
A Sketch of a Complete Scheme for Tabled

Execution Based on Program Transformation

Pablo Chico de Guzmán1 Manuel Carro1 Manuel V. Hermenegildo1,2

pchico@clip.dia.fi.upm.es {mcarro,herme}@fi.upm.es

1 School of Computer Science, Univ. Politécnica de Madrid, Spain
2 IMDEA Software, Spain

Abstract. Tabled evaluation has proved to be an effective method to
improve several aspects of goal-oriented query evaluation, including ter-
mination and complexity. “Native” implementations of tabled evaluation
offer good performance, but also require significant implementation ef-
fort, affecting compiler and abstract machine. Alternatively, program
transformation-based implementations, such as the original continuation

call (CCall) technique, offer lower implementation burden at some effi-
ciency cost. A limitation of the original CCall proposal is that it limits
the interleaving of tabled and non-tabled predicates and thus cannot be
used for arbitrary programs. In this work we present an extension of the
CCall technique that allows the execution of arbitrary tabled programs,
as well as some performance results. Our approach offers a useful trade-
off that can be competitive with state-of-the-art implementations, while
keeping implementation effort relatively low.
Keywords: Tabled logic programming, Continuation-call tabling, Im-
plementation, Performance, Program transformation.

1 Introduction

Tabling [1–3] is a strategy for executing logic programs which remembers al-
ready processed calls and their answers to overcome several limitations of SLD
resolution: non-termination due to repeated subgoals can sometimes be avoided
(tabling ensures termination of bounded term-size programs) and some cases of
recomputation can also be automatically optimized. The first occurrence (the
generator) of a call to a predicate marked as tabled and subsequent calls which
are identical up to variable renaming (the consumers) are recognized. The gen-
erator applies resolution using program clauses to derive answers for the goal.
Conceptually, consumers suspend their current execution path and take on a dif-
ferent branch; this can be repeated several times. When some alternative branch
eventually succeeds the answer generated for the initial query is inserted in a
table associated with the original goal. This makes it possible to reactivate sus-
pended calls and to continue execution at the point where they were stopped.

Implementing tabling is a complex task. In suspension-based tabling (e.g.,
XSB [4] and CHAT [5], among others) the execution state of suspended tabled
subgoals is preserved to avoid unnecessary recomputations, but they usually re-
quire deep changes to the underlying implementation. Linear tabling schemes (as
exemplified by B-Prolog [6, 7] and the DRA scheme [8]) does not require sus-
pension and resumption of sub-computations, and then, they can usually be
implemented on top of existing sequential engines with relatively simple modifi-
cations. However, their efficiency is affected by subgoal recomputation.



2 The Continuation Call Technique

The CCall approach to tabling [9, 10] is a suspension-based mechanism which
requires much simpler modifications to the Prolog implementation or compiler
than other suspension-based techniques. A number of low-level optimizations to
existing implementations of the CCall approach were proposed in [11] and it was
shown that performance could be competitive with other implementations.

The CCall technique implements tabling by a combination of program trans-
formation and side effects in the form of insertions into and retrievals from a
table which relates calls, answers, and the continuation code to be executed after
consumers read answers from the table. Consumer suspension and resumption
is performed by operations which are visible at Prolog level.

Roughly speaking, the original CCall approach calls tabled predicates through
the slgcall primitive, which receives a goal and analyzes if it is a generator or
a consumer call. When it is a consumer, suspension has to be performed by sav-
ing the current environment and program counter in order to resume execution
later on. The body goals after the tabled call are associated with a new predicate
symbol, which takes the role of the program counter at that particular place.
The bindings performed before the tabled call make up the environment of the
consumer. Consequently, slgcall takes the name of the auxiliary predicate and
a list of bindings as arguments, in order to be able to perform resumption at
Prolog level. Answers are inserted in the table by answer/2 primitive, which is
added at the end of each clause of the original tabled predicate.

The original transformation is not general because the environments are only
correctly saved when tabled calls are themselves in the body of a tabled predicate
(except for the first one). If there are non-tabled, SLD predicates between the
generator and some consumer, the code after that consumer is not associated
with any predicate symbol, and it is not considered for tabled execution (see [12]
for more details and examples). Tabling all predicates between generators and
consumers works around this problem, but it can seriously impact efficiency.

3 A Complete Tabling Translation for General Programs

We have extended the translation to work around the issue presented in the
previous section by bringing into the scene a new kind of predicates – bridge

predicates. Predicate B is a bridge if for some tabled predicate T, T depends on B

(i.e., B is called in the subtree rooted at T) and B depends on T. Figure 1, which
uses a sugared Prolog-like language,3 shows the rules for the new translation.

The tr/2 predicate takes a clause to be translated and returns the list of
clauses resulting from the translation. Its last clause ensures that predicates
which are non-tabled and non-bridge are not transformed. The first one generates
the interface with the rest of the code for each tabled predicate. The second and
third cases translate clauses of tabled and bridge predicates, respectively.4 They

3 Functional syntax is implicitly assumed where needed. The ‘◦’ operator is a general
append function which can either join (linear) structures or concatenates atoms.

4 Predicates table/1 and bridge/1 check if their argument corresponds to a tabled
or bridge predicate, respectively.



tr((:- table P/N),
(P(X1..Xn) :- !,slg(P(X1..Xn)))).

tr((H :- B),LC) :- !,
table(H),
H_tr =.. [’slg_’ ◦ H, H, Id],
End = answer(Id, H),
tr_B(H_tr, B, Id, [], End, LC).

tr((H :- B), (H :- B ◦ LC)) :- !,
bridge(H),
H_tr =.. [H ◦ ’_bridge’, H, Id, Cont],
End = (arg(3, Cont, H), call(Cont)),
tr_Body(H_tr, B, Id, Cont, End, LC).

tr(C, C).

tr_Body([], [], _, _, [], []).
tr_Body(H, B, Id, CCPrev, End,

(H :- B_tr ◦ RestB_tr)) :-
following(B, Pref, Pred, Suff),
getLBinds(Pref, Suff, LBinds),
up_Body(Pred, End, Id, Pref, LBinds,

CCPrev, Cont, B_tr),
tr_Body(Cont, Suff, Id, CCPrev, End, RestB_tr).

following(B, Pref, Pred, Suff) :-
member(B, Pred),
(table(Pred); bridge(Pred)), !,
B = Pref ◦ Pred ◦ Suff.

up_Body([], End, _Id, Pref, _LBinds,
_CCPrev, [], Pref ◦ End).

up_Body(Pred, _End, Id, Pref, LBinds,
CCPrev, Cont, Pref ◦ slgcall(Cont)) :-

table(Pred),
getNameCont(NameCont),
Cont = NameCont(Id, LBinds, Pred, CCPrev).

up_Body(Pred, _End, Id, Pref, LBinds,
CCPrev, Cont, Pref ◦ Bridge_call) :-

bridge(Pred),
getNameCont(NameCont),
Cont = NameCont(Id, LBinds, Pred, CCPrev),
Bridge_call =.. [Pred ◦ ’_bridge’, Cont].

Fig. 1. The Prolog code of the translation rules.

generate the new head of the clause, H tr, and the code which has to be appended
at the end of the body, End, before calling tr Body/6 with these arguments. The
original clauses are maintained in case bridge predicates are called outside a
tabled call.

tr Body/6 generates, in its last argument, the translation of the body of a
clause by taking care, in each iteration, of the code until the next tabled or
bridge call, or until the end the clause, and appending the translation of the rest
of the clause to this partial translation.

following/4 splits a clause body in three parts: a prefix, until the first time
a tabled or bridge call appears, the tabled or bridge call itself, and a suffix from
this call until the end of the clause. getLBinds/3 obtains the list of variables
which have to be saved to recover the environment of the consumer.

:- table t/1.

t(A):-

p(B), A is B + 1.

t(0).

p(B):- t(B), B < 1.

Fig. 2. A program which
needs bridge predicates.

The up Body/8 predicate completes the body pre-
fix until the next tabled or bridge call. Its first sixth
arguments are inputs, the seventh one is the head of
the continuation for the suffix of the body, and the last
argument is the new translation for the prefix. The
first clause takes care of the base case, when there are
no calls to bridge or tabled predicates left, the second
clause generates code for a call to a tabled predicate,
and the last one does the same with a bridge predi-
cate. getNameCont/1 generates a unique name for the continuation.

An example of a tabled program which needs our extended translation is
presented in the figure right above this paragraph (and, at more length, in [12]).
If the query ?- t(A). is issued, t(B) is called in a consumer position inside
p/1. This simple combination would incorrectly be dealt by [9]. However, the
translation proposed in Figure 1 generates the code in Figure 3, which transforms
p/1 so that the information necessary to resume t/1 is available where needed,
at the cost of some duplicated code and an extra argument when p/1 is called
from inside a tabled execution.



t(A) :- slg(t(A)).

slg_t(t(A), Id) :-

p_bridge(Id,

slg_t0(Id,[A],p(B),[])).

slg_t0(Id, [A], p(B), []) :-

A is B + 1,

answer(Id, t(A)).

slg_t(t(0),Id) :- answer(Id, t(0)).

p(B) :- t(B), B < 1.

p_bridge(Id, Cont) :-

slgcall(

p_bridge0(Id,[],t(B),Cont)).

p_bridge0(Id, [], t(B), Cont) :-

B < 1,

arg(3, Cont, p(B)),

call(Cont).

Fig. 3. The program in Figure 3 after being transformed for tabled execution.

Prog. Ciao+CCall XSB YapTab BProl.

path 517.92 231.4 151.12 206.26
tcl 96.93 59.91 39.16 51.60
tcr 315.44 106.91 90.13 96.21
tcn 485.77 123.21 85.87 117.70
sgm 3151.8 1733.1 1110.1 1474.0
atr2 689.86 602.03 262.44 320.07
pg 15.240 13.435 8.5482 36.448

Prog. Ciao+CCall XSB YapTab BProl.

kalah 23.152 19.187 13.156 28.333
gabriel 23.500 19.633 12.384 40.753
disj 18.095 15.762 9.2131 29.095
cs o 34.176 27.644 18.169 85.719
cs r 66.699 55.087 34.873 170.25
peep 68.757 58.161 37.124 150.14

Table 1. Comparing Ciao+CCall with XSB, YapTab, and B-Prolog.

4 Performance Evaluation

We have implemented the proposed technique as an extension of the Ciao sys-
tem [13] with the efficiency improvements presented in [11] and the new trans-
lation for general programs explained in this poster.

Table 1 aims at determining how the proposed implementation of tabling
compares with state-of-the-art systems —namely, the available versions of XSB,
YapTab, and B-Prolog at the time of writing. We provide the raw time (in mil-
liseconds) taken to execute several tabling benchmarks. Measurements have been
made with Ciao-1.13, using the standard, unoptimized bytecode-based compi-
lation, and with the CCall extensions loaded, as well as in XSB 3.0.1, YapTab
5.1.1, and B-Prolog 7.0. All the executions were performed using local scheduling
and disabling garbage collection; in the end this did not impact execution times
very much. We used gcc 4.1.1 to compile all the systems (except B-Prolog,
which is available as a binary), and we executed them on a machine with Fedora
Core Linux, kernel 2.6.9, and an Intel Xeon Deschutes processor.

While the performance of CCall is clearly affected by the fragment of the
execution performed at Prolog level, its efficiency is in general not too far away
from than XSB’s, whose abstract machine is about half the speed of Ciao’s for
SLD execution. The relationship with B-Prolog is not so clear, as it features a
fast abstract machine, but its tabling implementation sometimes suffers from
recomputation. Last, Yap, which has a fast abstract machine which implements
SLG resolution, easily beats the rest of the systems. We plan to improve the
performance of our implementation by making the CCall primitives closer to
the abstract machine. More details about the execution times and a comparison
of the CCall time execution complexity with CHAT can be found in [12].



Acknowledgments: This work was funded in part by EU FP6 FET project IST-

15905 MOBIUS, FP7 grant 215483 S-Cube, Spanish MEC project TIN2005-09207-C03

MERIT-COMVERS, ITEA2/PROFIT FIT-340005-2007-14 ES PASS, and by Madrid

Regional Government project S-0505/TIC/0407 PROMESAS. M. Hermenegildo was

also funded in part by the Prince of Asturias Chair in IST at UNM. Pablo Chico de

Guzmán was also funded by a UPM doctoral grant.

References

1. Tamaki, H., Sato, M.: OLD resolution with tabulation. In: Third International
Conference on Logic Programming, London, pp. 84–98. Lecture Notes in Computer
Science, Springer-Verlag (1986)

2. Warren, D.: Memoing for logic programs. Communications of the ACM 35(3), pp.
93–111 (1992)

3. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic
Programs. Journal of the ACM 43(1), pp. 20–74 (January 1996)

4. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20(3), pp. 586–634 (May 1998)

5. Demoen, B., Sagonas, K.F.: Chat: The copy-hybrid approach to tabling. In:
Practical Applications of Declarative Languages. pp. 106–121. (1999)

6. Zhou, N.F., Shen, Y.D., Yuan, L.Y., You, J.H.: Implementation of a linear tabling
mechanism. Journal of Functional and Logic Programming 2001(10), (October
2001)

7. Zhou, N.F., Sato, T., Shen, Y.D.: Linear Tabling Strategies and Optimizations.
Theory and Practice of Logic Programming 8(1), pp. 81–109 (2008)

8. Guo, H.F., Gupta, G.: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In: International
Conference on Logic Programming. pp. 181–196. (2001)

9. Ramesh, R., Chen, W.: A Portable Method for Integrating SLG Resolution into
Prolog Systems. In Bruynooghe, M., ed.: International Symposium on Logic Pro-
gramming, pp. 618–632. MIT Press (1994)

10. Rocha, R., Silva, C., Lopes, R.: On Applying Program Transformation to Imple-
ment Suspension-Based Tabling in Prolog. In Dahl, V., Niemelä, I., eds.: 23rd
International Conference on Logic Programming. Number 4670 in LNCS, Porto,
Portugal, pp. 444–445. Springer-Verlag (September 2007)

11. de Guzmán, P.C., Carro, M., Hermenegildo, M., Silva, C., Rocha, R.: An Improved
Continuation Call-Based Implementation of Tabling. In Warren, D., Hudak, P.,
eds.: 10th International Symposium on Practical Aspects of Declarative Languages
(PADL’08). Volume 4902 of LNCS., pp. 198–213. Springer-Verlag (January 2008)

12. de Guzmán, P.C., Carro, M., Hermenegildo, M.V.: Bridge Program Transforma-
tion for the CCall Tabling Scheme. Technical Report CLIP6/2008.0, Technical
University of Madrid (UPM), Computer Science School, UPM (September 2008)

13. Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., López-Garćıa, P., (Eds.),
G.P.: The Ciao System. Ref. Manual (v1.13). Technical report, C. S. School
(UPM) (2006) Available at http://www.ciaohome.org.


