
Reduced Certificates for Abstraction-Carrying Code

Elvira Albert1, Puri Arenas1, Germán Puebla2, and Manuel Hermenegildo2,3

1 Complutense University of Madrid, {elvira,puri}@sip.ucm.es
2 Technical University of Madrid, {german,herme}@fi.upm.es

3 University of New Mexico, herme@unm.edu

Abstract. Abstraction-Carrying Code (ACC) has recently been proposed as
a framework for mobile code safety in which the code supplier provides a pro-
gram together with an abstraction (or abstract model of the program) whose
validity entails compliance with a predefined safety policy. The abstraction
plays thus the role of safety certificate and its generation is carried out auto-
matically by a fixed-point analyzer. The advantage of providing a (fixed-point)
abstraction to the code consumer is that its validity is checked in a single pass

(i.e., one iteration) of an abstract interpretation-based checker. A main chal-
lenge to make ACC useful in practice is to reduce the size of certificates as
much as possible while at the same time not increasing checking time. The
intuitive idea is to only include in the certificate information that the checker
is unable to reproduce without iterating. We introduce the notion of reduced

certificate which characterizes the subset of the abstraction which a checker
needs in order to validate (and re-construct) the full certificate in a single pass.
Based on this notion, we instrument a generic analysis algorithm with the nec-
essary extensions in order to identify information which can be reconstructed
by the single-pass checker. Finally, we study what the effects of reduced cer-
tificates are on the correctness and completeness of the checking process. We
provide a correct checking algorithm together with sufficient conditions for
ensuring its completeness. Our ideas are illustrated through a running exam-
ple, implemented in the context of constraint logic programs, which shows
that our approach improves state-of-the-art techniques for reducing the size of
certificates.

1 Introduction

Proof-Carrying Code (PCC) [15] is a general framework for mobile code safety which
proposes to associate safety information in the form of a certificate to programs. The
certificate (or proof) is created at compile time by the certifier on the code supplier
side, and it is packaged along with the code. The consumer who receives or downloads
the (untrusted) code+certificate package can then run a checker which by an efficient
inspection of the code and the certificate can verify the validity of the certificate and
thus compliance with the safety policy. The key benefit of this “certificate-based”
approach to mobile code safety is that the consumer’s task is reduced from the level
of proving to the level of checking, a task that should be much simpler, efficient, and
automatic than generating the original certificate.

Abstraction-carrying code (ACC) [1, 8] has been recently proposed as an enabling
technology for PCC in which an abstraction (or abstract model of the program) plays
the role of certificate. An important feature of ACC is that not only the checking, but
also the generation of the abstraction is automatically carried out by a fixed-point
analyzer. In this paper, we will consider analyzers which construct a program analy-
sis graph which is interpreted as an abstraction of the (possibly infinite) set of states
explored by the concrete execution. To capture the different graph traversal strategies
used in different fixed-point algorithms, we use the generic description of [9], which
generalizes the algorithms used in state-of-the-art analysis engines. Essentially, the

certification/analysis carried out by the supplier is an iterative process which repeat-
edly traverses the analysis graph until a fixpoint is reached. The analysis information
inferred for each call which appears during the (multiple) graph traversals is stored in
the answer table [9]. In the original ACC framework, the full answer table constitutes
the certificate. The key idea is that, since the certificate is a fixpoint, a single pass
over the analysis graph is sufficient to validate the certificate in the consumer side.

One of the main challenges for the practical uptake of ACC (and related methods)
is to produce certificates which are reasonably small. This is important for at least
the following reasons. First, the certificate is transmitted together with the untrusted
code and, hence, reducing its size will presumably contribute to a smaller transmission
time –very relevant for instance under scarce network connectivity conditions. Second,
the certificate has to be stored on the consumer end in order to validate it and,
hence, reducing its size is important in the realm of pervasive and embedded systems
which typically have limited storage (and computing) resources. Nevertheless, a main
concern when reducing the size of the certificate is that checking time is not increased
as a consequence. In principle, the consumer could use an analyzer for the purpose
of generating the whole fixpoint from scratch, which is still feasible as analysis is
automatic. However, this would defeat one of the main purposes of ACC, which is
to reduce checking time. The objective of this paper is to characterize a subset of
the abstraction which must be sent within a certificate –and which still guarantees
a single pass checking process– and to design an ACC scheme which generates and
validates such reduced certificates.

The basic idea in order to reduce the size of the certificate in ACC checkers is
to store only the analysis information which the checker is not able to reproduce by
itself [12]. For instance, this general idea has been deployed in lightweight bytecode
verification [18] where the certificate, rather than being the whole set of frame types
(FT) associated to each program point as obtained by standard bytecode verification
[12], is reduced by omitting those (local) program point FTs which correspond to
instructions without branching and which are lesser than the final FT (fixpoint). Our
proposal for ACC is at the same time more general (because of the parametricity
of the ACC approach) and carries the reduction further because it includes only the
analysis information of those calls in the analysis graph whose answers have been
updated, including both branching and non branching instructions. The intuition is
that, when there is at most one (initial) update during the computation of an entry in
the answer table, the part of the analysis graph associated to it has been computed in
one traversal, i.e., its fixpoint has been reached in a single pass. Hence, we can safely
extract such information from the certificate and the checker should still be able to
re-generate it in a single pass. The main contributions of this paper are:

1. We introduce the notion of reduced certificate which characterizes a subset of the
abstraction which the checker needs in order to validate (and re-construct) the
full certificate in a single pass.

2. We instrument the generic analysis algorithm of [9] with the necessary extensions
in order to identify the information which can be computed in one pass.

3. We design a checker for reduced certificates which is correct, i.e., if the checker
succeeds in validating the certificate, then the certificate is valid for the program,
no matter what the graph traversal strategy used is.

4. Finally, we provide sufficient conditions for ensuring completeness of the checking
process. Concretely, if the checker uses the same strategy as the analyzer then our
proposed checker will succeed in validating any reduced certificate which is valid.

The rest of the paper is organized as follows. The following section presents a general
view of ACC. Section 3 recalls the certification process performed by the code supplier

2

and illustrates it through our running example. In Section 4, we characterize the
notion of reduced certificate and instrument a generic certifier for its generation.
Section 5 presents a correct and complete generic checker for reduced certificates.
Finally, Section 6 discusses the work presented in this paper and some future work.

2 A General View of Abstraction-Carrying Code

We assume the reader is familiar with abstract interpretation (see [6]) and (Con-
straint) Logic Programming (C)LP (see, e.g., [14] and [13]).

A certifier is a function certifier : Prog × ADom × AInt 7→ ACert which for a
given program P ∈ Prog , an abstract domain Dα ∈ ADom and a safety policy
Iα ∈ AInt generates a certificate Certα ∈ ACert , by using an abstract interpreter for
Dα, which entails that P satisfies Iα. In the following, we denote that Iα and Certα
are specifications given as abstract semantic values by using the same subscript α.

The basics for defining such certifiers (and their corresponding checkers) in ACC
are summarized in the following six points:

Approximation. We consider an abstract domain 〈Dα,v〉 and its corresponding
concrete domain 〈2D,⊆〉, both with a complete lattice structure. Abstract values
and sets of concrete values are related by an abstraction function α : 2D → Dα,
and a concretization function γ : Dα → 2D. An abstract value y ∈ Dα is a
safe approximation of a concrete value x ∈ D iff x ∈ γ(y). The concrete and
abstract domains must be related in such a way that the following holds [6] ∀x ∈
2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y. In general v is induced by ⊆
and α. Similarly, the operations of least upper bound (t) and greatest lower bound
(u) mimic those of 2D in a precise sense.

Analysis. We consider the class of fixed-point semantics in which a (monotonic)
semantic operator, SP , is associated to each program P . The meaning of the
program, [[P]], is defined as the least fixed point of the SP operator, i.e., [[P]] =
lfp(SP). If SP is continuous, the least fixed point is the limit of an iterative
process involving at most ω applications of SP starting from the bottom element
of the lattice. Using abstract interpretation, we can usually only compute [[P]]α,
as [[P]]α = lfp(Sα

P). The operator Sα
P is the abstract counterpart of SP .

analyzer(P,Dα) = lfp(Sα
P) = [[P]]α = Certα (1)

Correctness of analysis ensures that [[P]]α safely approximates [[P]], i.e., [[P]] ∈
γ([[P]]α).

Verification Condition. Let Certα be a safe approximation of P . If an abstract
safety specification Iα can be proved w.r.t. Certα, then P satisfies the safety
policy and Certα is a valid certificate:

Certα is a valid certificate for P w.r.t. Iα if Certα v Iα (2)

Certifier. Together, equations (1) and (2) define a certifier which provides program
fixpoints, [[P]]α, as certificates which entail a given safety policy, i.e., by taking
Certα = [[P]]α.

Checking. A checker is a function checker : Prog ×ADom ×ACert 7→ bool which for
a program P ∈ Prog , an abstract domain Dα ∈ ADom and certificate Certα ∈
ACert checks whether Certα is a fixpoint of Sα

P or not:

checker(P,Dα, Certα) returns true iff (Sα
P (Certα) ≡ Certα) (3)

3

Verification Condition Regeneration. To retain the safety guarantees, the con-
sumer must regenerate a trustworthy verification condition –Equation 2– and use
the incoming certificate to test for adherence of the safety policy.

P is trusted iff Certα v Iα (4)

A fundamental idea in ACC is that, while analysis –equation (1)– is an iterative
process, checking –equation (3)– is guaranteed to be done in a single pass over the
abstraction.

3 Generation of Certificates in Abstraction-Carrying Code

This section recalls ACC in the context of (C)LP [1]. For concreteness, we build on
the algorithms of CiaoPP [10], the abstract interpretation-based preprocessor of the
Ciao multi-paradigm CLP system.

3.1 The Analysis Algorithm

Algorithm 1 has been presented in [9] as a generic description of a fixed-point al-
gorithm which generalizes those used in generic analysis engines, such as the one in
CiaoPP [10]. In order to analyze a program, traditional (goal dependent) abstract
interpreters for (C)LP programs receive as input, in addition to the program P and
the abstract domain Dα, a set Sα ∈ AAtom of call patterns.

Such call patterns are pairs of the form A : CP where A is a procedure descriptor
and CP is an abstract substitution (i.e., a condition of the run-time bindings) of A
expressed as CP ∈ Dα. For brevity, we sometimes omit the subscript α from Sα in
the algorithms. The analyzer constructs an and–or graph [4] (or analysis graph) for
Sα which is an abstraction of the (possibly infinite) set of (possibly infinite) and-or
trees explored by the concrete execution of initial calls described by Sα in P .

The program analysis graph is implicitly represented in the algorithm of [9] by
means of two data structures, the answer table and the dependency arc table. Program
rules are assumed to be normalized: only distinct variables are allowed to occur as
arguments to atoms. Furthermore, we require that each rule defining a predicate p
has identical sequence of variables xp1

, . . . xpn
in the head atom, i.e., p(xp1

, . . . xpn
).

We call this the base form of p. The answer table contains entries of the form A :
CP 7→ AP where A is always a base form. A dependency arc is of the form Hk :
CP0 ⇒ [CP1] Bk,i : CP2. This is interpreted as follows: if the rule with Hk as head is
called with description CP0 then this causes that the i-th literal Bk,i to be called with
description CP2. The remaining part CP1 is the program annotation just before Bk,i

is reached and contains information about all variables in rule k. As we will see below,
dependency arcs are used for forcing recomputation until a fixed-point is reached.

Intuitively, the analysis algorithm is a graph traversal algorithm which places
entries in the answer table and dependency arc table as new nodes and arcs in the
program analysis graph are encountered. To capture the different graph traversal
strategies used in different fixed-point algorithms, we use a priority queue. Thus, the
third, and final, structure used in the algorithm is a prioritized event queue. In the
following, we use Ω ∈ QHS to refer to a Queue Handling Strategy which a particular
instance of the generic algorithm may use. Clearly, Ω determines the graph traversal
strategy and it is a parameter of the algorithm. Events are of three forms:

– newcall(A : CP) which indicates that a new call pattern for literal A with de-
scription CP has been encountered.

– arc(Hk : ⇒ [] Bk,i :) which indicates that the rule with Hk as head needs to
be (re)computed from the position k, i.

4

Algorithm 1 Generic Analyzer for Abstraction-Carrying Code

1: procedure Analyze f(S, Ω)
2: for A : CP ∈ S do
3: add event(newcall(A : CP), Ω)
4: while E := next event(Ω) do
5: if E = newcall(A : CP) then new call pattern(A : CP, Ω)
6: else if E = updated(A : CP) then add dependent rules(A : CP, Ω)
7: else if E = arc(R) then process arc(R, Ω)
8: return answer table

9: procedure new call pattern(A : CP, Ω)
10: for all rule Ak : −Bk,1, . . . , Bk,nk

do

11: CP0 :=Aextend(CP, vars(Bk,1, . . . , Bk,nk
))

12: CP1 := Arestrict(CP0, vars(Bk,1))
13: add event(arc(Ak : CP ⇒ [CP0] Bk,1 : CP1),Ω)
14: AP := initial guess(A : CP)
15: if AP 6= ⊥ then add event(updated(A : CP), Ω)
16: add A : CP 7→ AP to answer table

17: procedure add dependent rules(A : CP, Ω)
18: for all arc of the form Hk : CP0 ⇒ [CP1] Bk,i : CP2 in graph where there exists

renaming σ s.t. A : CP = (Bk,i : CP2)σ do
19: add event(arc(Hk : CP0 ⇒ [CP1] Bk,i : CP2), Ω)

20: procedure process arc(Hk : CP0 ⇒ [CP1] Bk,i : CP2,Ω)
21: if Bk,i is not a constraint then
22: add Hk : CP0 ⇒ [CP1] Bk,i : CP2 to dependency arc table
23: W := vars(Ak :- Bk,1, . . . , Bk,nk

)
24: CP3 := get answer(Bk,i : CP2,CP1, W, Ω)
25: if CP3 6= ⊥ and i 6= nk then
26: CP4 := Arestrict(CP3, vars(Bk,i+1))
27: add event(arc(Hk : CP0 ⇒ [CP3] Bk,i+1 : CP4),Ω)
28: else if CP3 6= ⊥ and i = nk then
29: AP1 := Arestrict(CP3, vars(Hk))
30: insert answer info(H : CP0 7→ AP1, Ω)

31: function get answer(L : CP2,CP1, W, Ω)
32: if L is a constraint then return Aadd(L,CP1)
33: else AP0 := lookup answer(L : CP2, Ω)
34: AP1 := Aextend(AP0, W)
35: return Aconj(CP1,AP1)

36: function lookup answer(A : CP, Ω)
37: if there exists a renaming σ s.t.σ(A : CP) 7→ AP in answer table then

38: return σ−1(AP)
39: else add event(newcall(σ(A : CP)), Ω) where σ is renaming s.t. σ(A) in base form
40: return ⊥

41: procedure insert answer info(H : CP 7→ AP, Ω)
42: AP0 := lookup answer(H : CP)
43: AP1 := Alub(AP,AP0)
44: if AP0 6= AP1 then
45: add (H : CP 7→ AP1) to answer table
46: add event(updated(H : CP), Ω)

– updated(A : CP) which indicates that the answer description to call pattern A
with description CP has been changed.

The algorithm is defined in terms of four abstract operations on the domain Dα:

– Arestrict(CP,V) performs the abstract restriction of a description CP to the set
of variables in the set V , denoted vars(V);

– Aextend(CP,V) extends the description CP to the variables in the set V ;

5

– Aconj(CP1,CP2) performs the abstract conjunction of two descriptions;
– Alub(CP1,CP2) performs the abstract disjunction of two descriptions.

Apart from the parametric description domain-dependent functions, the algorithm has
several other undefined functions. The functions add event and next event respectively
add an event to the priority queue and return (and delete) the event of highest priority,
according to Ω. The function initial guess returns an initial guess for the answer to a
new call pattern. The default value is ⊥ but if the call pattern is more general than
an already computed call then the answer value for the more particular call can be
returned.4

The algorithm centers around the processing of events on the priority queue, which
repeatedly removes the highest priority event (Line 4) and calls the appropriate event-
handling function (L5-7). The function new call pattern initiates processing of the rules
in the definition of the internal literal A, by adding arc events for each of the first
literals of these rules (L13), and determines an initial answer for the call pattern
(L14) and places this in the table (L16). The function process arc performs the core
of the analysis. It performs a single step of the left-to-right traversal of a rule body.
If the literal Bk,i is not a constraint (L21), the arc is added to the dependency arc
table (L22). Constraints are simply added to the current description (L32). Literals
are processed by function get answer. In this function, the current answer to that
literal for the current description is looked up (L33). The function lookup answer first
looks up an answer for the given call pattern in the answer table (L37) and if it is
not found, it places a newcall event (L39). When it finds one, then this answer is
extended to the variables in the rule the literal occurs in (L34) and conjoined with
the current description (L35). The resulting answer (L24) is either used to generate
a new arc event to process the next literal in the rule if Bk,i is not the last literal
(L25); otherwise the new answer for the rule is combined with the current answer
in insert answer info (L30). Finally, insert answer info, updates the answer table entry
when a new answer is found (L46). The function add dependent rules adds arc events
for each dependency arc which depends on the call pattern A : CP for which the
answer has been updated. More details on the algorithm can be found in [9, 17].5

3.2 Running Example

Our running example is the program rectoy taken from [19]. We will use it to illustrate
our algorithms and show that our approach improves state-of-the-art techniques for
reducing the size of certificates. In all our examples, abstract substitutions over a set
of variables V , assign a regular type [7] to each variable in V . We use term as the most
general type (i.e., term corresponds to all possible terms). For brevity, variables whose
regular type is term are often not shown in abstract substitutions. Also, when it is
clear from the context, an abstract substitution for an atom p(x1, . . . , xn) is shown as
a tuple 〈t1, . . . , tn〉, such that each value ti indicates the type of xi. The most general
substitution > assigns term to all variables in V . The least general substitution ⊥
assigns the empty set of values to each variable.

Example 1. Consider the Ciao version of procedure rectoy [19] and the call pattern
rectoy(N, M) : 〈int, term〉 which indicates that external calls to rectoy are performed
with an integer value in the first argument.

rectoy(N,M) :- N = 0, M = 0.

rectoy(N,M) :- N1 is N-1, rectoy(N1,R), M is N1+R.

We now distinguish four main steps carried out in the analysis using some Ω ∈ QHS:
4 This case is only possible for calls to Analyze f with the answer table not empty.
5 It is also illustrated in Appendix A through an example for reviewing purposes.

6

A. The initial event newcall(rectoy(N, M) : 〈int, term〉) introduces the arcs A1,1 and
A2,1 in the queue, each one corresponds to the rules in the order above:

A1,1 : arc(rectoy(N, M) : 〈int, term〉 ⇒ [{N/int}] N = 0 : {N/int})
A2,1 : arc(rectoy(N, M) : 〈int, term〉 ⇒ [{N/int}] N1 is N− 1 : {N/int})

The initial answer E1 rectoy(N, M) : 〈int, term〉 7→ ⊥ provided by initial guess is
inserted in the answer table. Label E1 is introduced for future reference.

B. Assume that Ω has assigned higher priority to A1,1. The procedure get answer

simply adds the constraint N = 0 to the description {N/int}. Upon return, as it
is not the last body atom (L25), the following arc event is generated:

A1,2 : arc(rectoy(N, M) : 〈int, term〉 ⇒ [{N/int}] M = 0 : {M/term})

Arc A1,2 is handled exactly as A1,1 and get answer simply adds the constraint M =
0, returning {N/int, M/int}. As it is the last atom in the body (L28), procedure
insert answer info computes Alub between ⊥ and the above answer and overwrites
E1 with E′

1
rectoy(N, M) : 〈int, term〉 7→ 〈int, int〉 . Therefore, the event U1 :

updated(rectoy(N, M) : 〈int, term〉) is introduced in the queue. Note that no
dependency has been originated during the processing of this rule (as both body
atoms are constraints).

C. Now, Ω can choose between the processing of U1 or A2,1. Let us assume that
A2,1 has higher priority. For its processing, we have to assume that predefined
functions “−”, “+” and “is” are dealt by the algorithm as standard constraints
(see [2] for further details) by just using the following information provided by
the system:

E2 C is A + B : 〈int, int, term〉 7→ 〈int, int, int〉
E3 C is A− B : 〈int, int, term〉 7→ 〈int, int, int〉

In particular, after analyzing the subtraction with the initial call pattern, we infer
that N1 is of type int and no dependency is asserted. Next, the arc:

A2,2 : arc(rectoy(N, M) : 〈int, term〉 ⇒ [{N/int, N1/int}] rectoy(N1, R) : 〈int, term〉)

is introduced in the queue and the corresponding dependency is stored in the
dependency arc table. The call to get answer returns the current answer for E ′

1
.

Using this answer we get the arc A2,3:

A2,3 : arc(rectoy(N, M) : 〈int, term〉 ⇒
[{N/int, N1/int, R/int}] M is N1 + R : {N1/int, R/int})

Clearly, the processing of A2,3 does not change the final answer E ′
1
. Hence, no

more updates are introduced in the queue.
D. Finally, we have to process the event U1 introduced in step B to which Ω has

assigned lowest priority. The procedure add dependent rules finds the dependency
corresponding to arc A2,2 and inserts it in the queue. This relaunches an arc
identical to A2,2. This in turn launches an arc identical to A2,3. However, the
reprocessing does not change the fixpoint result E ′

1
and analysis terminates.

A fundamental issue here is that if we use some Ω ′ ∈ QHS which assigns a priority to
U1 higher than to A2,1, the whole reprocessing of A2,2 and A2,3 in step D will not be
performed. The reason is that the dependency arc table is empty prior to processing
A2,2. Hence add dependent rules would not introduce any arc. This corresponds to the
notion of redundant update which we will introduce in Def. 2. 2

7

3.3 Full Certificate

The following definition corresponds to the essential idea in the ACC framework –
equations (1) and (2)– of using a static analyzer to generate the certificates. The
analyzer corresponds to Algorithm 1 and the certificate is the full answer table.

Definition 1 (full certificate). We define function Certifier f:Prog ×ADom ×
AAtom ×AInt ×QHS 7→ ACert which takes P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom,
Iα ∈ AInt, Ω ∈ QHS and returns as full certificate, FCert ∈ ACert, the answer table
computed by Analyze f(Sα, Ω) for P in Dα iff FCert v Iα.

Example 2. Consider the safety policy expressed by the following specification Iα :
rectoy(N, M) : 〈int, term〉 7→ 〈int, real〉. The certifier in Def. 1 returns as valid cer-
tificate the single entry E′

1
. Clearly E′

1
v Iα. We assume that predefined information

is available for the consumer, otherwise entries E2 and E3 should be included in the
certificate. 2

4 Abstraction-Carrying Code with Reduced Certificates

The key observation in order to reduce the size of certificates is that certain entries
in a certificate may be irrelevant, in the sense that the checker is able to reproduce
them by itself in a single pass. The notion of relevance is directly related to the idea
of recomputation in the program analysis graph. Intuitively, given an entry in the
answer table A : CP 7→ AP , its fixpoint may have been computed in several itera-
tions from ⊥, AP0, AP1, . . . until AP . For each change in the answer, an updated
event updated(A : CP) is generated during analysis. The above entry is relevant in a
certificate (under some strategy) when its updates force the recomputation of other
arcs in the graph which depend on A : CP . Thus, unless A : CP 7→ AP is included
in the (reduced) certificate, a single-pass checker which uses the same strategy as the
code producer will not be able to validate the certificate.

4.1 The Notion of Reduced Certificate

According to the above intuition, we are interested in determining when an entry in
the answer table has been “updated” during analysis. However, there are two special
types of updated events which can be considered “irrelevant”. The first one is called
redundant update and corresponds to the kind of updates which are similar to event
U1 generated in step B of Ex. 1. We write DAT |A:CP to denote the set of arcs of the
form H : CP0 ⇒ [CP1]B : CP2 in the current dependency arc table such that they
depend on A : CP , i.e., A : CP = (B : CP2)σ for some renaming σ.

Definition 2 (redundant update). Let P ∈ Prog, Sα ∈ AAtom and Ω ∈ QHS.
We say that an event updated(A : CP) which appears in the event queue during the
analysis of P for Sα is redundant w.r.t. Ω iff DAT |A:CP = ∅.

It should be noted that redundant updates can only be generated by updated events
for call patterns which belong to Sα. Otherwise, DAT |A:CP cannot be empty.

Example 3. In our running example, U1 is redundant for Ω at the moment it is gen-
erated. However, since the event has been given low priority, its processing is delayed
until the end. There is a matching dependency when U1 is actually handled by proce-
dure add dependent rules. This causes the unnecessary re-computation of the second
arc for rectoy (A2,2). In the following section, we propose a slight modification to the
analysis algorithm so that redundant updates are executed as soon as they appear. 2

8

Proposition 1. Let Ω ∈ QHS. Let Ω′ ∈ QHS be a strategy which assigns the highest
priority to any updated event which is redundant. Then, ∀ P ∈ Prog, Dα ∈ ADom,
Sα ∈ AAtom, Analyze f(Sα, Ω) = Analyze f(Sα, Ω′).

The second type of updates which can be considered irrelevant are initial updates
which, under certain circumstances, are generated in the first pass over an arc. In
particular, we do not take into account updated events generated when the answer
table contains ⊥ for the updated entry. Note that this case still corresponds to the
first traversal of any arc and should not be considered as a reprocessing.

Definition 3 (initial update). In the conditions of Def. 2, we say that an event
updated(A : CP) which appears in the event queue during the analysis of P for Sα is
initial for Ω if, when it is generated, the answer table contains A : CP 7→ ⊥.

Initial updates do not occur in certain very optimized algorithms, like the one in [17].
However, they are necessary to model generic graph traversal strategies. In particular,
they are intended to awake arcs whose evaluation has been suspended.

Example 4. Suppose that we use a strategy Ω′′ ∈ QHS such that step C in Ex. 1 is
performed before B. Then, when the answer for rectoy(N1, R) : 〈int, term〉 is looked
up, procedure get answer returns ⊥ and thus the processing of arc A2,2 is suspended
at this point (see L25 in Algorithm 1). Next, we proceed with the remaining arc A1,1

which is processed exactly as in step B. Now, the updated event U1 is not redundant
for Ω′′, as there is a dependency introduced by the former processing of arc A2,2 in
the table. Therefore, the processing of U1 introduces the suspended arc A2,2 again
in the queue. The important point is that the fact that U1 inserts A2,2 must not
be considered as a reprocessing, since A2,2 had been suspended and its continuation
(A2,3 in this case) has not been handled by the algorithm yet. 2

Relevant updates which are neither redundant nor initial force (re)computation.

Definition 4 (relevant update). In the conditions of Def. 2, we say that an event
updated(A : CP) which appears in the event queue during the analysis of P for Sα is
relevant for Ω if it is not initial nor relevant for Ω.

The key idea is that those answer patterns whose computation has introduced relevant
updates should be available in the certificate.

Definition 5 (relevant entry). In the conditions of Def. 2, we say that the entry
A : CP 7→ AP in the answer table is relevant for Ω iff there has been at least one
relevant event updated(A : CP) during the analysis of P for Sα.

The notion of reduced certificate allows us to remove irrelevant entries from the answer
table and produce a smaller certificate which can still be validated in one pass.

Definition 6 (reduced certificate). In the conditions of Def. 2 and let FCert=
Analyze f(Sα, Ω) for P and Sα. We define the reduced certificate, RCert, as the set
of relevant entries in FCert w.r.t. Ω.

Example 5. From now on, in our running example, we assume the strategy Ω ′ ∈ QHS
which assigns the highest priority to redundant updates. For this strategy, the entry
E′

1
rectoy(N, M) : 〈int, term〉 7→ 〈int, int〉 in Example 1 is not relevant for Ω′ as

there has been no relevant updated event in the queue (U1 is redundant). Therefore,
the reduced certificate for our running example is empty. In the next section, we show

9

that our checker is able to reconstruct the fixpoint in a single pass from the empty
certificate.6 2

For function rectoy in Example 1, lightweight bytecode verification [19] sends, to-
gether with the program, the reduced non-empty certificate cert = ({30 7→ (ε, rectoy ·
int · int · int · ⊥)}, ε), which states that in program point 30, the stack does not con-
tain information (first occurrence of ε),7 and variables N , M and R have type int,
int and ⊥. The need of sending this information is because rectoy, implemented in
Java, contains an if -branch (equivalent to the branching for selecting one of our two
clauses for rectoy). And cert has to inform the checker that it is possible that in point
30 variable R is undefined, if the if condition does not hold. As showed in the above
example, our approach improves on state-of-the-art PCC techniques by reducing the
certificate even further while still keeping the checking process one-pass.

4.2 Generation of Certificates without Irrelevant Entries

In Algorithm 2, we instrument the analyzer of Algorithm 1 with the extensions nec-
essary for producing reduced certificates, according to Def. 6. Let us briefly explain
the analysis algorithm for reduced certificates, Analyze r. Essentially, we associate
to each entry in the answer table a new field with the boolean u whose purpose is to
indicate whether the entry is relevant. Now, an entry in the answer table is of the form
A(u) : CP 7→ AP . In the algorithm, we still use the previous notation A : CP 7→ AP
while we access the field u by using function get from answer table and procedure
set in answer table. A call u=get from answer table(A : CP) looks up in the answer ta-
ble the entry for A : CP and returns its u-value. A call set in answer table(A(u) : CP 7→
AP) replaces the entry for A : CP with the new one A(u) : CP 7→ AP . If such entry
does not exist, then it simply adds it. All entries initially have the value False for u,
i.e., L16 of Analyze f is replaced by “16: set in answer table(A(false) : CP 7→ AP)” in
Algorithm 2. The remaining procedures remain identical except for insert answer info
whose new definition appears in Algorithm 2. The characterization of relevant update
is performed in this procedure as follows. L5 is in charge of removing redundant up-
dates. The case of initial updates is captured in L10. L13 allows us to identify relevant
updates.

Algorithm 2 Analyzer Analyze r

1: procedure insert answer info(H : CP 7→ AP, Ω)
2: AP0 := lookup answer(H : CP, Ω)
3: AP1 := Alub(AP,AP0)
4: if AP0 6= AP1 then
5: if DAT |H :CP = ∅ then % redundant updates

6: u=get from answer table(H : CP)
7: set in answer table(H(u) : CP 7→ AP1)
8: else
9: add event(updated(H : CP), Ω)

10: if AP0 = ⊥ then % initial updates

11: u=get from answer table(H : CP)
12: set in answer table(H(u) : CP 7→ AP1)
13: else set in answer table(H(true) : CP 7→ AP1) % relevant updates

6 It should be noted that, using Ω as in Example 1, the answer is obtained by performing
two analysis iterations over the arc associated to the second rule of rectoy(N, M) (steps C
and D) due to the fact that U1 has been delayed and become relevant for Ω.

7 The second occurrence of ε indicates that there are no backwards jumps.

10

Example 6. Consider the four steps performed in the analysis of our running example.
In step A, the answer E1 is initialized with u equal to false in L16. Then, in step B,
the procedure insert answer info checks that the condition in L5 holds. Therefore, the
entry is updated with the new answer but its u status does not change and it is
considered non relevant (in fact the update is redundant). Both steps C and D do not
satisfy the condition in L4. Hence, upon return, the status of u for E ′

1
is still False.2

Proposition 2. Let P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom, Ω ∈ QHS. Let FCert
be the answer table computed by Analyze r(Sα, Ω) for P in Dα. Then, an entry
A(u) : CPA 7→ AP ∈ FCert is relevant iff u is true.
Note that, except for the control of relevant entries, Analyze f(Sα, Ω) and Ana-

lyze r(Sα, Ω) have the same behaviour, they compute the same answer table (see
Proposition 3 in Appendix B). When the analysis terminates, in order to obtain the
reduced certificate, we use function remove irrelevant answers which takes a set of
answers of the form A(u) : CP 7→ AP ∈ FCert and returns, RCert, the set of answers
A : CP 7→ AP such that u is true.

Definition 7. We define the function Certifier r: Prog×ADom×AAtom×AInt×
QHS 7→ ACert, which takes P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom, Iα ∈ AInt,
Ω ∈ QHS. It returns as certificate, RCert=remove irrelevant answers(FCert), where
FCert=Analyze r(Sα, Ω), iff FCert v Iα.

5 Checking Reduced Certificates

In the ACC framework for full certificates, the checking algorithm [1] uses a specific
graph traversal strategy ΩC . This checker has been shown to be very efficient but in
turn its design is not generic with respect to this issue (in contrast to the analysis
design).8 This is not problematic in the context of full certificates as, even if the
certifier uses a strategy ΩA different from ΩC , it is ensured that all valid certificates
get validated in one pass by such specific checker. Unfortunately, this does not hold
anymore in the case of reduced certificates. In particular, completeness of checking is
not guaranteed if ΩA 6= ΩC . This occurs because though the answer table is identical
for all strategies, the subset of redundant entries depends on the particular strategy
used. The problem is that, if there is an entry A : CP 7→ AP in FCert such that it is
relevant w.r.t. ΩC but it is not w.r.t. ΩA, then a single pass checker will fail to validate
the RCert generated using ΩA. Therefore, it is essential in this context to design generic
checkers which are not tied to a particular graph traversal strategy. Upon receiving the
appropriate parameters from the supplier, the consumer uses the particular instance
of the generic checker resulting from application of such parameters.

It should be noted that the design of generic checkers is also relevant in light of
current trends in verified analyzers (e.g., [11, 5]), which could be transferred directly
to the checking end. In particular, since the design of the checking process is generic,
it becomes feasible in ACC to use automatic program transformers to specialize a
certified (specific) analysis algorithm in order to obtain a certified checker with the
same strategy while preserving correctness and completeness.

5.1 The Generic Checking Algorithm

The following definition presents a generic checker for validating reduced certificates.
In addition to the genericity issue discussed above, a important difference with the

8 Note, however, that both the analysis and checking algorithms are always parametric on
the abstract domain, with the resulting genericity, which allows proving a wide variety of
properties by using the large set of already available domains, being one of the fundamental
advantages of ACC.

11

checker for full certificates [1] is that there are certain entries which are not available in
the certificate and that we want to reconstruct and output in checking. The reason for
this is that the safety policy has to be tested w.r.t. the full answer table –Equation (2).
Therefore, the checker must reconstruct, from RCert, the answer table returned by
Analyze f, FCert, in order to test for adherence to the safety policy –Equation (4).
The checker can identify two sources of errors: a) a relevant update is needed to obtain
an answer (cannot be obtained in one pass), b) the answer in the certificate is more
precise than the one obtained by the checker (the certificate and program at hand
do not correspond to each other). In both cases, the checker has to issue Error. Note
that reconstructing the answer table does not add any additional cost compared to
the checker in [1], since the full answer table also has to be created in [1]. In the
definition below, we start from Analyze f rather than from Analyze r because
the instrumentation for classifying updated events is not needed for the purpose of
checking.

Definition 8 (checker for reduced certificates). Function Checking r is de-
fined as function Analyze f with the following modifications:

1. It receives RCert as an additional input parameter.
2. It mail fail to produce an answer table. In that case it issues an Error.
3. It uses the trivial initial guess function which returns ⊥ for any call pattern.
4. Function insert answer info is replaced by the new one in Fig 3.

Algorithm 3 Generic Checker for Reduced Certificates Checking r

1: procedure insert answer info(H : CP 7→ AP, Ω, RCert)
2: AP0 := lookup answer(H : CP, Ω)
3: (IsIn,AP ′)=look fixpoint(H : CP ,RCert)
4: if AP0 = ⊥ then process initial update(IsIn,AP ′,H : CP 7→ AP,Ω)
5: else if IsIn then % case 1.2

6: if Alub(AP,AP0) 6= AP ′ then return Error % error type b) second update

7: else % case 2.2

8: AP1 := Alub(AP,AP0)
9: if DAT |H:CP = ∅ then add H : CP 7→ AP1 to answer table

10: else if AP0 6= AP1 then return Error % relevant update, error type a)

11: function look fixpoint(A : CP ,RCert)
12: if ∃ a renaming σ such that σ(A : CP 7→ AP) ∈ RCert then returns (True,σ−1(AP))
13: else return (False,⊥)

14: function process initial update(IsIn,AP ′,H : CP 7→ AP, Ω)
15: if IsIn then % case 1.1

16: if Alub(AP,AP′) 6= AP ′ then return Error % error type b) for first update

17: else add H : CP 7→ AP ′ to answer table
18: else add H : CP 7→ AP to answer table % case 2.1

19: if DAT |H:CP 6= ∅ and AP 6= ⊥ then add event(updated(H : CP), Ω)

Function Checker r takes P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom, Ω ∈ QHS, RCert
∈ ACert and returns the result of Checking r(Sα, Ω,RCert) for P in Dα.

Let us briefly explain Algorithm 3. We distinguish four main cases in the algorithm by
combining: 1) whether there is an entry for the call pattern in the certificate or not,
2) if it is the first time the call pattern is processed (initial update) or not. We use
function look fixpoint for finding out 1). A call look fixpoint(H : CP ,RCert) returns a
tuple (IsIn, AP ′) such that: if H : CP is in RCert, then IsIn is equal to True and AP ′

returns the fixpoint stored in RCert. Otherwise, IsIn is equal to False and AP ′ is ⊥.

IsIn=true. There are two cases which are distinguished in L4:

12

1.1. Initial update. This corresponds to the case when AP0 = ⊥ in L4. Now pro-
cess initial update is executed. L16 checks if the first computed solution AP
for H : CP is more general than AP ′ (answer in RCert). This case corresponds
to an Error of type b). Otherwise, L17 introduces in the answer table the fix-
point for H : CP . Finally, if the initial update is non redundant (L19), it is
launched in order to awake suspended arcs in the dependency arc table.

1.2. Next updates. Only L6 is executed to check whether the fixpoint of H : CP
(already stored in the answer table) is more general or equal than the partial
computed solution AP . Otherwise, an Error type b) is issued.

IsIn=false. The same cases as above are distinguished in L4:

2.1. Initial update. In this case, process initial update stores AP as first answer for
H : CP (L18), and the corresponding initial update event is launched (L19).

2.2. Next updates. After this first one, the next partial solutions cannot generate
relevant updates or the algorithm issues an Error (L10). This ensures that the
checking process is done in a single pass. If no relevant updates are generated,
a new answer for H : CP is computed (L8-9).

Note that, although Checker r has information in RCert about certain answers,
function initial guess does not consult it and instead introduces ⊥ initially. The reason
is that initial updates are needed in order to awake the possibly suspended computa-
tions which depend on the answers not available in RCert. This does not occur in the
checking of [1] because certificates are full and suspension never occurs.

Example 7. Following Example 1, we assume that an empty certificate is sent along
with the untrusted code. Let us compare the fours steps performed in the analysis
(see Example 6) with the corresponding Checker r which uses the same QHS:

A. This step is executed identically by the checker. E1 is inserted.
B. The difference in this step is that the redundant update U1 is not generated

because in L10 the checker realizes that there are no dependencies for its call.
C. Exactly the same events and the same answer as computed in step C of analysis

occur here.
D. This step is not performed because U1 is not in the queue.

Notice that, as expected, the reprocessing carried out in step D of analysis is not
performed during checking and, hence, the program is validated in a single pass over
the analysis graph. 2

5.2 Completeness and Correctness Results

The following theorem ensures that if Checker r validates a certificate (i.e., it does
not return Error), then the re-constructed answer table is a fixpoint. This implies that
any certificate which gets validated by the checker is indeed a valid one.

Theorem 1 (correctness). Let P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom, Iα ∈ AInt
and ΩA, ΩC ∈ QHS. Let FCert= Certifier f(P,Dα, Sα, Iα, ΩA) and RCert= Cer-

tifier r(P,Dα, Sα, Iα, ΩA). If Checker r(P,Dα, Sα, Iα,RCert, ΩC) does not issue
an Error, then it returns FCert.

As already mentioned, using a Checker r with a strategy ΩC , we may fail to validate
a reduced certificate which is indeed valid for the program, though reduced w.r.t.
another strategy ΩA 6= ΩC . This is illustrated in the example below.

Example 8. Consider the analysis of the following simple program w.r.t. the call pat-
tern q(X) : > using the same domain as for the running example.

13

q(X) :- p(X). p(X) :- X = 1.0.

p(X) :- X = 1.

We will consider two different strategies Ω1 6= Ω2. Under both strategies, we start
by processing the single rule for q. As a result, the event newcall(p(X):〈term〉) is
generated, and q(X) : 〈term〉 7→ ⊥ is added to the answer table. Also, an entry for q

is introduced in the dependency arc table. Now, using Ω1, the analyzer processes the
two arcs for p(X) in the order in which the clauses are written. After traversing the
first arc, the answer p(X) : 〈term〉 7→ 〈real〉 is inferred and an (initial) updated event
is generated. The analysis of the second arc produces the answer 〈int〉 and does not
update the entry since Alub({X/real}, {X/int}) returns {X/real}. After processing
the initial update for p, the answer q(X) : 〈term〉 7→ 〈real〉 replaces the old one in
the answer table, and the fixpoint is reached without any iteration (i.e., no relevant
update for the call). Assume now that Ω2 assigns a higher priority to the second arc
of p. In this case, the answer for p(X) : 〈term〉 changes from ⊥ to {X/int} (producing
an initial update). When the first arc is processed the computed answer is {X/real}.
Now, a relevant update is needed since there is a dependency q(X) : ⇒ []p(X) : in
the dependency arc table.

Thus, the certificate reduced w.r.t. Ω1 is empty, whereas the one reduced w.r.t. Ω2

contains the single entry p(X) : 〈term〉 7→ 〈real〉. Since, as seen above, the strategy
Ω2 performs a relevant update for the call pattern p(X) : 〈term〉, a checker using Ω2

will issue an error when trying to validate the program if provided with the empty
certificate. 2

The following theorem (completeness) provides sufficient conditions under which a
checker is guaranteed to validate reduced certificates which are actually valid.

Theorem 2 (completeness). Let P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom, Iα ∈
AInt and Ωa ∈ QHS. Let FCert= Certifier f(P,Dα, Sα, Iα, Ωa) and RCertΩa

=
Certifier r(P,Dα, Sα, Iα, Ωa). Let Ωc ∈ QHS be such that RCertΩc

= Certi-

fier r(P,Dα, Sα, Iα, Ωc) and RCertΩa
⊇ RCertΩc

. Then, Checker r(P,Dα, Sα, Iα,
RCertΩa

, Ωc) returns FCert and does not issue an Error.

Obviously, if Ωc = Ωa then the checker is guaranteed to be complete. Additionally,
a checker using a different strategy Ωc is also guaranteed to be complete as long as
the certificate reduced w.r.t Ωc is equal to or smaller than the certificate reduced
w.r.t Ωa. Furthermore, if the certificate used is full, the checker is complete for any
strategy.

6 Conclusions

In this paper we have proposed an extension of the ACC framework which generates
(and checks) reduced certificates by eliminating from certificates the information which
the checker can reproduce in a single pass. This allows reducing transmission and
storage costs without increasing checking time. As we have illustrated throughout
the paper, the size of the certificate is directly related to the amount of updates (or
iterations) performed during analysis. Clearly, depending on the the traversal strategy
used, different instances of the generic analyzer will generate reduced certificates of
different sizes. Important efforts have been made during the last years in order to
improve the efficiency of analysis. The most optimized analyzers aim at reducing
the number of updates necessary to reach the final fixpoint [17]. Interestingly, our
framework greatly benefits from all these advances, since the more efficient analysis
is, the smaller the corresponding reduced certificates are. In future work we plan to
assess the influence that different strategies have on certificate reduction. Also, we

14

will consider and compare with the case of using the fixed-point analyzers also on the
checking side. In this case, since the certificate can be recreated at the receiving end
as much as needed, there is clearly a wide range of trade-offs between the size of the
certificate and the checking time We also plan to incorporate our new framework for
generating and checking reduced certificates in the CiaoPP preprocessor and to study
different certificate size vs. checking time trade-offs. We also want to investigate ways
of reducing the trusted base code (see, e.g., [3, 16]) in ACC.

References

1. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code. In Proc. of

LPAR’04, number 3452 in LNAI, pages 380–397. Springer-Verlag, 2005.
2. E. Albert, G. Puebla, and M. Hermenegildo. Abstraction-Carrying Code: A Model for

Mobile Code Safety. Technical Report CLIP7/2005.0, Technical University of Madrid,
School of Computer Science, UPM, July 2005.

3. A. Appel and A. Felty. A semantic model of types and machine instructions for proof-
carrying code. In Proc. of POPL’00. ACM Press, 2000.

4. M. Bruynooghe. A Practical Framework for the Abstract Interpretation of Logic Pro-
grams. Journal of Logic Programming, 10:91–124, 1991.

5. D. Cachera, T. Jensen, D. Pichardie, and V. Rusu. Extracting a Data Flow Analyser in
Constructive Logic. In Proc. of ESOP 2004, volume LNCS 2986, pages 385 – 400, 2004.

6. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Fourth ACM

Symposium on Principles of Programming Languages, pages 238–252, 1977.
7. T. Früwirth, E. Shapiro, M.Y. Vardi, and E. Yardeni. Logic programs as types for logic

programs. In Proc. LICS’91, pages 300–309, 1991.
8. M. Hermenegildo, E. Albert, P. López-Garćıa, and G. Puebla. Abstraction Carrying

Code and Resource-Awareness. In Proc. of PPDP’05. ACM Press, July 2005.
9. M. Hermenegildo, G. Puebla, K. Marriott, and P. Stuckey. Incremental Analysis of Con-

straint Logic Programs. ACM Transactions on Programming Languages and Systems,
22(2):187–223, March 2000.

10. Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro López-Garćıa.
Integrated Program Debugging, Verification, and Optimization Using Abstract Inter-
pretation (and The Ciao System Preprocessor). Science of Computer Programming,
58(1–2), 2005.

11. G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Computer Science,
3(298):583–626, 2003.

12. Xavier Leroy. Java bytecode verification: algorithms and formalizations. Journal of

Automated Reasoning, 30(3-4):235–269, 2003.
13. J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edition,

1987.
14. Kim Marriot and Peter Stuckey. Programming with Constraints: An Introduction. The

MIT Press, 1998.
15. G. Necula. Proof-Carrying Code. In Proc. of POPL’97, pages 106–119. ACM Press,

1997.
16. G. Necula and R. Schneck. A Sound Framework for Untrustred Verification-Condition

Generators. In IEEE Computer Society, editor, Proc. of LICS03, pages 248–260, 2003.
17. G. Puebla and M. Hermenegildo. Optimized Algorithms for the Incremental Analysis of

Logic Programs. In Proc. of SAS’96, pages 270–284. Springer LNCS 1145, 1996.
18. E. Rose and K. Rose. Java access protection through typing. Concurrency and Compu-

tation: Practice and Experience, 13(13):1125–1132, 2001.
19. K. Rose, E. Rose. Lightweight bytecode verification. In OOPSALA Workshop on Formal

Underpinnings of Java, 1998.

15

A Analysis Graph for the Running Example

E2 :0 rectoy(N, M)11

A1

ÄÄÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ

A2

ÂÂ?
??

??
??

??
??

??
??

?

rectoy(N, M)

A1,1

ÄÄÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
Ä

A1,2

²²

rectoy(N, M)

A2,1

ÄÄÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
ÄÄ
Ä

A2,2

²²

A2,3

ÂÂ?
??

??
??

??
??

??
??

??

1N = 02 3M = 04 5N1 is N− 16 7
rectoy(N1, R)8

WW/
/
/
/
/
/
/
/
/
/
/
/
/
/

9M is N1− R10

0, 1, 2, 3 : N/int
4 : N/int, M/int
5 : N/int
6 : N/int, N1/int

7 : N1/int
8 : N1/int, R/int
9 : M/int, R/int, N1/int
10 : M/int, R/int, N1/int
11 : N/int, M/int

Fig. 1. Analysis Graph for our Running Example

Figure 1 shows the analysis graph for our running example. The graph has two sorts
of nodes. Those which correspond to atoms are called “OR-nodes.” An OR-node of
the form CP AAP is interpreted as: the answer for the call pattern A : CP is AP. For
instance, the OR-node

{N1/int}rectoy(N1, R){N1/int,R/int}

indicates that, when the atom rectoy(N1, R) is called with description 〈int, term〉,
the answer computed is 〈int, int〉. Those nodes which correspond to rules are called
“AND-nodes.” In the figure above, they appear within a dotted box and contain the
head of the corresponding clause. Each AND-node has as children as many OR-nodes
as atoms there are in the body. If a child OR-node is already in the tree, it is not
expanded any further and the currently available answer is used. For instance, the
analysis graph in the figure above contains two occurrences of the abstract atom
rectoy(N, M) : 〈int, term〉 (modulo renaming), but only one of them (the root) has
been expanded. This is depicted by a dashed arrow from the non-expanded occurrence
to the expanded one.

The answer table contains entries for the different OR-nodes which appear in the
graph. For instance, there exists an entry of the form

E′
1
rectoy(N, M) : 〈int, term〉 7→ 〈int, int〉

associated to the (root) OR-node discussed above, which is in fact the fixpoint. De-
pendencies in the dependency arc table indicate direct relations among OR-nodes.
An OR-node AF : CPF depends on another OR-node AT : CPT iff the OR-node

16

AT : CPT appears in the body of some clause for AF : CPF . For instance, the
dependency set for the abstract atom rectoy(N, M) : 〈int, term〉 is

rectoy(N, M) : 〈int, term〉 ⇒ [{N/int, N1/int}] rectoy(N1, R) : 〈int, term〉

It indicates that the OR-node rectoy(N1, R) : 〈int, term〉 is only used in the OR-node
rectoy(N, M) : 〈int, term〉. Thus, if the answer pattern for rectoy(N1, R) : 〈int, term〉
is ever updated, then we must reprocess the OR-node rectoy(N, M) : 〈int, term〉.

B Proofs of Correctness and Completeness

B.1 Results for Analysis

Proposition 1. Let Ω ∈ QHS. Let Ω′ ∈ QHS be a strategy which assigns the highest
priority to any updated event which is redundant. Then, ∀ P ∈ Prog, Dα ∈ ADom,
Sα ∈ AAtom, Analyze f(Sα, Ω) = Analyze f(Sα, Ω′).

Proof. Analyze f is correct independently of the order in which events in the priority
queue are processed [9]. Thus, any redundant event updated(A : CP) can be processed
as soon as it is inserted in the queue. In such a case, there are no arcs (DAT |A:CP = ∅)
in the dependency arc table applicable to the event. Therefore, no action is taken.
Consequently, redundant updates are not necessary for constructing the result. 2

Proposition 2. Let P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom, Ω ∈ QHS. Let AT
be the answer table computed by Analyze r(Sα, Ω) for P in Dα. Then, an entry
A(u) : CPA 7→ AP ∈ AT is relevant iff u is true.

Proof. From the definition of function insert answer info, it holds trivially that A(u) :
CPA 7→ AP verifies that u is true iff some event updated(B : CPB) (generated by an
update with an answer different from ⊥) occurred with an arc A : CPA ⇒ B : CPB

(modulo renaming) in the dependency arc table. Therefore, by Def. 2, it is not a
redundant update as its DAT is not empty. Similarly, by Def. 3, it is not an initial
update since the answer is not ⊥. Hence, by Def. 4, it is relevant. As a consequence,
by Def. 5, the entries for A(u) : CPA : CP 7→ AP with u ≡ true are relevant. 2

Proposition 3. Let P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom, Ω,Ω′ ∈ QHS. Then,
Analyze f(Sα, Ω)=Analyze r(Sα, Ω′).

Proof. By the correctness of Analyze f [9], we know that Analyze f(Sα, Ω) com-
putes the same answer table than Analyze f(Sα, Ω′). Then, Analyze f and An-

alyze r differ only on the instrumentation for detecting relevant solutions and the
absence of redundant updates which, by Proposition 1, does not affect the computa-
tion of the final answer table. Hence, Analyze f(Sα, Ω′) computes the same answer
table than Analyze r(Sα, Ω′) and the claim follows. 2

B.2 Results for Checking

Theorem 1 (Correctness). Let P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom, Iα ∈ AInt
and ΩA, ΩC ∈ QHS. Let FCert= Certifier f(P,Dα, Sα, Iα, ΩA) and RCert= Cer-

tifier r(P,Dα, Sα, Iα, ΩA). If Checker r(P,Dα, Sα, Iα,RCert, ΩC) does not issue
an Error, then it returns FCert.

17

Proof. If Checker r(P,Dα, Sα, Iα,RCert, Ω) does not issue an Error, then it com-
putes an answer table AT . Let us Assume the following three claims:

(1) If A : CP 7→ AP ∈ AT and FCert contains an entry for A : CP , then it holds that
A : CP 7→ AP ∈ FCert.

(2) If there is an entry for A0 : CP0 in AT , then there is one for A0 : CP0 in FCert.
(3) If there is an entry for A0 : CP0 in FCert, then there is one for A0 : CP0 in AT .

Then, from (1) and (2) it holds AT ⊆ FCert. From (3), it holds that AT =FCert. We
now prove the three claims separately.

Claim (1) We assume that A0 : CP0 7→ AP0 ∈ AT . We distinguish two cases. 1) If
A0 : CP0 7→ AP0 ∈ RCert, since RCert⊆ FCert and RCert∈ AT , then the result holds.
2) We now consider that A0 : CP0 7→ AP0 belongs to AT − RCert. We want to prove
that A0 : CP0 7→ AP0 ∈ FCert by contradiction.

The assumption is that A0 : CP0 7→ AP ′
0
∈ FCert and AP0 6= AP ′

0
. This means

that in some step of the checking process, we have evaluated an arc of the form:

A0 : CP0 ⇒ []A1 : CP1

such that the final computed answer for A1 : CP1 in AT is pc
1

and FCert contains
pa
1

as fixpoint for A1 : CP1, with pc
1
6= pa

1
. Necessarily, A1 : CP1 6∈ RCert, and

A1 : CP1 does not suffer updated event which is not initial (otherwise A1 : CP1 has
to belong to RCert). The key is that, for this kind of call patterns, Checker r behaves
exactly equal to Certifier f(P,Dα, Sα, Iα, Ω) if the answer table is initially with the
contents of RCert. Moreover, by [9]:

Certifier f(P,Dα, Sα, Iα, Ω′) = Certifier f(P,Dα, Sα, Iα, Ω)

Thus pc
1

= pa
1
, and hence AP0 = AP ′

0
, which contradicts our assumption.

Claim (2) If A0 : CP0 ∈ RCert or A0 : CP0 ∈ Sα, then the result holds trivially.
Let us assume that A0 : CP0 does not belong to these sets. We again reason by
contradiction. The assumption is that A0 : CP0 does not have an answer in FCert.
Consider A1 : CP1 ∈ Sα whose evaluation after newcall(A1 : CP1) generates the event
newcall(A0 : CP0) in the checking process. Necessarily, during the processing of the
event newcall(A1 : CP1), the following two arcs must have existed:

A2 : CP2 ⇒ A3 : CP3

A2 : CP2 ⇒ A0 : CP0

corresponding to a rule A2:- . . . , A3, A0, . . ., where either A3 : CP3 has an answer in
FCert (different from the existing one in AT) or A3 : CP3 has no entry in FCert. The
former case is impossible for (1). The latter case, reasoning identically, would lead to
a similar situation. By iterating on the process, we obtain that A1 : CP1 has no entry
in FCert. This is impossible because A1 : CP1 ∈ Sα.

Claim (3) If A0 : CP0 has an entry in RCert, or belongs to Sα, then the result holds
trivially. Otherwise, the claim follows by contradiction, similarly to case (2).

2

Theorem 2 (Completeness).
Let P ∈ Prog, Dα ∈ ADom, Sα ∈ AAtom, Iα ∈ AInt and Ωa ∈ QHS. Let FCert=

Certifier f(P,Dα, Sα, Iα, Ωa) and RCertΩa
= Certifier r(P,Dα, Sα, Iα, Ωa). Let

Ωc ∈ QHS be s.t. RCertΩc
= Certifier r(P,Dα, Sα, Iα, Ωc) and RCertΩa

⊇ RCertΩc
.

Then, the execution of Checker r(P,Dα, Sα, Iα,RCertΩa
, Ωc) returns FCert and does

not issue an Error.

18

Proof. The only cases in which Checker r returns Error are the following:

– The partial answer AP computed for some calling pattern A : CP (provided in
RCertΩa

) causes that Alub(AP,AP ′) 6= AP ′, where AP ′ is the answer for A : CP ,
i.e., A : CP 7→ AP ′ ∈ RCertΩa

. But, this is in contradiction with the assumption
that RCertΩa

is a valid reduced certificate for P .
– A calling pattern A : CP not provided in RCertΩa

produces the reprocessing of
its dependent arcs due to some relevant update (L10 in Algorithm 3). But this
is in contradiction with the assumption that RCertΩa

⊇ RCertΩc
, since RCertΩc

contains all relevant entries generated by Certifier r by using the strategy Ωc.

Thus, Checker r(P,D, S, I,RCertΩa
, Ωc) returns an answer table AT . Finally, by

Theorem 1, we know that since no Error is issued, Checker r returns FCert. 2

19

