The AMOS Project
IST-2001-34717
The Interface Internals

Deliverable D14

Responsible person: José F. Morales, Edison F. Mera, Manuel Carro, and JesUs
Correas, Technical University of Madrid
({j fran, edi son,jcorreas}@lip.dia.fi.upmes,
ncarro@i . upm es)

Date of current release: | December 2003

Type of deliverable: Report

Abstract

This document describes the internal interface that is needed within the Amos
tool to allow communication between the matching engine and the web-based
user interface. In order to make the search web form more user-friendly, some
searching parameters needed by the matching engine have been abstracted using
common linguistic expressions that reflect in an informal way search require-
ments. In [GCMO04] and [CGC™04] the search user interface is explained in
depth. This document describes the code and interfaces involved in such com-
munication.

Contents
1 Introduction

2 match_interface (library)
2.1 Usage and interface (mat ch_interface)
2.2 Documentation on exports (mat ch_interface)
2.3 Documentation on internals (mat ch_interface)

3 form_page (library)
3.1 Usageand interface (formpage)
3.2 Documentation on exports (formpage)

4 results_page (library)
4.1 Usage and interface (results_page)
4.2 Documentation on exports (resul ts_page)

5 error_page (library)
5.1 Usageand interface (error_page)
5.2 Documentation on exports (error _page)

6 term_desc_page (library)
6.1 Usage and interface (t ermdesc page)
6.2 Documentation on exports (t er mdesc_page).

7 match (library)
7.1 Usageand interface (match)
7.2 Documentation on exports (match)

1 Introduction

The matching engine [CMMO04] uses a number of parameters in order to guide the
searching algorithm. These parameters are represented by means of an internal query
language interpreted by the matching engine. The part of the external interface related
to the search of assemblies translates the user query to that language, and invokes
the matching engine to obtain the assemblies that satisfy the searching parameters
specified by the user.

In the Amos system there is a clear conceptual distinction between the user inter-
face and the algorithms and techniques involved in the search for package assemblies.
In order to provide a seamless integration between both of the main components of
the system, the communication protocol between the web-based user interface and the
Amos matching engine is performed by means of Ciao Prolog module interfaces. This
approach improves the functionality of the system while at the same time eases the
implementation.

The searching user interface is based on a Ciao Prolog CGI program that gener-
ates the HTML forms for interacting with the user, transforms the user input into the
internal query language, and performs the query on the Amos database, presenting the
resulting assemblies to the user with a dynamically generated html page.

/ mach et \
A
form_page term_desc_page
error_page match
results_page

Figure 1. Module description of the search interface internals

The matching engine and the user interface for searching have been implemented
through a set of modules, represented in Figure 1. Each module provides a different
function, as follows:

e The module mat ch_i nt er f ace is the starting point of this part of the Amos

5

system. It isa CGI program that generates the HTML pages for requesting query
parameters and displaying the results of a search performed by the matching en-
gine, transforms the query input by the user and sends it to the matching engine.
This module uses the rest of the modules, as shown in 1. This module uses
f or mpage for actual HTML page generation.

e f Oor mpage generates the main search page. The main search page is com-
posed by a form to enter search parameters and options, and can be followed by
a section with the resulting assemblies of a previous page, or a section with infor-
mative messages about problems found in the previous user input. In order to do
this in a modular way, it uses the modules er r or _page and r esul t s _page.
f or mpage also accesses the Amos database to load into the search page the
dictionary terms to facilitate user interaction.

e The modules er r or page and r esul t s_page generate dynamically the in-
formative messages and the list of assemblies that results from a given search,
respectively.

e Finally, mat ch contains the code of the matching engine. It receives a query in
the internal query language, and produces a list of assemblies which satisfy the
given query.

In following sections these modules are described in depth.

2 match_interface (library)

This module performs the interaction between the user and the matching engine by
means of a web interface based on efficient CGI scripts. When the web interface starts
for the first time, an initial query with default search options is shown. The user can
then select the description terms to find, and adjust the searching parameters as well,
in order to get more precise results. When the user eventually performs the query
(by pressing the appropiate button on the web page), assemblies satisfying the query
parameters are obtained, and a result page is shown to the user. The assemblies that
result from a query evaluation are presented to the user together with another search
form, in order to enable incremental searches. The information introduced by the user
is kept in this new form to let him refine the search.

The underlying implementation of the search web interface is based on a single
HTML form which encodes the application state given by the val ues/ 1 procedure.
Basically, this procedure abstracts away the implementation details of the HTML page,
mapping each state element as an HTML input, which can be either hidden, visible or
a human readable menu which disguises the representation of the matching engine
parameters. Depending on whether the application has been started or not, the main
procedure f or mhandl i ng/ O executes one of these actions:

1- to emit an initial form with default values, or

2- to receive the CGI input, extract the event identifier (represented by an element
of type i d), input fields and previous state encoded as input fields, process them
into a new state, and generate an updated form.

The actions of the web interface which require the Amos matching engine are
Sear ch, Next page (to show the next page of search results when the last query
resulting assemblies do not fit a single page) or Pr evi ous page (to show the pre-
vious page of search results). The connection with the matching engine to retrieve the
search solutions is made by make_sear ch/ 2. Any other action simply updates the
input state without performing any search.

The search parameters are translated to the internal query language needed by the
matching engine. The translation is straightforward, with the exception of the param-
eters to control the search heuristics (described in sor t _met hod/ 1). This interface
makes use of linguistic modifiers to link the meaning of numeric weights (explained
in mat ch) in order to make them more intuitive for humans, as follows:

7

number of packages: very few (-2), few (-1), any number or (0), a few (1), many

)
unsatisfied requirements: very few (-2), few (-1), any number or (0)
auxiliary requirements: very few (-2), few (-1), any number or (0)

number of capabilities: very few (-2), few (-1), any number or (0), a few (1),
many (2)

ratio of fullfilled capabilities: a very small (-2), a small (-1), any (0), a large (1),
a very large (2)

2.1 Usage and interface (mat ch_i nterf ace)

e Library usage:

- use_nodul e(library(match.i nterface)).
e EXxports:

— Predicates:
start/O.
— Regular Types:
id/ 1, values/1,results/1.

e Other modules used:

— Application modules:

sear ch(f ormpage),sear ch(ter mdesc_page),
search(match),search(utils),
anos(configuration).

— System library modules:
pillow http,pillow htm ,prol ogsys,lists,
aggregates,terns,pill ow pill owtypes.

— Internal (engine) modules:

hiordrt,arithmetic,atom c_basic,attributes,
basi c_props, basi ccontrol ,data_facts, exceptions,
I 0_aux,i o_basi c, prol og.fl ags, streans_basi c,
systemi nf o,t ermbasi c,t er mconpar e, t er mt ypi ng.

2.2 Documentation on exports (mat ch_i nt erf ace)
start/0: PREDICATE

Usage:

— Description: Main procedure to start the CGl.

id/1: REGTYPE

Usage: i d(X)

— Description: Identifier of the action.

values/1: REGTY PE
val ues(val ues(Terns, I ni, Len, Sort Met hod, Mode, | nP, ExP)) : -
at m(Terns) ,
nun(I ni),
num(Len),

sort _net hod(Sort Met hod),
mat ch_node(Mode) ,

at m(I nP),

at m ExP) .

Usage: val ues(X)

— Description: Internal state of the search CGI.

results/1: REGTY PE

resul ts(Resul ts)

A list of assemblies which are the result of a search, plus the total number of
solutions Tot al and the computation time Ti ne.

2.3 Documentation on internals (mat ch.i nt er f ace)
form_handling/0: PREDICATE

Usage:

— Description: Gets the CGI input and sends back the corresponding HTML
page to the client web browser.

process_form/1: PREDICATE
Usage: process_for n(I nf o)

— Description: Generates and sends an HTML page.

10

— Callsshould, and exit will be compatible with:

| nf o is a dictionary of values of the attributes of a form. It is a list of
f or massi gnnent (formdict/1)

— The following properties should hold at call time:
| nf o is currently ground (it contains no variables). (ground/ 1)

— The following properties hold upon exit:

| nf o is currently ground (it contains no variables). (ground/ 1)

decide_page/3: PREDICATE
Usage: deci de_page(1d, Info, Htmnm Code)

— Description: Processes form input information | nf o and the action iden-
tifier 1 d, and generates Ht m Code.

— Callsshould, and exit will be compatible with:

Identifier of the action. (id/1)

| nf o is a dictionary of values of the attributes of a form. It is a list of

f or massi gnnent (formdict/1)

Ht m Code is a term representing HTML code. (htm term 1)
— The following properties should hold at call time:

| d is currently ground (it contains no variables). (ground/ 1)

| nf o is currently ground (it contains no variables). (ground/ 1)

Ht M Code is a free variable. (var/ 1)
— The following properties hold upon exit:

| d is currently ground (it contains no variables). (ground/ 1)

| nf o is currently ground (it contains no variables). (ground/ 1)

Ht m Code is currently ground (it contains no variables). (gr ound/ 1)

concat_with_spaces/2: PREDICATE
Usage: concat wi t h.spaces(Xs, Y)

— Description: Y is the concatenation of the elements of Xs separated with
blank spaces.

11

— Callsshould, and exit will be compatible with:
Xs is a list of at rs. (i st/2)
Y is an atom. (atnf 1)
— The following properties should hold at call time:

Xs is currently ground (it contains no variables). (ground/ 1)

— The following properties hold upon exit:

Xs is currently ground (it contains no variables). (ground/ 1)
Y is currently ground (it contains no variables). (ground/ 1)
default_values/1: PREDICATE

Usage: def aul t .val ues(Val ues)

— Description: Val ues is the default state of a newly loaded search page.
— Callsshould, and exit will be compatible with:
Internal state of the search CGI. (val ues/ 1)

— The following properties hold upon exit:
Val ues is currently ground (it contains no variables). (ground/ 1)

get_values/2: PREDICATE
Usage: get val ues(I nfo, Val ues)

— Description: Decodes the information | nf o obtained by the CGI from the
input form and returns it in Val ues.
— Callsshould, and exit will be compatible with:

I nf o is a dictionary of values of the attributes of a form. It is a list of
f or massi gnnent (formdict/1)

Internal state of the search CGI. (val ues/ 1)
— Thefollowing properties should hold at call time:

| nf o is currently ground (it contains no variables). (ground/ 1)
— The following properties hold upon exit:

| nf o is currently ground (it contains no variables). (ground/ 1)

Val ues is currently ground (it contains no variables). (ground/ 1)

12

no_results/1: PREDICATE
Usage: no_resul t s(Resul ts)

— Description: Resul t s is an empty result

— Callsshould, and exit will be compatible with:
resul ts(Resul ts) (results/1)

— The following properties hold upon exit:
Resul t s is currently ground (it contains no variables). (ground/ 1)

make_search/2: PREDICATE
Usage: make_sear ch(Val ues, Results)
— Description: Converts the search parameters Val ues stored in the CGI

state to the internal query language and performs the query.

— Calls should, and exit will be compatible with:
Internal state of the search CGI. (val ues/ 1)
results(Resul ts) (results/1)

— The following properties should hold at call time:
Val ues is currently ground (it contains no variables). (ground/ 1)

— The following properties hold upon exit:
Val ues is currently ground (it contains no variables). (ground/ 1)
Resul t s is currently ground (it contains no variables). (gr ound/ 1)

decode_package_list/2: PREDICATE
Usage: decode_package._li st (PA, P)

— Description: P is the result of decoding PA.

— Callsshould, and exit will be compatible with:
PA is an atom. (atm 1)
Pis alist of packages. (list/2)

— The following properties should hold at call time:
PA is currently ground (it contains no variables). (ground/ 1)

13

— The following properties hold upon exit:

PA is currently ground (it contains no variables). (ground/ 1)
P is currently ground (it contains no variables). (ground/ 1)
check_request/2: PREDICATE

Usage: check r equest (Val ues, Probl ens)
— Description: Checks the types of Val ues and generate a the possible list
of problems Pr obl ens

— Callsshould, and exit will be compatible with:
Internal state of the search CGI. (val ues/ 1)
Pr obl ens is a list of pr obl erns. (i st/2)

— The following properties should hold at call time:
Val ues is currently ground (it contains no variables). (ground/ 1)

— The following properties hold upon exit:
Val ues is currently ground (it contains no variables). (ground/ 1)
Pr obl ens is currently ground (it contains no variables). (gr ound/ 1)

check_request__number/4: PREDICATE
Usage: check r equest _nunber (Nanme, Val ue, PO, P)

— Description: Inserts the corresponding problem (identifing the culprit input
Nane) into the difference list PO-P if the type of Val ue is not a number.

— Callsshould, and exit will be compatible with:

Nane is an atom. (atnf 1)
Val ue is an atom. (atm 1)
PO is a list of pr obl ens. (list/2)
Pis a list of pr obl ens. (i st/2)
— Thefollowing properties should hold at call time:
Narre is currently ground (it contains no variables). (ground/ 1)
Val ue is currently ground (it contains no variables). (ground/ 1)
P is currently ground (it contains no variables). (ground/ 1)

14

— The following properties hold upon exit:

Nane is currently ground (it contains no variables). (ground/ 1)
(ground/ 1)
(ground/ 1)

(ground/ 1)

Val ue is currently ground (it contains no variables).
PO is currently ground (it contains no variables).

P is currently ground (it contains no variables).

check_request__empty/4: PREDICATE
Usage: check r equest _enpt y(Nane, Val ue, PO, P)

— Description: Insert the corresponding problem (identifing the culprit input

Narme) into the difference list PO-P if the type of Val ue is empty.

Calls should, and exit will be compatible with:
Nane is an atom.

Val ue is an atom.

PO is a list of pr obl ens.

Pis a list of pr obl ens.

The following properties should hold at call time:
Nare is currently ground (it contains no variables).
Val ue is currently ground (it contains no variables).

P is currently ground (it contains no variables).

The following properties hold upon exit:

Nane is currently ground (it contains no variables).
Val ue is currently ground (it contains no variables).
PO is currently ground (it contains no variables).

P is currently ground (it contains no variables).

(atm 1)
(atm 1)
(Iist/2)
(Iist/2)

(ground/ 1)
(ground/ 1)
(ground/ 1)

(ground/ 1)
(ground/ 1)
(ground/ 1)
(ground/ 1)

which_page_id/2: PREDICATE
Usage: whi ch_page_i d(I nfo, [d)

— Description: Obtains the identifier of the current page | d from I nf o. This
identifier can be blank if the form is in its initial state or a particular value
telling which button or action was selected by the user.

15

— Callsshould, and exit will be compatible with:

| nf o is a dictionary of values of the attributes of a form. It is a list of
f or massi gnnent (formdict/1)

Identifier of the action. (id/1)
— The following properties should hold at call time:

| nf o is currently ground (it contains no variables). (ground/ 1)
— The following properties hold upon exit:

| nf o is currently ground (it contains no variables). (ground/ 1)

| d is currently ground (it contains no variables). (ground/ 1)

16

3 form_page (library)

This module generates the initial search form, used to perform queries. The initial
search form must be generated dynamically, as it depends on the description terms
stored in the Amos database.

3.1 Usage and interface (f or mpage)

e Library usage:

;- use_nodul e(li brary(formpage)).
e EXxports:

— Predicates:

gener at e_f or mpage/ 4,
gener at e_sel ect ed_t er manes/ 1.

e Other modules used:

— Application modules:
portal files(web.utils),
portal fil es(standard_page),search(utils),
search(resul t s_page),search(error _page),
search(match. nterface),search(bal boa),
sear ch(db_nanes), bal boa_t er mdesc.

— System library modules:
pillow http,pillow htm ,haggregates,|lists,
bet ween, pi | | ow pi | | owt ypes.

— Internal (engine) modules:

hiordrt,arithnetic,atom c basic,attributes,
basi c_pr ops, basi ccontrol ,dat afacts,exceptions,
I 0_.aux,i o_basic, prol og_fl ags, streans_basi c,
systemi nfo,termbasi c,t ermconpare,termtypi ng.

17

3.2 Documentation on exports (f or mpage)
generate_form_page/4: PREDICATE

Usage: gener at e f or mpage(Val ues, Pageld, Results, HITM)

— Description: Generates in HTM. the code of the main search page, us-
ing Val ues as the values to fill in the fields of the search form. This
HTML page may contain results of previous queries, that can be specified
in Resul t s, if it is available.

— Callsshould, and exit will be compatible with:

Internal state of the search CGI. (val ues/ 1)

Identifier of the action. (id/1)

results(Resul ts) (results/1)

HTML is a term representing HTML code. (htm term 1)
— The following properties should hold at call time:

Val ues is currently ground (it contains no variables). (ground/ 1)

Pagel d is currently ground (it contains no variables). (ground/ 1)

Resul t s is currently ground (it contains no variables). ~ (gr ound/ 1)

— The following properties hold upon exit:
Val ues is currently ground (it contains no variables). (ground/ 1)
Pagel d is currently ground (it contains no variables). (ground/ 1)
Resul t s is currently ground (it contains no variables). (ground/ 1)
HTML is currently ground (it contains no variables). (ground/ 1)

generate_selected_termnames/1: PREDICATE

Usage: gener at e_sel ect ed_t er manes(Ter MNanes2Add)
— Description: Obtains the names of the selection lists of description terms
in the search form page.

— Call and exit should be compatible with:
Ter mMNanes2Add is a list of at ns. (list/2)

— The following properties should hold upon exit:
Ter mNames 2Add is currently ground (it contains no variables). (gr ound/ 1)

18

4 results_page (library)

This module generates a HTML page that contains resulting assemblies of a given
query. This HTML page is embedded in the general search form page (generated by
form_page), in order to allow sequences of queries.

4.1 Usage and interface (r esul t s_page)

e Library usage:

;- use_nmodul e(library(results_page)).
e EXxports:

— Predicates:
resul t s_page/ 3.

e Other modules used:

— Application modules:

anos(configuration),search(utils),

portal fil es(standard_page),

portal files(web.utils),search(nmatch.interface),
sear ch(bal boa),sear ch(db_nanes),

bal boa_t er mdesc.

— System library modules:
pillow http,pillow htm lists,termns,
pillow pillowtypes.

— Internal (engine) modules:

hiordrt,arithnetic,atom c basic,attributes,
basi c_pr ops, basi ccontrol ,dat afacts,exceptions,
I 0_.aux,i o_basic, prol og_fl ags, streans_basi c,
systemi nfo,termbasi c,t ermconpare,termtypi ng.

19

4.2 Documentation on exports (r esul t s_page)
results_page/3: PREDICATE

Usage: resul t s_page(Val ues, Results, HTM.)

— Description: Translates the search results stored in Resul t s plus the
search parameters Val ues given by the user in the search form to a for-
matted HTML view HTML

— Callsshould, and exit will be compatible with:

Internal state of the search CGI. (val ues/ 1)
resul ts(Resul ts) (results/1)
HTML is a term representing HTML code. (htm term 1)

— The following properties should hold at call time:
Val ues is currently ground (it contains no variables). (ground/ 1)
Resul t s is currently ground (it contains no variables). (ground/ 1)
— The following properties hold upon exit:
Val ues is currently ground (it contains no variables). (ground/ 1)
Resul t s is currently ground (it contains no variables). (ground/ 1)
HTML is currently ground (it contains no variables). (ground/ 1)

20

5 error_page (library)

This module generates an HTML page showing a list of error messages.

5.1 Usage and interface (er r or _page)

e Library usage:

e Exports:

— Predicates:

— Regular Types:

e Other modules used:

— System library modules:

use_nodul e(l i brary(error_page)).

error _page/ 2.

probl ent 1.

pillow http,pillow htm hiordlib,
pillow pillowtypes.

Internal (engine) modules:

hiordrt,arithnetic,atom c_basic,attributes,
basi c_props, basi ccontrol ,data_facts, exceptions,
i 0_aux, i o_basi c, prol og_fl ags, streans_basi c,
systemi nf o,t er mbasi c,t er mconpar e, t er mt ypi ng.

5.2 Documentation on exports (er r or _page)
error_page/2: PREDICATE

Usage: er r or _page(Probl ens, HTM.)

— Description: Generates an HTML page HTML. for showing a list of prob-

lems Pr obl ens detected in the data introduced by the user in the search
form page. It is used throughout the system to generate user friendly error
messages when necessary.

21

— Callsshould, and exit will be compatible with:
Pr obl ens is a list of pr obl ens. (i st/2)
HTML is a term representing HTML code. (htm term 1)

— The following properties should hold at call time:

Pr obl ens is currently ground (it contains no variables). (gr ound/ 1)
— The following properties hold upon exit:

Pr obl ens is currently ground (it contains no variables). (gr ound/ 1)

HTML is currently ground (it contains no variables). (ground/ 1)
problem/1: REGTY PE
probl em(enpty(X)) :-
at m X) .
probl em(no_num X)) :-
at m X) .

Usage:

— Description: Type for use in er r or _page/ 2.

22

6 term_desc_page (library)

This module generates a HTML page showing the description of all dictionary terms
included in the Amos database.

6.1 Usage and interface (t er mdesc_page)

e Library usage:

.- use_nodul e(library(termdesc_page)).
e EXxports:

— Predicates:

gener at e_t ermdescri ption/ 1.
e Other modules used:

— Application modules:

search(utils),portal fil es(standard_page),
portal files(web_utils),search(bal boa),
sear ch(db_nanes), bal boa_t er mdesc.

— System library modules:
pillow http,pillow htm ,aggregates,
pillow pillowtypes.

— Internal (engine) modules:

hiordrt,arithmetic,atom c_basic,attributes,
basi c_props, basi ccontrol ,dat a_facts, exceptions,
i 0_.aux,i o_basic, prol og_fl ags, streans_basi c,
systemi nf o,t er mbasi c,t er mconpar e, t er mt ypi ng.

6.2 Documentation on exports (t er mdesc_page)

generate_term_description/1: PREDICATE

Usage: gener at e_t er mdescri pti on(HTM.)

23

— Description: Generates a HTML page with the description of all dictionary
terms included in the Amos database.

— Call and exit should be compatible with:
HTML is a term representing HTML code. (htm term 1)

— The following properties should hold upon exit:
HTML is currently ground (it contains no variables). (ground/ 1)

24

7 match (library)

This module contains the implementation of the matching engine. Given a query ex-
pressed in the Amos internal language, it produces a list of packages that satisfy the

query.

25

7.1 Usage and interface (mat ch)

e Library usage:

.- use_nodul e(library(match)).
e Exports:

— Predicates:
mat ch_sort _interval 1ist/9.

— Regular Types:
mat ch_node/ 1, mat ch_sort resul t/1,sort nmet hod/ 1,
wei ght _package_nunber/ 1,
wei ght __unsati sfi ed_deps/ 1,
wei ght __ti ghter_assenblies/ 1,
wei ght _capabilities/1,
wei ght _best capabilitiesratiol/l,package/ 1,
capability/1.

e Other modules used:

— Application modules:
sear ch(bal boa),search(db_nanes),
bal boa_t er mdesc, search(utils).

— System library modules:
sets,hiordlib,sort,lists,aggregates.

— Internal (engine) modules:
hiordrt,arithnetic,atom c_basic,attributes,
basi c_props, basi ccontrol ,data_facts, exceptions,
i 0_aux,i o_basic, prol og_fl ags, streans_basi c,
systemi nf o,t er mbasi c,t er mconpar e, t er mt ypi ng.

7.2 Documentation on exports (mat ch)
match_sort_interval _list/9: PREDICATE

Usage: mat ch_sort _.interval _|list(SortMet hod, Mde, Wanted,

26

| ncPack, ExcPack, Ini, Len, MtchList, Total)

— Description: This is the main procedure for performing a search expressed
in the internal language. This procedure generates a list Mat chLi st con-
taining the resulting assemblies of a given query. A query is expressed in
the internal query language, and is defined as follows:

x Sor t Met hod specifies the sorting method used for the query. Sev-
eral values are allowed, as described in sort _met hod/ 1.

x Mode selects the search type. Allowed values are described inmat ch_node/ 1.

«x Want ed is the list of capabilities to search. It must be provided to the
matching engine as a list of description terms.

x | ncPack allows to specify that the results of the matching engine
must contain a mandatory set of packages, represented by a list of
package names. If there are no packages to include, | ncPack must
be an empty list.

xIn the same way, ExcPack specifies a (possibly empty) list of pack-
ages which should not appear in the resulting assemblies given by the
matching engine.

The assemblies provided by the matching engine that satisfy the query are
sorted using the criteria specified in Sor t Met hod, and returned in subsets
of length Len, starting with the I ni th element of the complete results list
(the first element of the list is numbered 0). In Tot al the total number of
results found is returned.

— Callsshould, and exit will be compatible with:
Sor t Met hod Weights assigned for the different sort options in the inter-
nal query language. (sort _met hod/ 1)
Mode Matching modes available in the search engine. Available modes
can be:
« al | returns all the assemblies which match the query.
x best (N) selects the best N assemblies which satisfy the query.

x gen(N, M extends the matching of assemblies taking into account
possible generalizations: N determines the maximum level of gener-
alizations in preconditions (the description terms that a package re-
quires), while Mspecifies the level of generalizations in postconditions
(terms that a package provides).

27

(mat ch_node/ 1)

Want ed is a list. (list/1)
| ncPack is a list. (ist/1)
ExcPack is a list. (Iist/1)
| ni isan integer. (int/1)
Len is an integer. (int/1)
Mat chLi st Sorted result of a search (mat ch_sort result/ 1)
Tot al isan integer. (int/1)

— The following properties should hold at call time:

Sor t Met hod is currently ground (it contains no variables). (gr ound/ 1)

Mode is currently ground (it contains no variables).
Want ed is currently ground (it contains no variables).

| ncPack is currently ground (it contains no variables).
ExcPack is currently ground (it contains no variables).
| ni is currently ground (it contains no variables).

Len is currently ground (it contains no variables).

— The following properties hold upon exit:

(ground/ 1)
(ground/ 1)
(ground/ 1)
(ground/ 1)
(ground/ 1)
(ground/ 1)

Sor t Met hod is currently ground (it contains no variables). (gr ound/ 1)

Mode is currently ground (it contains no variables).

Want ed is currently ground (it contains no variables).

| ncPack is currently ground (it contains no variables).
ExcPack is currently ground (it contains no variables).

I ni is currently ground (it contains no variables).

Len is currently ground (it contains no variables).

Mat chLi st is currently ground (it contains no variables).
Tot al is currently ground (it contains no variables).

match_mode/1:

Usage: mat ch_node(X)

(ground/ 1)
(ground/ 1)
(ground/ 1)
(ground/ 1)
(ground/ 1)
(ground/ 1)
(ground/ 1)
(ground/ 1)

REGTY PE

— Description: X Matching modes available in the search engine. Available

modes can be:

28

« al | returns all the assemblies which match the query.
x best (N) selects the best N assemblies which satisfy the query.

x gen(N, M extends the matching of assemblies taking into account
possible generalizations: N determines the maximum level of gener-
alizations in preconditions (the description terms that a package re-
quires), while Mspecifies the level of generalizations in postconditions
(terms that a package provides).

match_sort_result/1: REGTY PE

mat ch_sort _result(X) :-
list(match_result_key, X).

Usage: mat ch_sort resul t (X)

— Description: X Sorted result of a search

sort_method/1: REGTY PE

sort _net hod(key weights(P,U T,C B)) :-
wei ght __ _package_nunber (P),
wei ght __unsati sfi ed_deps(U),
wei ght __tighter_assenblies(T),
wei ght __capabilities(C,
wei ght __best capabilities ratio(B).

Usage: sort _met hod(X)

— Description: X Weights assigned for the different sort options in the inter-
nal query language.

weight__package_number/1: REGTYPE
Usage: wei ght __package_nunber (X)

— Description: X Weight assigned to the number of packages provided by the
matching engine.

weight__unsatisfied_deps/1: REGTYPE
Usage: wei ght _unsati sfi ed_deps(X)

29

— Description: X Weight assigned to the number of unsatisfied dependencies
(less dependencies get higher weights).

weight__tighter_assemblies/1: REGTY PE
Usage: wei ght __ti ght er _assenbl i es(X)

— Description: X Weight assigned to the number of tighter assemblies (looser
assemblies get higher weights).

weight__capabilities/1: REGTYPE
Usage: wei ght _capabi liti es(X)

— Description: X Weight for number of capabilities.

weight__best_capabilities_ratio/1: REGTY PE
Usage: wei ght _best capabilitiesratio(X)

— Description: X Weight assigned to the ratio satisfied/unsatisfied capabili-
ties.

package/1: REGTY PE
Usage: package(X)

— Description: X is a Amos package

capability/1: REGTY PE
Usage: capabi i ty(X)

— Description: Xis a Amos capability

30

References

[CGC*04] M. Carro, J. M. Gomez, J. Correas, J. F. Morales, E. F. Mera, G. Puebla,
D. Cabeza, F. Bueno, C. Daffara, and M. Hermenegildo. AMOS User’s
Manual. Technical Report CLIP4/2004.0, Technical University of Madrid,
School of Computer Science, UPM, March 2004.

[CMMO04] J. Correas, E. Mera, and J. F. Morales. Final matching engine. Technical
Report CLIP8/2004.0, Computer Science School, Technical University of
Madrid, School of Computer Science, UPM, May 2004. Deliverable D15
of the AMOS Project.

[GCMO04] J. M. Gomez, M. Carro, and J. F. Morales. The external interface. Techni-
cal Report CL1P6/2004.0, Computer Science School, Technical University
of Madrid, School of Computer Science, UPM, May 2004. Deliverable
D12 of the AMOS Project.

31

