
Some Thoughts on How to Teach Prolog∗

Manuel V. Hermenegildo1,2, Jose F. Morales1,2, and Pedro Lopez-Garcia2,3

1 Universidad Politécnica de Madrid (UPM)
2 IMDEA Software Institute

3 Spanish Council for Scientific Research (CSIC)
{manuel.hermenegildo,josef.morales,pedro.lopez}@imdea.org

Abstract. Prolog, and (Constraint) Logic Programming in general, represent a
unique programming paradigm. Prolog has many characteristics that are not present
in other styles of programming, and this is one of the reasons why it is taught. At the
same time, and precisely because of this uniqueness, teaching Prolog presents some
special challenges. In this paper we present some lessons learned over many years
of teaching Prolog, and (C)LP in general, mostly to CS college students, at several
universities. We address how to show the beauty and usefulness of the language, and
also how to avoid some common pitfalls, misconceptions, and myths about it. The
emphasis of our discussion is on how, rather than what. Despite some focus on CS
college students, we believe that many of the ideas that we propose also apply to
teaching Prolog at any other education level.

Keywords: Teaching Prolog, Prolog, Prolog Myths, Prolog Beauty, Prolog Playgrounds,
Active Logic Documents, Logic Programming, Constraint Logic Programming.

1 Introduction

(Constraint) Logic Programming, (C)LP, and Prolog in particular, represent a unique pro-
gramming paradigm with many characteristics that are not present in other styles of pro-
gramming, such as imperative, object-oriented, or functional programming. Most notably
the paradigm is based on logic and includes search as an intrinsic component, as well as the
use of unification, generalizing pattern matching. This brings about other interesting and
also different aspects, such as for example reversibility of programs or being able to represent
knowledge and reason about it, including formulating specifications and algorithms within
the same formalism. It is thus not only a unique programming paradigm, but also a modeling
and reasoning tool.

These unique characteristics, coupled with its usefulness in many application areas, are
fundamental reasons why Prolog is taught, certainly in many top institutions. Quite simply, a
CS graduate is not complete without knowledge of one of the handful of major programming
paradigms that we have come up with in CS to date. However, precisely because it is a
quite different paradigm, teaching Prolog presents some particular challenges. Our first and
perhaps most important consideration about teaching Prolog is that if it is done it definitely
should be done right. Learning a programming paradigm that is quite different from what
students have typically seen before and have already adapted to cannot be done lightly,
in a few days, and certainly not in the same way that one moves from one imperative
programming language to another. Fortunately, very good material exists (books, slides,
web sites, exercises, videos) for the task. Our objective in this paper is to present a few
complementary lessons learned over many years of teaching Prolog, and (C)LP in general,
mostly to CS college students, at several universities, including T.U. Madrid, U. of New
? Partially funded by MICINN projects PID2019-108528RB-C21 ProCode, TED2021-132464B-I00

PRODIGY, and FJC2021-047102-I, by the Comunidad de Madrid program P2018/TCS-4339
BLOQUES-CM, and by the Tezos foundation. The authors would also like to thank the anony-
mous reviewers for very useful feedback on previous drafts of this paper.



Deduction

Problem

Questions

(Correct) Answers / Results

Representation/specification (Logic)

system

Horn clauses

Problem

(Correct) Answers / Results

Prolog

Questions

SL−Resolution
over

Fig. 1. A motivational view of (C)LP and Prolog.

Mexico, and U.T. Austin.1 In this context, the students have typically already been exposed
to other programming languages, as well as hopefully some concepts of logic and proofs, at
the point in time in which they are exposed to Prolog and (C)LP. An important objective
in this scenario is then to make the material attractive, intriguing, and challenging to such
an audience. We offer some ideas on how to show the beauty and usefulness of the language,
and also to how to avoid some common pitfalls, misconceptions, and myths about it. Our
emphasis is more on methodological issues, rather than, e.g., on syllabus design, for which
there is comparatively more material available. We also make no attempt to cover all aspects
of how to teach Prolog, which would of course require a book onto itself, but rather provide
a few ideas that we have found useful. Despite some focus on CS college students, we believe
that most of the ideas that we propose also apply to teaching Prolog at any other education
level.2 Finally, while our discussion centers primarily around Prolog, given the theme of this
volume, we believe many of the considerations and ideas are applicable to the (constraint)
logic programming paradigm in general.

2 Showing the Beauty of the Language and the Paradigm

Perhaps the most important objective when teaching Prolog is to succeed in showing the
great beauty of the (C)LP paradigm in general and of Prolog in particular. To this end, we
believe that it is important to transmit (already in the first class) the original motivations
behind the language. The following approach has worked well for us in our courses:

1. Prolog, an acronym of Programming and Log ic, represents an answer to the fundamental
question of what is the best way to program computers, in order to get them to solve
problems and do what we need, and in particular of how logic can help us in this task.

2. There are many standard ways in which logic is used in the context of programming, e.g.,
as a means for defining the semantics of programs, writing specifications, and proving

1 See https://cliplab.org/logalg for a collection of our teaching materials. We would like
to thank the many contributors to these materials which have influenced this paper, including
Francisco Bueno, Manuel Carro, Isabel García Contreras, Daniel Cabeza, María José García de
la Banda, David H. D. Warren, Ulrich Neumerkel, Michael Codish, and Michael Covington.

2 See also other papers in this volume, which address the subject of teaching Prolog to school
children [2,19,3].

2

https://cliplab.org/logalg


properties of programs with respect to those specifications. But here we are concerned
with using logic directly as the programming language.

3. Now, time for the real overall vision: if we assume we have an effective deduction proce-
dure, i.e., a mechanical proof method that, given a description of a problem written in
logic, can provide answers to questions about this problem (prove theorems about it),
then a different view of problem solving and computing is possible (Figure 1, top):
(a) First, we program once and for all this automated deduction procedure in the com-

puter;
(b) then, for each problem we want to solve, we find a suitable representation for the

problem in logic (which would be just the specification of the problem);
(c) and, to obtain solutions, we simply ask questions and let the deduction procedure

do the rest.
Prolog (Figure 1, bottom) is the realization of this “dream.”3

4. Time now to illustrate all this practically with one or more examples. The level of com-
plexity of these initial examples depends on the background of the students. In general,
simple examples (such as the classic family relations or, more broadly, examples with
bounded search tree), are good starters. However, for students with some programming
and mathematical background we have found it motivating to consider the task of speci-
fying precisely what a simple imperative program should compute, in order to eventually
prove its correctness.

5. E.g., consider a simple imperative program that calculates the squares of the first five
naturals. After looking at the imperative code and how remote it is from the specification,
we will develop gradually the intended semantics (post-condition) from first principles
using Peano arithmetic, encoded as Horn clauses, starting with defining the naturals,
then addition, then multiplication, etc. (Figure 2).4 We develop each of these predicate
definitions by reasoning about the (infinite) set of (ground) facts that we want to capture
(introducing thus informally the notion of declarative semantics), and work with the
students on generating the definitions by generalization from the tables of facts, thinking
inductively, etc.5 Finally, we show that, by loading these definitions into an LP system,
one can use this specification by itself, not only to do the task specified (generate the
squares of the naturals < 5), but also to subtract using the definition of addition, or
even compute square roots. I.e., the specification can be explored and debugged! And,
since the logic is executable, one does not need to prove that the imperative program
adheres to the specification, or in fact to write the imperative program at all.

6. This presentation should be motivating, but at the same time it is also a good moment
for expectation management. We discuss (informally) for what logics we have effective
deduction procedures, and the trade-offs between expressive power and decidability,
justifying the choice of first-order logic and SLD-resolution in classical LP, and giving
at least the intuition of what semi-decidability entails.6

7. Having shown this declarative view of logic programs, it is of course important to also
show the operational semantics, i.e., unification, resolution, etc. Some members of the LP
community have argued that only the declarative semantics are important,7 but this is

3 A historical note can be useful at this or a later point, saying that this materialization was done
by Colmerauer (with colleagues in Marseilles and in collaboration with Kowalski and colleagues
in Edinburgh) [4,14], and was made possible by the appearance of Robinson’s resolution prin-
ciple [18], Cordell Green’s approach to resolution-based question answering [7], the efficiency
of Kowalski and Kuhnen’s SLD resolution [12], Kowalski’s combination of the procedural and
declarative interpretations of Horn clauses [11], and the practicality brought about by Warren et
al.’s Dec-10 Prolog implementation [23,17].

4 The :- use_package(sr/bfall). directive (an expansion) activates breadth-first execution,
which we find instrumental in this part of the course; see also the discussion in Section 3.

5 See also [21], in this same volume, for an ample discussion of how to build programs inductively.
6 See also the discussion in Section 3 on termination, the shape of the tree, search strategies, etc.
7 And even some LP languages have been proposed that explicitly did not have an operational
semantics, such as, e.g., the Goedel language.

3



run I:- use_package(sr/bfall).

natural(0).
natural(s(X)) :- natural(X).

less(0,s(X)) :- natural(X).
less(s(X),s(Y)) :- less(X,Y).

add(0,Y,Y) :- natural(Y).
add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- natural(Y).
mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- natural(X), natural(Y), mult(X,X,Y).

output(X) :- natural(Y), less(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

Fig. 2. Horn-clause specification (and program) for squares of naturals < 5 (click on run to load).

clearly not so in our view. Instead, we believe that it is important to present Kowalski’s
declarative/procedural duality, i.e., that (constraint) logic programs are, at the same
time, logical theories (that thus have a declarative meaning) and procedural programs
that can be debugged, followed step by step, etc. like any other language. How could we
otherwise reason about complexity (or, going further, even memory consumption, etc.)?
To say that these things don’t matter does not make sense in the world of programming
languages. In other words, without an operational semantics, we do not (also) have a
programming language, but rather just a specification and/or knowledge representation
formalism – the beauty of Prolog is that it is both. And the argument for the procedural
interpretation goes further: natural language also involves procedural forms of expres-
sion. Thus, elimination of the ability to represent procedures also eliminates the ability
to represent some types of knowledge.

8. Finally, it is of course important to relate the declarative and procedural views, explain-
ing that the declarative meaning of a set of rules is a (possibly infinite) set of ground
facts and that these constitute precisely the set of ground literals for which, when posed
as queries, Prolog (possibly needing a fair search rule) answers yes.

Once motivation is established, and we can understand programs both declaratively and
operationally, we can show other unique aspects that contribute to the elegance and beauty
of the language:

1. We can show with examples (and benchmarking them) how in Prolog it is possible to go
from executable specifications to efficient algorithms gradually, as needed. For example:8

(a) The mathematical definition (i.e., the specification) of the modulo opera-
tion, mod(X,Y,Z) where Z is the remainder from dividing X by Y, i.e.,
∃Qs.t. X = Y ∗Q+ Z ∧ Z < Y , can be expressed directly in Prolog:

run Imod(X,Y,Z) :- less(Z, Y), mult(Y,Q,W), add(W,Z,X).

This version is clearly correct (since it is directly the specification) and (using
breadth-first search) works in multiple directions, always finding all solutions:

?- op(500,fy,s).
yes
?- mod(X,Y, s 0).
X = s 0,
Y = s s 0 ? ;

8 Clicking on the run I links is perfectly safe!

4

https://ciao-lang.org/playground/?code=%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20output%20the%20squares%0A%25%20of%20the%20naturals%20that%20are%20smaller%20than%20five.%0A%0A%25%20We%20will%20use%20search%20rule%20(sr)%3A%20%0A%25%20%20%20-%20All%20predicates%20run%20breadth-first%20(bfall)%0A%0A%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Aless(0%2Cs(X))%20%3A-%20natural(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20natural(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20natural(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20natural(Y)%2C%20less(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20nat(s(0)).%0A%25%25%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%25%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%25%20%3F-%20nat(X).%0A%25%25%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%25%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%25%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%25%20%3F-%20nat_square(X%2CY).%0A%25%25%20%3F-%20output(X).
https://ciao-lang.org/playground/?code=%3A-%20use_package(%5Bsr%2Fbfall%5D).%0A%0A%25%20Define%20Modulo%20in%20Peano%20aritmetic%0A%25%20Using%20directly%20the%20defintion%20of%20modulo%0A%0Amod(X%2CY%2CZ)%20%3A-%20less(Z%2C%20Y)%2C%20mult(Y%2C_Q%2CW)%2C%20add(W%2CZ%2CX).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20op(500%2Cfy%2Cs).%0A%25%25%20%3F-%20mod(s%20s%20s%20s%20s%20s%20s%20s%20s%200%2C%20s%20s%20s%20s%200%2C%20Z).%0A%25%25%20%3F-%20mod(X%2CY%2Cs%200).%0A%0Anat(0).%0Anat(s(X))%20%3A-%20nat(X).%0A%0Aless(0%2Cs(X))%20%3A-%20nat(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20nat(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20nat(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).
https://ciao-lang.org/playground


?- X=f(K,g(K)),
Y=a,
Z=g(L),
W=h(b,L),
% Heap memory at this point −→
p(X,Y,Z,W).

aY

gZ L

g

W h b

X f K

Fig. 3. Using unification to build data structures with declarative pointers.

X = s 0,
Y = s s s 0 ? ;
X = s s s 0,
Y = s s 0 ? ;
...
but it can be quite inefficient.

(b) At the same time we can write a version such as this one:
run Imod(X,Y,X) :- less(X, Y).

mod(X,Y,Z) :- add(X1,Y,X), mod(X1,Y,Z).
which is much more efficient, and works well with the default depth-first search rule.
One can time some queries or reason about the size of the proof trees to show this.9

2. It is also important to show the power and beauty of unification, not only as a general-
ization of pattern matching, but also as a device of constructing and accessing (parts of)
complex data structures and passing them and returning them from predicates. This can
be illustrated to students by building data structures piecemeal in the top level, as illus-
trated in Fig. 3, which shows graphically the process of building some data structures
in memory via unifications, just before performing a call to the p/4 procedure. The idea
is to illustrate that logical variables can be seen as “declarative pointers” [9]. I.e., in the
same way a set of Prolog clauses constitute at the same time statements in logic and a
program, the data structures of Prolog can be seen at the same time as (Herbrand) terms
of the logic and as traditional data structures with (declarative, i.e., single assignment)
pointers. We have found that explaining this duality is also very enlightening.

There are of course many other beautiful and elegant aspects to show (e.g., higher-order,
meta-interpretation, or types and program properties in general, all of which in (C)LP
once more can be covered within the same language), but our space here is limited. As a
compelling example, in (C)LP, types (and properties in general) can be defined as (runnable)
predicates. E.g., the type natlist can be defined as:

run Inatlist([]).
natlist([H|T]) :- natural(H), natlist(T).

and this predicate can be used to check that an argument is a list of naturals (dynamic
checking) or “run backwards” to generate such lists (property-based testing for free!). Some
of these aspects are covered in other papers in this volume [10].

3 Dispelling Myths and Avoiding Misconceptions

In addition to showing the beauty of the language, another aspect that we believe is impor-
tant to cover during the course is to dispel the many unfounded myths and misconceptions
that still circulate about Prolog and the (C)LP paradigm in general, and to which students
may be exposed. While some of these views may have been at least partially true of early
implementations of Prolog, both the language and its implementations have come a long
way over many years (actually decades) of evolution, and it is easy to show how the short-
comings of early Prologs have been addressed in most current systems. The following is an
9 See also [1], in this same volume, for another interesting example which can be used similarly.

5

https://ciao-lang.org/playground/?code=%25%20Define%20Modulo%20in%20Peano%20aritmetic%0A%25%20A%20more%20efficient%20definition%0A%0Amod(X%2CY%2CX)%20%3A-%20less(X%2C%20Y).%0Amod(X%2CY%2CZ)%20%3A-%20add(X1%2CY%2CX)%2C%20mod(X1%2CY%2CZ).%0A%0A%25%25%25%20Some%20fun%20queries%20to%20try%3A%0A%25%25%20%3F-%20op(500%2Cfy%2Cs).%0A%25%25%20%3F-%20mod(s%20s%20s%20s%20s%20s%20s%20s%20s%200%2C%20s%20s%20s%20s%200%2C%20Z).%0A%25%25%20%3F-%20mod(X%2CY%2Cs%200).%0A%0Anat(0).%0Anat(s(X))%20%3A-%20nat(X).%0A%0Aless(0%2Cs(X))%20%3A-%20nat(X).%0Aless(s(X)%2Cs(Y))%20%3A-%20less(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20nat(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20nat(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).
https://ciao-lang.org/playground/?code=%25%20A%20type%20definition.%20You%20can%20enumerate%20elements%20of%20the%20type%3A%0A%25%20%3F-%20natlist(L).%20%0A%25%20Property-based%20testing%20for%20free%3B%20try%20and%20without%20the%20bfall%20package!%0A%0A%3A-%20use_package(sr%2Fbfall).%0A%0Anatlist(%5B%5D).%0Anatlist(%5BH%7CT%5D)%20%3A-%20natural(H)%2C%20natlist(T).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A


solution

solution

fail

fail

solution
fail

infinite failure

Fig. 4. Possible cases in the search.

incomplete list of some of these perceived shortcomings and some suggested dispelling facts
or actions:

Explaining termination. As mentioned in the previous section, it is certainly a good
idea to start teaching the declarative view, i.e., using the logical reading when writing and
reading clauses. In this view of the language, if the logic that we write is correct the system
will answer any question. As mentioned before, here examples with bounded search tree
are great starters (e.g., using only constants or avoiding recursion). However, trouble begins
at the very beginning once structures and recursion are introduced: students soon run into
termination problems. This is true of course of any programming language or proof system.
However, non-terminating executions are likely to discourage beginners if their origins are
not explained well and no remedies provided.

For example, let us define a pair of natural numbers in Peano representation:
run Inatural(0).

natural(s(X)) :- natural(X).

pair(X,Y) :- natural(X), natural(Y).

A query such as ?- pair(X,Y),X=s(0). will hang with the standard Prolog depth-first rule,
because the search never progresses beyond X=0, since there are infinite possible solutions
for Y that will be explored first. In contrast, if the program is executed with a breadth-first
strategy (which explores all branches fairly), it produces the expected solutions quickly.

A solution that has worked well for us is the following:

1. Provide students with a means for selectively switching between search rules, including
in particular at least one that is fair. E.g., being able to run programs in breadth-first,
depth-first, iterative deepening, tabling, etc. This comes built-in in certain Prologs10 but
it is in any case easy to implement in any Prolog for example via a meta-interpreter.

2. Without giving too many details, start by running all predicates in breadth-first mode
- all examples work great! This will allow students to gather confidence with recur-
sion, search, and the power of a logic-based programming language (specially if they
have already taken an introductory logic course), by simply thinking logically and/or
inductively.

3. After students have been exposed to and written a few examples, we have found figures
such as Figs. 4–5 useful to introduce them in a graphical way to the basic theoretical re-
sults at play, i.e., the soundness and (refutation-)completeness of the SLD(NF)-resolution
proof procedure used by Prolog. The practical implication to convey is that the search

10 E.g., in Ciao Prolog, in which we have added over time a number of features to facilitate teaching
Prolog and (C)LP, one can for example use :- use_package(sr/bfall). to run all predicates
breadth-first. Also, many Prologs have tabling nowadays.

6

https://ciao-lang.org/playground/?code=%25%20You%20can%20try%20leaving%20the%20line%20below%20in%20(breadth-first%20%0A%25%20execution)%20or%20commenting%20it%20out%20(depth-first%20execution).%20%0A%25%20Observe%20termination%20for%20the%20two%20queries.%20%0A%3A-%20use_package(sr%2Fbfall).%0A%0Anatural(0).%0Anatural(s(X))%20%3A-%20natural(X).%0A%0Apair(X%2CY)%20%3A-%20natural(X)%2C%20natural(Y).%0A%0A%25%20Some%20queries%3A%0A%25%20%3F-%20pair(X%2CY)%2C%20X%3Ds(0).%0A%25%20%3F-%20X%3Ds(0)%2C%20pair(X%2CY).


solution

fail

fail

solution
fail

infinite failure

solution

solution

solution

fail

fail

solution
fail

infinite failure

Fig. 5. Breadth-first (left) and depth-first (right) exploration.

tree has the shape of Fig. 4, i.e., that all solutions and some failures are at finite depth,
but that there are branches leading to failure that may be infinite and that it is not
always possible to detect this. This summary depiction makes it easy to explain why
breadth-first (or iterative deepening, or any other fair search rule) is guaranteed to pro-
duce all solutions if they exist in finite time (Fig. 5, left), and why depth-first sometimes
may not (Fig. 5, right). Of course, neither one of them is guaranteed to always finish
after producing the positive answers.

4. At the same time, one should discuss the advantages and disadvantages of these search
rules in terms of time, memory, etc. I.e., that the price to pay for breadth-first execu-
tion’s advantages is very large (potentially exponential) memory and time consumption,
while depth-first can be implemented very efficiently with a stack, with iterative deep-
ening representing an interesting middle ground. This can be shown very practically by
benchmarking actual examples, motivating the practical choices made for Prolog, which
bring in great efficiency at the (reasonable) price of having to think about goal and
clause order.

5. For example, simply changing the goal order (in this case in the query) to
?- X=s(0),pair(X,Y). modifies the search space and the program can produce all
the answers with the standard Prolog search. This leads naturally to discussing how one
needs to reason about the behavior (cost and termination) of predicates depending on
the different modes (see [20]) in which they will be called.

6. And it can also be pointed out that there exist other techniques like delays and, specially,
tabling, which helps detect some of the infinite failures in finite time, and avoid repeated
answers (even infinite ones), in addition to changing dynamically the goal order.

7. More generally, while using small examples, sophisticated Prolog implementations, and
modern fast computers can create the misconception that Prolog provides solutions ef-
fortlessly, it should be stressed that, as a Turing complete language, also Prolog program-
mers eventually need to care about algorithmic time and memory complexity of both
their programs and the libraries/features they utilize, and, at the limit, termination.

8. Thus, this is also a good moment to introduce informally the notion of undecidability and
the halting problem and relate them to the graphical depictions of the search tree. Some
students may not be aware that there exist decision problems that admit no algorithmic
solution. One should underline that this is of course not a particular problem of Prolog,
but rather the essence of computability, and no language or system (Prolog, logic, nor
any other Turing-complete programming language) can provide a magic formula that
guarantees termination.

9. Needless to say it is also important to explain how to control search, via clause order
and literal order, as well as pruning (see cut later). And, if time permits, it is important
to discuss the use of the constraint systems built into most current Prolog systems (Q,
R, fd, . . . ), and how they can bring about many other improvements to search (e.g.,
generate and test vs. constrain and generate), arithmetic (see below), etc.

7



Showing that Prolog arithmetic can also be reversible. The opposite of course is true
if the discussion is limited to the ISO-Prolog arithmetic built-ins. However, this is far from
the only answer in modern Prolog systems. The approach that we take is:
1. Present all the initial examples using Peano arithmetic (as shown in the nat/1 example

and in Section 2): it is beautiful and reversible (if run with a fair search rule of course).
Although obviously inefficient and slow for number crunching, Peano arithmetic is an
excellent tool for the first steps in writing numeric and recursive programs.

2. Then, the ISO-Prolog arithmetic built-ins can be introduced, explaining that they were
added for practical efficiency, but at the cost of losing some reversibility. For example,
using Y is X+1 instead of Y=s(X) is no longer always reversible.

3. Then, (arithmetic) constraint domains can be introduced showing that they can repre-
sent the best of all worlds: at the same time beautiful, powerful, and efficient! For exam-
ple, in the case of CLP{Q,R} (or CLP(fd)) our simple increment becomes Y .=.X+1
which is both reversible and efficient. An alternative that we have also used is to start
from the beginning using constraint-based arithmetic instead of Peano, but it can be
more cumbersome because for the student to fully understand what is really going on
one should really discuss the workings of the constraint solver. In that sense Peano is
simpler because with only unification and Horn clauses all operations are fully defined.
Still, both approaches are fine.

The occur check is available (if needed). A misconception is that Prolog must be
unsound because there is no occur check.
1. First, it is important to explain why the decision to leave out the occurs check was made

in the first place: in addition to reducing the cost of general unification, removing the
occurs check allows the complexity of the variable-value unification case to be constant
time (instead of linear, since there is no need to check that the left hand side does not
occur in the value), which is arguably a basic requirement for a practical programming
language.

2. It is also important to point out that the lack of occurs check is rarely an issue in actual
applications, and that, furthermore, there is in any case a built-in for unification with
occurs check. In most cases, including e.g., implementation of theorem provers, one can
selectively use the unification with occurs check built-in only when needed. It can also be
useful to provide a package (easy to implement in most Prologs with a term expansion)
that calls unification with occurs check by default for all unifications. This can also be
provided in some systems via an engine/compiler flag.

3. Furthermore, it should be mentioned that many Prolog systems in fact now support
infinite tree unification (stemming all the way back to Prolog II) as the default. In
this extension to unification (actually, a constraint domain), infinite terms are actually
supported and the unifications that would be the subject of the occurs check produce
such terms. For example, the answer to ?- X = f(X). is simply X = f(X) , and the
system does not go into a loop when performing such unifications or printing such
infinite terms.

Prolog can be pure (despite cut, assert, etc.)
1. In the same way that we start with a powerful yet not necessary efficient search rule

such as breath-first, it is convenient to restrict the discussion initially to pure fragments
of Prolog without side-effects, cuts, or the dynamic manipulation of database.

2. In this phase it can be convenient to have a mechanism to enable a pure mode in the
Prolog implementation where impure built-ins simply are not accessible. However, this
is not strictly necessary and the objective can also be achieved by simply not allowing
the use of impure built-ins, or, in fact, any built-ins, initially. Peano arithmetic is again
handy here.

3. Later, the ISO-Prolog built-ins can be introduced. Here, it is convenient to treat each
kind of impurity separately:

8

https://ciao-lang.org/playground/?code=%3A-%20module(_%2C_%2C%5Bpure%5D).%0A%0A%25%20A%20pure%20package%20makes%20impure%20built-ins%20unavailable.%20%0A%25%20Thus%2C%20an%20error%20is%20flagged.%0A%0Ap(a).%0A%0Aq(X)%20%3A-%20!%2C%20p(X).%0A


(a) Cuts: a first consideration is that using if-then-else is often preferable. Then, re-
garding cuts, it is important to explain at least the difference between (green) cuts
added as optimizations to discard unnecessary choice points (but which do not alter
the declarative semantics) from (red) cuts that are only meaningful for some calling
modes and whose removal would make the program incorrect. Explain that argument
indexing makes many green cuts unnecessary.

(b) Assert/retract: some programming patterns using dynamic program manipulation,
like explicit memoization or algorithms that explicitly interleave phases of database
modifications with pure deductions, do not sacrifice declarativeness. The classic Fi-
bonacci program with a double recursion, implemented with and without memoing,
is a good example here. Assert and retract in modern Prolog systems are module-
aware, which makes it easier to encapsulate their effects. Also, it should be noted
that there are other approaches, such as mutables or condition-action rules, that
offer more structured ways to express state change; see, e.g., [13,6].

4. It is also useful to develop pure libraries (e.g., implicit states ala DCGs, monad-like
styles), built-ins, or semantics where effects and actions are properly captured.

5. Finally, it is also important to point out that sometimes impurity is just necessary, but
one should strive to keep it encapsulated as much as possible as libraries or program
expansions.

Negation. Explain negation as failure, possibly from the theoretical point of view (least-
Herbrand-model semantics, see also [20,22]) and through its classical implementation using
Prolog built-ins. And devote time to discussing the limitations, either at a simple level (avoid
calling negation on non-ground goals) or delving more deeply into stratification, etc. A good
idea is to suggest to the students that they guard themselves from mistakes by defining their
own negation that performs some checks, for example that the negated goal is ground:

run Inot(G) :- ground(G), !, \+ G.
not(_) :- throw(error).
In an advanced course one can also go into more complex topics, commenting on the alterna-
tives that Prolog systems offer nowadays (such as the very interesting s(CASP) approach [8])
and on ASP.

Prolog is in many ways as other languages, but adds unique, useful features.
1. It is interesting to show that Prolog is not a “strange” language, and is in fact completely

“normal” when there is only one definition per procedure which is called in one mode.
But that at the same time it can also have several definitions for the same procedure,
and can thus support natively search, several modes, running “backwards,” etc.

2. Moreover, Prolog (and specially modern Prolog systems) actually subsume both func-
tional and imperative programming. At least theoretically, this is well known since func-
tions can be easily encoded as relations and since mutable variable changes can be
declaratively encoded by state-threading or other means. (And that this idea is very
useful in practice for analysis of other languages using Horn clauses!)
In practice, translating functional or imperative constructs to Prolog is relatively easy,
specially when using special syntactic extensions (such as logical loops or functional
notation). Performance-wise, most Prolog implementations are optimized enough to ex-
ecute recursions as efficiently as loops (e.g., last-call optimization), use logical mutable
variables (equivalent to implicit arguments), or as a last resort store mutable states via
the dynamic database.

3. For students that have some notions of programming language implementation, it helps
to explain that, when running “forward”, Prolog uses a stack of activation records for
local variables, and return addresses (forward continuations), as every language, that
allow knowing where to return when a procedure returns (succeeds). Then, Prolog also
has a stack of backwards continuations, to know where to go if there is a failure (previous
choice point), and this (coupled with other memory and variable binding management
techniques) implements Prolog’s backtracking semantics very efficiently.

9

https://ciao-lang.org/playground/?code=%25%20-------------------------------------------------------------------%0A%25%20Calculating%20the%20Nth%20element%20of%20the%20Fibonacci%0A%25%20sequence%20-%200%201%201%202%203%205%208%20...%20%0A%25%20Example%20of%20dynamic%20program%20modification%3A%20Using%20lemmas%0A%25%20(recording%20previous%20solutions%20to%20avoid%20recomputing%20them)%0A%0A%25%20Compare%20the%20performance%20for%20different%20queries%3A%0A%25%20%3F-%20fib(10%2CY).%0A%25%20%3F-%20fib(30%2CY).%0A%25%20%3F-%20fib(31%2CY).%0A%25%20%3F-%20fib(32%2CY).%0A%25%20%3F-%20lfib(30%2CY).%0A%25%20%3F-%20lfib(31%2CY).%0A%25%20%3F-%20lfib(200%2CY).%0A%25%20%3F-%20lfib(1000%2CY).%0A%0Afib(0%2C%200).%20%0Afib(1%2C%201).%20%0Afib(N%2C%20F)%3A-%20%20%0A%20%20%20%20N%20%3E%201%2C%20%20%20%20%20%20%20%20%0A%20%20%20%20N1%20is%20N%20-%201%2C%20%0A%20%20%20%20N2%20is%20N%20-%202%2C%20%0A%20%20%20%20fib(N1%2C%20F1)%2C%20%0A%20%20%20%20fib(N2%2C%20F2)%2C%20%20%0A%20%20%20%20F%20is%20F1%20%2B%20F2.%20%0A%0A%25%20-------------------------------------------------------------------%0A%0Alfib(N%2C%20F)%3A-%0A%20%20%20%20lemma_fib(N%2C%20F)%2C%0A%20%20%20%20!.%20%0Alfib(N%2C%20F)%3A-%20%0A%20%20%20%20N%20%3E%201%2C%20%20%20%0A%20%20%20%20N1%20is%20N%20-%201%2C%20%20%0A%20%20%20%20N2%20is%20N%20-%202%2C%20%0A%20%20%20%20lfib(N1%2C%20F1)%2C%20%0A%20%20%20%20lfib(N2%2C%20F2)%2C%20%0A%20%20%20%20F%20is%20F1%20%2B%20F2%2C%20%20%20%20%20%0A%20%20%20%20assert(lemma_fib(N%2C%20F)).%20%0A%0A%3A-%20dynamic%20lemma_fib%2F2.%0Alemma_fib(0%2C%200).%20%0Alemma_fib(1%2C%201).%20%0A%0A
https://ciao-lang.org/playground/?code=%25%20-------------------------------------------------------------------%0A%25%20Calculating%20the%20Nth%20element%20of%20the%20Fibonacci%0A%25%20sequence%20-%200%201%201%202%203%205%208%20...%20%0A%25%20Example%20of%20dynamic%20program%20modification%3A%20Using%20lemmas%0A%25%20(recording%20previous%20solutions%20to%20avoid%20recomputing%20them)%0A%0A%25%20Compare%20the%20performance%20for%20different%20queries%3A%0A%25%20%3F-%20fib(10%2CY).%0A%25%20%3F-%20fib(30%2CY).%0A%25%20%3F-%20fib(31%2CY).%0A%25%20%3F-%20fib(32%2CY).%0A%25%20%3F-%20lfib(30%2CY).%0A%25%20%3F-%20lfib(31%2CY).%0A%25%20%3F-%20lfib(200%2CY).%0A%25%20%3F-%20lfib(1000%2CY).%0A%0Afib(0%2C%200).%20%0Afib(1%2C%201).%20%0Afib(N%2C%20F)%3A-%20%20%0A%20%20%20%20N%20%3E%201%2C%20%20%20%20%20%20%20%20%0A%20%20%20%20N1%20is%20N%20-%201%2C%20%0A%20%20%20%20N2%20is%20N%20-%202%2C%20%0A%20%20%20%20fib(N1%2C%20F1)%2C%20%0A%20%20%20%20fib(N2%2C%20F2)%2C%20%20%0A%20%20%20%20F%20is%20F1%20%2B%20F2.%20%0A%0A%25%20-------------------------------------------------------------------%0A%0Alfib(N%2C%20F)%3A-%0A%20%20%20%20lemma_fib(N%2C%20F)%2C%0A%20%20%20%20!.%20%0Alfib(N%2C%20F)%3A-%20%0A%20%20%20%20N%20%3E%201%2C%20%20%20%0A%20%20%20%20N1%20is%20N%20-%201%2C%20%20%0A%20%20%20%20N2%20is%20N%20-%202%2C%20%0A%20%20%20%20lfib(N1%2C%20F1)%2C%20%0A%20%20%20%20lfib(N2%2C%20F2)%2C%20%0A%20%20%20%20F%20is%20F1%20%2B%20F2%2C%20%20%20%20%20%0A%20%20%20%20assert(lemma_fib(N%2C%20F)).%20%0A%0A%3A-%20dynamic%20lemma_fib%2F2.%0Alemma_fib(0%2C%200).%20%0Alemma_fib(1%2C%201).%20%0A%0A
https://ciao-lang.org/playground/?code=%25%20Making%20sure%20argument%20is%20ground%20in%20negation%20as%20failure%0A%0Anot(G)%20%3A-%20ground(G)%2C%20!%2C%20%5C%2B%20G.%0Anot(_)%20%3A-%20throw(error).


4. College students that are already familiar with younger languages (Erlang, Haskell, or
even Rust) often recognize striking similarities in syntax and semantics with Prolog
(e.g., “pattern matching”). Most of them tend to be amazed by Prolog simplicity and
expressive power and recognize that Prolog is still unique.

Prolog has many applications / uses / . . .
1. Show some of the many examples of great applications that Prolog has. There are great

collections on line, and some new ones have been gathered for the Prolog 50th an-
niversary, but in particular there are some really excellent examples in the volume in
which this paper appears. An excellent example is ProB, winner of the first Colmerauer
Prize [15]. See also the excellent related discussion 11 on the advantages of using Prolog.

2. Give the students as homework real, challenging, and interesting projects where they
can experience the power and elegance of the language.

3. Another thing to perhaps point out in this context is that modern applications are
almost never written in a single language and some Prolog implementations can be
easily embedded as part of more complex systems, and this is done routinely.

Prolog can also have “types” (if needed). Prolog is in principle a dynamically typed
language, and this is not without its advantages –the success of Python attests to this.
Second, as mentioned before, types and many other properties can indeed be defined very
elegantly within the same language of predicates, and used as both run-time tests and
generators. Furthermore, there are Prolog systems that also check these types and properties
statically (again, see [10] in this volume).

And, to end this section on myths and misconceptions, a final mention is due to the Fifth
Generation (FG) project. It is probably unlikely for current students to be aware of this
project, but since the subject of its success or failure does comes up with some periodicity,
e.g., in online forums, it suffices to say that one hand there were many interesting outcomes
of this project (and there is ample literature on the subject) and on the other the fate of the
FG Project is in any case quite unrelated to Prolog and (C)LP, simply because, contrary to
widespread belief, the FG did not use Prolog or “real LP” anyway! It used flat committed
choice languages,12 which arguably did not contribute to make the FG as successful as it
could have been.

4 Some Thoughts on Systems

Some thoughts regarding the different types of Prolog systems that we fortunately have
currently freely available for teaching. This includes:

1. The classical systems with traditional installation, which in general are most appropri-
ate for more advanced users and intensive use. In the context of teaching, they have the
advantage that the best implementations portray a serious language which is competi-
tive with the most popular languages in performance, features, environment, libraries,
embeddability, small executables, etc. The drawback is of course that this type of system
requires installation, but that should not be any hurdle for college students (or at least
not for those in CS).

2. At the same time, there are now fortunately also very good Prolog playgrounds and note-
books that require no installation. Examples are, e.g., the Ciao Playgrounds and Active
Logic Documents, SWISH, τ -Prolog, s(CASP) playground, etc. These no-installation
alternatives can be very attractive for beginners, young students, or simply casual users,
and they are in all cases very useful for supporting executable examples in manuals and

11 https://prob.hhu.de/w/index.php?title=Why_Prolog%3F
12 An interesting topic that is however out of our scope here –let’s just say for this discussion that

they used “something similar to Erlang.”

10

https://prob.hhu.de/w/index.php?title=Why_Prolog%3F


tutorials, as done here. These systems can be server-based or browser-based, each hav-
ing advantages and disadvantages. A good discussion on this topic can be found in [16]
and [5], within this same volume.

3. As far as functionality, ideally the system (or systems) to be used should allow covering
ISO-Prolog and some constraint domains –most current Prolog systems are capable of
this. Other desirable features in our opinion are the possibility of restricting programs
to pure LP (and supporting several search rules and tabling), modern forms of nega-
tion (such as, e.g., ASP/s(CASP)), functional syntax, extended support for higher-order
and libraries, etc. Again, many current Prolog systems provide at least some of these
characteristics.

5 The Programming Paradigms Course
So far, we have generally assumed that a reasonable number of lectures are available for
teaching the language. However, a particularly challenging case is the standard “program-
ming paradigms” course, now quite widespread in CS programs, where each programming
paradigm, including often (C)LP and Prolog, is devoted perhaps two or three weeks. This
scenario has some risks, and in extreme cases could even be counter-productive. A first risk,
mentioned before, is that it is simply not easy, even for experts, to, in just very few classes,
teach Prolog and the (C)LP paradigm well enough that the students really “get it.” Other
potential pitfalls in practice include, for example, that in some cases a “logic programming”
library from a non-LP language (e.g., emulating Prolog in Scheme) may be used instead
of a “real” Prolog system, which will have much more competitive speed and memory effi-
ciency (plus an advanced programming environment, being capable of generating efficient
executables, etc.). Shortcuts such as these, coupled with a superficial presentation in a few
classes, can run the risk of leading to misconceptions about the language, its capabilities,
applications, performance, and ultimately, its beauty. All this brings about the obvious and
important question of what to do if the programming paradigms course is really the only
slot available in the curriculum to teach Prolog. This is in our opinion a topic that deserves
more attention from the (C)LP community. While, as mentioned before, quite good material
exists for full-size Prolog courses, this is arguably less so for the (C)LP part of a program-
ming paradigms course. So, in parallel with arguing for the presence of specific full courses
devoted to (C)LP, it would be very useful to develop material (slides, notes, a short book,
etc.) aimed specifically at teaching this “programming paradigms slot” well. In addition, we
hope that the reflections in this paper can also help in this challenging context.

6 Conclusions
We have presented some lessons learned from our experience teaching Prolog, and (C)LP
in general, over the years. We have covered some methodological issues that we feel are
important, such as how to show the beauty and usefulness of the language, and also to
how to avoid some common pitfalls, misconceptions, and myths about it. However, teaching
Prolog and (C)LP is an extremely rich subject and there are of course many other aspects
that we have not been able to address for lack of space. We still hope that at least some
of our suggestions are of use to other instructors that are teaching or plan to teach Prolog.
For a more complete picture, as mentioned before, much of our experience over the years is
materialized in a) the courses that we have developed, for which, as pointed out before, the
material is publicly available13, and b) the many special features that we have incorporated
over time in our own Ciao Prolog system in order to aid in this important task of teaching
logic programming. Again, we have touched upon some of them, such as being able to choose
different search rules, the playground, or active logic documents, but there are many others.
We hope that all the ideas present in these materials and systems are helpful and inspiring
to both Prolog instructors and students.
13 https://cliplab.org/logalg

11

https://cliplab.org/logalg


References

1. Bassiliades, N., Sakellariou, I., Kefalas, P.: Demonstrating Multiple Prolog Programming Tech-
niques through a Single Operation. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.,
Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July
2023)

2. Cecchi, L.A., Rodríguez, J.P., Dahl, V.: Logic Programming at Elementary School: Why, what
and how should we teach Logic Programming to children. In: Warren, D.S., Dahl, V., Eiter,
T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in
LNCS, Springer (July 2023)

3. Cervoni, L., Brasseur, J., Rohmer, J.: Simultaneously teaching mathematics and prolog in school
curricula: a mutual benefit. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski,
R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July 2023)

4. Colmerauer, A.: The Birth of Prolog. In: Second History of Programming Languages Conference.
pp. 37–52. ACM SIGPLAN Notices (March 1993)

5. Flach, P., Sokol, K., Wielemaker, J.: Simply Logical - The First Three Decades. In: Warren,
D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next
50 Years. No. 13900 in LNCS, Springer (July 2023)

6. Genesereth, M.: Dynamic Logic Programming. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in
LNCS, Springer (July 2023)

7. Green, C.C.: Application of Theorem Proving to Problem Solving. In: Walker, D.E., Norton,
L.M. (eds.) Proceedings IJCAI. pp. 219–240. William Kaufmann (1969)

8. Gupta, G., Salazar, E., Arias, J., Basu, K., Varanasi, S., Carro, M.: Prolog: Past, Present, and
Future. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.)
Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July 2023)

9. Hermenegildo, M.: Parallelizing Irregular and Pointer-Based Computations Automatically: Per-
spectives from Logic and Constraint Programming. Parallel Computing 26(13–14), 1685–1708
(December 2000)

10. Hermenegildo, M., Morales, J., Lopez-Garcia, P., Carro, M.: Types, modes and so much more
– the prolog way. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi,
F. (eds.) Prolog - The Next 50 Years, chap. 2. No. 13900 in LNCS, Springer (July 2023),
http://cliplab.org/papers/AssertionsAndOther-PrologBook.pdf

11. Kowalski, R.A.: Predicate Logic as a Programming Language. In: Proceedings IFIPS. pp. 569–
574 (1974)

12. Kowalski, R., Kuehner, D.: Linear resolution with selection function. Artificial Intelligence 2(3),
227–260 (1971)

13. Kowalski, R., Sadri, F., Calejo, M., Dávila-Quintero, J.: Combining Prolog and Imperative
Computing in LPS. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R.,
Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July 2023)

14. Kowalski, R.A.: The Early Years of Logic Programming. Communications of the ACM 31(1),
38–43 (1988)

15. Leuschel, M.: ProB: Harnessing the Power of Prolog to Bring Formal Models and Mathematics
to Life. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.)
Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July 2023)

16. Morales, J., Abreu, S., Ferreiro, D., Hermenegildo, M.: Teaching Prolog with Active Logic
Documents. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F.
(eds.) Prolog - The Next 50 Years, chap. 14. No. 13900 in LNCS, Springer (July 2023), http:
//cliplab.org/papers/ActiveLogicDocuments-PrologBook.pdf

17. Pereira, L., Pereira, F., Warren, D.: User’s Guide to DECsystem-10 Prolog. Dept. of Artificial
Intelligence, Univ. of Edinburgh (September 1978)

18. Robinson, J.A.: A Machine Oriented Logic Based on the Resolution Principle. Journal of the
ACM 12(23), 23–41 (January 1965)

19. Tabakova-Komsalova, V., Stoyanov, S., Stoyanova-Doycheva, A., Doukovska, L.: Prolog Educa-
tion in Selected High Schools in Bulgaria. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo,
M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer
(July 2023)

20. Warren, D.S.: Introduction to Prolog. In: Warren, D.S., Dahl, V., Eiter, T., Hermenegildo, M.,
Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in LNCS, Springer (July
2023)

12

http://cliplab.org/papers/AssertionsAndOther-PrologBook.pdf
http://cliplab.org/papers/ActiveLogicDocuments-PrologBook.pdf
http://cliplab.org/papers/ActiveLogicDocuments-PrologBook.pdf


21. Warren, D.S.: Writing Correct Prolog Programs. In: Warren, D.S., Dahl, V., Eiter, T.,
Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No. 13900 in
LNCS, Springer (July 2023)

22. Warren, D.S., Denecker, M.: A better logical semantics for prolog. In: Warren, D.S., Dahl, V.,
Eiter, T., Hermenegildo, M., Kowalski, R., Rossi, F. (eds.) Prolog - The Next 50 Years. No.
13900 in LNCS, Springer (July 2023)

23. Warren, D.: Applied Logic—Its Use and Implementation as Programming Tool. Ph.D. thesis,
University of Edinburgh (1977), also available as SRI Technical Note 290

13


	Some Thoughts on How to Teach Prolog* 

