y), X=<Y, sorted_num_list([Y|Z]).

where we also use a new property,sorted num list , defined in the module itself. These

assertions provide a partial specification of the program. They can be seen as integrity con-

straints: if their properties do not hold at the corresponding program points (procedure call,

procedure exit, etc.), the program is incorrect.Calls assertions specify properties of all

calls to a predicate, whilesuccess assertions specify properties of exit points for all calls

to a predicate. Properties of successes can be restricted to apply only to calls satisfying

certain properties upon entry by adding a “: ” field to success assertions. Finally,Comp

assertions specifyglobal properties of the execution of a predicate. These include complex

properties such as determinacy or termination and are in general not amenable to run-time

checking. They can also be restricted to a subset of the calls using “: ”. More details on the

assertion language can be found in [40].

CiaoPP can perform compile-time checking of the assertions above, by comparing them

with the assertions inferred by analysis (see [27, 7, 41] for details), producing as output the

following assertions (refer also to Figure 11, output of the comparator):

:- checked calls qsort(A,B) : list(A,num). % A1

:- check success qsort(A,B) => sorted_num_list(B). % A2

:- checked calls partition(A,B,C,D) : (ground(A),ground(B)). % A3

:- checked success partition(A,B,C,D) => (list(C,num),ground(D) ).% A4

:- false calls append(A,B,C) : ( list(A,num), list(B,num) ). % A5

:- checked comp partition/4 + not_fails. % A6

:- checked comp partition/4 + is_det. % A7

:- checked comp partition/4 + terminates. % A8

In order to produce this output, theCiaoPP checkassertionsmenu must be set to the same

options as those used in Figure 14 for checking assertions in system libraries. Since theauto

mode has been used for the optionPerform Compile-Time Checks, CiaoPP has automatically

detected that the program must be analyzed not only for types and modes domains, but

also to check non-failure, determinism, and upper-bound cost. Note that a number of initial

assertions have been marked aschecked , i.e., they have beenvalidated. If all assertions
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had been moved to thischecked status, the program would have beenverified. In these

casesCiaoPP is capable of generating certificates which can be checked efficiently for,

e.g., mobile code applications [2]. However, in our case assertionA5 has been detected to be

false. This indicates a violation of the specification given, which is also flagged byCiaoPP

as follows:

ERROR: (lns 22-23) false calls assertion:

:- calls append(A,B,C) : list(A,num),list(B,num)

Called append(list(ˆx),[ˆx|list(ˆx)],var)

The error is now in the callappend(R2,[x|R1],R) in qsort (x instead ofX). Asser-

tionsA1, A3, A4, A6, A7, andA8 have been detected to hold. Note that though the predicate

partition may fail in general, in the context of the current program it can be proved not

to fail (assertionA6). However, it was not possible to prove statically assertionA2, which

has remained withcheck status. Note also thatA2 has been simplified, and this is because

the mode analysis has determined that on success the second argument ofqsort is ground,

and thus this does not have to be checked at run-time. On the other hand the analyses used in

our session (types, modes, non-failure, determinism, and upper-bound cost analysis) do not

provide enough information to prove that the output ofqsort is asortedlist of numbers,

since this is not a native property of the analyses being used. While this property could be

captured by including a more refined domain (such as constrained types), it is interesting to

see what happens with the analyses selected for the example.5

4.4 Dynamic Debugging with Run-time Checks:

Assuming that we stay with the analyses selected previously, the following step in the de-

velopment process is to compile the program obtained above with the “generate run-time

checks” option.CiaoPP will then introduce run-time tests in the program for thosecalls

andsuccess assertions which have not been proved nor disproved during compile-time

(see again Figure 11). In our case, the program with run-time checks will call the definition

of sorted num list at the appropriate times. In the current implementation ofCiaoPP

we obtain the following code for predicateqsort (the code forpartition andappend

remain the same as there is no other assertion left to check):

5Note that while propertysorted num list cannot be proved with only (over approximations) of mode and

regular type information, it may be possible to prove that it doesnot hold (an example of how properties which are

not natively understood by the analysis can also be useful for detecting bugs at compile-time): while the regular

type analysis cannot capture perfectly the propertysorted num list , it can still approximate it (by analyzing

the definition) aslist(B, num) . If type analysis for the program were to generate a type forB not compatible

with list(B, num) , then a definite error symptom would be detected.
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qsort(A,B) :-

new_qsort(A,B),

postc([ qsort(C,D) : true => sorted(D) ], qsort(A,B)).

new_qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L2,R2), qsort(L1,R1),

append(R2,[X|R1],R).

new_qsort([],[]).

wherepostc is the library predicate in charge of checking postconditions of predicates. If

we now run the program with run-time checks in order to sort, say, the list[1,2] , the Ciao

system generates the following error message:

?- qsort([1,2],L).

ERROR: for Goal qsort([1,2],[2,1])

Precondition: true holds, but

Postcondition: sorted_num_list([2,1]) does not.

L = [2,1] ?

Clearly, there is a problem withqsort , since[2,1] is not the result of ordering[1,2]

in ascending order. This is a (now, run-time, orconcrete) incorrectness symptom, which can

be used as the starting point of diagnosis. The result of such diagnosis should indicate that

the call toappend (whereR1 andR2 have been swapped) is the cause of the error and that

the right definition of predicateqsort is the one in Figure 7.

4.5 Performance Debugging and Validation:

Another very interesting feature ofCiaoPP is the possibility of stating assertions about the

efficiency of the program which the system will try to verify or falsify. This is done by

stating lower and/or upper bounds on the computational cost of predicates (given in number

of execution steps). Consider for example the naive reverse program in Figure 17.

Suppose that the programmer thinks that the cost ofnrev is given by a linear function

on the size (list-length) of its first argument, maybe because he has not taken into account

the cost of theappend call. Sinceappend is linear, it causesnrev to be quadratic. We

will show thatCiaoPP can be used to inform the programmer about this false idea about

the cost ofnrev . For example, suppose that the programmer adds the following “check”

assertion:

:- check comp nrev(A,B) + steps_ub(length(A)+1).
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:- module(reverse, [nrev/2], [assertions,nativeprops]).

:- entry nrev(A,B) : (ground(A), list(A), var(B)).

nrev([],[]).

nrev([H|L],R) :-

nrev(L,R1),

append(R1,[H],R).

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]):- append(Xs,Ys,Zs).

Figure 17: The naive reverse program.

In order to check cost assertions, we have to set specific analysis options toCiaoPP . The

way to do it is to setCustomize Analysis Flags to on whenSelect Action

Group is set tocheck assertions in the menu (see Figure 18).

The extended menu with the appropriate options is shown in Figure 19.

With these options, we get the following error message:

ERROR: false comp assertion:

:- comp nrev(A,B) : true => steps_ub(length(A)+1)

because in the computation the following holds:

steps_lb(0.5*exp(length(A),2)+1.5*length(A)+1)

This message states thatnrev will take at least0.5 (length(A))2 + 1.5 length(A) + 1
resolution steps (which is the cost analysis output), while the assertion requires that it take

at mostlength(A) + 1 resolution steps. The cost function in the user-provided assertion is

compared with the lower-bound cost assertion inferred by analysis. This allows detecting

the inconsistency and proving that the program does not satisfy the efficiency requirements

imposed. Upper-bound cost assertions can also be proved to hold, i.e., can bechecked, by

using upper-bound cost analysis rather than lower-bound cost analysis. In such case, it holds

when the upper-bound computed by analysis is lower or equal than the upper-bound stated

by the user in the assertion. The converse holds for lower-bound cost assertions.

CiaoPP can also verify or falsify cost assertions expressing worst case computational

complexity orders (this is specially useful if the programmer does not want or does not

know which particular cost function should be checked). For example, suppose now that the

programmer adds the following “check” assertion:

:- check comp nrev(A,B) + steps_o(length(A)).
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Figure 18: Access to analysis flags from thecheckassertionsmenu.
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Figure 19: Extra analysis options for performance debugging.
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In this case, we get the following error message:

ERROR: false comp assertion:

:- comp nrev(A,B) : true => steps_o(length(A))

because in the computation the following holds:

steps_lb(0.5*exp(length(A),2)+1.5*length(A)+1)

This message states thatnrev will take at least0.5 (length(A))2 + 1.5 length(A) + 1
resolution steps (which is the cost analysis output, as in the previous example), while the

assertion requires that the worst case cost ofnrev be linear onlength(A) (the size of the

input argument).

If the programmer adds now the following “check” assertion:

:- check comp nrev(A,B) + steps_o(exp(length(A),2)).

which states that the worst case cost ofnrev is quadratic, i.e. is inO(n2), wheren is the

length of the first list (represented aslength(A) ). Then the assertion is validated and the

following “checked” assertion is included in the output produced byCiaoPP :

:- checked comp nrev(A,_1) + steps_o( exp(length(A), 2) ).

Thanks to this functionality,CiaoPP can certify programs with resource consumption as-

surances and also efficiently check such certificates [22].

4.6 Abstraction-Carrying Code:

CiaoPP also allows to generate program certificates based on abstract interpretation, in

order to provide the basis for abstraction-carrying code.

Let us consider again a program for the naive reversal of a list, in this case using func-

tional notation, part of theCiao system. We have added a set of assertions which specify

the intended safety policy. The idea is that, if the assertions can be verified, then we know

that the safety policy is entailed from them and the program. The program code is as follows:

:- module(_, [nrev/2], [assertions,functions,regtypes,nativeprops]).

:- function(arith(false)).

:- entry nrev/2 : {list, ground} * var.

:- check pred nrev(A,B) : list(A) => list(B).

:- check comp nrev(_,_) + ( not_fails, is_det ).

:- check comp nrev(A,_) + steps_o( exp(length(A),2) ).
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Figure 20: Extended options for certificate generation.

nrev( [] ) := [] .

nrev( [H|L] ) := ˜conc( ˜nrev(L),[H] ).

:- check comp conc(_,_,_) + ( terminates, is_det ).

:- check comp conc(A,_,_) + steps_o(length(A)).

conc( [], L ) := L.

conc( [H|L], K ) := [ H | ˜conc(L,K) ].

For generating the certificate, the menucheckassertionswill be used. Since the certifi-

cate will require specific values for some advanced options, the expert menu must be used,

selectingexpert for theSelect Menu Level option. The complete set of values are
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Figure 21: Menu options for certificate checking.

shown in Figure 20.

The results of analysis show that the above assertions have been proved and hence the

intended safety policy holds:

:- checked comp nrev(_1,_2)

+ ( not_fails, is_det ).

:- checked comp nrev(A,_1)

+ steps_o(exp(length(A),2)).

:- checked calls nrev(A,B)

: list(A).

:- checked success nrev(A,B)

: list(A)

=> list(B).

:- checked comp conc(_1,_2,_3)

+ ( terminates, is_det ).
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Figure 22: Certificate checked byCiaoPP .

:- checked comp conc(A,_1,_2)

+ steps_o(length(A)).

The consumer will receive the untrusted code and the certificate package generated with

the options in Figure 20. It proceeds to check that the certificate is valid for the program and

that the safety policy is entailed from it. To do this, we select the optioncheckcertificate

from the Action Group, as shown in Figure 21. It can be seen in Figure 22 that with this

optionCiaoPP successfully validates the certificate and assertions. Hence, the program can

be trusted by this consumer.

5 Static Analysis and Program Assertions

The fundamental functionality behind CiaoPP is static global program analysis, based on

abstract interpretation. For this task CiaoPP uses the PLAI abstract interpreter [37, 5], in-

cluding extensions for, e.g., incrementality [25, 42], modularity [4, 44, 6], analysis of con-

straints [13], and analysis of concurrency [34].

The system includes several abstract analysis domains developed by several groups in

the LP and CLP communities and can infer information on variable-level properties such

as moded types, definiteness, freeness, independence, and grounding dependencies: essen-

37



tially, precise data structure shape and pointer sharing. It can also infer bounds on data

structure sizes, as well as procedure-level properties such as determinacy, termination, non-

failure, and bounds on resource consumption (time or space cost). CiaoPP implements sev-

eral techniques for dealing with “difficult” language features (such as side-effects, meta-

programming, higher-order, etc.) and as a result can for example deal safely with arbitrary

ISO-Prolog programs [4]. A unified language of assertions [4, 40] is used to express the

results of analysis, to provide input to the analyzer, and, as we have seen in Section 4, to

provide program specifications for debugging and validation, as well as the results of the

comparisons performed against the specifications.

5.1 Module-aware Static Analysis Basics:

As mentioned before, CiaoPP takes advantage of modular program structure to perform more

precise and efficient, incremental analysis. Consider the program in Figure 12, defining a

module which exports theqsort predicate and imports predicatesgeq andlt from module

compare . During the analysis of this program, CiaoPP will take advantage of the fact that

the only predicate that can be called from outside is theexportedpredicateqsort . This

allows CiaoPP to infer more precise information than if it had to consider that all predicates

may be called in any possible way (as would be true had this been a simple “user” file instead

of a module). Also, assume that thecompare module has already been analyzed. This

allows CiaoPP to be more efficient and/or precise, since it will use the information obtained

for geq and lt during analysis ofcompare instead of either (re-)analyzingcompare

or assuming topmost substitutions for them. Assuming thatgeq and lt have a similar

binding behavior as the standard comparison predicates, a mode and independence analysis

(“sharing+freeness” [36]) of the module using CiaoPP yields the following results:6

:- true pred qsort(A,B)

: mshare([[A],[A,B],[B]])

=> mshare([[A,B]]).

:- true pred partition(A,B,C,D)

: ( var(C), var(D), mshare([[A],[A,B],[B],[C],[D]]) )

=> ( ground(A), ground(C), ground(D), mshare([[B]]) ).

:- true pred append(A,B,C)

: ( ground(A), mshare([[B],[B,C],[C]]) )

=> ( ground(A), mshare([[B,C]]) ).

6In the “sharing+freeness” domainvar denotes variables that do not point yet to any data structure,mshare

denotes pointer sharing patterns between variables. Derived propertiesground and indep denote respectively

variables which point to data structures which contain no pointers, and pairs of variables which point to data struc-

tures which do not share any pointers.
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Figure 23: Options for performing module-aware analysis.

Theseassertionsexpress, for example, that the third and fourth arguments ofpartition

have “output mode”: whenpartition is called (: ) they are free unaliased variables

and they are ground on success (=>). Also, append is used in a mode in which the first

argument is input (i.e., ground on call). Also, upon success the arguments ofqsort will

share all variables (if any).

5.2 Type Analysis:

CiaoPP can infer (parametric) types for programs both at the predicate level and at the literal

level [20, 18, 45]. The output for Figure 12 at the predicate level, assuming that we have

imported thelists library, is:

:- true pred qsort(A,B)

: ( term(A), term(B) )
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Figure 24: Type analysis without entry assertions.

=> ( list(A), list(B) ).

:- true pred partition(A,B,C,D)

: ( term(A), term(B), term(C), term(D) )

=> ( list(A), term(B), list(C), list(D) ).

:- true pred append(A,B,C)

: ( list(A), list1(B,term), term(C) )

=> ( list(A), list1(B,term), list1(C,term) ).

whereterm is any term and proplist1 is defined inlibrary(lists) as:

:- regtype list1(L,T) # "@var{L} is a list of at least one @var{T}’s."

list1([X|R],T) :- T(X), list(R,T).

:- regtype list(L,T) # "@var{L} is a list of @var{T}’s."

list([],_T).

list([X|L],T) :- T(X), list(L).
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Figure 25: Type analysis with entry assertions.

We can useentry assertions [4] to specify a restricted class of calls to the module entry

points as acceptable:

:- entry qsort(A,B) : (list(A, num), var(B)).

This informs the analyzer that in all external calls toqsort , the first argument will be a list

of numbers and the second a free variable. Note the use of builtin properties (i.e., defined

in modules which are loaded by default, such asvar , num, list , etc.). Note also that

properties natively understood by different analysis domains can be combined in the same

assertion. This assertion will aid goal-dependent analyses obtain more accurate information.

For example, it allows the type analysis to obtain the following, more precise information:

:- true pred qsort(A,B)

: ( list(A,num), term(B) )

=> ( list(A,num), list(B,num) ).
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Figure 26: Non-failure and determinacy analysis options.

:- true pred partition(A,B,C,D)

: ( list(A,num), num(B), term(C), term(D) )

=> ( list(A,num), num(B), list(C,num), list(D,num) ).

:- true pred append(A,B,C)

: ( list(A,num), list1(B,num), term(C) )

=> ( list(A,num), list1(B,num), list1(C,num) ).

5.3 Non-failure and Determinacy Analysis:

CiaoPP includes a non-failure analysis, based on [15] and [8], which can detect procedures

and goals that can be guaranteed not to fail, i.e., to produce at least one solution or not termi-

nate. It also can detect predicates that are “covered”, i.e., such that for any input (included in

the calling type of the predicate), there is at least one clause whose “test” (head unification

and body builtins) succeeds. CiaoPP also includes a determinacy analysis based on [31],
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Figure 27: Size, cost, and termination analysis options.

which can detect predicates which produce at most one solution, or predicates whose clause

tests are mutually exclusive, even if they are not deterministic (because they call other predi-

cates that can produce more than one solution). For example, the result of these analyses for

Figure 12 includes the following assertion:

:- true pred qsort(A,B)

: ( list(A,num), var(B) ) => ( list(A,num), list(B,num) )

+ ( not_fails, covered, is_det, mut_exclusive ).

(The+ field in pred assertions can contain a conjunction of global properties of thecom-

putationof the predicate.) This result has been obtained using theanalyzemenu options

depicted in Figure 26.
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5.4 Size, Cost, and Termination Analysis:

CiaoPP can also infer lower and upper bounds on the sizes of terms and the computational

cost of predicates [16, 17]. The cost bounds are expressed as functions on the sizes of the

input arguments and yield the number of resolution steps. Various measures are used for

the “size” of an input, such as list-length, term-size, term-depth, integer-value, etc. Note

that obtaining a non-infinite upper bound on cost also implies provingterminationof the

predicate.

As an example, the following assertion is part of the output of the upper bounds analysis:
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:- true pred append(A,B,C)

: ( list(A,num), list1(B,num), var(C) )

=> ( list(A,num), list1(B,num), list1(C,num),

size_ub(A,length(A)), size_ub(B,length(B)),

size_ub(C,length(B)+length(A)) )

+ steps_ub(length(A)+1).

Note that in this example the size measure used is list length. The sentence

size_ub(C,length(B)+length(A)) means that an (upper) bound on the size of the

third argument ofappend/3 is the sum of the sizes of the first and second arguments.

The inferred upper bound on computational steps is the length of the first argument of

append/3 . The options that must be set in theanalyzemenu ofCiaoPP are shown in

Figure 27.

The following is the output of the lower-bounds analysis:

:- true pred append(A,B,C)

: ( list(A,num), list1(B,num), var(C) )

=> ( list(A,num), list1(B,num), list1(C,num),

size_lb(A,length(A)), size_lb(B,length(B)),

size_lb(C,length(B)+length(A)) )

+ ( not_fails, covered, steps_lb(length(A)+1) ).

The lower-bounds analysis uses information from the non-failure analysis, without which a

trivial lower bound of 0 would be derived. The menu options are the same as in Figure 27,

but selectingsteps lb for the cost analysis option.

5.5 Decidability, Approximations, and Safety:

As a final note on the analyses, it should be pointed out that since most of the properties being

inferred are in general undecidable at compile-time, the inference technique used, abstract

interpretation, is necessarilyapproximate, i.e., possibly imprecise. On the other hand, such

approximations are also always guaranteed to be safe, in the sense that (modulo bugs, of

course) they are neverincorrect: the properties stated in inferred assertions do always hold

of the program.

More info: For more information, full versions of papers and technical reports, and/or to

download Ciao and other related systems please access:

http://www.cliplab.org/ .
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[14] M. Garćıa de la Banda, M. Hermenegildo, and K. Marriott. Independence in CLP

Languages.ACM Transactions on Programming Languages and Systems, 22(2):269–

339, March 2000.
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[31] P. López-Garćıa, F. Bueno, and M. Hermenegildo. Determinacy Analysis for Logic

Programs Using Mode and Type Information. InProceedings of the 14th Inter-

48



national Symposium on Logic-based Program Synthesis and Transformation (LOP-

STR’04), number 3573 in LNCS, pages 19–35. Springer-Verlag, August 2005.
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[34] K. Marriott, M. Garćıa de la Banda, and M. Hermenegildo. Analyzing Logic Programs

with Dynamic Scheduling. In20th. Annual ACM Conf. on Principles of Programming

Languages, pages 240–254. ACM, January 1994.

[35] K. Muthukumar, F. Bueno, M. Garcı́a de la Banda, and M. Hermenegildo. Automatic

Compile-time Parallelization of Logic Programs for Restricted, Goal-level, Indepen-

dent And-parallelism.Journal of Logic Programming, 38(2):165–218, February 1999.

[36] K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and Free-

ness of Program Variables Through Abstract Interpretation. In1991 International Con-

ference on Logic Programming, pages 49–63. MIT Press, June 1991.

[37] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Depen-

dency Using Abstract Interpretation.Journal of Logic Programming, 13(2/3):315–347,

July 1992.

[38] G. Puebla, E. Albert, and M. Hermenegildo. A Generic Framework for the Analysis

and Specialization of Logic Programs. InThe 15th Workshop on Logic-Based Methods

in Programming Environments, WLPE’05, Sitges (Barcelona), October 2005.

[39] G. Puebla, F. Bueno, and M. Hermenegildo. A Generic Preprocessor for Program

Validation and Debugging. In P. Deransart, M. Hermenegildo, and J. Maluszynski,

editors,Analysis and Visualization Tools for Constraint Programming, number 1870

in LNCS, pages 63–107. Springer-Verlag, September 2000.

[40] G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint

Logic Programs. In P. Deransart, M. Hermenegildo, and J. Maluszynski, editors,Analy-

sis and Visualization Tools for Constraint Programming, number 1870 in LNCS, pages

23–61. Springer-Verlag, September 2000.

[41] G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic Assertion-

Based Debugging of Constraint Logic Programs. InLogic-based Program Synthesis

and Transformation (LOPSTR’99), number 1817 in LNCS, pages 273–292. Springer-

Verlag, March 2000.

49



[42] G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Analy-

sis of Logic Programs. InInternational Static Analysis Symposium, number 1145 in

LNCS, pages 270–284. Springer-Verlag, September 1996.

[43] G. Puebla and M. Hermenegildo. Abstract Multiple Specialization and its Applica-

tion to Program Parallelization.J. of Logic Programming. Special Issue on Synthesis,

Transformation and Analysis of Logic Programs, 41(2&3):279–316, November 1999.

[44] G. Puebla and M. Hermenegildo. Some Issues in Analysis and Specialization of Mod-

ular Ciao-Prolog Programs. InSpecial Issue on Optimization and Implementation of

Declarative Programming Languages, volume 30 ofElectronic Notes in Theoretical

Computer Science. Elsevier - North Holland, March 2000.

[45] C. Vaucheret and F. Bueno. More precise yet efficient type inference for logic pro-

grams. InInternational Static Analysis Symposium, number 2477 in LNCS, pages

102–116. Springer-Verlag, September 2002.

[46] E. Yardeni and E. Shapiro. A Type System for Logic Programs.Concurrent Prolog:

Collected Papers, pages 211–244, 1987.

50


