
Modular Termination Analysis of Java Bytecode

and its Application to phoneME Core Libraries

D. Ramı́rez-Deantes1, J. Correas2, and G. Puebla1

1 DLSIIS, Technical University of Madrid (UPM), Spain
2 DSIC, Complutense University of Madrid (UCM), Spain

Abstract. Termination analysis has received considerable attention, tra-
ditionally in the context of declarative programming and, recently, also
for imperative and Object Oriented (OO) languages. In fact, there exist
termination analyzers for OO which are capable of proving termination
of medium size applications by means of global analysis, in the sense that
all the code used by such applications has to be proved terminating. How-
ever, global analysis has important weaknesses, such as its high memory
requirements and its lack of efficiency, since often some parts of the code
have to be analyzed over and over again, libraries being a paramount
example of this. In this work we present how to extend the termination
analysis in the COSTA system in order to make it modular by allowing
separate analysis of individual methods. The proposed approach has been
implemented. We report on its application to the termination analysis
of the core libraries of the phoneME project, a well-known open source
implementation of Java Micro Edition (JavaME), a realistic but reduced
version of Java to be run on mobile phones and PDAs. We argue that
such experiments are relevant, since handling libraries is known to be
one of the most relevant open problems in analysis and verification of
real-life applications. Our experimental results show that our proposal
dramatically reduces the amount of code which needs to be handled in
each analysis and that this allows proving termination of a good number
of methods for which global analysis is unfeasible.

1 Introduction

It has been known since the pre-computer era that it is not possible to write a
program which correctly decides, in all cases, if another program will terminate.
However, termination analysis tools strive to find proofs of termination for as
wide a class of (terminating) programs as possible. Automated techniques are
typically based on analyses which track size information, such as the value of
numeric data or array indexes, or the size of data structures. This information is
used for specifying a ranking function which strictly decreases on a well-founded
domain on each computation step, thus guaranteeing termination. In the last two
decades, a variety of sophisticated termination analysis tools have been devel-
oped, primarily for less-widely used programming languages. These include ana-
lyzers for term rewrite systems [16], and logic and functional languages [18, 9, 17].



Termination-proving techniques are also emerging in the imperative paradigm
[7, 10, 16] and the object oriented (OO for short) paradigm, where static analysis
tools such as Julia [25], AProVE [21], and costa [1] are able to prove termina-
tion of non-trivial medium-size programs. In the context of OO languages, we
focus on the problem of proving whether the execution of a method m terminates
for any possible input value which satisfies m’s precondition, if any. Solving this
problem requires, at least in principle, a global analysis, since proving that the
execution of m terminates requires proving termination of all methods transi-
tively invoked during m’s execution. In fact, the three analysis tools for OO code
mentioned above require the code of all methods reachable from m to be avail-
able to the analyzer and aim at proving termination of all the code involved.
Though this approach is valid for medium-size programs, we quickly get into
scalability problems when trying to analyze larger programs. It is thus required
to reach some degree of compositionality which allows decomposing the analysis
of large programs into the analysis of smaller parts.

In this work we propose an approach to the termination analysis of large OO
programs which is compositional and we (mostly) apply it by analyzing a method
at a time. We refer to the latter as modular, i.e., which allows reasoning on a
method at a time. Our approach provides several advantages: first, it allows
the analysis of larger programs, since the analyzer does not need to have the
complete code of the program nor the intermediate results of the analysis in
memory. Second, methods are often used by several other methods. The analysis
results of a shared method can be reused for multiple uses of the method.

The approach presented is flexible in the level of granularity: it can be used
in a component-based system at the level of components. A specification can be
generated for a component C by analyzing its code, and it can be deployed to-
gether with the component and used afterwards for analyzing other components
that depend on this one. When analyzing a component-based application that
uses C, the code of C does not need to be available at analysis time, since the
specification generated can be used instead.

In order to evaluate the effectiveness of our approach, we have extended the
costa analyzer to be able to perform modular termination analysis and we have
applied the improved system to the analysis of the phoneME implementation
of the core libraries of JavaME. Note that analysis of API libraries is quite
challenging and a significant stress test for the analyzer for a number of reasons
which are discussed in more detail in Section 5 below. The main contribution
of this paper is that it provides a practical framework for the modular analysis
of Java bytecode, illustrating its applicability to real programs by analyzing
phoneME librares. These contributions are detailed from Section 4 onwards.

2 Non-Modular Termination Analysis in costa

costa (see [4] and its references) is a cost [2] and termination [1] analyzer for
Java bytecode. costa receives as input the signature of the method m whose
termination (or cost) we want to infer. Method m is assumed to be available

2



JBC

class
analysis

CFG RBR

Terminates

BC SIZE

Unknown

nullity
sign

CFG
build

RBR
build

BC
build

size
analysis

PUBS
solver

heap 
analysis

Fig. 1. Architecture of costa

in the classpath or default Java run-time environment (jre for short) libraries,
together with all other methods and classes transitively invoked by m. Since
there can be many more classes and methods in the classpath and jre than
those reachable from m, a first step during analysis consists in identifying a
set M of methods which includes all methods reachable from m. This phase
is sometimes referred to as program extraction or application extraction. Then,
costa performs a global analysis since, not only m, but all methods in the
program M are analyzed.

We now briefly describe the overall architecture of costa, which is graph-
ically represented in Figure 1. More details can be found in [3]. The dashed
frames represent the two main phases of the analysis: (i) consists of extracting a
program M from the method m plus the transformation of the bytecode for all
methods in M into a suitable internal representation; and (ii) the actual static
analysis. Input and output of the system are depicted on the left: by JBC we
denote the bytecode of all classes in the classpath and jre plus the signature of
a method and yields information about termination, indicated by Terminates

(the analyzer has proved that the program terminates for all valid inputs) or
Unknown (otherwise). Ellipses (e.g. CFG) represent what the system produces
at each intermediate stage of the analysis; rounded boxes (e.g. “CFG build”)
indicate the main steps of the analysis process; square boxes (e.g. class analy-

sis), which are connected to the main steps by dashed arrows, denote auxiliary
analyses which allow obtaining more precise results. During the first phase, de-
picted in the upper half of the figure, the incoming JBC is transformed into a
rule-based representation (RBR). In the second phase, depicted in the lower half
of the figure, the system performs the actual termination analysis on the RBR.

2.1 From the Bytecode to the Rule-based Representation

Generation of Control Flow Graphs guided by Class Analysis costa

transforms the bytecode of a method into Control Flow Graphs (CFGs) by using
techniques from compiler theory. As regards Virtual invocation, computing a
precise approximation of the methods which can be executed at a given program

3



point is not trivial. As customary in the analysis of OO languages, costa uses
class analysis [24] (or points-to analysis) in order to precisely approximate this
information. First, the CFG of the initial method is built, and class analysis is
applied in order to approximate the possible runtime classes at each program
point. This information is used to resolve virtual invocations. Methods which can
be called at runtime are loaded, and their corresponding CFGs are constructed.
Class analysis is applied to their body to include possibly more classes, and the
process continues iteratively. Once a fixpoint is reached, it is guaranteed that all
reachable methods have been loaded, and the corresponding CFGs have been
generated.

As regards exceptions, costa handles internal exceptions (i.e., those asso-
ciated to bytecodes as stated in the JVM specification), exceptions which are
thrown (bytecode athrow) and possibly propagated back in methods, as well as
finally clauses. Exceptions are handled by adding edges to the corresponding
handlers. costa provides the options of ignoring only internal exceptions, all
possible exceptions or considering them all.

Rule-based Representation Given a method m and its CFGs, a RBR for m

is obtained by producing, for each basic block mj in its CFGs, a rule which (1)
contains the set of bytecode instructions within the basic block; (2) if there is a
method invocation within the instructions, includes a call to the corresponding
rule; and (3) at the end, contains a call to a continuation rule mc

j which includes
mutually exclusive rules to cover all possible continuations from the block. Note
that several rules may be produced with the same name. A procedure P is the
set of all rules with name P .

2.2 Context-Sensitive (Pre-)Analyses to Improve Accuracy

costa performs three context-sensitive analyses on the RBR based on abstract
interpretation [12]: nullity, sign and heap analysis. These analyses improve the
accuracy (and efficiency) of subsequent steps inferring information from individ-
ual bytecodes, and propagating it via a standard, top-down fixpoint computation.

Nullity Analysis aims at keeping track of reference variables which are
definitely null or are definitely non-null. For instance, the bytecode new(si)
allows assigning the abstract value non-null to si. The results of nullity analysis
often allow removing rules corresponding to NullPointerException.

Sign Analysis aims at keeping track of the sign of variables. The abstract
domain contains the elements ≥, ≤, >, <, = 0, 6= 0, ⊤ and ⊥, partially ordered
in a lattice. For instance, sign analysis of const(si, V ) evaluates the integer value
V and assigns the corresponding abstract value = 0, > or < to si, depending,
resp., on if V is zero, positive or negative [12]. Knowing the sign of data allows
removing RBR rules for arithmetic exceptions which are never thrown.

Heap Analysis obtains information related to variables and arguments lo-
cated in the heap, a global data structure which contains objects (and arrays)
allocated by the program. Infers properties like constancy and cyclicity of vari-
ables and arguments, and sharing, reachability and aliasing between variables

4



and arguments in the heap [15]. They are used for inferring sound size relations
on objects.

2.3 Size Analysis of Java Bytecode

From the RBR, size analysis takes care of inferring the relations between the
values of variables at different points in the execution. To this end, the notion
of size measure is crucial. The size of a piece of data at a given program point
is an abstraction of the information it contains, which may be fundamental to
prove termination. The costa system uses several size measures:

– Integer-value maps an integer value to its value (i.e., the size of an integer
is the value itself). It is typically used in loops with an integer counter.

– Path-length [23] maps an object to the length of the maximum path reachable
from it by dereferencing. This measure can be used to predict the behavior
of loops which traverse linked data structures, such as lists and trees.

– Array-length maps an array to its length and is used to predict the behavior
of loops which traverse arrays.

Size analysis works in two phases. In the first one, called abstract compilation,
each bytecode, call or guard is abstracted by linear constraints on the size of
its variables: for example, iadd(s0, s1, s

′

0) will be abstracted by the constraint
s′0=s1+s0, meaning that the size of s0 after executing the instruction is the sum
of the size of s0 and s1 before.

In the second phase, linear constraints replacing parts of the program can be
propagated via a standard, bottom-up fixpoint computation, in order to combine
the information about single rules. The goal of this global analysis is to have size

relations on variables between the input of a rule (i.e., a block in the CFG) and
another one which can be (directly or indirectly) called by the first one.

2.4 Inferring Termination

From the RBR and the results of size analysis, a set of binary clauses (BC in Fig-
ure 1) is produced, which capture calls among blocks together with information
on how the values of variables change from one call to another. On such binary
clauses, standard termination analysis techniques developed for i.e., termination
of logic program can be applied. In particular, costa proves termination by using
semantic-based techniques, relying on binary unfolding combined with ranking

functions, as those in [9]. This is performed by means of the PUBS solver. More
details on how termination proofs are performed in costa can be found in [1].

3 Abstract Interpretation Fundamentals

Before describing the modular analysis framework, a brief description to ab-
stract interpretation is in order. Abstract interpretation [12] is a technique for
static program analysis in which execution of the program is simulated on a

5



description (or abstract) domain (D) which is simpler than the actual (or con-
crete) domain (C). Values in the description domain and sets of values in the
actual domain are related via a pair of monotonic mappings 〈α, γ〉: abstraction

α : 2C → D and concretization γ : D→ 2C which form a Galois connection, i.e.

∀x ∈ 2C : γ(α(x)) ⊇ x and ∀λ ∈ D : α(γ(λ)) = λ.

The set of all possible descriptions represents a description domain D which
is usually a complete lattice for which all ascending chains are finite. Note that
in general ⊑ is induced by ⊆ and α (in such a way that ∀λ, λ′ ∈ D : λ ⊑ λ′ ⇔
γ(λ) ⊆ γ(λ′)). Similarly, the operations of least upper bound (⊔) and greatest

lower bound (⊓) mimic those of 2C in some precise sense that depends on the
particular abstract domain. A description λ ∈ D approximates a set of concrete

values x ∈ 2C if α(x) ⊑ λ. Correctness of abstract interpretation guarantees
that the descriptions computed approximate all of the actual values which occur
during the execution of the program.

In costa, abstract interpretation is performed on the rule based represen-
tation introduced in Section 2. We first introduce some notation. CP and AP

stand for descriptions in the abstract domain. The expression P :CP denotes a
call pattern. This consists of a procedure P together with an entry pattern for
that procedure. Similarly, P 7→ AP denotes an answer pattern, though it will
be referred to as AP when it is associated to a call pattern P :CP for the same
procedure. Since a method is represented in the RBR as a set of interconnected
procedures that start from a single particular procedure, the same notation will
be used for methods: m:CP denotes a call pattern that corresponds to an in-
vocation to method m (i.e., the entry procedure for method m), and m 7→ AP

denotes the answer pattern obtained after analyzing method m.

Context-sensitive abstract interpretation takes as input a program R and an
initial call pattern P :CP, where P is a procedure and CP is a restriction of the
values of arguments of P expressed as a description in the abstract domain D

and computes a set of triples, denoted analysis(R,P :CP) = {P1:CP1 7→ AP1,

. . . , Pn:CPn 7→ APn}. In each element Pi:CPi 7→ APi, Pi is a procedure and
CPi and APi are, respectively, the abstract call and answer patterns.

An analysis is said to be polyvariant if more than one triple P :CP1 7→ AP1,
. . . , P :CPn 7→ APn n ≥ 0 with CPi 6= CPj for some i, j may be computed for
the same procedure P , while a monovariant analysis computes (at most) a single
triple P :CP 7→ AP for each procedure (with a call pattern CP general enough
to cover all possible patterns that appear during the analysis of the program
for P ). Although in general context-sensitive, polyvariant analysis algorithms
are more precise than those obtained with context-insensitive or monovariant
analyses, monovariant algorithms are simpler and have smaller memory require-
ments. Context-insensitive analysis does not consider call pattern information,
and therefore obtains as result of the analysis a set of pairs {P1 7→ AP1, . . . ,

Pn 7→ APn}, valid for any call pattern.

6



costa includes several abstract interpretation based analyses: nullity and
sign are context-sensitive and monovariant, size is context-insensitive, and heap
properties analysis [15] is context-sensitive and polyvariant.

4 Extending costa to Modular Termination Analysis

As described in Section 2, the termination analysis performed by costa is in
fact a combination of different processes and analyses that receive as input a
complete program and eventually produce a termination result. Our goal now
is to obtain a modular analysis framework for costa which is able to produce
termination proofs by analyzing programs one method at a time. I.e., in order
to analyze a method m, we analyze the code of m only and (re-)use the analysis
results previously produced for the methods invoked by m.

The communication mechanism used for this work is based on assertions,
which store the analysis results for those methods which have already been
analyzed. Assertions are stored by costa in a file per class basis and they keep
information regarding the different analyses performed by costa: nullity, sign,
size, heap properties, and termination.

Same as analysis results, assertions are of the form m:Pre 7→ Post, where
Pre is the precondition of the assertion and Post is the postcondition. The
precondition states for which call pattern the method has been analyzed. It
includes information regarding all domains previously mentioned except size,
which is context-insensitive. PreD (resp., PostD) denotes the information of the
precondition (resp., postcondition) related to analysis domain D. For example,
Prenullity corresponds to the information related to nullity in the precondition
Pre. The postcondition of an assertion contains the analysis results for all do-
mains produced after analyzing method m. Furthermore, the assertion also states
whether costa has proved termination for that method.

In addition to assertions inferred by the analysis, costa has been extended
to handle assertions written by the user, namely assumed assertions. These as-
sertions are relevant for the cases in which analysis is not able to infer some
information of interest that we know is correct. This can happen either because
the analyzer is not precise enough or because the code of the method is not avail-
able to the analyzer, as happens with native methods, i.e., those implemented
at low-level and for which no bytecode is available. The user can add assumed
assertions with information for any domain. However, for the experiments de-
scribed in Section 6 assumed assertions have been added manually for providing
information about termination only, after checking that the library specification
provided by Sun is consistent with the assertion. In assumed assertions where
only termination information is available, abstract interpretation-based analyses
take ⊤ as the postcondition for the corresponding methods.

4.1 Modular Bottom-up Analysis

The analysis of a Java program using the modular analysis framework consists
in analyzing each of the methods in the program, and eventually determining if

7



the program will terminate or not for a given call pattern. Analyzing a method
separately presents the difficulty that, from the analysis point of view, the code
to be analyzed is incomplete in the sense that the code for methods invoked is
not available. More precisely, during analysis of a method m there may be calls
m′:CP and the code for m′ is not available. Following the terminology in [14], we
refer to determining the value of AP to be used for m′:CP 7→ AP as the answer

patterns problem.

Several analysis domains existing in costa are context-sensitive, and all of
them, except heap properties analysis, are monovariant. For simplicity, the mod-
ular analysis framework we present is monovariant as well. That means that at
most one assertion m:Pre 7→ Post is stored for each method m. If there is
an analysis result for m′, m′:Pre 7→ Post, such that CP is applicable, that is,
CP ⊑ PreD in the domain D of interest, then PostD can be used as answer
pattern for the call to method m′ in m.

For applying this schema, it is necessary that all methods invoked by m have
been analyzed already when analyzing method m. Therefore, the analysis must
perform a bottom-up traversal of the call graph of the program. In order to
obtain analysis information for m′ which is applicable during the analysis of m,
it is necessary to use a call pattern for m′ in its precondition such that it is equal
or more general than the pattern actually inferred during the analysis of m. We
refer to this as the call patterns problem.

Solving the call and answer patterns problems. A possibility for solving
the call patterns problem would be to make the modular analysis framework
polyvariant: store all possible call patterns to methods in the program and then
analyze those methods for each call pattern. This approach has two main dis-
advantages: on one hand, it is rather complex and inefficient, because all call
patterns are stored and every method must be analyzed for all call patterns that
appear in the program. On the other hand, it requires performing a fixpoint
computation through the methods in the program instead of a single traversal
of the call graph, since different call patterns for a method may generate new
call patterns for other methods.

Another alternative is a context-insensitive analysis. All methods are ana-
lyzed using ⊤ as call pattern for all domains. In this approach, all assertions
are therefore applicable, although in a number of cases ⊤ is too general as call
pattern for some domains, and the information obtained is too imprecise.

The approach finally used in this work tries to find a balance between both
approaches. A monovariant modular analysis framework simplifies a great deal
the behavior of the modular analysis, since a single traversal of the call graph is
required. In contrast, it is context-sensitive: instead of ⊤, a default call pattern
is used, and the result of the analysis is obtained based on this pattern. This
framework uses different values as call patterns, depending on the particular
analysis being performed. The default call pattern for nullity and sign is ⊤. For
Heap properties analysis, in cyclicity it is the pattern that indicates that no
argument of the method is cyclic. For variable sharing, it is the one that states

8



that no arguments share. The default call patterns used for analyzing methods
are general enough to be applicable to most invocations used in the libraries and
in user programs, solving the call patterns problem. However, there can be cases
in which the call pattern of an invocation from other method is not included
in the default pattern, i. e., CP 6⊑ PreD. If the code of the invoked method is
available, costa will reanalyze it with respect to CP⊔PreD, even though it has
been analyzed before for the default pattern. If the code is not available, ⊤ is used
as answer pattern. A potential disadvantage of this approach is that all methods
are analyzed with respect to a default call pattern, instead of the specific call
pattern produced by the analysis. This means that the analyses in costa could
produce more precise results when applied non modularly, even though they
are monovariant, and it represents a possible loss of precision in the modular
analysis framework. Nonetheless, in the experiments performed in Section 6 no
method has been found for which it was not possible to prove termination using
modular analysis, but it was proved in the non-modular model.

Cycles in the call graph. Analyzing just a method at a time and (re-)using
analysis information while performing a bottom-up traversal of the call graph
only works under the assumption that there are no cyclic dependencies among
methods. In the case where there are strongly connected components (SCCs for
short) consisting of more than one method, we can analyze all the methods in the
corresponding SCC simultaneously. This presents no technical difficulties, since
costa can analyze multiple methods at the same time. In some cases, we have
found large cycles in the call graph that require analyzing many methods at the
same time. In that case a different approach has been followed, as explained in
Section 6. Therefore, in costa we perform a SCC study first to decide whether
there are sets of methods which need to be handled as a unit.

Field-Sensitive Analysis. In some cases, termination of a method depends on
the values of variables stored in the heap, i.e., fields. costa integrates a field-
sensitive analysis [5] which, at least in principle, is a global analysis and requires
that the source code of all the program be available to the analyzer. Neverthe-
less, in order to be able to use this analysis in the modular setting, a preliminary
adaptation of that analysis has been performed. The field-sensitive analysis in
costa is based on the analysis of program fragments named scopes, and mod-
elling those fields whose behaviour can be reproducible using local variables.
Fields must satisfy certain conditions in order to be handled as local variables.
As a first step of the analysis, related scopes are analyzed in order to determine
the fields that are consulted or modified in each scope. Given a method for which
performing field-sensitive analysis is required in order to prove termination, an
initial approximation to the set of methods that need to be analyzed together
is provided by grouping those methods that use the same fields. We have pre-
computed these sets of methods by means of a non-modular analysis. Since the
implementation of this preanalysis is preliminary and can be highly optimized,
the corresponding time has not been included in the experiments in Section 6.

9



5 Application of Modular Analysis to phoneME libraries

We have extended the implementation of costa for the modular analysis frame-
work. In order to test its applicability, we have analyzed the core libraries of the
phoneME project, a well-known open-source implementation of Java Micro Edi-
tion (JavaME). We now discuss the main difficulties associated to the analysis
of libraries:

– Entry points. Whereas a self contained program has a single entry method
(main(String[])), a library has many entry points that must be taken into
account during the analysis.

– It is designed to be used in many applications. Each entry point must be
analyzed with respect to a call pattern that represents any valid call from
any program that might use it. By valid we mean that the call satisfies the
precondition of the corresponding method.

– Large code base. A system library, especially in the case of Java, usually
is a large set of classes that implement most of the features in the source
language, leaving only a few specific functionalities to the underlying vir-
tual machine, mainly for efficiency reasons or because they require low-level
processing.

– With many interdependencies. It is usual that library classes are extensively
used from within library code. As a result of this, library code contains a
great number of interdependencies among the classes in the library. Thus,
non-modular analysis of a library method often results in analyzing a large
portion of the library code.

– Implemented with efficiency in mind. Another important feature of library
code is that it is designed to be as efficient as possible. This means that
readability and structured control flow is often sacrified for relatively small
efficiency gains. Section 6 shows some examples in phoneME libraries.

– Classes can be extended and methods overridden. Using a library in a user
program usually not only involves object creation and method invocation,
but also library classes can be extended and library methods overridden.

– Use of native code. Finally, it is usual that a library contains calls to native
methods, implemented in C or inside the virtual machine, and not available
to the analyzer.

5.1 Some Further Improvements to costa

While trying to apply costa to the phoneME libraries, we have identified some
problems which we discuss below, together with the solutions we have imple-
mented. As mentioned above, our approach requires analyzing methods in re-
verse topological order of the call graph. For this purpose, we extended costa

in order to produce the call graph of the program after transforming the byte-
code to a CFG. The call graph shows the complex structure of the classes in
phoneME libraries. Furthermore, apparently, some cycles among methods ex-
isted in some of the call graphs, mainly caused by virtual invocations. However,

10



we observed that some potential cycles did not occur in practice. In these cases,
either nullity and sign analyses remove some branches if they detect that are un-
reachable, or costa proves termination when solving the binary clauses system.
A few cases include a large cycle that involves many methods. Those cycles are
formed by small cycles focused in few methods (basically from Object, String
and StringBuffer classes), and a large cycle caused by virtual invocations from
those methods. In order to speed up analysis, methods in small cycles have been
analyzed at the same time, as mentioned above, and large cycles have been
analyzed considering the modular, method at a time bottom up approach.

In addition, costa has been extended for a more refined control of which
pieces of code we want to include or exclude from analysis. Now there are several
visibility levels: method, class, package, application, and all. When all is
selected, all related code is loaded and included in the RBR. In the other extreme,
when method is selected only the current method is included in the RBR and
only the corresponding assertions are available for other methods.

5.2 An Example of Modular Analysis of phoneME libraries

As an example of the modular analysis framework presented in this paper, let us
consider the method Class.getResourceAsStream in the phoneME libraries. It
takes a string with the name of a resource in the application jar file and returns an
object of type InputStream for reading from this resource, or null if no resource
is found with that name in the jar file. Though costa analyzes bytecode, we
show below the corresponding Java source for clarity of the presentation:

public java.io.InputStream getResourceAsStream(String name) {

try {

if (name.length() > 0 && name.charAt(0) == ’/’) {

name = name.substring(1);

} else {

String clName = this.getName();

int idx = clName.lastIndexOf(’.’);

if (idx >= 0)

name = clName.substring(0, idx+1).replace(’.’, ’/’) + name;

}

return new com.sun.cldc.io.ResourceInputStream(name);

} catch (java.io.IOException x) { return null; }

}

In the source code of this method there are invocations to eleven methods
of different classes (in addition to the eight methods explicitly invoked in the
method code, the string concatenation operator in line 9 is translated to a cre-
ation of a fresh StringBuffer object and invocations to some of its methods.)

If the standard, non-modular approach of analysis is used, the analyzer would
load the code of this method and all related methods invoked. In this case, there
are 65 methods related to getResourceAsStream, from which 10 are native
methods. In fact, using this approach costa is unable to prove termination.
Using modular analysis, the call graph is traversed bottom-up, analyzing each

11



method related to getResourceAsStream one by one. For example, the analysis
of the methods invoked by getResourceAsStream has obtained the following
information related to the nullity domain1:

Method call result

StringBuffer.toString() n/a nonnull

StringBuffer.append(String) ⊤ nonnull

StringBuffer.<init>()V n/a n/a

String.replace(char,char) (⊤,⊤) nonnull

com.sun.cldc.io.ResourceInputStream.<init>(String) nonnull n/a

String.substring(int) ⊤ nonnull

String.length() n/a ⊤

String.substring(int,int) (⊤,⊤) nonnull

String.charAt(int) ⊤ ⊤

In this table, the call pattern refers to nullity information regarding the
values of arguments and the result is related to the method return value. De-
spite of the call patterns generated by the analysis of getResourceAsStream

shown above, when the bottom-up modular analysis computation is performed,
all methods are analyzed with respect to the default call pattern ⊤. The analysis
of getResourceAsStream uses the results obtained for those methods to gener-
ate the nullity analysis results for getResourceAsStream. The same mechanism
is used for other domains: sign, size and heap related properties.

Finally, two native methods are invoked from getResourceAsStream (lastI-
ndexOf and getName) that require assumed assertions. In this case, ⊤ is assumed
as the answer pattern for those invocations.

5.3 Contracts for Method Overriding

As mentioned above, one of the most important features of libraries in OO
languages is that classes can be extended by users at any point in time, including
the possibility of overriding methods. This poses significant problems to modular
static analysis, since classes and methods which have already been analyzed
may be extended and overridden, thus possibly rendering the previous analysis
information incorrect. Let us illustrate this issue with an example:

class A {

void m(){/* code for A.m() */};

void caller_m(){this.m();};

};

class B extends A {

void m(){/* code for B.m() */};

};

class Example {

void method_main(A a){

a.caller_m();

};

};

Here, there are three different classes: A, B, and Example. But for now, let
us concentrate on classes A and Example only. If A is analyzed, the result ob-
tained for caller m depends directly on the result obtained for A.m (for instance,

1 These analysis results have been obtained ignoring possible exceptions thrown by
the Java virtual machine (e.g., no method found, unable to create object, etc.) for
clarity of the presentation.

12



caller m could be guaranteed to terminate under the condition that A.m termi-
nates). Then, the class Example is analyzed, using the analysis results obtained
for A. Let us suppose that analysis concludes that method main terminates.

Now, let us suppose that B is added to the program. As shown in the example,
B extends A and overrides m. Imagine now that the analysis concludes that the
new implementation of m is not guaranteed to terminate. The important point
now is that the termination behavior of some of the methods we have already
analyzed can be altered, and we have to make sure that analysis results can
correctly handle this situation. In particular, caller m is no longer guaranteed
to terminate, and the same applies to method main. Note, however, that class
inheritance is correctly handled by the analyzer if all the code (in this case
the code of B) is available from the beginning. This is done by considering, at
the invocation program point, the information about both implementations of
m. However, in general, the analyzer does not know, during the analysis of A,
that the class will be extended by B. Such a situation is very common in the
analysis of libraries, since they must be analyzed without knowing which user-
defined classes will override their methods. In this example, corresponds to A

and Example being library classes and B being defined by the user.
In order to avoid this kind of problems, the concept of contract can be used

(in the sense of subcontracting of [20]). This means that the analysis result
for a given method m is taken as the contract for m, i.e., information about
how m and any redefinition of it is supposed to behave with respect to the
analysis of interest. A contract, same as an assertion, has two parts: the calling
preconditions which must hold in order the contract can be applicable; and the
postcondition, the result of the analysis with respect to that preconditions. For
example, a contract for A.m() may say that it terminates under the condition
that the this object of type A is an acyclic data structure. In the example above,
when B is added to the program, we have to analyze B.m taking as call pattern
the precondition (Pre) in the contract for A.m. This guarantees that the result
obtained for B.m will be valid in the same set of input states as the contract for
A.m. Then, we need to compare the postconditions. If mB :Pre 7→ PostB and
mA:Pre 7→ PostA are the assertions generated for B.m and A.m, respectively,
and Pre is the default calling pattern for both implementations, there are two
possible cases: (a) If PostB ⊑ PostA then B.m satisfies the contract for A.m; (b)
otherwise, the contract cannot be applied, and B.m is considered incorrect. The
user can manually inspect the code of B.m and if the analyzer loses precision,
add an assumed assertion for B.m. Interfaces and abstract methods are similar
to overriding methods of a superclass, with the difference that there is no code
to analyze in order to generate the contract. In this case, assumed assertions
written by the user can be used as contracts.

6 Experiments

After obtaining the call graph for the classes of phoneME’s java.lang package, a
bottom-up traversal of the call graphs has been performed. In a few particular

13



Class
Modular Non Modular Assumed Related

#Bc #T Tcg Timea #Bc #T Timea Nat NNat 1st All
Boolean 56 6 0.02 0.19 67 6 0.22 0 0 1 1
Byte 59 7 0.40 0.22 1545 7 21.10 0 0 4 22
Character 64 11 0.16 0.27 513 11 1.03 0 0 6 11
Class 110 4 1.17 1.10 4119 3 842.70 11 1 20 58
Double 107 17 3.66 1.12 107 13 0.36 2 0 8 57
Error 7 2 0.02 0.04 60 2 0.12 0 0 2 4
FDBigInt 1117 14 0.80 16.10 2513 12 158.39 0 2 23 47
Float 106 18 3.74 1.16 3105 15 5674.96 2 0 9 60
FloatingDecimal 3028 12 4.32 1201.10 3402 9 4983.88 0 8 49 64
Integer 469 21 1.35 18.76 4519 21 62.51 0 0 7 20
Long 268 11 0.64 10.99 2164 11 36.08 0 0 7 20
Math 207 16 0.14 0.67 212 16 0.69 6 0 3 3
NoClassDefFoundError 7 2 0.02 0.04 108 2 0.13 0 0 2 6
Object 737 3 0.21 46.21 891 3 129.31 5 0 7 28
OutOfMemoryError 7 2 0.02 0.03 170 2 0.18 0 0 2 8
Runtime 14 3 0.02 0.08 27 3 0.08 4 0 1 1
Short 59 7 0.39 0.24 1545 7 20.83 0 0 4 22
String 1784 39 5.88 21.11 8709 32 7217.43 6 3 34 120
StringBuffer 1509 37 6.74 11.01 14206 33 12103.35 0 0 37 86
System 45 7 0.38 0.31 2778 6 4864.33 5 0 11 62
Throwable 615 4 0.16 1.23 628 4 60.54 2 0 6 22
VirtualMachineError 7 2 0.02 0.04 108 2 0.14 0 0 2 6
Exception Classes (18) 136 38 0.61 0.74 3961 38 21.27 0 0 11 18

com/sun/* (7) 1584 26 5.55 22.36 11293 16 5161.29 0 0
java/io/* (8) 106 11 1.47 0.65 2337 9 4983.35 0 0
java/util/* (3) 265 13 0.88 3.33 2171 12 51.93 0 0

Total 12473 333 38.77 1359.10 71258 295 46396.17 43 14 256 746

Table 1. Termination Analysis for java.lang package in costa (execution times are in
seconds).

cases, it was required to enable other analyses included in costa (e.g., field
sensitive analysis [5], as mentioned above) for proving termination, or disabling
some features such as handling jvm exceptions.

Table 1 shows the results of termination analysis of java.lang package, plus
some other packages used by java.lang. This table compares the analysis using
the modular analysis described in this paper with the non-modular analysis
previously performed by costa. The columns under Modular show the modular
analysis results, while under the Non Modular heading non-modular results
are shown. #Bc shows the number of bytecode instructions analyzed for all
methods in the corresponding class, #T shows the number of methods of each
class for which costa has proved termination and Timea shows the analysis
time of all the methods in each class. In the modular case, the total analysis
time is Timea plus Tcg, the time spent building the call graph of each class.

The two columns under Assumed show the number of methods for which
assumed assertions were required: Nat is the number of native methods in each
class, and NNat contains the number of non-native methods that could not be
proved terminating. Finally, the last two columns under Related contain the
number of methods from other classes that are invoked by the methods in the
class, either directly, shown in 1st or the total number of methods transitively
invoked, shown in All. Some rows in the table contain results accumulated for

14



a number of classes (in parenthesis). The last three rows in the table contain
accumulated information for methods directly or transitively invoked by the
java.lang package which belong to phoneME packages other than java.lang.These
rows do not include information about Related methods, since they are already
taken into account in the corresponding columns for java.lang classes. The last
row in the table, Total, shows the addition for all classes of all figures in each
column. A number of interesting conclusions can be obtained from this table.
Probably, the most relevant result is the large difference between the number
of bytecode instructions which need to be analyzed in the modular and non-
modular cases: 12,473 vs 71,258 instructions, i.e. nearly 7 times more code needs
to be analyzed in the non-modular approach. The reason for this is that though
in the modular approach methods are (at least in principle) analyzed just once,
in the non-modular approach methods which are required for the analysis of
different initial methods are analyzed multiple times. Obviously, this difference
in code size to be analyzed has a great impact on the analysis times: the Total
row shows that the modular analysis of all classes in java.lang is more than 30
times faster than the non-modular case.

Another crucial observation is that by using the modular approach we have
been able to prove termination of 38 methods for which the non-modular ap-
proach is not able, either because the analysis runs out memory or because it fails
to produce results within a reasonable time. Furthermore, the modular approach
in this setting has turned out to be strictly more precise than the non-modular
approach, since for all cases where the non-modular approach has proved ter-
mination, it has also been proved by the modular approach. This results in 333
methods for which termination has been proved in the modular approach, versus
295 in the non-modular approach. Altogether, in our experiments we have tried
to prove termination of 389 methods. In the studied implementation of JavaME,
43 of those methods are native. Therefore, costa could not analyze them, and
assumed assertions have been added for them. In addition, costa was not able
to prove termination of 14 methods, neither in the modular nor non-modular
approaches, as shown in the NNat column. For these methods, assumed asser-
tions have also been added, and have not been taken into account in the other
columns except in the last two ones. These two columns provide another view on
the difference between using modular and non-modular analyses with respect to
the number of transitively invoked methods (746) that required analysis, w.r.t.
those directly invoked (256). In the modular case, only directly invoked methods
need to be considered, and only for loading their assertions, whereas the non-
modular approach requires loading (and analyzing) all related methods. We now
describe in more detail the methods whose termination has not been proved by
costa and the reasons for this:

– Bitwise operations. The size analysis currently available in costa is not
capable of tracking numeric values after performing bitwise operations on
them. Therefore, we cannot prove termination of some library methods which
perform bitwise operations (in most cases, right or left shift operations) on
variables which affect a loop termination condition.

15



– Arrays issues. During size analysis, arrays are abstracted to their size.
Though this is sufficient for proving termination of many loops which traverse
arrays, termination cannot be proved for loops whose termination depends
on the value of specific elements in the array, since such values are lost by
size abstraction.

– Concurrency. Though it is the subject of ongoing work, costa does not
currently handle concurrent programs. Nonetheless, it can handle Java code
in which synchronized constructs are used for preventing thread interfer-
ences and memory inconsistencies. In particular, few java.lang phoneME
classes make real use of concurrency. For this reason, Thread class has not
been included in the test, neither Table 1 does include information regarding
Class.initialize nor wait methods defined in Object.

– Unstructured control flow. There are some library methods in which the
control flow is unstructured, apparently for efficiency reasons. For example,
String.indexOf uses a continue statement wrapping several nested loops,
the outer most of them being an endless loop as in the following code (on
the left):
indexOf(String str, int i){

...

searchChar:

while (true) {

...

if (i > max) return -1;

while (j < end) {

if (v1[j++] != v2[k++]){

i++; continue searchChar;}}

return i - offset;} }

fixResourceName(String n){

int stI = 0;

int e = 0;

while((e=n.indexOf(’/’,stI))!= -1){

if (e == stI) {

stI++; continue;}

.... } } }

– Other Cases. ResourceInputStream.fixResourceName involves a call to
a native method in the loop condition (see code above on the right). A
termination assertion is not enough to find a ranking function of the loop to
prove termination.

7 Discussion

Modular analysis has received considerable attention in different programming
paradigms, ranging from, e.g., logic programming [14, 11, 8] to object-oriented
programming [22, 6, 19]. A general theoretical framework for modular abstract
interpretation analysis was defined in [13], but most of the existing works regard-
ing modular analysis have focused on specific analyses with particular properties
and using more or less ad-hoc techniques. A previous work from some of the au-
thors of this paper presents and empirically tests a modular analysis framework
for logic programs [14, 11]. There are important differences with this paper: in
addition to the programming paradigm, the framework of [14] is designed to han-
dle one abstract domain, while the framework presented in this paper handles
several domains at the same time, and the previous work is based on CiaoPP,
a polyvariant context-sensitive analyzer in which an intermodular fixpoint algo-
rithm was performed. In [22] a control-flow analysis-based technique is proposed

16



for call graph construction in the context of OO languages. Although there have
been other works in this area, the novelty of this approach is that it is context-
sensitive. Also, [6] shows a way to perform modular class analysis by translating
the OO program into open DATALOG programs. In [19] an abstract interpreta-
tion based approach to the analysis of class-based, OO languages is presented.
The analysis is split in two separate semantic functions, one for the analysis of an
object and another one for the analysis of the context that uses that object. The
interdependence between context and object is expressed by two mutually recur-
sive equations. In addition, it is context-sensitive and polyvariant. As conclusion,
in this work we have presented an approach which is, to the best of our knowl-
edge, the first modular termination analysis for OO languages. Our approach is
based on the use of assertions as communication mechanism between the analysis
of different methods. The experimental results show that the approach increases
the applicability of termination analysis. The flexibility of this approach allows a
higher level of scalability and makes it applicable to component-based systems,
since is not required that all code be available to the analyzer. Furthermore, the
specification obtained for a component can be reused for any other component
that uses it. It remains as future work to extend the approach to other inter-
mediate cases between modular and global analysis, i.e., by allowing analysis of
several methods as one unit, even if they are not in the same cycle. This can be
done without technical difficulties and it should be empirically determined what
granularity level results in more efficient analysis.

Acknowledgments

The authors would like to thank Damiano Zanardini for interesting discussions
and for his help with the heap analysis in costa. This work was funded in part
by the Information & Communication Technologies program of the European
Commission, Future and Emerging Technologies (FET), under the ICT-231620
HATS project, by the Spanish Ministry of Science and Innovation (MICINN)
under the TIN-2008-05624 DOVES project, the TIN2008-04473-E (Acción Es-
pecial) project, the HI2008-0153 (Acción Integrada) project, the UCM-BSCH-
GR58/08-910502 Research Group and by the Madrid Regional Government un-
der the S2009TIC-1465 PROMETIDOS project.

References

1. E. Albert, P. Arenas, M. Codish, S. Genaim, G. Puebla, and D. Zanardini. Termi-
nation Analysis of Java Bytecode. In FMOODS, LNCS 5051, pages 2–18, 2008.

2. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of
java bytecode. In ESOP’07, LNCS, 2007.

3. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design
and Implementation of a Cost and Termination Analyzer for Java Bytecode. In
FMCO’07, number 5382 in LNCS, pages 113–133. Springer, 2008.

4. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Resource Usage
Analysis and its Application to Resource Certification. In FOSAD 2007/2008/2009
Tutorial Lectures, LNCS 5705, pages 258–288. Springer, 2009.

17



5. Elvira Albert, Puri Arenas, Samir Genaim, Germán Puebla, and Diana Ramı́rez.
From Object Fields to Local Variables: A Practical Approach to Field-Sensitive
Analysis. In SAS 2010 Proceedings, LNCS. Springer, 2010.

6. F. Besson and T. Jensen. Modular class analysis with datalog. In 10th International
Symposium on Static Analysis, SAS 2003, number 2694 in LNCS. Springer, 2003.

7. A.R. Bradley, Z. Manna, and H.B. Sipma. Termination of polynomial programs.
In VMCAI, 2005.

8. M. Codish, S. K. Debray, and R. Giacobazzi. Compositional analysis of modular
logic programs. In Proc. POPL’93, 1993.

9. M. Codish and C. Taboch. A semantic basis for the termination analysis of logic
programs. J. Log. Program., 41(1):103–123, 1999.

10. B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.
In PLDI, 2006.

11. J. Correas, G. Puebla, M. Hermenegildo, and F. Bueno. Experiments in Context-
Sensitive Analysis of Modular Programs. In LOPSTR’05, number 3901 in LNCS,
pages 163–178. Springer-Verlag, April 2006.

12. P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL’77, pages 238–252. ACM, 1977.

13. P. Cousot and R. Cousot. Modular Static Program Analysis, invited paper. In
Compiler Construction, 2002.

14. G. Puebla et al. A Generic Framework for Context-Sensitive Analysis of Modu-
lar Programs. In M. Bruynooghe and K. Lau, editors, Program Development in
Computational Logic, A Decade of Research Advances in Logic-Based Program De-
velopment, number 3049 in LNCS, pages 234–261. Springer-Verlag, August 2004.

15. Samir Genaim and Damiano Zanardini. The acyclicity inference of COSTA. In
11th International Workshop on Termination, July 2010.

16. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic Termi-
nation Proofs in the Dependency Pair Framework. In IJCAR, 2006.

17. C.S. Lee, N.D. Jones, and A.M. Ben-Amram. The size-change principle for program
termination. In POPL’01, pages 81–92. ACM, 2001.

18. N. Lindenstrauss and Y. Sagiv. Automatic termination analysis of logic programs.
In ICLP, 1997.

19. Francesco Logozzo. Separate Compositional Analysis of Class-based Object-
oriented Languages. In AMAST’2004, volume 3116 of LNCS, pages 332–346.
Springer-Verlag, July 2004.

20. Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 2nd edition, 1997.

21. C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl. Termination Analysis
of Java Bytecode by Term Rewriting. In Johannes Waldmann, editor, WST’09,
Leipzig, Germany, June 2009.

22. Christian W. Probst. Modular Control Flow Analysis for Libraries. In Static
Analysis Symposium, SAS’02, volume 2477 of LNCS, pages 165–179. Springer-
Verlag, 2002.

23. F. Spoto, P.M. Hill, and E. Payet. Path-length analysis of object-oriented pro-
grams. In EAAI’06, ENTCS. Elsevier, 2006.

24. F. Spoto and T. Jensen. Class analyses as abstract interpretations of trace seman-
tics. ACM Trans. Program. Lang. Syst., 25(5):578–630, 2003.

25. F. Spoto, F. Mesnard, and É. Payet. A Termination Analyser for Java Bytecode
based on Path-Length. ACM TOPLAS, 32(3), 2010.

18


