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A b s t r a c t : Compilation techniques such as those por t rayed by the War ren Abst rac t Machine 
( W A M ) have greatly improved the speed of execution of logic programs. The research 
presented herein is geared towards providing additional performance to logic programs through 
the use of parallelism, while preserving the conventional semantics of logic languages. Two 
áreas to which special a t tent ion is given are the preservation of sequential performance and 
storage efficiency, and the use of low overhead mechanisms for controlling parallel execution. 
Accordingly, the techniques used for support ing parallelism are efficient extensions of those 
which have brought high inferencing speeds to sequential implementat ions. A t a lower level, 
special a t tent ion is also given to design and simulation detail and to the architectural 
implications of the execution model behavior. This paper offers an overview of the basic 
concepts and techniques used in the parallel design, simulation tools used, and some of the 
results obtained to date . 
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1 Introduction 

The sequential performance of logic programs [12] has been greatly improved since the advent of the 
first Prolog interpreters by the development of evaluation and compilation techniques such as those 
por t rayed by the War ren Abst rac t Machine ( W A M ) [21]. Specialized architectures are also being 
proposed which promise further performance improvements [18] [7]. The present research concentrates on 
providing additional execution speed to logic programs (i.e. beyond t ha t afforded by sequential 
implementations) through the use of parallelism, while a t the same t ime preserving the conventional 
semantics of logic languages. In order to achieve this goal, and in the assumption t h a t actual applications 
do have some sequential par ts , special emphasis is first given to the preservation of sequential 
performance and storage efficiency: the techniques used for support ing parallelism are extensions to those 
which have brought high inferencing speeds to sequential implementat ions. In addit ion, special a t tent ion 
is given to the efficiency of these extensions: low overhead mechanisms are used for controlling parallel 
execution. Finally, special emphasis is also given to design and simulation detail. This makes it possible to 
quantify the overhead associated with the management of parallel execution a t many levéis (scheduling, 
communication, synchronization, resource management , cache coherence maintenance, etc.) and select the 
techniques and architectural organizations which provide the best performance. 

The research methodology used can be described as a set of i terat ions over the following points: 

• Analyze the opportunit ies for parallelism present in logic languages and select one or more 
which can be "reasonably" implemented. 



• Design an execution model which supports these types of parallelism with the minimum 
possible overhead while at the same time preserving sequential inferencing speed. 

• Perform a detailed simulation of the execution model under idealized architectural 
organization parameters. Identify the most frequent and costly operations and try to optimize 
them. 

• Select or design a particular architectural organization and introduce into the simulation the 
actual parameters associated with it. Obtain feedback regarding design decisions at the higher 
level and revise those decisions accordingly. 

• Finally, implement the model on an available multiprocessor, if determined to be suitable, or 
design a new one as required by the execution model. 

This paper reports on some of our current efforts in addressing several of these points: section 2 presents 
the forms of parallelism initially chosen for exploitation (Goal Independence AND-Parallelism in the 
form of Restricted AND-Parallelism and annotated, pipelined OR-Parallelism) and the reasons behind 
these choices. Section 3 introduces the RAP-WAM execution model and describes the characteristics of 
this model which have been shown to be important in meeting the performance objectives mentioned at 
the beginning of this introduction. Section 4 then describes some of the research activities completed or 
under way which relate to the simulation and implementation of the model. Some of the results obtained 
to date are also presented. In particular, overheads in the system have been shown to be low, sequential 
speed cióse to that of sequential systems, and actual speedup attainable even with current shared memory 
multiprocessor technology. 

2 Efficient Parallel Execution of Logic Programs 

Logic Programs offer many different sources of parallelism [5]. Ideally, all these sources should be 
exploited simultaneously in a given system. Nevertheless, the overhead involved in the management and 
control of this parallelism is non-trivial and due consideration must be given to the run-time cost 
associated with the exploitation of any given source. 

2.1 AND- and OR-Parallelism 

Of the various sources of parallelism present in Logic Programs AND- and OR-parallelism appear to be 
the most attractive. Considerable attention is being given to the implementation of either one of these 
types of parallelism (or a combination of both) in many proposed parallel logic programming systems 
[3, 14, 2, 1, 5, 13, . . . ] . Our research goal is the combined use of both AND- and OR-Parallelism. Efficient 

techniques for implementing OR-Parallelism have been proposed or are currently under development by 
various groups, as reported in [22]. AND-Parallelism, although theoretically offering advantages such as 
being able to exploit parallelism in determínate programs, has been difficult to implement due to the 
overhead involved in the handling of shared variable bindings and because of its interaction with "don't 
know non-determinism". Most of the research reported herein refers to the implementation of Goal 
Independence AND-Parallelism in the form of Restricted AND-Parallelism. 

2.2 Goal Independence AND-Parallelism and Restricted AND-Parallelism 

Conery [5] showed how "brute forcé" exploitation of AND-Parallelism (i.e. the automatic scheduling of 
a process for every goal in the body of a clause) leads to variable binding conflicts. Such a conflict 
appears if various goals attempt to bind a shared variable to different valúes. One solution to this 



problem is to determine one goal as the producer of the variable, and the others as consumers. In stream 
AND-Parallelism these goals all run in parallel and the valué of the variable is incrementally passed 
("pipelined") from the producer to the consumers. Stream AND-Parallelism is useful because it allows the 
description of systems of communicating processes. A drawback in stream AND-Parallelism, however, is 
that it is difficult to implement in the presence of non-determinism. Therefore, proposed systems which 
exploit this type of parallelism do not implement the conventional ("don't know") non-deterministic 
semantics of logic programs and implement "committed-choice" (i.e. "don't care") non-determinism 
instead. Such is the case in PARLOG [8], Concurrent Prolog [15], and Guarded Horn Clauses (GHC) [19]. 
Our interest, however, is in preserving the conventional ("don't know") semantics . 

An alternative way of dealing with variable binding conflicts which makes support for both AND-
Parallelism and "don't know" non determinism more amenable to an efficient implementation is Goal 
Independence AND-Parallelism [11]. In this form of AND-Parallelism only sets of goals which are 
determined to be independent (i.e. which do not share any non-ground variables) can be executed in 
parallel. Goal independence can be postulated through annotations. It can also be determined either 
statically by the compiler (perhaps guided by some information provided by the user on the type of 
queries that are most likely to be presented to the system [2]), completely dynamically at run-time [5], or 
through a combination of the above mentioned techniques. Restricted AND-Parallelism (RAP) 
[6] represents such a combination offering more opportunity for parallelism than static systems at a 

lower cost than dynamic ones. RAP combines a compile-time analysis of the clauses in the program with 
simple checks on variables at run-time (determining whether they are "ground" or "independent"). 

In this research a generalized versión of RAP is used [11]. This versión completes DeGroot's original 
description (by providing backward execution semantics) and overcomes the difficulty in expressing the 
"sufficient" conditions for independence [9] using DeGroot's conditional graph expressions. In addition, 
user annotations are permitted which are used to reduce (or even eliminate altogether) the number of 
tests generated by the compiler. Other types of AND- and OR-Parallelism are also under consideration. 
As an example of this generalized form of RAP consider the following clause: 

child(X,Y,Z):- father(Y.X), mother(Z,X). 

While analyzing the example above, the RAP compiler would find that "f a ther (Y.X)" and 
"mother (Z,X) " may not be independent at run-time (not only do they share the variable X, but the 
variables Y and Z could be "linked" through unification). However, it would also find (using the 
independence conditions given in [9]) that these goals are guaranteed to be independent (and therefore can 
be executed in parallel in a straightforward way) if the clause happens to be called with the first 
argument (X) being "ground" (i.e. fully instantiated), and the other two (Y and Z) being independent (i.e. 
they do not "share" [11]). The result of this compile-time analysis can be encoded in a "Conditional 
Graph Expression" (CGE), and the clause rewritten as shown below. 

child(X.Y,Z) :-( ground(X), indep(Y.Z) I father(Y.X) fc mother(Z,X)) . 

The declarative semantics of the clause above remains identical to that of the original clause, but the 
procedural semantics changes: 

• Try to unify "chi ld(X, Y,Z) " with the calling goal. If successful, 

• Check if "X" is ground and if "Y" and "Z" are independent. In that case, execution of 
"f ather(Y,X) " and "mother(Z,X) " can be started in parallel. 

In fact, "committed choice" systems ultimately share this interest. For example, Codish [4] and Ueda [20] both have proposed 
using program transformations generated through partial evaluation in order to implement a form of "don't know" non-determinism. 
It is argued that the more direct approach described herein has a higher performance potential while guaranteeing that full "don't 
know" non-determinism will be supported. 



• If the checks fail, execute "f ather(Y,X) " and "mother(Z,X) " sequentially. 

Thus, the CGE embedded within the clause above can genérate (depending on the result of the 
"checks" at run-time) two execution graphs: a sequential and a parallel one. Nesting of Conditional 
Graph Expressions can genérate more complicated execution graphs, and the run-time system, while 
executing the CGE, will select different branches of the graphs depending on the results of the checks. 
The backward semantics (actions taken in case of failure) support "don't know" non-determinism and are 
given in [l l] . Of course, if the user declares that the child rule will for example be called with its first 
two arguments "ground" then it is not necessary to genérate any checks since "ground(X) " is obviously 
true and "indep(Y,Z) " is also guaranteed because Y, being "ground", cannot share any variables with 
Z. In this case the clause can always be executed in parallel and it would be rewritten by the compiler as 

child(X,Y,Z) :-( true I father(Y,X) & mother(Z,X)) . 

3 RAP-WAM Execution Model and Architectural Characteristics 

As pointed out in the introduction, in order to achieve actual speedup an evolutionary approach is 
chosen at the execution model level: since logic programs, in addition to offering opportunities for 
parallelism, often also present code segments requiring sequential execution, great emphasis is given to the 
preservation of sequential performance and storage efficiency as well as to the use of low overhead 
mechanisms for controlling parallel execution. The approach initially taken in this design is therefore to 
provide the mechanisms for supporting forward and backward parallel execution of logic programs as 
extensions to the ones used in a high performance Prolog implementation, the WAM [21]. 

3.1 Extending the WAM for Restricted AND-Parallel Execution: the RAP-WAM execution 
model 

An early result of the research approach described above is the RAP-WAM execution model [9]. This 
model is defined as a parallel virtual machine and described at the abstract machine level (in much the 
same way as the WAM). This level of description provides a concrete target for compiler design, and is 
suitable both for implementation on conventional multiprocessors or as a guide in the design of a 
specialized architecture. Figure 1 shows one of the abstract machines of the RAP-WAM execution 
model. Each of these abstract machines is similar to a standard WAM (with a complete set of registers 
and data áreas) except for the addition of a "Goal Stack", a "Message Buffer", and the inclusión of new 
types of frames ("Parcall Frames" and "markers") in the Stack. Each machine has access to the Heap, 
Stack, and Goal Stack of other machines. 

The instruction set of the RAP-WAM abstract machine includes all WAM instructions and several 
new instructions which are related to parallel execution. Figure 2 lists the instructions which currently 
support AND-Parallelism. Although the "check" instructions are somewhat particular to the 
implementation of RAP, the instruction set is also suitable for other AND-Parallel systems. Instructions 
of the form " . . _ d e t _ . . . " are optimized for determínate execution. The last instructions are "pseudo 
instructions" which represent the actions taken upon failure and during distributed scheduling and 
backtracking. 
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check_me_else Label 
check_ground Vn 
check_independent Vn.Vm 

proceed 
id le 
pop_foreign_goal 
f a i l 
k i l l 
redo 
unwind 

push_call Procedure/Arity,Slot# 
pop_pending_goal 
a l loca te_pcal l #_of_slots,M 
check_ready Slot_#,Label 
wait_on_siblings 

push_det_call Procedure/Arity,Slot# 
a l locate_det_pcal l #_of_slots,M 
cut_merge 

F i g u r e 2: Parallel Abstract Machine Specific Instructions 

3.2 E x e c u t i o n M o d e l C h a r a c t e r i s t i c s 

Space l imitations make a complete description of the execution model impossible (the reader is referred 
to [9] and [10] for such a description). The basic characteristics of this execution model are: 

• Extended support for W A M optimizations, preservation of sequential speed and storage 
efficiency. The parallel execution model still supports last cali optimization, environment 
t r imming, unification customization, clause indexing, space retrieval on backtracking and 
other storage and performance optimizations of the W A M . In part icular , the tota l amount of 
storage needed by the parallel system is essentially equivalent to t ha t of a sequential W A M 
implementat ion. Storage is still always retrieved from the top of all stacks during 
backtracking thus simplifying memory management and minimizing the frequency of 
invocation of garbage collection. Sequential speed is essentially equivalent to t ha t of the 
W A M . Determínate execution is optimized. 



• Efficient support of AND-Parallelism and "don't know" non-determinism. The model 
semantics ensure support for full "don't know" non-determinism during parallel execution. 
"Restricted" intelligent backtracking is supported as well [ l l] . Variable binding conflicts are 
detected and dealt with efficiently through the forward execution semantics of the CGEs. A 
conscious effort has been made throughout the design towards optimizing performance while 
reducing overhead and minimizing communication, synchronization and storage requirements. 
Therefore, speedup beyond WAM performance is attainable. This has been confirmed by the 
simulations [9]. 

• User-transparency of control issues and distributed control. Scheduling of goals is done 
dynamically at run-time in a distributed and user-transparent way [10]. A "work based" 
(rather than "process based") model is used which minimizes process creation. Performance 
degrades "softly" with resource exhaustion: code generated from conditional graph expressions 
will automatically run sequentially if there are no free processors available. All communication 
and synchronization issues are concealed within the semantics of the CGEs . 

4 Research Activities and Preliminary Results 

4.1 Measurement Tools 

A series of measurement tools have been built in order to evalúate the potential performance of the 
execution model and the associated architectural tradeoffs [9]. The present configuration of these tools is 
shown in figure 3. Application programs are translated into parallel WAM code and fed into a 
RAP-WAM emulator together with emulation parameters such as the number of processors, type of 
scheduling strategy used, storage área sizes, etc. The emulator executes the program and generates (in 
addition to the correct result) instrumentation data such as instruction and pseudo-instruction 
frequencies, number of references to the different data áreas, ratios of local vs. remote references for each 
type of object, máximum amount of storage used in each área, timings, speedups, etc. Following the 
methodology outlined in section 1, these measurements are made under the assumption of an idealized 
architectural organization with a uniform address space and no memory contention. In order to make it 
possible to evalúate the deviation from this ideal behavior due to the characteristics of a particular 
architectural organization (such as available bandwidths, cache coherence maintenance overhead, etc.) the 
emulator can also genérate a trace file of memory references. A particular case which has been studied is 
that of a shared memory multiprocessor with coherent caches using a set of coherent cache simulators 
[17] which take the trace file data as input (figure 3). 

4.2 Research Results 

Relevant results obtained to date include the following [9]: 

• It appears that the model can achieve actual speedup even if the application exhibits only low 
levéis of parallelism. 

• The overheads in the model due to the management of parallelism are low (observed to be less 
than 15% for a worst case). This suggests that other types of AND-parallelism with higher 
expected implementation overheads may achieve actual speedup using similar techniques. 

• The stack memory management is very efficient and in many cases it avoids the invocation of 
garbage collection. Its implementation is, however, more complicated than that of other 
approaches, such as a simple heap (but promises better performance). 
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Figure 3: Simulation Tools 

Additional results are being obtained from lower level simulations: 

• Coherent cache simulations show a clear superiority of write-back broadcast caches over other 
types. A hybrid broadcast cache has been developed [17] which promises reasonable 
performance at a lower cost. It is conjectured that this result is due both to the high write 
frequency of Prolog and to the low communication overhead of the RAP-WAM execution 
model. 

• The reduction in memory traffic per processor on the shared bus due to the presence of caches 
can be cióse to 80%. This makes it reasonable to predict that speeds in the order of 2 million 
application inferences per second are possible on shared memory multiprocessors built using 
current technology. 

4.3 Áreas of Current and Future Research 

Some of the áreas where research is proposed or currently under way are: 

• Automatic generation of CG'E's: the "correctness" conditions proposed in [9] and a data 
dependency analysis of the source program (which can be aided by user annotations) are being 
used as the basis for the design of a tool for the automatic annotation of Prolog programs 
with CGE's . A prototype has already successfully annotated some simple programs. 



• OR-parallelism support: support for OR-Parallelism is being included in the model using 
recently proposed mechanisms for the maintenance of múltiple binding contexts [22]. However, 
the problem of efficiently combining OR- and AND-Parallelism (beyond pipelined parallelism 
[16]) presents some interesting research questions. 

• Study of the memory referencing behavior of the system: the information being obtained 
from this study is instrumental in understanding the architectural requirements of parallel 
logic programming. Current and proposed architectures and organizations are being analyzed 
in light of this data. 

• Support for other types of parallelism and language extensions: specific additions or 
modifications to the model in order to support other types of parallelism and features not 
currently supported (such as streams, functions, or goal suspensión) are under study. 

5 Conclusions 

An important goal of this research is the achievement of performance in logic programs beyond that of 
current sequential systems through the use of parallelism. One of the early research results is the 
RAP-WAM parallel execution model and the evaluation of its performance potential. This model 
provides precise forward and backward procedural semantics for Logic Programs annotated with CGE's 
which can be implemented efficiently, and an abstract machine architecture which extends the 
optimizations present in sequential systems to a parallel environment. The results obtained so far show 
that Goal Independence AND-Parallelism in the form of Restricted AND-Parallelism can be efficiently 
implemented in the presence of "don't know" non-determinism and that significant speedups with respect 
to high performance sequential implementations can be obtained using the proposed execution model and 
current state-of-the-art multiprocessor technology. 
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