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Introduction

Introduction

Objective:

Design best possible programming language and environment,
for developing challenging (semantic :-)) applications rapidly.

Motivating context:

“Heroic” programming: changes, adaptation, “STOP,” ...

Approach:

Start from a small, but very extensible (LP-based) kernel
–a language building language.
Build gradually extensions on top of it.
Support Prolog (as a library) but go well beyond it.
Incorporate the most useful features from other prog. paradigms.
Offer the best of the dynamic and static language approaches.

Provide the flexibility of dynamic languages, but with
Guaranteed safety, reliability, and efficiency.
Attaining high performance through optimization.

Support the programmer with a great environment.
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Extensions and Paradigms

A Modular Language Building Language

Ciao makes it very easy to build syntactic and semantic extensions in a
flexible and scalable way.

Addresses shortcomings of traditional Prolog expand term, etc.:

Expansions defined for semantic points: goals, terms, heads, bodies, ...
(not just a global expand term) → much easier coding.
All operators, expansions, flags, etc. are module-local.
Dynamic and static code clearly separated, e.g.:

Syntax expansion code does not necessarily end up in executables.
Program syntax does not necessarily affect what is read.

Mechanisms for defining compositions of extensions.
New types of operators
Higher-order syntax (e.g., X(a)), ...

→ Any extensions can be activated or deactivated on per-module basis.
→ The concept of packages.
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Extensions and Paradigms

A Modular Language Building Language (Contd.)

Fundamental enabler –Ciao’s module/class system.

Allows also:

Modular program devel., separate/incremental compilation.

Modular (scalable) global analysis for detecting errors and optimizing.

Also, building small, fast executables and embeddability
(non-needed parts of the language and libraries are not included).

All these mechanisms are easily accessible to the programmer for
building extensions, restrictions (language subsets), DSLs, etc.

Ciao is itself built in layers over a small (LP-based) kernel.

Built-ins are in libraries (and can be redefined or not loaded).
Same with all language features (loops, conditionals, functions, ’,’ ...).
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Extensions and Paradigms

Logic Programming

Is it still a Prolog system?

Yes, indistinguishable to the naked eye!
( Even won this year’s Prolog programming competition! :-) )
As ISO-Prolog compliant as other popular Prologs.
Quite compatible with de-facto standards (e.g., SICStus).
Standard predicates, libraries, etc.

However, inside:

No “builtins:” Prolog support is in libraries, which can be unloaded.
All Prolog libraries loaded automatically for Prolog programs.

This allows having, e.g., pure LP modules (no cut, no assert, ...).
Also, other computation rules: breadth-first, iterative-deepening,
Andorra, tabling, fuzzy rules, ASP, etc.

All through packages, loadable on a per-module basis.
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Extensions and Paradigms

Supporting the Best Features of Other Paradigms

Multiparadigm:

Constraint programming: clpr, clpq, Leuven CHR, fd, ...

Functional programming:

Function definitions, function calls, functional syntax for predicates.
Higher-order and lazyness for functions and predicates.

Objects: a naturally embedded notion of classes and objects.

Concurrency, parallelism, distributed execution.

Imperative features: mutables, assignment, loops, cases, arrays, etc.

+ many other packages:

Records, named argument positions.

Logical interface to databases. Persistence.
...
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Extensions and Paradigms

Ciao Overview: Language Extensions

Compiler

Development Environment
Emacs based, command line,

top-levels (compilation, analysis)

Source (user and library)
Packages

(multi-paradigm)

fsyntax

hiord

clpr

...

Modules
(w./wo. assertions)

mod1

mod2

...
modn

user interaction

Front-end Compiler
(implements module system)

Expanded Code
(Kernel Language)

Annotated/
Transformed Code

Preprocessor

Analysis (types,
modes, resources, . . . )

Verification (static
checking of assertions)

Optimization (parallelism,
specialization, . . . )

Back-end Compiler
(optimized from annotations)

Executable Code
(bytecode, native code)

Documenter
(automatic

documentation
from programs
with assertions)

Run-time Engine and Libs.
Multi-platform

Parallel, sequential, tabled, . . .

Compile-time Messages
Errors/warnings
Static Violations

Run-time Messages
Debugging

Dynamic Violations
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Solving The Dynamic vs. Static Dilemma

Dynamic vs. Static — An almost religious argument!

Dynamic languages (Prolog, Scheme, Python, Javascript, ...)

Dynamic checking of types (and many other properties):

..., A is B+C, ...

B and C checked to be numexpr by is/2 at run time.
..., arg(N,T,A), ...

N checked to be nat & ≤ arity(T) by arg/3 (array bounds).

Need to use tags (boxing of data) to identify type, var/nonvar, etc.
Flexibility, compactness, rapid prototyping, scripting, ...

Static languages (ML, Haskell, Mercury, Java, ...)

Compiler checks statically types.
No dynamic checks needed for types.
Safety guarantees (types), scalability, performance, large systems, ...

Some languages (e.g., C) are neither:
no checking of, e.g., array bounds at compile time or run time...
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Solving The Dynamic vs. Static Dilemma

Solving the Dynamic vs. Static Dilemma

The Ciao Approach:

Provide the flexibility of dynamic languages, but with
Guaranteed safety, reliability, and efficiency.

Use of voluntary assertions to express desired properties (incl. types).

Can be added up front, gradually, or not at all.

Use of advanced program analysis (abstract interpretation) for:

Guaranteeing the properties as much as possible at compile-time.
Achieving high performance:

Eliminating run time checks at compile time.
Unboxing.
Specialization, slicing, ...
Automatic parallelization.

Integrated Approach to Specification, Debugging, Verification,
Testing, and Optimization.
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Solving The Dynamic vs. Static Dilemma

Solving the Dynamic vs. Static Dilemma (Contd.)

Other aspects:

Code can be interpreted or compiled. Scripting supported.
But also separate compilation, global analysis.
Code can be added or modified dynamically
(but has to be marked as ’dynamic’).
Full reflection and meta-programming (but need to be declared).
Interactive top level, embeddable source debugger.
But compiler also creates small executables for small programs.
Executables can be static, dynamic, or lazy load.
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Integrated Static / Dynamic Verification & Debugging

Integrated Approach to Specification, Debugging,
Verification, Testing, and Optimization

+

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

(ACC)

(optimized)

code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

PREPROCESSOR

Herme,Bue,Car,Lope,Mera,Mora,Pueb,Haem (IMDEA, UPM)An overview of Ciao RuleML – July 19, 2011 11 / 35



Integrated Static / Dynamic Verification & Debugging The Assertion Language

The Assertion Language

Assertions:

:- pred Pred [:Precond] [=> Postcond] [+ Comp-formula ] .

Example:
:- pred quicksort(X,Y) : list(int) * var => sorted(Y) + (is det,not fails).

:- pred quicksort(X,Y) : var * list(int) => ground(X) + non det.

Optional, can be added at any time. Provide partial specification.
Describe calls, success, and computational behavior/invariants.
Each pred typically describes a “mode” of use; the set covers all valid calls.
System makes it worthwhile for the programmer to use them: e.g., autodoc.

Inst vs. Compat:

The : and => fileds describe instantiation states by default.

Specifying “compatibility:”

:- pred quicksort/2 :: list(int) * list(int).
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Integrated Static / Dynamic Verification & Debugging The Assertion Language

The Assertion Language (Contd.)

Properties:
:- regtype color := green | blue | red.
:- regtype list := [] | [ |list].
:- regtype list(X) := [] | [ X|list]. ≡ list( ,[]). list(X,[H|T]) :- X(H), list(X,T).

:- prop sorted := [] | [ ] | [X,Y|Z] :- X > Y, sorted([Y|Z]).

Arbitrary predicates (but conditions on them: termination, steadfastness, ...)

Many predefined in libs, some of them “native” to an analyzer.
Can also be user-defined.

Should be visible/imported and “runnable:” used also as run-time tests!

Types/shapes are a special case of property (e.g., regtypes).

But also, e.g., data sizes, instantiation states, aliasing, termination,
determinacy, non-failure, time, memory, ...
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Integrated Static / Dynamic Verification & Debugging The Assertion Language

The Assertion Language (Contd.)

Modes (essentially “property macros”):
:- pred qs(+,-). ≡ :- pred qs(X,Y) : (nonvar(X), var(Y)).

:- pred qs(?list,?list). ≡ :- pred qs(X,Y) :: (list(X), list(Y)).

:- pred qs(+list,-list). ≡ :- pred qs(X,Y) : (list(X), var(Y)) => list(Y).

In fact, they are defined as macros:

:- modedef +(A) : nonvar(A). :- modedef +(A,X) : X(A).

:- modedef -(A) : var(A). :- modedef -(A,X) : var(A) => X(A).

Can include comments:
:- pred qs(+list,-list) # "Sorts."

:- pred qs(-list,+list) # "Generates permutations."

Program-point Assertions:
Inlined with code: ..., check(( int(X), X>0 )), ....

Assertion Status (so far “to be checked” – check status – default):

Other: trust (guide analyzer), true/false (analysis output), test, etc.
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Integrated Static / Dynamic Verification & Debugging The Assertion Language

The Assertion Language (Contd.)

+

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

(ACC) code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

(optimized)

PREPROCESSOR

Used everywhere, for many purposes!

Simplest applications:

Generation of run-time tests.
Auto-documentation.

Simple to extend also to testing.

Herme,Bue,Car,Lope,Mera,Mora,Pueb,Haem (IMDEA, UPM)An overview of Ciao RuleML – July 19, 2011 15 / 35



Integrated Static / Dynamic Verification & Debugging The Assertion Language

The Assertion Language (Contd.)

+

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

(ACC) code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

(optimized)

PREPROCESSOR

Used everywhere, for many purposes!

Simplest applications:

Generation of run-time tests.
Auto-documentation.

Simple to extend also to testing.

Herme,Bue,Car,Lope,Mera,Mora,Pueb,Haem (IMDEA, UPM)An overview of Ciao RuleML – July 19, 2011 15 / 35



Integrated Static / Dynamic Verification & Debugging The Assertion Language

The Assertion Language (Contd.)

+

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

(ACC) code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

(optimized)

PREPROCESSOR

Used everywhere, for many purposes!

Simplest applications:

Generation of run-time tests.
Auto-documentation.

Simple to extend also to testing.

Herme,Bue,Car,Lope,Mera,Mora,Pueb,Haem (IMDEA, UPM)An overview of Ciao RuleML – July 19, 2011 15 / 35



Integrated Static / Dynamic Verification & Debugging The Assertion Language

Autodocumenter: LPdoc

...

lpdoc
Installation scripts

Index entries

WWW & info sites

User files

Sys. files

Main.pl

CompN.pl

SETTINGS Manuals, Readmes,...

Code + Assertions

css, templ,

texinfo

dvi, ps

pdf

hml

man

ascii, ...

info

Comp1.pl

Uses:

All the information that the compiler has.
Assertions.
Doc declarations (or active commens):

:- doc(title,"Complex numbers library").

:- doc(summary,"Provides an ADT for complex numbers.").

%! title: Complex numbers library

%! summary: Provides an ADT for complex numbers

Markup language, close to LATEX/texinfo.
With indices, references, figures, ...
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Integrated Static / Dynamic Verification & Debugging Assertion-based Testing

Assertion-based Testing

+

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

(ACC) code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checkedPREPROCESSOR

:− texec

(optimized)

:− check

:− test
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Integrated Static / Dynamic Verification & Debugging Assertion-based Testing

Assertion-based Testing

Assertion schema used:

:- test Pred[:Precond][=>Postcond][+CompExecProps].

Such test assertions translate into:

What needs to be checked (normal assertions):
:- check pred Pred [:Precond] [=>Postcond] [+CompProps].

What test case needs to be run (test driver):
:- texec Pred [:Precond] [+Exec-Formula].

Many interactions within the integrated framework:

(Unit) tests are part of the assertion language.
Parts of unit tests that can be verified at compile-time are deleted.
Rest of unit testing uses the run-time assertion-checking machinery.
Unit tests also provide test cases for run-time checks coming from assertions.

Assertions checked by unit testing, even if not conceived as tests.

Herme,Bue,Car,Lope,Mera,Mora,Pueb,Haem (IMDEA, UPM)An overview of Ciao RuleML – July 19, 2011 18 / 35



Integrated Static / Dynamic Verification & Debugging Assertion-based Testing

Assertion-based Testing

Assertion schema used:

:- test Pred[:Precond][=>Postcond][+CompExecProps].

Such test assertions translate into:

What needs to be checked (normal assertions):
:- check pred Pred [:Precond] [=>Postcond] [+CompProps].

What test case needs to be run (test driver):
:- texec Pred [:Precond] [+Exec-Formula].

Many interactions within the integrated framework:

(Unit) tests are part of the assertion language.
Parts of unit tests that can be verified at compile-time are deleted.
Rest of unit testing uses the run-time assertion-checking machinery.
Unit tests also provide test cases for run-time checks coming from assertions.

Assertions checked by unit testing, even if not conceived as tests.

Herme,Bue,Car,Lope,Mera,Mora,Pueb,Haem (IMDEA, UPM)An overview of Ciao RuleML – July 19, 2011 18 / 35



Integrated Static / Dynamic Verification & Debugging Assertion-based Testing

Verification and Error Detection using Safe Approximations

Need to compare actual semantics [[P]] with intended semantics I:

P is partially correct w.r.t. I iff [[P]] ≤ I
P is complete w.r.t. I iff I ≤ [[P]]
P is incorrect w.r.t. I iff [[P]] 6≤ I
P is incomplete w.r.t. I iff I 6≤ [[P]]

Usually, partial descriptions of I available, typically as assertions.

Problem: difficulty computing [[P]] w.r.t. interesting observables.

Approach: use a safe approximation of [[P]] → i.e., [[P]]α+ or [[P]]α−

Specially attractive if compiler computes (most of) [[P]]α+ anyway.

Definition Sufficient condition
P is prt. correct w.r.t. Iα if α([[P]]) ≤ Iα [[P]]α+ ≤ Iα
P is complete w.r.t. Iα if Iα ≤ α([[P]]) Iα ≤ [[P]]α=

P is incorrect w.r.t. Iα if α([[P]]) 6≤ Iα [[P]]α= 6≤ Iα, or
[[P]]α+ ∩ Iα = ∅ ∧ [[P]]α 6= ∅

P is incomplete w.r.t. Iα if Iα 6≤ α([[P]]) Iα 6≤ [[P]]α+
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Integrated Static / Dynamic Verification & Debugging The Analyses

The Analyses

+
(optimized)

Comparator
(Incl. VCgen)

Normalizer
& Lib Itf.

Assertion

Analysis
Info
[[P]]

Program
P

:− trust

I

Builtins/
Libs

RT Check

verification
warning

compile−time
error

verified

(ACC) code
certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

PREPROCESSOR

Modular, parametric, polyvariant abstract interpretation.
Accelerated, incremental fixpoint.
Properties:

Shapes, data sizes, sharing/aliasing, CHA, determinacy, exceptions,
termination, ...
Resources (time, memory, energy, ...), (user-defined) resources.
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Integrated Static / Dynamic Verification & Debugging Static/Dynamic Checking of Assertions

Integrated Static/Dynamic Debugging and Verification

+

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

(ACC) code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

(optimized)

PREPROCESSOR

Definition Sufficient condition
P is prt. correct w.r.t. Iα if α([[P]]) ≤ Iα [[P]]α+ ≤ Iα
P is complete w.r.t. Iα if Iα ≤ α([[P]]) Iα ≤ [[P]]α=

P is incorrect w.r.t. Iα if α([[P]]) 6≤ Iα [[P]]α= 6≤ Iα, or
[[P]]α+ ∩ Iα = ∅ ∧ [[P]]α 6= ∅

P is incomplete w.r.t. Iα if Iα 6≤ α([[P]]) Iα 6≤ [[P]]α+
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Integrated Static / Dynamic Verification & Debugging Static/Dynamic Checking of Assertions

Integrated Static/Dynamic Debugging and Verification

+

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

(ACC) code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

(optimized)

PREPROCESSOR

Run-time checks generated for parts of assertions not verified
statically.
Diagnosis (for both static and dynamic errors).
Comparison not always trivial: e.g., Resource Debugging/Certification

Need to compare functions.
“Segmented” answers.
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Integrated Static / Dynamic Verification & Debugging Static/Dynamic Checking of Assertions

Resource Usage Verification (based on intervals)
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Integrated Static / Dynamic Verification & Debugging Static/Dynamic Checking of Assertions

Resource Usage Verification
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Integrated Static / Dynamic Verification & Debugging Static/Dynamic Checking of Assertions

Resource Usage Verification
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Integrated Static / Dynamic Verification & Debugging Static/Dynamic Checking of Assertions

Discussion: Comparison with Classical Types

“Traditional” Types Ciao Assertion-based Model
“Properties” limited by decidability Much more general property language
May need to limit prog. lang. No need to limit prog. lang.
“Untypable” programs rejected Run-time checks introduced
(Almost) Decidable Decidable + Undecidable(approximated)
Expressed in a different language Expressed in the source language
Types must be defined Types can be defined or inferred
Assertions are only of type “check” “check”, “trust”, ...
Type signatures & assertions different Type signatures are assertions

Some key issues:
Safe / Sound approximation Suitable assertion language
Abstract Interpretation Powerful abstract domains

Works best when properties and assertions can be expressed in the
source language (i.e., source lang. supports predicates, constraints).
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Integrated Static / Dynamic Verification & Debugging Certification / Abstraction Carrying Code

Abstraction-based Certification, Abstraction-Carrying Code

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

+(ACC) code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

PREPROCESSOR

(optimized)

PRODUCER CONSUMER

[[P]]α = Analysis = lfp(analysis step)
Certificate ⊂ [[P]]α
Certificate →
Safety Policy

Checker = analysis step

Interesting extensions: reduced certificates, incrementality, ...
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Optimization General

Optimization

+

Comparator

(Incl. VCgen)
Normalizer

& Lib Itf.

Assertion

Analysis

Info

[[P]]

Program

P

:− trust

I

Builtins/

Libs

RT Check

verification
warning

compile−time
error

verified

(ACC) code

certificate

Unit Test

Analysis
Static

possible
run−time error

:− check

:− false

:− checked

:− texec

:− check

:− test

PREPROCESSOR

(optimized)

Source-level optimizations:
Partial evaluation, (multiple) (abstract) specialization, ...

Low-level optimizations:
Dynamic check elimination, unboxing.
Use of specialized instructions.
Optimized native code generation.

→ obtaining close-to-C performance for dynamic languages.
Parallelization. Granularity control.
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Optimization Parallelism

Some Speedups (Using Different Abstract Domains)
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(ann: parallelizer parallelizing itself; 1-10 proc.: actual speedups on Sequent

Symmetry; 10+ simulator projections from execution traces)
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Optimization Parallelism

8 processors
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Optimization Parallelism

8 processors, with granularity control (same scale)
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Other Relevant Ciao Features

Other Relevant Ciao Features

Extensive support for the Web:

PiLLoW, http(s), ODBC, XML, ZeroMQ, XPath, RDF, ...

Extensive support for concurrency, reactivity:

Agents, condition-action rules, ...

Recent applications to web services:

Sharing & resources for orchestration.
Interfaces, libraries, ...

Compilation to javascript.

Very interested in collaborating with RuleML groups towards
providing support for advanced RuleML needs!
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Conclusions Ciao Overview

Ciao Overview

Compiler

Development Environment
Emacs based, command line,

top-levels (compilation, analysis)

Source (user and library)
Packages

(multi-paradigm)

fsyntax

hiord

clpr

...

Modules
(w./wo. assertions)

mod1

mod2

...
modn

user interaction

Front-end Compiler
(implements module system)

Expanded Code
(Kernel Language)

Annotated/
Transformed Code

Preprocessor

Analysis (types,
modes, resources, . . . )

Verification (static
checking of assertions)

Optimization (parallelism,
specialization, . . . )

Back-end Compiler
(optimized from annotations)

Executable Code
(bytecode, native code)

Documenter
(automatic

documentation
from programs
with assertions)

Run-time Engine and Libs.
Multi-platform

Parallel, sequential, tabled, . . .

Compile-time Messages
Errors/warnings
Static Violations

Run-time Messages
Debugging

Dynamic Violations
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Conclusions Discussion

Discussion

Approaches prior to Ciao had what we perceived as limitations:
limited the properties which may appear in specifications, or
checked specifications only at run-time or only at compile-time, or
were not automatic, or
required assertions for all predicates, . . .

The Ciao approach – solution to static/dynamic conundrum, which:
Integrates automatic compile-time and run-time checking of assertions.
Allows using assertions in only some parts of the program.
Deals safely with complex properties (beyond, e.g., traditional types).

Allows “modern” (agile/extreme/...) programming style:

Develop program and specifications gradually, not necessarily in sync.
Both can be incomplete (including types).

Temporarily use spec (including tests) as implementation.

Go from types, to more complex assertions, to full specifications.

Assertion language design is important: many roles, used throughout.
Assertions, properties in source language; “seamless integration.”
Performance through optimization, not language restriction.
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Team

Some Members of The Ciao Forge

Ciao is quite a distributed/collaborative effort:

Directly within the CLIP Group (UPM and IMDEA Software):

M. Hermenegildo, K. Muthukumar, M. Garćıa de la Banda, F. Bueno,
G. Puebla, M. Carro, D. Cabeza, P. López-G., R. Haemmerlé,
J. Morales, E. Mera, J. Navas, M. Méndez, A. Casas, J. Correas,
D. Trallero, C. Ochoa, P. Chico, M.T. Trigo, P. Pietrzak, C. Vaucheret,
E. Albert, P. Arenas, S. Genaim, . . .

Plus lots of contributors worldwide:

G. Gupta (UT Dallas), E. Pontelli (NM State University), P. Stuckey
and M. Garćıa de la Banda (Melbourne U.), K. Marriott (Monash U.),
M. Bruynooghe, A. Mulkers, G. Janssens, and V. Dumortier (K.U.
Leuven), S. Debray (U. of Arizona), J. Maluzynski and W. Drabent,
(Linkoping U.), P. Deransart (INRIA), J. Gallagher (Roskilde
University), C. Holzbauer (Austrian Research Institute for AI),
M. Codish (Beer-Sheva), SICS, . . .
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Download

Downloading, etc.

http://www.ciaohome.org

Provides access to:

Latest Ciao, CiaoPP, LPdoc, etc.

Development versions.

Documentation.

Mailing lists.

etc.

Please contact us for SVN access.

Around 1,000,000 lines of (mostly Prolog) code.

Mostly LGPL (some packages have some variations).

Herme,Bue,Car,Lope,Mera,Mora,Pueb,Haem (IMDEA, UPM)An overview of Ciao RuleML – July 19, 2011 35 / 35

http://www.ciaohome.org


Bibliography

All papers available on line at: http://clip.dia.fi.upm.es/clippubsbyyear

and http://clip.dia.fi.upm.es/clippubsbytopic

System manual
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