
A Practical Approach to the Global
Analysis of CLP Programs
M. Garćıa de la Banda
M. Hermenegildo
Facultad de Informática
Universidad Politécnica de Madrid (UPM)
28660-Boadilla del Monte, Madrid - Spain
{maria,herme}@fi.upm.es

Abstract

This paper presents and illustrates with an example a practical approach
to the dataflow analysis of programs written in constraint logic program-
ming (CLP) languages using abstract interpretation. It is first argued that,
from the framework point of view, it suffices to propose relatively simple
extensions of traditional analysis methods which have already been proved
useful and practical and for which efficient fixpoint algorithms have been
developed. This is shown by proposing a simple but quite general extension
of Bruynooghe’s traditional framework to the analysis of CLP programs. In
this extension constraints are viewed not as “suspended goals” but rather as
new information in the store, following the traditional view of CLP. Using
this approach, and as an example of its use, a complete, constraint system
independent, abstract analysis is presented for approximating definiteness
information. The analysis is in fact of quite general applicability. It has
been implemented and used in the analysis of CLP(R) and Prolog-III appli-
cations. Results from the implementation of this analysis are also presented.

1 Introduction

In Constraint Logic Programming (CLP) languages programs can perform
computations over both symbolic and non-symbolic domains and unifica-
tion is replaced by the concept of constraint solving [11]. While this greatly
enhances expressive power, constraint solving can often be much more ex-
pensive than unification and result in low run-time performance. In addition,
current CLP systems are often also significantly slower than Prolog systems
when running equivalent (i.e. “Prolog”) programs. Such performance limi-
tations, combined with the increasing acceptance of these languages, have
motivated a growing interest in dataflow analysis based optimization tech-
niques for CLP languages, and in particular in the application of abstract
interpretation [5].

Much work has been done using the abstract interpretation technique in
the context of logic programs (e.g. [16, 7, 1, 14, 6]). A number of practical
systems have been built, some of which have shown great usefulness and
practicality [18, 19, 17, 6, 3]. It appears that the abstract interpretation
technique should also be useful in the context of CLP.

A few general frameworks have already been defined for this purpose
[15, 4, 2]. However, one common characteristic of these frameworks is that

they depart from the approaches that have been so far quite successful in the
analysis of traditional logic programing (LP) languages. It is the point of
this paper to show how some of the techniques which have been used to great
success and practicality in LP and for which efficient fixpoint algorithms have
already been developed can relatively easily be extended to the analysis of
CLP programs.

The point above is illustrated by proposing a simple but quite general
and powerful extension of Bruynooghe’s traditional framework in order to
make it applicable to the analysis of CLP programs. In this extension con-
straints are viewed not as “suspended goals” (unless of course they actually
are implemented through suspension in the concrete semantics, as may be
the case for example for non-linear constraints) but rather as new infor-
mation in the store, following the view of the traditional CLP framework.
We give correctness conditions for the resulting generalized framework. We
also argue that given such a framework, the effort should then concentrate
on the development of accurate abstract domains and abstract conjunction
functions. We then show how one of the key issues in achieving this is the
accurate abstraction of the entailment relation. We also relate this point
to traditional issues in the Herbrand domain. As an example of the use of
this approach, a complete, constraint system independent abstract analysis
is presented for approximating definiteness information. The analysis is of
quite general applicability since it uses in its implementation only constraints
over the Herbrand domain. We also present some encouraging results from
the implementation of this analysis.

2 Preliminaries

Let us present some basic concepts of constraint logic programming and the
notation which will be used throughout the paper. We follow mainly [11].

Let F be a set of function symbols, V a set of variables, Π = ΠC ∪ ΠP

a set of predicate symbols, where ΠC are the constraint predicates includ-
ing the symbol “=” and ΠC ∩ ΠP = ∅. Let (F)-terms and (F ∪ V)-
terms be the set of ground and possibly non ground terms respectively,
Atomic = (ΠC , F ∪ V)-atoms be the set of primitive constraints, and
Atom = (ΠP , F ∪ V)-atoms be the set of atoms. A constraint is a (possibly
empty) set of primitive constraints that will be interpreted as the conjunction
of its elements. A literal is an atom or a primitive constraint.

Constraints are pre-ordered by logical implication, that is π ≤ π′ iff
π ⇒ π′. For simplicity, and similarly to the consideration of only idempotent
substitutions, we will just consider constraints that are closed under entail-
ment. We let ∃Wπ be a non-deterministic function which returns a constraint
logically equivalent to ∃V1∃V2 · · ·Vnπ where variable set W = {V1, . . . , Vn}.
We let ∃Wπ be constraint π restricted to the variables W . That is ∃Wπ
is ∃vars(π)\Wπ where function vars takes a syntactic object and returns the

set of (free) variables occurring in it. Note that ∃W θ ⇔ θ in the tradi-
tional Logic Programming framework would be equivalent to saying that
domain(θ) = W . In the spirit of this concept, in the following we will say
that domain(π) = W iff ∃Wπ ⇔ π.

A Constraint Logic Program is a finite set of clauses of the form Head ←

Body, whereHead is an atom and Body is a sequence of the formQ1, · · · , Qn,
where each Qi is a literal. A goal is a (possibly empty) sequence of literals.

A state 〈G, π〉 consists of the current sequence of goals G and the current
constraint π. We will say that π is the call of G. A (generalized) derivation
step of state s = 〈L : G, π〉 for program P returns a state s′ such that:

1. if L ∈ Atomic and ∃(L ∧ π), s′ = 〈G, {L}
⊎
π}〉

2. if L ∈ Atom, and exists a clause C : H ← B s.t. vars(C)∩ vars(s) =
∅,∃π ∧ L = H then s′ = 〈B : G, π′〉 where π′ = π ∧ L = H

The derivation of a state s for a program P is a finite or infinite sequence
of states s0 → s1 → · · · returned by derivation steps, in which s0 = s. It is
successful when the last state has an empty sequence of atoms. A constraint
π is a partial answer to state s if there is a derivation from s to a state with
constraint π. An answer to state s is a partial answer corresponding to a
successful derivation.

3 Towards a CLP Analysis Framework

There has been considerable interest in developing new abstract interpreta-
tion frameworks for CLP languages. To these authors’ knowledge, at least
three frameworks have been proposed previously or simultaneously with our
work.1 Marriott and Sondergaard [15] present a general and elegant, seman-
tics based framework. It is based on a definition-independent meta-language
which can express the semantics of a wide variety of programming languages
including CLP languages. However, from a practical point of view, this
framework does not provide much simplification to the developer of the ab-
stract interpretation system, in the sense that many issues are left open.

In fact, one of the advantages of the most popular methods used in the
analysis of conventional LP systems (for example Bruynooghe’s method [1]
and the optimizations proposed for it [17]) is that they are “generic,” in the
sense that they specify much of what is needed leaving only the definition
of the domain, domain dependent functions, and assurance of correctness
criteria to be provided by the implementor. It is our intention to develop a
framework for CLP program analysis at this level of specification.

Codognet and Filé [4] also present a quite general framework for the
description of both CLP languages and their static analyses and an imple-
mentation approach. Although more concrete, this proposal is still more
abstract than the level pointed out above as our objective. On the other
hand this paper introduces the quite interesting idea of implementing the
abstract functions actually using constraint solvers, to which we will return
later.

Finally, Bruynooghe and Janssens [2] present a specialized framework
(which has been developed in parallel with the proposal presented in this
paper) which is based on the idea of adding complexity to the framework
with the potential benefit of decreased complexity in the abstract domain.
This is done by incorporating a local form of “suspension” so that some

1This ideas illustrated in this paper were first presented at the ICLP’91 Workshop on
Constraint Logic Programming.

goals can be reconsidered if later execution in a different environment can
provide further information. This extension is based on a particular view
of the execution of a CLP program in which constraints are considered as
goals which can suspend depending on the state of its arguments and on the
particular constraint system.

The view of constraints as suspended goals is certainly interesting and
worth pursuing. However, we feel that, understandably, this makes it more
difficult to make the framework fully general and we prefer to take the more
traditional notion presented in the CLP scheme in which constraints take the
place of substitutions and goals always either succeed or fail, in the former
case possibly placing new constraints.2

One of the main points of this paper is to show that if the above view is
taken then standard abstract interpretation frameworks for logic programs
are essentially still useful for the analysis of constraint logic programs, pro-
vided the parts that relate to the abstraction of the Herbrand domain and
unification functions are suitably generalized. This is based on the fact that
in this traditional view the role of goals and their control is basically identical
to those in traditional LP systems, the differences being essentially limited
to replacing the notions of Herbrand domain, unification, and substitutions
by those of constraint system, conjunction, and constraints.

In particular, we argue that the traditional framework of Bruynooghe and
its extensions can be used for analyzing constraint logic programs by using
the notions of abstract constraint and abstract conjunction and reformulat-
ing the safety conditions, but keeping the construction of the AND-OR tree,
the implementation and optimizations of the fixpoint algorithm, the notions
of projection and extension, etc. This has the advantage that the relatively
large number of implementations based on this scheme or derivations thereof
can be applied to CLP systems provided the safety conditions and other re-
lated requirements proposed herein are observed. In section 4 we propose
exactly such an extension. We now present some of the motivations behind
the approach taken.

3.1 Accurate Abstraction of Entailment as a Key Issue

Assume we want to analyze a language using a particular constraint sys-
tem in order to obtain information regarding a given property. Usually, we
will define (1) an abstract domain which represents this property, (2) an
abstraction function which maps a constraint into the abstract domain, and
(3) an abstract conjunction function which approximates the concrete solver
algorithm, i.e. a function which takes as arguments an abstract constraint
store and an abstract constraint and obtains the resulting abstract constraint
store.

Typically, abstracting data implies losing information. This is not im-
portant if the information lost is not relevant to the particular property of
interest. In fact, losing non relevant information is desirable in order to
reduce the amount of information that has to be handled by the analyser.

2In fact, actual suspension, as is often used in the solving of non-linear arithmetic
constraints or in programs with explicit coroutining can also be modeled in this way.
However, we propose treating actual suspension directly using techniques such as those
proposed for analyzing programs with delay declarations.

However, determining which information is relevant to the property is being
abstracted is not always easy. As an example, assume we are interested in
knowing if a program variable is definitely free. One could think that this
property can be accurately abstracted by defining (1) above as the set of
variables which are definitely free in a constraint. This is true w.r.t. (1) and
(2), i.e. for each constraint we will obtain the most accurate representation
w.r.t. the property desired. However, given this abstraction, in order to be
safe we will necessarily often lose almost all the information when applying
the abstract conjunction function. The reason is that, no matter how this
abstract function is defined, we will not be able to approximate the way in
which the underlying constraint solver propagates non freeness and therefore
we will have to assume that all variables would become non free. Thus, it is
clear that in this abstraction we have lost relevant information: the informa-
tion which allows us to accurately approximate non freeness propagation.

This problem occurred with early analyzers for LP which in fact inferred
less accurate (or in some cases incorrect) information due to the lack of
propagation (referred to often also as tracking “aliasing”). It is now clear
that most properties such as groundness, freeness, etc. in the Herbrand con-
straint system can be propagated quite accurately via a form of “sharing”
and thus, abstracting sharing provides a more accurate analysis. However,
not all properties need the same abstraction of sharing. Groundness, for
example, only needs covering, as exemplified by Prop [14]. On the other
hand, freeness needs a more general abstraction such as “possible sharing.”

The problem then is to define which is the relevant information for each
property. We argue that in CLP terms this relevant information is nothing
more than the information needed to abstract the entailment relation associ-
ated with this property. Note that this does not imply explicitly abstracting
the information provided by all possible entailed constraints, but rather that
which plays a role in preserving the characteristics of the concrete entailment
w.r.t. the target property. Once the relevant information is identified, the
level of accuracy in its abstraction, and therefore the level of accuracy of
the associated abstract conjunction function, can be chosen as determined
by the desired trade-off between efficiency and accuracy. Returning to the
problems with early analyzers for LP and “aliasing,” note that after analyz-
ing the goals X = Y , Y = Z, and Z = a if X is inferred (incorrectly) to
be a free variable or (inaccurately) to be >, the problem can now be seen
as related to not taking into account the entailed relation X = Z which is
relevant to the propagation of freeness information.

3.2 Developing Analyses for Practical Languages

Although using the ideas sketched above, and as we will show, extending the
abstract frameworks can be considered a relatively simple task, developing
abstract domains and the corresponding abstract functions capable of ac-
curately and correctly abstracting properties of the constraint systems can
sometimes be quite involved.

Satisfying the correctness conditions in traditional LP languages is “rea-
sonably” simple since the Herbrand domain with the equality constraint
is the only constraint system and the unification algorithm is well known.
Therefore, the condition only implies “correctly propagating via sharing”

the desired properties, knowing that the accuracy of the sharing abstraction
determines in some sense the accuracy of the inferred information. How-
ever, in CLP languages which include other constraint systems additional
complications arise.

The first such complication is related to the intrinsic complexity asso-
ciated with most of the constraint solver algorithms which implies that an
accurate analysis can sometimes be so complex so as to result intractable.
An interesting issue from a practical point of view is the vehicle to be used
for implementing the abstract conjunction. As mentioned before, Codognet
and Filé propose the direct use of CLP solvers in specifying the abstract
solving algorithms. The use of the constraint solving capabilities of the im-
plementation language is a very elegant solution and has the advantage that
the abstract algorithm can be specified in a declarative way. On the other
hand, and from a practical point of view, as is the flavour of this paper, one
favourable aspect of formulating analyses so that they can be executed using
only equalities over the Herbrand domain is generality, since it will be quite
simple to implement them on a large number of CLP systems (and tradi-
tional logic programming systems!), given that in general all CLP systems
include the Herbrand domain and a unification algorithm.

A more subtle complication in developing analyses for CLP comes from
the fact that most of CLP languages are defined over several constraint
systems, and in most cases the theoretical separation among the objects
(functors, constraint predicates, domain variables, etc.) of each constraint
system is not maintained. For example the constraint X = Y , where X
and Y are variables, can belong to almost any constraint system. Also, the
numerical constraint X = Y + Z can affect a variable W in the Herbrand
domain if it is defined as, for example, W = f(X,Y). Therefore, it is not
only necessary to abstract the constraint solver algorithm for each constraint
system but also the effects that the conjunction of a particular constraint can
produce with respect to any of the other constraint systems in the language.
Another example, in addition to the one given in this paper, of how this can
be done can be found in [8], which is based in part on the ideas developed
in this paper.

The considerations given above suggest the development of a hierarchy
of domains and analyses where there is a top-level domain applicable to all
constraint systems and some lower level domains which are constraint system
specific. The top level domain is then used for performing the transfer of
information among the lower level domains that is necessary in order to
preserve correctness and achieve reasonable efficiency.

4 Extension of the framework

In this section we formalize the extension of the framework presented in [1]
and provide safety conditions to be met by the user-defined functions. We
will mainly follow the notation and scheme of [12] in which a summary of
the correctness conditions required in this framework is given.

4.1 The derivation scheme

The derivation schema mentioned in the preliminaries is changed in the
framework of [1] in that it only considers states s = 〈gi : · · · : gn, π〉 in which
the sequence of literals gi : · · · : gn is either the tail of a body of a clause
or the initial query, and domain(π) is a subset of the variables occurring in
respectively the clause or the query.

Consider a derivation of the state s = 〈A1 : · · · : An, ε〉, ε being the empty
substitution, which has reached the state si = 〈Ai : · · · : An, πi〉, where
domain(πi) ⊆ vars(A1 : · · · : An). Let C : H ← B1, · · · , Bm be a clause
s.t. vars(C) ∩ vars(s) = ∅ and πi ∧ Ai = H is satisfiable. The new schema
will proceed in the following steps. If Ai ∈ Atoms:

• project(Ai, πi): obtains πproj = ∃vars(Ai)πi.

• procedure entry(C,Ai, πproj): obtain s1 = 〈B1 : · · · : Bm, πin〉 where

πin is ∃vars(C)(πproj ∧ (Ai = H)).

• procedure exit(C,Ai, πi): assume that after some subderivations, we
obtain the answer πansw, domain(πansw) ⊆ vars(C). Then, we obtain
πout = ∃vars(H)πansw and πexit = ∃vars(Ai)(πout ∧ πi ∧ (Ai = H)).

• procedure extend(s, πi, πexit): obtain si+1 = 〈A1+1 : · · · : An, πi+1〉,
where πi+1 = πi ∧ πexit

If Ai ∈ Atomic, we only need the functions, project(Ai, πi) (as
above), procedure constraint(Ai, πproj) = πexit = Ai ∧ πproj and
procedure extend(s, πi, πexit) (as above).

Assume that πi = ∃vars(A1:···:An)ψi, ψi being the constraint obtained with
the original scheme. Also assume that ψi+1 = ψi ∧ π′. We have to prove
that πi+1 is a solvable restriction of ∃vars(A1:···:An)ψi+1. If Ai ∈ Atom:

πi+1 = πi ∧ πexit
= πi ∧ ∃vars(Ai)(πout ∧ πi ∧ (Ai = H)).

= πi ∧ ∃vars(Ai)(∃vars(H)πansw ∧ πi ∧ (Ai = H))

= πi ∧ ∃vars(Ai)(πansw ∧ πi ∧ (Ai = H))

= ∃vars(A1:···:An)(πansw ∧ πi ∧ (Ai = H))

= ∃vars(A1:···:An)(ψi ∧ πansw ∧ (Ai = H))

= ∃vars(A1:···:An)ψi+1

A similar (simplified) proof can be derived if Ai ∈ Atomic.

4.2 The Abstract Domain

Let δ be an abstract constraint defined over the variablesD of a clause/query.
Let AbsD be the set of abstract constraints which are defined over D. The
abstract interpretation framework requires AbsD to have:

1. a preorder v satisfying ∀δ1, δ2 ∈ AbsD.δ1 v δ2 ⇒ (γ(δ1)⇒ γ(δ2))

2. an upper bound upp satisfying ∀δ1, δ2 ∈ AbsD ⇒ ∃upp(δ1, δ2) ∈ AbsD
and δ1 v upp(δ1, δ2).δ2 v upp(δ1, δ2)

3. a maximal element δmax s.t. ∀δ ∈ AbsD.δ v δmax

4. a minimal element ⊥ s.t. γ(⊥) = ∅.∀δ ∈ AbsD.⊥ v δ

5. FD ⊆ AbsD s.t. FD has no infinite ascending chain for v, δmax,⊥ ∈ FD

6. an operator R : AbsD −→ FD satisfying δ v R(δ)

Note that all conditions are identical to those given in [12] except the first
one in which the general pre-order for constraints is used instead of the
particular pre-order for substitutions.

4.3 The Abstract operations

As in [12] we will assume in the following that any literal has the form
A(X1, · · · , Xs) with Xi being distinct variables.3 Let A1, A2, · · · denote lit-
erals and π, δ (with or without suffix) denote respectively concrete and ab-
stract constraints. Then the sufficient conditions for correctness of each step
in the scheme are:

1. abstract project(Ai, δi) = δproj :

∃π ∈ γ(δi)⇒ ∃vars(Ai)π ∈ γ(δproj)

2. abstract procedure entry(C,Ai, δproj) = 〈B1 : · · · : Bm, δin〉:
∃πproj ∈ γ(δproj)⇒ ∃vars(C)(πproj ∧ (Ai = H)) ∈ γ(δin)

3. abstract procedure exit(C,Ai, δproj) = δexit:

∃πout ∈ γ(δout).∃πi ∈ γ(δi)⇒ ∃vars(Ai)(πout ∧ πi ∧ (A = H)) ∈ γ(δexit)

abstract procedure extend(s, δi, δexit) = si+1 = 〈A1+1 : · · · : An, δi+1〉
∃πi ∈ γ(δi)⇒ ∃π1 ∈ γ(δexit).(πi ∧ π1) ∈ γ(δi+1)

4. abstract procedure constraint(Ai, δproj) = δexit:
∃πproj ∈ γ(δproj)⇒ (πproj ∧Ai) ∈ γ(δexit)

Note that if those functions are defined in terms of the abstract conjunc-
tion and the abstract projection functions, then all conditions are satisfied
if the abstract projection satisfies condition 1 and the abstract conjunction
function Λ satisfies that ∀δ1, δ2 ∈ AD, ∃π1 ∈ γ(δ1), ∃π2 ∈ γ(δ2)⇒ (π1∧π2) ∈
γ(∆(δ1, δ2)).

Comparing this extended framework with the original, it is clear that
on one hand only one more function (abstract procedure constraint) has
been defined and, on the other hand, the conditions required by the abstract
functions are natural generalizations from LP into CLP, which actually in-
troduces a certain notational simplification. The former is not surprising

3In fact, in this respect the traditional CLP scheme provides a slight technical sim-
plification w.r.t. LP in that programs are generally assumed to be in normal form by
the scheme, even if actual languages do support as syntactic sugar the introduction of
constraints in atoms.

since the operational behaviour of a CLP program is almost equivalent to
that of a traditional LP program, except when a constraint literal is con-
sidered. The latter is not surprising either since the only change is that,
instead of representing a particular kind of constraint (substitutions), we
are representing constraints over different constraint systems.

5 An Example: Inference of Definiteness Informa-
tion

In order to illustrate the ideas presented in previous sections we present
a simple abstract analysis for inference of definiteness information in CLP
programs. The abstraction is based on a high-level description of uniquely
constraining patterns which is then easy to obtain for each particular type
of constraint in an actual system. This domain can be seen as an encod-
ing and implementation of the Prop domain defined in [14] for traditional
logic programming languages, but without disjunction. The collapsing of
disjunctive information has been done in order to reduce the size of abstract
constraints.4

We define the abstract domain and abstract functions required for the
framework developed above. The strong relation with the Prop domain,
which has been proved correct allows us to provide a clear (and brief) in-
tuition of the scheme of each proof, by showing how our domain correctly
abstracts Prop.

Definiteness information is abstracted by keeping for each program vari-
able X those sets of program variables which, if they become uniquely con-
strained, constrain X to have a unique value. Then, an abstract constraint
will be an element of Domain = ℘(℘(Pvar × {d, ℘(℘(Pvar)),>})), i.e. a
set of couples of the form (X,SS) such that SS ∈ {d, ℘(℘(Pvar)),>}.
Therefore, translating an abstract constraint into the Prop domain is as
simple as obtaining the conjunction of the constraints represented by each
element (X,SS). These constraints can be obtained in the following way:
if SS ∈ ℘(℘(Pvar)), then ∀S ∈ SS,Ai ∈ S we have the constraint
A1 ∧ · · · ∧An → X, if SS = d then we will have X = 1, and if SS = > then
we will have true.

Let us first define some simple functions which will be used to elimi-
nate unnecessary complexity from the domain dependent functions. We will
denote by π, π1, · · · constraints, and by def(π) ⊆ V ar the set of uniquely
constrained variables in π.

The function min(SS) takes as argument a set of sets of variables
SS ∈ ℘(℘(V ar)), and returns the set of sets of variables which results from
eliminating all supersets from SS. Formally,

min(SS) = {S ∈ SS|¬∃S′ ∈ SS, s.t. S′ ⊂ S}
The function constrain(π,X) takes as arguments a constraint π and a

free variable X ∈ vars(π) and returns the minimized set of sets of variables

4Hanus has recently and independently proposed an analysis of definiteness which is
quite closely related to the instantiation that we propose for definiteness analysis of our
extension of Bruynooghe’s framework [10].

which uniquely constraining them, uniquely constrains X. Formally, let
X ∈ V ar,X ∈ vars(π),

constrain(π,X) = min(SS)

where SS = {S ∈ {℘(vars(π))\{X}}| uniquely defining all Y ∈ S, uniquely
defines X}

Example 5.1

constrain(X = f(Y,Z), Y) = min({{X}, {X,Z}}) = {{X}}
constrain(X = Y + Z, Y) = min({{X,Z}}) = {{X,Z}}
constrain(X > Y + Z, Y) = min({∅}) = {∅}

Intuitively, while the constrain function captures the definiteness infor-
mation for the free variables in a constraint, the function min(SS) simplifies
the inferred information by eliminating redundant abstract constraints.

The function restrict(V ar, SS) takes as arguments a set of variables V ar
and a set of sets of variables SS and returns the set of sets of variables in SS
which are subsets or equal to V ar (this function will be used for abstracting
the procedure project function).

restrict(V ar, SS) = {S ∈ SS|S ⊆ V ar}
The function prop each takes as arguments a couple (X,SS1), where

X ∈ Pvar and SS1 ∈ {d, ℘(℘(Pvar)),>}, and an element δ of Domain and
propagates the information in (X,SS1) to δ in the following way:

prop each((X,SS1), δ) = {(X,SS1)} ∪ {(Y, SS2)|∀(Y, SS) ∈ δ, Y 6= X}

where SS2 =

if X 6∈ vars(SS) or SS1 = > then SS
else if SS1 = d,∃S ∈ SS, S = {X} then d
else if SS1 = d then Without
else min(Updated)

Without = {S′|∀S ∈ SS, S′ = S \ {X}}
Updated = SS ∪ {{S \ {X}} ∪ S′|S ∈ SS,X ∈ S, S′ ∈ SS1, Y 6∈ S′}

Example 5.2

prop each((X, d), {(X,>), (Y, {{X}})}) = {(X, d), (Y, d)}
prop each((Y, {{Z}}), {(X, {{Y,Z}}), (Y,>}), (Z,>)}) = {(X, {{Y }, {Z}}),

(Y, {{Z}}), (Z,>}

Intuitively, when the information for a program variable has changed, this
function propagates this information to the rest of elements in the abstract
constraint, possibly simplifying the abstract constraint.

5.1 Abstract Domain

An abstract constraint δ of the abstract domain Def is an element of
℘(℘(Pvar × {d, ℘(℘(Pvar)),>})) satisfying: ¬∃(X, {∅}) ∈ δ, ∃(X,SS) ∈
δ, SS ∈ ℘(℘(Pvar)) ⇒ min(SS) = SS, and ∃(X,SS) ∈ δ ⇒
prop each((X,SS), δ) = δ.

Example 5.3

δ = {(Z, {{X}, {X,Y }}), · · ·} 6∈ Def since min({{X}, {X,Y }}) = {{X}}
δ = {(X, {{Y }}), (Y, d)} 6∈ Def since prop each((Y, d), δ) 6= δ

Definition 1 (Abstraction of a constraint)

∆(π) = {(X,SS)|∀X ∈ vars(π)}

where SS =

if X ∈ def(π) then d
elseif constrain(π,X) = ∅ then >
else constrain(π,X)2

Example 5.4

∆(X = f(Y, Z)) = {(X, {{Y,Z}}), (Y, {{X}}), (Z, {{X}})}
∆(X :: N) = {(X, {∅}), (N, {{X}})}

where X :: N constrains the length of the list X to be N .

Definition 2 (Partial order)

δ1, δ2 ∈ Def, δ2 v δ1 iff ∀(X,SS1) ∈ δ1,∃(X,SS2) ∈ δ2 s.t. SS1 = SS2

or SS2 = d or SS1 = > or SS1, SS2 ∈ ℘(℘(Pvar)), ∀S1 ∈ SS1, ∃S2 ∈
SS2, s.t. S2 ⊆ S12

Example 5.5

(A, d) v (A, {{X}}) v (A, {{X,Y, Z}})
(A, {{X}}) 6v (A, {{X}, {Y }}) v (A, {{X,Z}, {Y,W}})

Definition 3 (lub)

lub(δ1, δ2) = {(X,Lub)|(X,SS1) ∈ δ1, (X,SS2) ∈ δ2}

where Lub =

if SS1 v SS2 then SS2

elseif SS2 < SS1 then SS1

else min({S1 ∪ S2|∀S1 ∈ SS1,∀S2 ∈ SS2})2

The set of all abstract constraints is a complete lattice w.r.t. v, with top
element >. > contains no information, it approximates the whole set of
admissible constraints. Let ⊥ be a new symbol and let ∀δ ∈ Def, ⊥ v δ
and ¬∃δ ∈ Def such that δ v ⊥. Thus (Def

⋃
{⊥},v) is a complete lattice.

Definition 4 (Abstraction of a set of constraints)

α(Π) = ∪π∈Π∆(π) 2

Definition 5 (Concretization of an abstract constraint)

γ(∆) = {π | π ∈ Cons, α(π) v ∆}2

Once the abstract domain has been defined, let us show intuitively that
it satisfies the conditions imposed in section 4.2. Conditions 3 to 6 are clear
from the definition. Therefore we will concentrate on conditions 1 and 2.

Condition 1 requires that ∀δ1, δ2 ∈ Def, δ1 v δ2 ⇒ (γ(δ1)⇒ γ(δ2)). Let
trans(X,SS), (X,SS) ∈ δ denote the constraint resulting from translating
the element (X,SS) into the Prop domain. Then, ∀(X,SS2) ∈ δ2:

• if SS2 = d,∃(X,SS1) ∈ δ1 s.t. SS1 = d. Thus trans(X,SS2) =
trans(X,SS1) = (Xi = 1) and it is clear that trans(X,SS1) ⇒
trans(X,SS2)

• if SS2 = >, then trans(X,SS2) = true, thus trans(X,SS1) ⇒
trans(X,SS2) for any trans(X,SS1)

• if SS2 ∈ ℘(℘(Pvar)) then trans(X,SS2) = {A1 ∧ · · ·An ⇒ X|∀S2 ∈
SS2, Ai ∈ S. Let (X,SS1) be the counterpart of (X,SS2) in δ1:

– if SS1 = d it is clear that trans(X,SS1)⇒ trans(X,SS2)

– otherwise, SS1 ∈ ℘(℘(Pvar)),∀S2 ∈ SS2, ∃S1 ∈ SS1, s.t. S1 ⊆
S2. Thus ∀π2 = {A1∧· · ·An ⇒ X} ∈ trans(X,SS2),∃π1 = {B1∧
· · · ∧ Bm ⇒ X}, 1 ≤ m < n s.t. {B1, · · · , Bm} ⊆ {A1, · · · , An}.
Therefore, trans(X,SS1)⇒ trans(X,SS2)

Condition 2 requires ∀δ1, δ2 ∈ Def, δ1 v lub(δ1, δ2), δ2 v lub(δ1, δ2).
From the definition of the lub function (definition 3), it is clear that con-
dition 2 holds if ∀(X,SS1) ∈ δ1,∀(X,SS2) ∈ δ2, either SS1 v SS2

or SS2 < SS1. Therefore, we only need to prove that, if the function
min(Temp), T emp = {S1 ∪ S2|∀S1 ∈ SS1, ∀S2 ∈ SS2} is applied the re-
sulting {(X,SS)} satisfy that {(X,SS1)} v {(X,SS)} and {(X,SS2)} v
{(X,SS)}. It is clear, by definition of SS that {(X,SS1)} v {(X,Temp)}
and {(X,SS2)} v {(X,Temp)}. Intuitively, it obtains the lub of the con-
straints represented by each couple. The problem is that it may contain
supersets, and this can be only due to the existence of a set of variables
which appears in both SS1 and SS2. Therefore supersets can be eliminated
preserving correctness by means of the function min(Prod).

5.2 Abstract Conjunction Function

The abstract conjunction operation Λ is a function which takes as argu-
ments two abstract constraints δ and δ′, and returns the abstract constraint
Λ(δ, δ′) = ∆. We will assume that vars(δ) = vars(δ′). If this is not the
case, it is only necessary to add to δ the element (X,>) for each variable
such that X ∈ δ′, X 6∈ δ or vice versa. Thus, let δ and δ′ be two abstract
constraints, such that vars(δ′) = vars(δ) .

Definition 6 (Abstract conjunction function: Λ(δ, δ′))

Λ(δ, δ′) = prop def(Different, δ1)

where
δ1 = {(X,SS1)|(X,SS′) ∈ δ′, (X,SS) ∈ δ, SS1 = add(SS, SS′)}
Different = diff(δ, δ1) ∪ diff(δ′, δ1) 2

The function add takes as arguments two elements of Def and returns
another element of Def which results from abstractly conjuncting the infor-
mation contained in each element.

add(SS′, SS) =

if SS′ v SS then SS′

else if SS < SS′ then SS
else min(SS ∪ SS′)

The function diff takes as arguments two abstract constraints δ and
δ1 defined over the same program variables, and returns the elements
(X,SS1) ∈ δ1 which are different from the correspondent (X,SS) ∈ δ:

diff(δ, δ1) = {(Y, SS1) ∈ δ1|∃(Y, SS) ∈ δ, SS 6= SS1}
The function prop def takes as arguments an abstract constraint δ1 and

the set of elements Elem = (X,SS1) ∈ δ1 which have changed, and returns
the abstract constraint δ2 resulting from propagating definiteness until fix-
point is reached. For reasons of efficiency, the set Elem should be ordered
by definiteness, i.e. uniquely constrained variables should appear first:

prop def(Elem, δ1) =

{
if Elem = ∅ then δ1
else prop def(Elem1 \ ({(X,SS2)}), δ2)

where
δ2 = prop each((X,SS2), δ1)
Elem1= (Elem \ {(Y,EE)|∃(Y, SS) ∈ diff(δ1, δ2), EE 6= SS})

∪diff(δ1, δ2)

Intuitively, the Λ(δ, δ′) function proceeds in three steps. First it obtains
δ1, which abstracts the constraint satisfaction of the conjunction of the con-
straints represented in the Prop domain, but before performing a “real”
simplification of the resulting constraint. It is straightforward to see that
function the add correctly abstracts this operation since it always takes the
(minimized) union of the constraints, except for those cases in which a set of
constraints for a variable X is known to be greater or equal (in the pre-order)
than the set of constraints for X in the other abstract constraint. Second, it
obtains those elements (X,SS1) ∈ δ1 for which ∃(X,SS) ∈ δ s.t. SS 6= SS1

or ∃(X,SS′) ∈ δ′ s.t. SS′ 6= SS1. The last step consists of recursively prop-
agating the information for each element which has changed until fixpoint is
reached.

Example 5.6 These functions allow us to accurately propagate definiteness
in performing abstract conjunction. Consider the abstract constraints:

δ {(X, {{Y }, {Z}}), (Y, {{Z}}), (Z,>), (W,>)}
delta′ {(X,>), (Y, {{W}}), (Z, d), (W, {{Y }})}

We will first perform prop def(Elem, δ1), where:

δ1 = add inf(δ, δ′) = {(X, {{Y }, {Z}}), (Y, {{Z}, {W}}), (Z, d), (W, {{Y }})},
Elem= diff(δ, δ1) ∪ diff(δ′, δ1) = {(Z, d), (Y, {{Z}, {W}}), (W, {{Y }})}

• Elem 6= ∅, thus we execute prop def(Elem1 \ {(Z, d)}, δ2), where

δ2 = prop each((Z, d), δ1) = {(Z, d)} ∪ {(X, d), (Y, d}), (W, {{Y }})},
diff(δ1, δ2) = {(X, d), (Y, d)}, and
Elem1 = {(X, d), (Y, d), (Z, d), (W, {{Y }})}

• Elem1 \ {(Z, d)} 6= ∅, execute prop def(Elem2 \ {(X, d)}, δ3), where

δ3 = prop each((X, d), δ2) = {(X, d)} ∪ {(Y, d}), (Z, d), (W, {{Y }})},
diff(δ2, δ3) = ∅, and
Elem2 = {(X, d), (Y, d), (W, {{Y }})}

• Elem2 \ {(X, d)} 6= ∅, execute prop def(Elem3 \ {(Y, d)}, δ4), where

δ4 = prop each((Y, d), δ3) = {(Y, d)} ∪ {(X, d), (Z, d), (W,d)},
diff(δ3, δ4) = {(W,d)}, and
Elem3 = ({(Y, d), (W, {{Y }})} \ {(W, {{Y }})}) ∪ {(W,d)} = {(Y, d), (W,d)}

• Elem3 \ {(Y, d)} 6= ∅, execute prop def(Elem4 \ {(W,d)}, δ5), where

δ5 = prop each((W,d), δ4) = {(W,d)} ∪ {(X, d), (Y, d), (Z, d)},
diff(δ4, δ5) = ∅, and
Elem4 = {(W,d)}

• Elem4 \ {(W,d)} = ∅, thus fixpoint has been reached for δ5 =
{(X, d), (Y, d), (Z, d), (W,d)},

Consider now the abstract constraints:

δ {(X, {{Y }, {Z,W}}), (Y, {{Z,W}}), (Z,>), (W,>)}
δ′ {(X,>), {(Y, {{Z}}), (Z, {{Y }}), (W,>)}} .

The result of the execution of prop def(Elem, δ1), where

δ1 = {(X, {{Y }, {Z,W}}), (Y, {{Z}}), (Z, {{Y }}), (W,>)}, and
Elem= {(Y, {{Z}}), (Z, {{Y }})}

will be ∆ = {(X, {{Y }, {Z}}), (Y, {{Z}}), (Z, {{Y }}), (W,>)}, where fix-
point is reached after four iterations.

5.3 Other domain dependent functions needed

Let us define the rest of the abstract functions required by the framework.

Definition 7 (abstract project)

abstract project(Ai, δ) = {(X,SS)|∀(X,SS′) ∈ δ,X ∈ vars(Ai)}

where SS =

if SS′ ∈ {d,>} then SS′

elseif restrict(vars(Ai), SS
′) = ∅ then >

else restrict(vars(Ai), SS
′)

Definition 8 (abstract procedure entry)

abstract procedure entry(C,Ai, δproj) = BodyV ∪ abstract project(H, δ′)

where BodyV = {(X,>)|X ∈ {vars(B) \ vars(H)}}
and δ′ = rec abs conj(δ ∪ {(X,>)|X ∈ vars(H)}, Ai, C, 0, N)
and N is the number of arguments of both Ai and C 2

The rec abs conj function applies recursively the abstract conjunction
function to an abstract constraint δ and the abstraction of the constraint
X = Y , in which X and Y are the i-arguments of Ai and C respectively.

Definition 9 (rec abs conj)

rec abs conj(δ, Ai, C,N,N1) =

{
if N = N1 then δ
else rec abs conj(δ′, Ai, C,N + 1, N1)

where δ′ = Λ(δ, δN+1)
and δN+1 = ∆(X = Y)
and X and Y are the N + 1 arguments of Ai and C respectively

Definition 10 (abstract procedure exit)

abstract procedure extend(C,Ai, δproj , δans) =

abstract project(Ai,Λ(δproj ,Λ(abstract project(H, δans),∆(Ai = H))))

Definition 11 (abstract procedure extend)

abstract procedure extend(Ai, δi, δexit) = Λ(δi, δexit)

Definition 12 (abstract procedure constraint)

abstract procedure constraint(Ai, δproj) = Λ(∆(Ai), δproj)

Since all functions are defined in terms of the abstract conjunction and
the abstract projection functions, the conditions required for their correct-
ness (given in section 4.3), are satisfied if the abstract projection and the ab-
stract conjunction functions are correct. The proof of the latter was sketched
in the previous section. Therefore, we will focus on the former. Let δ be
an abstract constraint, Ai be a literal and δproj = abstract project(Ai, δ).

We have to prove that ∃π ∈ γ(δ) ⇒ ∃vars(Ai)π ∈ γ(δproj). Let (X,SS) ∈ δ.
If X 6∈ vars(Ai) it is clear that it has to be eliminated, as it done by the
function. If X ∈ vars(Ai) then:

• if SS ∈ {d,>} it is clear that all concrete constraints represented by δ
will be represented also by δproj if (X,SS) remains unchanged.

• if SS ∈ ℘(℘(V ar)) and restrict(vars(Ai), SS
′) = ∅ it implies that we

do not have information about the groundness characteristics of X in
terms of a subset of variables in vars(Ai). In other words, ¬∃(A1 ∧
· · ·An → X) ∈ trans(X,SS) s.t. {A1, · · · , An} ⊆ vars(Ai). Therefore,
the projection must be >.

• Otherwise, ∀(A1 ∧ · · ·An → X) ∈ trans(X,SS) s.t. {A1, · · · , An} ⊆
vars(Ai), it is abstracted in δproj .

Program Description Cl Var

vecadd Adds two vectors 2 5
mortgage The well known mortgage program 2 12
matvec Multiplies two vectors 4 11
matmul Multiplies two matrices 6 21
determ Computes the determinant of a matrix 11 49
num Number to letters-phonems translation (E.Vetillard) 97 233
motor-model Motor modelization (W. Krautter) 53 364

Table 1: Benchmark characteristics

query abstract call abstract answer Time (s)

vecadd(X,Y,Z) X,Y X,Y,Z 0.33
X,Z X,Y,Z 0.33

mortgage(P,T,I,R,B) P,I,R P,T,I,R,B 0.06
P,R P,T,R 0.14

matvec(X,Y,Z) X,Y X,Y,Z 0.36
X,Z X,Z 0.63

matmul(X,Y,Z) X,Y X,Y,Z 0.41
X,Z X,Z 1.18

determ(X,Y) X X,Y 0.65
nombre(X,Y,Z) X,Y X,Y,Z 5.01

[] X,Y,Z 5.06
(motor-model) run1 [] [] 15.09
run2 [] [] 25.96
run3 [] [] 27.69

Table 2: Analysis results and timings

6 Implementation results

The analysis described in the previous sections has been implemented within
our abstract interpretation framework and its implementation in Prolog,
PLAI, which have thus been extended to perform analyses of CLP programs.
This framework is based on that of Bruynooghe [1], optimized with the spe-
cialized domain-independent fixpoint defined in [17], extended to treat (and
take advantage of) programs in non-normalized form, and, as mentioned be-
fore, generalized to support analysis of practical CLP languages following
the guidelines presented in this paper.

It is important to note that the only modification that was needed for
extending the framework itself was the addition of a clause which handles
the case in which a literal is a constraint and treating syntactic differences
among the set of CLP languages analyzed (which currently includes CLP(R),
Prolog-III, and, of course, Prolog). Naturally, the domain-dependent ab-
stract functions had to be implemented and incorporated into the system
but almost all the existing implementation was reused. We believe that
this supports our claim regarding the practical usefulness of the approach,
specially considering that the resulting system can analyze reasonably sized
programs in quite reasonable times.

Table 1 describes the programs analyzed, their function, the original size
measured in number of clauses, and the total number of program variables,

the latter two being relevant when considering the analysis times and in-
formation inferred. Table 2 presents the information inferred at the query
level for each program and the analysis times in seconds (SparcStation IPC,
Sicstus 2.1, compact code). The analysis times show that the analyzer can
handle reasonable programs, even more if one takes into account that the
abstract functions has been implemented in a rather naive way, and that the
programs are highly recursive and/or have a large number of variables (43
just for the entry point, in the case of the motor example).

Regarding accuracy, the PLAI framework provides information at all
points of the program, i.e. it provides not only the call and success patterns
for each program predicate used in solving the query, but also the state of
the information at each point of each program clause (and it keeps inter-
nally different predicate versions so that it can optionally perform program
specializations). Therefore it is possible to observe how the execution of
each subgoal affects the inferred information. However, due to lack of space
and as mentioned above we only provide the results for the query variables.
First, let us point out that for these benchmarks, whenever the abstract an-
swer given in the table uniquely defines all variables in the query, the output
abstract constraint (what has been called δout) of each program clause also
implies that all variables in the clause are uniquely defined. Thus in these
cases the analysis can obtain quite accurate information for most of the pro-
gram points. The abstract calls and answers for the motor-model program
(the last in the table) appear empty since the arity of the three different en-
try points is 0. While run1 infers groundness for all program variables, run2
and run3 infers groundness for most of them but not for all. In general, and
as would be expected, the analyzer accurately infers definiteness information
when definiteness is explicit or can be propagated, but is (safely) inaccurate
when it is the result of solving a system (as in the second abstract call for
both matvec and matmul) or nonlinear constraints appear. Arguably, the
results are quite acceptable for an analysis which is not specialized for any
particular constraint system and is quite simple to implement.

7 Conclusions and Future Work

We have presented a practical approach to the dataflow analysis of programs
written in constraint logic programming (CLP) languages using abstract
interpretation. We have shown that, from the framework point of view, it
suffices with quite simple extensions of traditional analysis methods, with the
advantage that such methods have already been proved useful and practical
and that efficient fixpoint algorithms have already been developed for them.
Along this line we have proposed a simple but quite general generalization to
the analysis of CLP programs of Bruynooghe’s traditional framework CLP.
As an example of the application of this approach, a complete, constraint
system independent, abstract analysis has been presented for approximating
definiteness information which is of quite general applicability since it uses
in its implementation only constraints over the Herbrand domain. We have
also presented some results from an implementation of this analysis which
show that the approach is indeed practical and can be applied to applications
written in languages such as CLP(R) and Prolog-III.

Proposals for future work include applying the proposed approach to
other frameworks for analysis of LP and developing new abstractions within
the framework proposed. Along this line, colleagues at K.U. Leuven have
recently proposed an abstraction for freeness for linear arithmetic con-
straints and Herbrand equalities which uses our proposed extended version of
Bruynooghe’s framework and is implemented using PLAI [8]. Further collab-
orative work is in progress with K.U. Leuven combining the definiteness and
freeness abstractions [9]. Our approach has also been applied to the exten-
sion of the GAIA framework [3], which is also closely related to Bruynooghe’s
and includes fixpoint extensions similar to those of PLAI, to the analysis of
CLP programs [13]. Finally, we would like to note that the example defi-
niteness analysis proposed as an example can be used to infer several other
properties which have similar characteristics to definiteness, such, for exam-
ple, its simple subclasses (e.g. “integer”, “atomic”, “constant”, “numeric”,
etc.).

Acknowledgments

This paper has benefited from discussions with W. Winsborough, with part-
ners in the PRINCE ESPRIT project, specially M. Bruynooghe, M. Codish,
G. Janssens, A. DeWaal, and J. Gallagher, and with other members of the
CLIP group at UPM, and from the observations of V. Saraswat and the
anonymous referees, all of which the authors would like to thank. This work
was funded in part by ESPRIT projects 5246 “PRINCE” and 7195 “AC-
CLAIM” and by the corresponding CICYT projects TIC91-0106-CE and
TIC93-0975-CE.

References

[1] M. Bruynooghe. A Practical Framework for the Abstract Interpretation
of Logic Programs. Journal of Logic Programming, 10:91–124, 1991.

[2] M. Bruynooghe and G. Janssens. Towards a framework for the abstract
interpretation of constraint logic programs. In Workshop on Logic Pro-
gram Synthesis and Transformation, LNCS. Springer-Verlag, 1992.

[3] B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a
Generic Abstract Interpretation Algorithm for Prolog. In Fourth IEEE
Int. Conf. on Computer Languages (ICCL’92), April 1992.

[4] P. Codognet and G. Filé. Computations, Abstractions and Constraints
in Logic Programs. In Fourth Int. Conf. on Programming Languages,
April 1992.

[5] P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxi-
mation of Fixpoints. In ACM Symp. on Principles of Programming
Languages, pages 238–252, 1977.

[6] S. Debray, editor. Journal of Logic Programming, Special Issue: Ab-
stract Interpretation, volume 13(1–2). North-Holland, July 1992.

[7] S. K. Debray. Static Inference of Modes and Data Dependencies in
Logic Programs. ACM Transactions on Programming Languages and
Systems, 11(3):418–450, 1989.

[8] V. Dumortier, G. Janssens, M. Bruynooghe, and M. Codish. Freeness
Analysis in the Presence of Numerical Constraints. In Tenth Int. Conf.
on Logic Programming, pages 100–115. MIT Press, June 1993.

[9] V. Dumortier, G. Janssens, W. Simoens, and M. Garcia de la Banda.
Combining a Definiteness and a Freeness Abstraction for CLP Lan-
guages. In Workshop on Logic Program Synthesis and Transformation.
Springer-Verlag, 1993. To appear in LNCS.

[10] M. Hanus. Analysis of Nonlinear Constraints in CLP(R). In Tenth Int.
Conf. on Logic Programming, pages 83–99. MIT Press, June 1993.

[11] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In ACM
Symp. Principles of Programming Languages, pages 111–119, 1987.

[12] G. Janssens and M. Bruynooghe. Deriving Descriptions of Possible Val-
ues of Program Variables by means of Abstract Interpretation. Journal
of Logic Programming, 13(2 and 3):205–258, July 1992.

[13] G. Janssens and W. Simoens. On the Implementation of Abstract In-
terpretation Systems for (Constraint) Logic Programs. In Workshop on
Logic Program Synthesis and Transformation. Springer-Verlag, 1993. To
appear in LNCS.

[14] K. Marriott and H. Søndergaard. Semantics-based dataflow analysis of
logic programs. Information Processing, pages 601–606, April 1989.

[15] K. Marriott and H. Søndergaard. Analysis of Constraint Logic Pro-
grams. In 1990 North American Conf. on Logic Programming, pages
531–547. MIT Press, 1990.

[16] C.S. Mellish. Abstract Interpretation of Prolog Programs. In Third Int.
Conf. on Logic Programming, number 225 in LNCS, pages 463–475.
Springer-Verlag, July 1986.

[17] K. Muthukumar and M. Hermenegildo. Compile-time Derivation of
Variable Dependency Using Abstract Interpretation. Journal of Logic
Programming, 13(2 and 3):315–347, July 1992.

[18] P. Van Roy and A. M. Despain. The Benefits of Global Dataflow Anal-
ysis for an Optimizing Prolog Compiler. In North American Conf. on
Logic Programming, pages 501–515. MIT Press, October 1990.

[19] R. Warren, M. Hermenegildo, and S. Debray. On the Practicality of
Global Flow Analysis of Logic Programs. In Fifth Int. Conf. and Symp.
on Logic Programming, pages 684–699, August 1988. MIT Press.

