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Outline of the Talk

1 Simple Imperative Bytecode Programs

transform into rule-based form by means of CFG
abstract interpretation based size analysis
find ranking functions for each loop

2 From Termination to Cost

generating recurrence equations from abstract rules
use ranking functions as UB on # iterations
the COSTA system: asymptotic bounds, verification, etc.

3 Field-Sensitive Analysis
shared mutable data

shared (i.e., aliases are allowed)
mutable (i.e., can be modified multiple times)

4 Tool demo
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PART 1: TERMINATION OF SIMPLE BYTECODE PROGRAMS

Simple imperative stack-based bytecode language

Ignoring global memory (heap)

Without OO features: virtual invocations, etc.

Why bytecode ?

common in Java to have access to bytecode but not to source
even more in commercial software and in mobile code
kind of normal form for Java programs (similar to .net)

What are the challenges?

loops originate from different sources, such as conditional and
unconditional jumps, method calls, or even exceptions
size measures must consider primitive types, user defined
objects, and arrays;
tracking data is more difficult, as data can be stored in
variables, operand stack elements or heap locations.
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Termination Analysis Components

Ruled−Based

Graph Representation

Java Bytecode

Program

Control Flow

Abstract compilation

Input Output size relations

Input: JBC program

loops

Size Analysis

yes

no

ranking functions?

terminates

Output

don’t know

Transition relations

One rule per block in the CFG

Elvira Albert From Termination to Cost



Java Program and its translation to Java Bytecode

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
int j=i+1;

int v=a[i];

while ( j<a.length && a[j]<v) {
a[j-1]=a[j];

j++;

}
a[j-1]=v;

}
}

0: aload 0

1: arraylength

2: iconst 2

3: isub

4: istore 1

5: iload 1

6: iflt 56

9: iload 1

10: iconst 1

11: iadd

12: istore 2

13: aload 0

14: iload 1

15: iaload

16: istore 3

17: iload 2

18: aload 0

19: arraylength

20: if icmpge 44

23: aload 0

24: iload 2

25: iaload

26: iload 3

27: if icmpge 44

30: aload 0

31: iload 2

32: iconst 1

33: isub

34: aload 0

35: iload 2

36: iaload

37: iastore

38: iinc 2, 1

41: goto 17

44: aload 0

45: iload 2

46: iconst 1

47: isub

48: iload 3

49: iastore

50: iinc 1, -1

53: goto 5

56: return
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Termination Analysis Components

Ruled−Based

Graph Representation

Java Bytecode

Program

Control Flow

Abstract compilation

Input Output size relations

Input: JBC program

loops

Size Analysis

yes

no

ranking functions?

terminates

Output

don’t know

Transition relations

One rule per block in the CFG
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Control Flow Graph - Loops Extraction

entry

aload 0

arraylength

iconst 2

isub

istore 1

iload 1 56: return

iload 1

iconst 1

iadd

istore 2

aload 0

iload 1

iaload

istore 3

iload 2

aload 0

arraylength

aload 0

iload 2

iaload

iload 3

aload 0

iload 2

iconst 1

isub

aload 0

iload 2

iaload

iastore

iinc 2,1

aload 0

iload 2

iconst 1

isub

iload 3

iastore

iinc 1,-1

iflt

ifge

if icmplt

if icmpge

if icmpltif icmpge
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Termination Analysis Components

Ruled−Based

Graph

Java Bytecode

Program

Control Flow

Abstract compilation

Input Output size relations

Input: JBC program

loops

Size Analysis

yes

no

ranking functions?

terminates

Output

Representation

don’t know

Transition relations

One rule per block in the CFG
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Rule-based Representation - Cont.

entry exit

iload 1

call loop-2

iload 1

iconst 1

iadd

istore 2

aload 0

iload 1

iaload

istore 3

aload 0

iload 2

iconst 1

isub

iload 3

iastore

iinc 1,-1

iflt

ifge

for (int i=a.length-2;i≥0;i--) {
int j=i+1;

int v=a[i];

.....

a[j-1]=v;

}

B1(〈a, i〉, 〈〉) :=
iload(i , s0),
Bc

1(〈a, i , s0〉, 〈〉).
Bc

1(〈a, i , s0〉, 〈〉) :=
guard(s0 < 0).
Bc

1(〈a, i , s0〉, 〈〉) :=
guard(s0 ≥ 0),
B2(〈a, i〉, 〈〉).
B2(〈a, i〉, 〈〉) :=

iload(i , s0),
iconst(1, s1),
iadd(s0, s1, s0),
istore(s0, j),
aload(a, s0),
iload(i , s1),
iaload(s0, s1, s0),
istore(s0, v),
B3(〈a, i , j , v〉, 〈〉).

B3(〈a, i , j , v〉, 〈〉) :=
C1(〈a, j , v〉, 〈j〉),
B4(〈a, i , j , v〉, 〈〉).
B4(〈a, i , j , v〉, 〈〉) :=

aload(a, s0),
iload(j , s1),
iconst(1, s2),
isub(s1, s2, s1),
iload(v , s2),
iastore(s0, s1, s2),
iinc(i ,−1),
B1(〈a, i〉, 〈〉).
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Nice features of rule-based representation

rule-based program

set of procedures defined by one or more rules:
p(〈x̄〉, 〈ȳ〉) := g , b1, . . . , bn

Loops are extracted in separate procedures:
B3(〈a, i , j , v〉, 〈〉) := C1(〈a, j , v〉, 〈j〉),B4(〈a, i , j , v〉, 〈〉).
All iterative constructs (loops) fit in the same setting:

recursive calls
iterative loops (conditional and unconditional jumps)

All kinds of variables are just arguments:
local variables
stack elements

B2(〈a, i〉, 〈〉) := iload(i, s0), iconst(1, s1), ...

Guards are the only form of conditional
Bc

1(〈a, i , s0〉, 〈〉) := guard(s0 ≥ 0),B2(〈a, i〉, 〈〉).
Rules may have multiple output parameters
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Rules may have multiple output parameters
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Nice features of rule-based representation
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Guards are the only form of conditional
Bc

1(〈a, i , s0〉, 〈〉) := guard(s0 ≥ 0),B2(〈a, i〉, 〈〉).
Rules may have multiple output parameters

Elvira Albert From Termination to Cost



Nice features of rule-based representation

rule-based program

set of procedures defined by one or more rules:
p(〈x̄〉, 〈ȳ〉) := g , b1, . . . , bn

Loops are extracted in separate procedures:
B3(〈a, i , j , v〉, 〈〉) := C1(〈a, j , v〉, 〈j〉),B4(〈a, i , j , v〉, 〈〉).
All iterative constructs (loops) fit in the same setting:

recursive calls
iterative loops (conditional and unconditional jumps)

All kinds of variables are just arguments:
local variables
stack elements

B2(〈a, i〉, 〈〉) := iload(i, s0), iconst(1, s1), ...

Guards are the only form of conditional
Bc

1(〈a, i , s0〉, 〈〉) := guard(s0 ≥ 0),B2(〈a, i〉, 〈〉).

Rules may have multiple output parameters

Elvira Albert From Termination to Cost



Nice features of rule-based representation

rule-based program

set of procedures defined by one or more rules:
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Termination Analysis Components

Ruled−Based

Graph

Java Bytecode

Program

Control Flow

Abstract compilation

Input Output size relations

Input: JBC program

loops

Size Analysis

yes

no

ranking functions?

terminates

Output

Representation

don’t know

Transition relations

One rule per block in the CFG
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Size Relations Analysis

Norms:

The size of an integer variable is its value
The size of an array is its length
The size of an object is the longest path-length reachable
from that object (unknown for cyclic structures)

Abstract compilation:

iadd(a, b, c) is abstracted to c=b+a
guard(icmple(s0, s1)) is abstracted to s0≤s1

B4(〈a, i , j , v〉, 〈〉) :=
aload(a, s0),
iload(j , s1),
iconst(1, s2),
isub(s1, s2, s1),
iload(v , s2),
iastore(s0, s1, s2),
iinc(i ,−1),
B1(〈a, i〉, 〈〉).
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The size of an array is its length
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Size Relations Analysis

Norms:

The size of an integer variable is its value
The size of an array is its length
The size of an object is the longest path-length reachable
from that object (unknown for cyclic structures)

Abstract compilation:

iadd(a, b, c) is abstracted to c=b+a
guard(icmple(s0, s1)) is abstracted to s0≤s1

B4(〈a, i , j , v〉, 〈〉) :=
aload(a, s0),
iload(j , s1),
iconst(1, s2),
isub(s1, s2, s1),
iload(v , s2),
iastore(s0, s1, s2),
iinc(i ,−1),
B1(〈a, i〉, 〈〉).

B4(〈a, i , j , v〉, 〈〉) :=
s0 = a,
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Size Relations Analysis

Norms:

The size of an integer variable is its value
The size of an array is its length
The size of an object is the longest path-length reachable
from that object (unknown for cyclic structures)

Abstract compilation:

iadd(a, b, c) is abstracted to c=b+a
guard(icmple(s0, s1)) is abstracted to s0≤s1

B4(〈a, i , j , v〉, 〈〉) :=
aload(a, s0),
iload(j , s1),
iconst(1, s2),
isub(s1, s2, s1),
iload(v , s2),
iastore(s0, s1, s2),
iinc(i ,−1),
B1(〈a, i〉, 〈〉).

B4(〈a, i , j , v〉, 〈〉) :=
s0 = a,
s1 = j ,
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Size Relations Analysis

Norms:

The size of an integer variable is its value
The size of an array is its length
The size of an object is the longest path-length reachable
from that object (unknown for cyclic structures)

Abstract compilation:

iadd(a, b, c) is abstracted to c=b+a
guard(icmple(s0, s1)) is abstracted to s0≤s1

B4(〈a, i , j , v〉, 〈〉) :=
aload(a, s0),
iload(j , s1),
iconst(1, s2),
isub(s1, s2, s1),
iload(v , s2),
iastore(s0, s1, s2),
iinc(i ,−1),
B1(〈a, i〉, 〈〉).

B4(〈a, i , j , v〉, 〈〉) :=
s0 = a,
s1 = j ,
s2 = 1,
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s2 = 1,
s ′

1 = s1 − s2,
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from that object (unknown for cyclic structures)

Abstract compilation:

iadd(a, b, c) is abstracted to c=b+a
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Norms:

The size of an integer variable is its value
The size of an array is its length
The size of an object is the longest path-length reachable
from that object (unknown for cyclic structures)
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B4(〈a, i , j , v〉, 〈〉) :=
s0 = a,
s1 = j ,
s2 = 1,
s ′

1 = s1 − s2,
s ′

2 = v ,
true,
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Size Relations Analysis

Norms:

The size of an integer variable is its value
The size of an array is its length
The size of an object is the longest path-length reachable
from that object (unknown for cyclic structures)

Abstract compilation:

iadd(a, b, c) is abstracted to c=b+a
guard(icmple(s0, s1)) is abstracted to s0≤s1
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Size Relations Analysis

Norms:

The size of an integer variable is its value
The size of an array is its length
The size of an object is the longest path-length reachable
from that object (unknown for cyclic structures)

Abstract compilation:

iadd(a, b, c) is abstracted to c=b+a
guard(icmple(s0, s1)) is abstracted to s0≤s1

B4(〈a, i , j , v〉, 〈〉) :=
aload(a, s0),
iload(j , s1),
iconst(1, s2),
isub(s1, s2, s1),
iload(v , s2),
iastore(s0, s1, s2),
iinc(i ,−1),
B1(〈a, i〉, 〈〉).

B4(〈a, i , j , v〉, 〈〉) :=
s0 = a,
s1 = j ,
s2 = 1,
s ′

1 = s1 − s2,
s ′

2 = v ,
true,
i ′ = i − 1,
B1(〈a, i ′〉, 〈〉).
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Size Relations Analysis - Cont.

We can apply existing techniques to reason on the termination
of the abstract program (CLP, TRS, ...)

Reduce the termination of the abstract program to the
termination (well-foundness) of the transition relation

B1(〈a, i〉) −→ B1(〈a′, i ′〉) {a′ = a, i >= 0, i ′ = i − 1}
C1(〈a, j , v〉−→ C1(〈a′, j ′, v ′〉) {a′ = a, j ′ = j + 1, j < a}

We can easily find ranking functions:

for (int i=a.length-2; i≥0; i--) {
· · ·

while ( j<a.length && a[j]<v) {
· · ·
j++;

}
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Size Relations Analysis - Cont.

We can apply existing techniques to reason on the termination
of the abstract program (CLP, TRS, ...)
Reduce the termination of the abstract program to the
termination (well-foundness) of the transition relation

B1(〈a, i〉) −→ B1(〈a′, i ′〉) {a′ = a, i >= 0, i ′ = i − 1}
C1(〈a, j , v〉−→ C1(〈a′, j ′, v ′〉) {a′ = a, j ′ = j + 1, j < a}

We can easily find ranking functions:

//@decreasing fB1
(a, i) = i

for (int i=a.length-2; i≥0; i--) {
· · ·

while ( j<a.length && a[j]<v) {
· · ·
j++;

}
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Size Relations Analysis - Cont.

We can apply existing techniques to reason on the termination
of the abstract program (CLP, TRS, ...)
Reduce the termination of the abstract program to the
termination (well-foundness) of the transition relation

B1(〈a, i〉) −→ B1(〈a′, i ′〉) {a′ = a, i >= 0, i ′ = i − 1}
C1(〈a, j , v〉−→ C1(〈a′, j ′, v ′〉) {a′ = a, j ′ = j + 1, j < a}

We can easily find ranking functions:

//@decreasing fB1
(a, i) = i

for (int i=a.length-2; i≥0; i--) {
· · ·
//@decreasing fC1

(a, j, v) = a− j
while ( j<a.length && a[j]<v) {
· · ·
j++;

}
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Proving Termination - Cont.

Ruled−Based

Graph

Java Bytecode

Program

Control Flow

Abstract compilation

Input Output size relations

Input: JBC program

loops

Size Analysis

yes

no

ranking functions?

terminates

Output

Representation

don’t know

Transition relations

One rule per block in the CFG

Loops
B1(〈a, i〉) −→ B1(〈a′, i ′〉) {a′ = a, i >= 0, i ′ = i − 1}
C1(〈a, j , v〉−→ C1(〈a′, j ′, v ′〉) {a′ = a, j ′ = j + 1, j < a}
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Soundness

Theorem (Soundness)

Let P be a JBC program and CA the transition relations computed
from P. If there exists a non-terminating trace in P then there
exists a non-terminating derivation in CA.

Proof.

By construction: the rule-based program captures all possible
non-terminating traces in the original program.

By correctness of size analysis: given a trace in the rule-based
program, there exists an equivalent one in the transition
relations.

Termination of transition relations entails termination in the
original JBC program.
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Conclusions (Part 1)

simple imperative programs automatically transformed into
rule-based representation [ESOP’07]

transition relations can be obtained from rules and techniques
for proving termination can be adapted [FMOODS’08]

COSTA: COSt and Termination Analyzer for Java bytecode
[2007-2010]
Julia: abstraction of data structures using path-length
AProVE: recent work proposes finer abstractions of data
structures into terms

COSTA can infer more than termination: complexity and
resource usage (cost)
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PART 2: FROM TERMINATION TO COST

Elvira Albert From Termination to Cost



Introduction to cost analysis (Wegbreit’75)

static cost analysis

bound the cost of executing program P on any input data x
without having to actually run P(x)

reasoning about execution cost is difficult and error-prone

cost analysis, or resource analysis or complexity analysis
should be automatic

applications:

performance debugging and validation
resource bound certification
program synthesis and optimization
scheduling distributed execution
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Introduction to cost analysis (Wegbreit’75)

cost model: specify the resource of interest

number of executed instructions
memory consumption
number of calls to method

two phases:
1 produce a system of recursive equations which capture the cost

of the program in terms of the size of its input data.

C1(a, j , v) =3 {j >= a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

2 compute closed-forms for them, i.e., cost expressions which are
not in recursive form

C1(a, j , v) = 8 + 17 ∗ nat(a− j)
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not in recursive form
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From Termination to Cost

from cost to termination

if the cost model assigns a non-zero cost to all instructions, finding
an upper bound implies termination

from termination to cost

techniques used in termination analysis are very useful in cost
analysis

phase 1: abstract programs are instrumental to build to
recurrence relations

phase 2: ranking functions can be used to (upper bound)
bound the number of iterations
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Phase 1: Generation of recurrence equations

The abstract compilation obtained by the termination module is
used to generate the recurrence relations

B4(〈a, i , j , v〉, 〈〉) :=
aload(a, s0),
iload(j , s1),
iconst(1, s2),
isub(s1, s2, s1),
iload(v , s2),
iastore(s0, s1, s2),
iinc(i ,−1),
B1(〈a, i〉, 〈〉).

B4(〈a, i , j , v〉, 〈〉) :=
s0 = a,
s1 = j ,
s2 = 1,
s ′

1 = s1 − s2,
s ′

2 = v ,
true,
i ′ = i − 1,
B1(〈a, i ′〉, 〈〉).
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Phase 1: Generation of recurrence equations

The abstract compilation obtained by the termination module is
used to generate the recurrence relations

B4(〈a, i , j , v〉, 〈〉) :=
aload(a, s0),
iload(j , s1),
iconst(1, s2),
isub(s1, s2, s1),
iload(v , s2),
iastore(s0, s1, s2),
iinc(i ,−1),
B1(〈a, i〉, 〈〉).

B4(〈a, i , j , v〉, 〈〉) :=
s0 = a,
s1 = j ,
s2 = 1,
s ′

1 = s1 − s2,
s ′

2 = v ,
true,
i ′ = i − 1,
B1(〈a, i ′〉, 〈〉).

B4(a, i , j , v) =
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cost equation systems

Given a rule p(〈x̄〉, 〈ȳ〉) := g, b1, . . . ,bn and ϕr its corresponding
size relations. The cost equation is: p(x̄) = Σn

i=1M(bi), ϕr
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
B1(a, i) =18 + C1(a, j , v) + B1(a, i ′) {i ≥ 0, i ′ = i − 1, j = i + 1}
C1(a, j , v) =3 {j ≥ a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}
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The cost of sort
depends on a, the
length of a
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:
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· · ·
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It costs 6 units
that correspond to
the initialization
of i . Initializa-
tion reflected
in constraints!
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
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static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}

Plus the cost of the
for loop B1
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:
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The first case when
we do not enter the
loop
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
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This costs 2 which
corresponds to the
comparison
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
B1(a, i) =18 + C1(a, j , v) + B1(a, i ′) {i ≥ 0, i ′ = i − 1, j = i + 1}
C1(a, j , v) =3 {j ≥ a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}

The second case
when we enter the
loop
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
B1(a, i) =18 + C1(a, j , v) + B1(a, i ′) {i ≥ 0, i ′ = i − 1, j = i + 1}
C1(a, j , v) =3 {j ≥ a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}

We add 18 units
which correspond to
comparison, instruc-
tions before and af-
ter the while
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
B1(a, i) =18 + C1(a, j , v) + B1(a, i ′) {i ≥ 0, i ′ = i − 1, j = i + 1}
C1(a, j , v) =3 {j ≥ a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}

The cost of execut-
ing the while. The
constraint j = i + 1
is the initial value of
j
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
B1(a, i) =18 + C1(a, j , v) + B1(a, i ′) {i ≥ 0, i ′ = i − 1, j = i + 1}
C1(a, j , v) =3 {j ≥ a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}

and the cost of ex-
ecuting the for loop
again after decreas-
ing i

Elvira Albert From Termination to Cost



Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
B1(a, i) =18 + C1(a, j , v) + B1(a, i ′) {i ≥ 0, i ′ = i − 1, j = i + 1}
C1(a, j , v) =3 {j ≥ a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}

the first equation
captures the case
where we do not en-
ter the loop because
the first condition
does not hold
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
B1(a, i) =18 + C1(a, j , v) + B1(a, i ′) {i ≥ 0, i ′ = i − 1, j = i + 1}
C1(a, j , v) =3 {j ≥ a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}

the cost is 3 which
corresponds to the
comparison
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
B1(a, i) =18 + C1(a, j , v) + B1(a, i ′) {i ≥ 0, i ′ = i − 1, j = i + 1}
C1(a, j , v) =3 {j ≥ a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}

the second equa-
tion when the first
condition holds and
the second does not.
The condition a[i ] >
v has been lost
by the size abstrac-
tion!
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
B1(a, i) =18 + C1(a, j , v) + B1(a, i ′) {i ≥ 0, i ′ = i − 1, j = i + 1}
C1(a, j , v) =3 {j ≥ a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}

The cost is 8 which
corresponds to the
two comparisons
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
B1(a, i) =18 + C1(a, j , v) + B1(a, i ′) {i ≥ 0, i ′ = i − 1, j = i + 1}
C1(a, j , v) =3 {j ≥ a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}

The third equation
is when both con-
ditions hold. It is
not mutually recur-
sive with the second
one!
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
B1(a, i) =18 + C1(a, j , v) + B1(a, i ′) {i ≥ 0, i ′ = i − 1, j = i + 1}
C1(a, j , v) =3 {j ≥ a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}

It costs 17 which is
the cost of the com-
parisons plus the
body of the while
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
B1(a, i) =18 + C1(a, j , v) + B1(a, i ′) {i ≥ 0, i ′ = i − 1, j = i + 1}
C1(a, j , v) =3 {j ≥ a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}

plus executing the
while again after in-
crementing j
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Phase 1: Generation of recurrence equations

The result of generating the cost equations for all program rules is:

sort(a) =6 + B1(a, i) {i = a− 2}
B1(a, i) =2 {i < 0}
B1(a, i) =18 + C1(a, j , v) + B1(a, i ′) {i ≥ 0, i ′ = i − 1, j = i + 1}
C1(a, j , v) =3 {j ≥ a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}

static void sort(int a[]) {
for (int i=a.length-2; i≥0; i--) {
· · ·
while ( j<a.length && a[j]<v) {
· · ·
j++
}
· · ·
}

Partial Evaluation:
equations are con-
verted into directly
recursive form by
applying the well-
known technique of
partial evaluation
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Phase 2: Solving the cost equations

Solving the equations with CAS

Though syntactically similar to standard recurrence relations, their
additional features make them not solvable using CAS (like
MAPLE, MAXIMA,...)

Additional features:

Multiple arguments C1(a, j , v) =3 {j >= a}
Inexact size relations C1(a, j , v) =8 {j < a}
Non-deterministic C1(a, j , v) =17 + C1(a, j ′, v)

{j < a, j ′ = j + 1}
A precise solution often does not exist:

upper-bounds on the worst case cost
lower-bounds on the best case cost
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Phase 2: Solving the cost equations (upper bounds)

basic idea for upper bound

Given a loop (or cost relation C ), its upper bound can be

computed as UB = # iter∗max cost + max base :

# iter: bound the number of iterations in loop (or chain of
recursive calls in the relation)

a ranking function f (x̄) for C guarantees that the length of
any chain of recursive calls to C cannot exceed f (v̄)

max cost/max base: bound the maximal cost of expression

upper bound

We then look at the shape of equations
C (x̄) = expr + C (ȳ) + . . .+ C (w̄):

one recursive call: f (x̄)∗max cost(expr)

n recursive calls: nf (x̄)∗max cost(expr)
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Phase 2: Solving the cost equations (example)

UB = # iter*max cost+max base

C1(a, j , v) =3 {j >= a}
C1(a, j , v) =8 {j < a}
C1(a, j , v) =17 + C1(a, j ′, v) {j < a, j ′ = j + 1}
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Phase 2: Solving the cost equations (theorem)

Theorem (soundness)

Let P(x̄) be a method,

M a cost model,

UB(x̄) the upper bound computed from P.

For any valid input v̄ , if there exists a trace t from P(v̄), then we

ensure UB(v̄) ≥ M(t)
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Conclusions (Part 2)

Techniques developed in termination useful in cost analysis:

Abstract rules used to generate cost equations
Ranking functions bound the number of iterations

Powerful approach to cost analysis: logarithmic, polynomial,
exponential bounds [ESOP’07]

Enhanced equations which capture the behaviour of GC
[ISMM’07, ISMM’09, ISMM’10]

Solving cost relations requires powerful solvers:
non-deterministic relations, multiple arguments, size
constraints [SAS’08, JAR’10]

Comparing cost functions [FOPARA’09]

Asymptotic bounds [APLAS’09]
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PART 3: FIELD-SENSITIVE ANALYSIS
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Shared Mutable Data Structures

Reasoning about data stored in the heap is rather difficult:

while (i< n ) {i++;o.m();} n-i is a ranking function

while (i< f.n ) {i++;o.m();} f.n-i ranking function?

Static analysis of object fields (numeric or references)
classified:

field-sensitive - approximate them
precise but inefficient
field-insensitive - ignore them
efficient but imprecise

Numeric fields and reference fields are used all the time in real
programs

Challenge:

develop techniques that have good balance between:

accuracy of analysis,

computational cost.
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Field-sensitive analysis by field-insensitive analysis

1 analyze the behavior of scopes or program fragments
2 model only those fields which behave as local variables

the memory location does not change ⇒ AI-based static
analysis to prove constancy of references
write accesses are done through the same memory location ⇒
check after analysis

3 transform the code to replace local fields by variables

4 infer information on the fields through associated ghost
variables
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Field-sensitive analysis by field-insensitive analysis

1 analyze the behavior of scopes or program fragments
2 model only those fields which behave as local variables

the memory location does not change ⇒ AI-based static
analysis to prove constancy of references
write accesses are done through the same memory location ⇒
check after analysis

while ( x != null ) {
for(; x.c<n; x.c++)

value[x.c]++;
x=x.next;
}

while ( x != null ) {
g=x.c ;

for(; g<n; g++)
value[g]++;

x.c=g ;

x=x.next;
}

3 transform the code to replace local fields by variables

4 infer information on the fields through associated ghost
variables
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Conclusions and Related Work

COSTA has been the first termination analyzer for sequential
Java Bytecode

It deals with Java libraries
It checks termination and computes upper bounds
It allows assertions on upper bounds (and thus termination)

Julia had many components (nullity, class, path-length
analyses) and recently has integrated a termination analyzer
[Spoto et al., Toplas’10]

AProVe had many powerful termination techniques for TRS
and now translates Java bytecode to TRS [Otto et al, RTA’10]
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Conclusions and Related Work

First analysis to support numeric [FM’09] and reference fields
[SAS’10] in cost/termination analysis of OO bytecode.

Allows significant accuracy gains at a reasonable overhead.

Existing approaches based on static analysis:

Track all possible updates of fields (inefficient), or
Abstract all field updates into a single element (inaccurate)

Related work on field-sensitive analysis:

The analysis for C programs in [Miné06] enriches the abstract
domain to be field sensitive.
The notion of restricted variables [AikenFKT’03] is related to
our analysis to prove constancy of references.
Also related are the notions of local reasoning [OHearnRY’01]
and separation logic [Reynolds’02].
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Systems and Contact

COSTA Team (UCM+UPM): Puri Arenas, Samir Genaim,
Miguel G-Zamalloa, Germán Puebla, Damiano Zanardini, etc.

More information on the COSTA system can be found at
http://costa.ls.fi.upm.es
(or google ”The COSTA System”)

COSTA will shortly be released under the General Public
License.

For information about the upcoming release and other issues,
you may consider joining the list
costa-users @ listas.fi.upm.es
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Locality Conditions Numeric Fields

Sufficient conditions

1 The memory location where the field is stored does not
change.

2 All write accesses done through the same reference (not
aliases).

while (x.f.getSize() > 0)
i+=y.getSize();
x.f.setSize(x.f.getSize()-1);
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Locality Conditions Numeric Fields

Sufficient conditions

1 The memory location where the field is stored does not
change.

2 All write accesses done through the same reference (not
aliases).

while (x.f.getSize() > 0)
i+=y.getSize();
x.f.setSize(x.f.getSize()-1);

if (k > 0)
then x=z else x=y;
x.f=10;
for(; i<x.f; i++)

b[i]=x.b[i];
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Locality Conditions Numeric Fields

Sufficient conditions

1 The memory location where the field is stored does not
change.

2 All write accesses done through the same reference (not
aliases).

while (x.f.getSize() > 0)
i+=y.getSize();
x.f.setSize(x.f.getSize()-1);

if (k > 0)
then x=z else x=y;
x.f=10;
for(; i<x.f; i++)

b[i]=x.b[i];
while ( x != null ) {

for(; x.c<n; x.c++)
value[x.c]++;

x=x.next;}
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Locality Conditions Numeric Fields

Sufficient conditions

1 The memory location where the field is stored does not
change.

2 All write accesses done through the same reference (not
aliases).

while (x.f.getSize() > 0)
i+=y.getSize();
x.f.setSize(x.f.getSize()-1);

if (k > 0)
then x=z else x=y;
x.f=10;
for(; i<x.f; i++)

b[i]=x.b[i];
while ( x != null ) {

for(; x.c<n; x.c++)
value[x.c]++;

x=x.next;}

while (x.size > 0)
{x.size++; y.size--;}
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Cond 1: proving that memory location is constant

reference constancy analysis

associate an access path to constant reference variables.

given an entry p(l1, . . . , ln), an access path ` for a variable y
at program point (k , j) is a syntactic construction:

`any. Variable y might point to any heap location at (k, j).
li .f1. . .fh. Variable y always refers to the same heap location
represented by li .f1. . .fh whenever (k , j) is reached.
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Cond 2: write accesses done through the same reference

R(S , f )/W (S , f )

Given a scope S and a field signature f , the set of read/write
access paths is the set of access path of variables y used for
reading/writing f in S∗.

S ≡ while (x.f.size > 0) {i=i+y.size; x.f.size=x.f.size-1;}

x.f.size=`1.f and y.size = `2

R(S , size) ={`2, `1.f }
W (S , size) = {`1.f }

proving condition 2

W (S , f ) = ∅; or W (S , f ) = {`} and ` is of the form lj .f1 . . . fn.
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Transformation of a Scope S and a Field f

Generate new unique variable names v̄ for the local heap locations
ap to be tracked in the scope S .

1 Add arguments: each head or call p(〈x̄〉, 〈ȳ〉) such that
p ∈ S is converted to p(〈x̄ ·v̄r 〉, 〈ȳ ·v̄w 〉)

1 if W (S , f ) = ∅ then v̄r = {vap.f | R(S , f )}
2 if W (S , f ) = {`} then v̄r = {vap.f }

2 Replicate field accesses:

1 each y .f = x ∈ S produces assignment vap.f = x if
AP(y) = ap 6= lany

2 each x = y .f ∈ S produces assignment x = vap.f if
AP(y) = ap 6= lany

3 Handle external calls: external calls q(x̄ , ȳ) ∈ S are
transformed into q(〈x̄ ·ρ(v̄ ′r 〉), 〈ȳ ·ρ(v̄ ′w 〉))
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Instrumented Example

(1) loop(〈x , y , i〉, 〈r〉) :=
s0:=x , s0:=s0.f ,
getSize(〈s0〉, 〈s0〉),
loopc(〈x , y , i , s0〉, 〈r〉).

(2) loopc(〈x , y , i , s0〉, 〈r〉) :=
s0 ≤ 0, s0:=i , r :=s0.

(3) loopc(〈x , y , i , s0〉, 〈r〉) :=
s0 > 0, s0:=i , s1:=y , getSize(〈s1〉, 〈s1〉),
s0:=s0 + s1, i :=s0, s0:=x , s0:=s0.f ,
s1:=s0, getSize(〈s1〉, 〈s1〉),
s2:=1, s1:=s1 − s2, setSize(〈s0, s1〉, 〈〉),
loop(〈this, x , y , i〉, 〈r〉).

(4) getSize(〈this〉, 〈r〉) :=
s0:=this, s0 :=s0 .size, r :=s0 .

(5) setSize(〈this, n〉, 〈〉) :=
s0:=this, s1 :=n, s0 .size:=s1 .

Elvira Albert From Termination to Cost



Instrumented Example

(1) loop(〈x , y , i , v1〉, 〈r , v1〉) :=
s0:=x , s0:=s0.f ,
getSize(〈s0, v1〉, 〈s0〉),
loopc(〈x , y , i , s0, v1〉, 〈r , v1〉).

(2) loopc(〈x , y , i , s0, v1〉, 〈r , v1〉) :=
s0 ≤ 0, s0:=i , r :=s0.

(3) loopc(〈x , y , i , s0, v1〉, 〈r , v1〉) :=
s0 > 0, s0:=i , s1:=y , getSize(〈s1, ∗〉, 〈s1〉),
s0:=s0 + s1, i :=s0, s0:=x , s0:=s0.f ,
s1:=s0, getSize(〈s1, v1〉, 〈s1〉),
s2:=1, s1:=s1 − s2, setSize(〈s0, s1〉, 〈v1〉),
loop(〈this, x , y , i , v1〉, 〈r , v1〉).

(4) getSize(〈this, v1〉, 〈r〉) :=
s0:=this, s0 :=v1 , r :=s0 .

(5) setSize(〈this, n〉, 〈v1〉) :=
s0:=this, s1 :=n, v1 :=s1 .
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What is it different in reference fields?

Replicating instructions is not a good idea:

assume an instruction like y .ref :=x is followed by vref :=x .
replicating instructions makes y .ref and vref alias,
therefore, the path-length relations of vref affected by those of
y .ref
updates to y .ref will force losing path-length information
about vref ,
replace y .ref :=x by vref :=x , not replicate

The locality condition is not always appropriate:

clearly, when loops traverse data structures
we want to keep track of reference fields which are used as
cursors for traversing them
reference fields which are part of the data structure itself,
seldomly affect termination or cost

require that the field signature is both read and written

(R(S , f )) = (W (S , f )) = {`}
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Iterator Example

class Iter implements Iterator {
List state; List aux;
boolean hasNext() {

return (this.state != null); }
Object next() {

this.state = this.state.rest;
return obj;}}

Sufficient Conditions

1 we access two reference fields within method next

2 field state is the cursor of the data structure

3 field rest is part of the data structure

4 we track (i.e., transform to local variable) only state
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Iterator Example

class Iter implements Iterator { class Test {
List state; List aux; static void m(Iter x, Aux y, Aux z){
boolean hasNext() { while (x.hasNext()) x.next();

return (this.state != null); } }}
Object next() {

this.state = this.state.rest;
return obj;}}

Sufficient Conditions

1 we access two reference fields within method next

2 field state is the cursor of the data structure

3 field rest is part of the data structure

4 we track (i.e., transform to local variable) only state

termination of while loop can be proven
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Polyvariant Transformation

static void m(Ref x, Ref y) {
x.f++; y.f--; }

static void m1(Ref x) {
while (x.f>0) m(x,x); }

static void m2(Ref x) {
y = new Ref();

while (x.f>0) m(x,y); }

1 considering f local in m2 is essential for proving the
termination

2 however, making f local in all contexts is not sound,

3
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static void m1(Ref x) {
while (x.f>0) m(x,x); }

static void m2(Ref x) {
y = new Ref();

while (x.f>0) m(x,y); }

static int m$1(Ref x, Ref y) {
x.f++; v ++;

y.f--; v ++; return v; }
static void m$2(Ref x, Ref y) {
x.f++; y.f--; }

1 considering f local in m2 is essential for proving the
termination

2 however, making f local in all contexts is not sound,

3 in order to take full advantage of context-sensitivity, we do a
polyvariant transformation which generates two versions for m
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