Coinductive Proofs over Streams
as CHR Confluence Proofs*

Rémy Haemmerlé

Technical University of Madrid

Abstract. Coinduction is an important theoretical tool for defining and
reasoning about unbounded data structures (such as streams, infinite
trees, rational numbers ...), and infinite-behavior systems. Confluence
is a fundamental property of Constraint Handling Rules (CHR) since, as
in other rewriting formalisms, it guarantees that the computations are
not dependent on rule application order, and also because it implies the
logical consistency of the program’s declarative view. In this paper, we
illustrate how the confluence of CHR can be used to prove universal coin-
ductive properties. In particular we give several examples of bisimulation
proofs over streams.

1 Introduction

Induction and coinduction are contrasting terms for ways of describing and
reasoning about a system. Whereas, the classical notion of inductive reason-
ing begins with some primitive properties (or definitions) and uses constructive
operations on these to iteratively infer a whole set of conclusions, coinductive
reasoning [4, 5, 20] starts from a set of conceivable properties (or definitions)
and iteratively dismisses those that break the self-consistency of the whole set.
Despite the fact that coinduction is less known than induction, it has started
to receive attention in recent years in computer science. For instance, coinduc-
tion has been employed to define process equivalences in Concurrency Theory
[17, 20], to study lazy evaluations in functional languages [9], or to deal with
infinite data-structures and infinite computations in Logic Programming [21, 16].

Constraint Handling Rules (CHR) is a committed-choice constraint logic pro-
gramming language, introduced by solvers. It has matured into a general-purpose
concurrent programming language. Operationally, a CHR program consists of a
set of guarded rules that rewrite multisets of constrained atoms. Declaratively,
a CHR program can be viewed as a set of logical implications executed on a
deduction principle.

* The research leading to these results has received funding from the Programme for
Attracting Talent / young PHD of the MONTEGANCEDO Campus of Interna-
tional Excellence (PICD), the Madrid Regional Government under the CM project
P2009/TIC/1465 (PROMETIDOS), and the Spanish Ministry of Science under the
MEC project TIN-2008-05624 (DOVES).

Confluence is a basic property of rewriting systems. It refers to the fact that
any two finite computations starting from a common state can be prolonged
so as to eventually meet in a common state again. Confluence is an important
property for any rule-based language, because it is desirable for computations to
not be dependent on a particular rule application order. In the particular case
of CHR, this property is even more desirable, as it guarantees the correctness of
a program [3, 13]: any confluent program has a consistent logical reading.

In this paper, we illustrate how the proof of confluence of non-terminating
CHR programs can be used to establish coinductive properties. In practice, we
propose a simple encoding of streams' and bisimulation? as non-terminating
CHR programs. Then, we explain how the confluence of the resulting programs
provides an effective coinductive proof. Finally, we show how the confluence of
these programs can be inferred by using a criterion we recently introduced [11].
The preliminary results presented in this paper are embedded in the more general
goal of the research we started in [10]: Understanding relationships between
coinduction and CHR.

The remainder of this paper is structured as follows: Sect. 2 gently introduces
the notion of coinduction and stream coalgebra. In Sect. 3, we recall some pre-
liminaries on CHR. Sect. 4 presents a criteria we recently introduced for proving
confluence of non-terminating CHR programs. In Sect. 5, we present how to en-
code stream coalgebras in CHR. Then we show how using CHR confluence to
infer bisimulation over such coalgebras, before concluding in Sect. 6.

2 Streams and Coinduction

In this section, we introduce the notion of stream, the canonical example of
coinductive object. By using few bases from the theory of universal coalgebra,
we explain how to define streams by coinduction. We conclude by showing how
to prove equality of streams by coinduction.

This introduction is freely inspired from the one by Rutten [19]. It is deliber-
ately kept short. The reader may refer to Rutten’s works to get a more general
picture of streams, coalgebras, and coinduction.

2.1 Streams

Let A be an arbitrary set. We define a stream over A as a function from natural
numbers (the positions) to A (the values). Hence A“ is the set respecting the
equation:

AY = (N — A)
For convenience, we may denote such a stream s by the informal notation:

s =1[s(0),s(1),s(2),...]

! The canonical example of coinductive data-structure.
2 The canonical example of coinductive property.

/_\
zero _) 0 one _)1 blinkg blink;
\/

Fig. 1. LTS view of the coalgebra (X3,hs,t3).

Ezample 1. The stream containing only 0’s (i.e. [0,0,0,...]) is the constant
function (z +— 0). Similarly the stream containing only 1’s (i.e. [1,1,1,...])
is the function (z — 1). The streams alternating 0 and 1 (i.e. [0,1,0,...] and
[1,0,1,...]) are the respective functions (r — (zr mod 2)) and (z — (z + 1
mod 2)).

Following analogy between finite lists and streams, we call head of a stream
s the first value of s, i.e. h(s) = s(0) and call the tail of s the stream obtained
by removing the head, i.e. t(s) = (x — s(x + 1)).

Ezample 2. Consider the streams given in the previous example. The head and
the tail of these streams respect the following equations:

h([0,0,0,...]) =0 £([0,0,0,...]) = [0,0,0,...]
h([1,1,1,...]) =1 t([1,1,1,...]) =[1,1,1,...]
h([0,1,0,...)=0 t([0,1,0,...]) =[1,0,1,...]
h([1,0,1,...]) =1 t([1,0,1...]) = [0,1,0,...]

2.2 Coalgebras

A (stream) coalgebra is a triple (X, hy, tx) consisting of a set X of states together
with an output function: hy : X — A and a transition functionty : X — X. In
the following we may refer to these two functions as the destructors.

Ezample 3. The triple (X3,hs,t3) where X3 = {one, zero, blinkg, blink; } and
hs : X3 — A and t3 : X3 — X3 satisfying the equations below is a coalgebra.

0 t3(zero) = zero

1 t3(one) = one
hs (blinko) = 0 t5(blinky) = blink,

1 t(blink,;) = blink,

Alternatively, a coalgebra can be viewed as a (possibly) infinite automaton
or a Labelled Transition System (LTS) (X, A, —) verifying:

st ifandonlyif h=nhay(s) &t = tx(s)

Ezample 4. Figure 1 represents the coalgebra given in Example 3.

— T
zero)0 one 1 blinko blink;
V‘\—/
1
[D, [l []s 1,
0
~ ~ v /\} ~
0,0,0,... 0 [L,L,1,... 1 [0,1,0,... 1,0,1,...
0051 D0 ke 1 0didfode
1

Fig. 2. LTS view of the coalgebra (X3, hs, t3).

Intuitively, within a coalgebra (X,hy,tx) a state z € X “represents” a
unique stream s € A%, while the output and transition functions associate to x
the head and (a state #/ € X representing) the tail of s. In order to formalize
this intuition, we introduce now the notion of homomorphism and finality.

A homomorphism between two coalgebras (X, hy,ty) and (¥, hy,ty) is a
function ¢ : X — Y that respects the destructors, i.e.:

hy(¢(z)) =hx(z) and ty(o(z)) = ¢(tx (7))

The set of streams A% can be viewed as the coalgebra (A%, h,t). This coalgebra
has the following property:

Theorem 1 (Finality). The coalgebra (A%, h,t) is final among the set of all
coalgebras. That is, for any coalgebra (X hx,tx) there erists a unique homo-
morphism ¢ from (X, hy,tx) to (A%, h,t).

The finality of the set of streams gives us the formal basis to define what
represents a state. Let (X,hy,tx) be a coalgebra. We say that a state © € X
represents the stream [z] x = ¢(z) where ¢ is a homomorphism from (X, hx,tx)
to (A%, h,t). The finality of (A“,h,t) ensures us that this definition is meaning-
ful, i.e. each state represents one and only one stream.

Ezample 5. Consider the coalgebra (X5, hs, t3) given in Example 3. Let ¢ : X5 —
A% be the function satisfying the equations:

¢(zero) = [0,0,0,...] ¢(blinkg) = [0, 1,0, ...]
¢(one) = [1,1,1,...] ¢(blink;) = [1,0,1,...]

One can easily verify that ¢ is a homomorphism. Hence the states zero, one,
blinkg, and blink; respectively represent the streams [0,0,0,...], [1,1,1,...],
[0,1,0,...],and [1,0,1,...]. Figure 2 represents graphically this correspondence.

2.3 Proof by Coinduction

In order to prove that two streams s and s are equal, it is necessary and sufficient
to prove that

forallm e N s(n) =s'(n)
An obvious method for establishing equality between streams s and s’ consists
of an induction on the natural number n (i.e. prove s(0) = s'(0) and show
that s(n) = s’(n) implies s(n + 1) = s/(n + 1)). In this section, we present
an alternative way, based on coinduction. This method is often more natural,
especially for those streams defined using coalgebras.

A bisimulation (relation) between two coalgebras (X, hy,tx) and (), hy, ty)
is a relation S C X x Y such that for all streams x € X and y € Y if whenever
x Sy holds then both hy(z) = hy(y) and tx(z) S ty(y). If there exists a bisim-
ulation § with x § y, we will write © ~ y, and say that = and y are bisimilar.
Hence two states are bisimilar, if they have the same head and bisimilar tails.
The Coinduction theory guarantees that two bisimilar states represent the same
stream.

Theorem 2 (Coinduction). Let (X, hy,ty) and (Y, hy,ty) be two coalgebras.
For all states x € X andy € Y, if x ~y then [z]x = [y]y.

This theorem gives us a proof principle: to prove that two streams represented
by two states are equal, it is sufficient to exhibit a bisimulation that relates the
states.

Ezample 6. Consider the coalgebra (X3, hs, t3) given in Example 3 together with
the coalgebra (Zg, hg, tg) with Zg = {2z, 2} and satisfying the equations:

he(2) =0 te(z) = 2’ he(2') =0 te(2') = 2

One may want to prove that zero and z represent the same stream. For this
purpose assume the relation S = {(zero, z), (zero, 2’)}. It is straightforward to
demonstrate S is a bisimulation, i.e. [zero] = [z].

We finish the section about coalgebra and coinduction by some observations
that may help readers non familiar with the concepts presented in this section.

The coinduction proof principle can be seen as a systematic way of strength-
ening the statement one is trying to prove. In the previous example instead of
proving the identity [zero]x, = [2] z,, we extended the relation {(zero, z)} to a
more general relation S = {(zero, z), (zero, z’)} with zero S z.

It is also worth noting that a coalgebra can contain an arbitrary number of
representatives for a given stream. For instance [blinkg] .y, is represented by no
state within (2, hg, t¢). Conversely, [zero] x, is represented twice in (Zg, hg, te).
Indeed by Theorem 2, we have [z] z, = [zero]x;, = [2'] z,-

3 Constraint Handling Rules

In this section, we recall briefly the syntax and the semantics of CHR. Frithwirth’s
book [7] can be referred to for a more general overview of the language.

3.1 Syntax

The formalization of CHR assumes a language of (built-in) constraints containing
equality over some theory C, and defines (user-defined) atoms using a different
set of predicate symbols. In the following, R will denote an arbitrary set of
identifiers. By a slight abuse of notation, we allow confusion of conjunctions and
multiset unions, omit braces around multisets, and use the comma for multiset
union. We use fv(¢) to denote the set of free variables of a formula ¢. The
notation 3_4¢ denotes the existential closure of ¢ with the exception of free
variables of .

A (CHR) program is a finite set of eponymous rules of the form:
(reaK\H < G| B;C)

where K (the kept head), H (the removed head), and B (the user body) are mul-
tisets of atoms, G (the guard) and C (the built-in body) are conjunctions of
constraints and, r € R (the rule name) is an identifier assumed unique in the
program. Rules in which both heads are empty are prohibited. An empty guard
T (resp. an empty kept head) can be omitted with the symbol | (resp. with the
symbol \). The local variables of rule are the variables occurring in the guard
and in the body but not in the head that is lv(r) = fv(G, B, C) \ fv(K, H). Rules
are divided into two classes: simplification rules® if the removed head is non-
empty and propagation rules otherwise. Propagation rules can be written using

the alternative syntax:
(raK = G |B;C)

3.2 Operational semantics

In this section, we recall the equivalence-based operational semantics w, of Raiser
et al. [18]. It is equivalent to the wery abstract semantics w,, of Frithwirth [6],
which is the most general operational semantics of CHR. We prefer the for-
mer because it includes a rigorous notion of equivalence, which is an essential
component of confluence analysis.

A (CHR) state is a tuple (E;C;Z), where E (the user store) is a multiset of
atoms, C (the built-in store) is a conjunction of constraints, and z (the global
variables) is a finite set of variables. Unsurprisingly, the local variables of a state
are those variables of the state which are not global. When no confusion can
occur, we will syntactically merge user and built-in stores. We may futhermore
omit the global variables component when states have no local variables. In the
following, we use X' to denote the set of states. Following Raiser et al., we will
always implicitly consider states modulo a structural equivalence. Formally, this
state equivalence is the least equivalence relation = over states satisfying the
following rules:

3 Unlike standard presentations, our definition does not distinguish simplification rules
form the so-called simpagation rules.

> = < >
=d; T (IE d;C,c=d;)
E; (C x> (IE C; {y}Uw) 1fy¢fv(IE C).
Once states are considered modulo equivalence, the operational semantics of
CHR can be expressed by a single rule. Formally the operational semantics of a
program P is given by the binary relation =+ P on states satisfying the rule:

(rQ@K\H <= G|B;C) € Pp lv(r)N{v(E,D,z) =0
(K,H,E;G,D;z) = (K, B,EG,C,D;2)

where p is a renaming. If a program P contains a sole rule r, we may write —
for - For any transition £+, the symbol <= will denote its converse, 2= its
reflexive closure, and L its transitive-reflexive closure. We will use 25 - <5 to
denote the left-composition of all binary relations =+ and =3.

We will say a program P is terminating if there is no infinite sequence of the
form ey =+ e; =% es... Furthermore, we will say that P is confluent if for all
states S, S1, and Ss satisfying S Zy S1 and S = So, there exists a state S’ such
that S; —» S’ and Sy —» S'.

3.3 Declarative semantics

Owing to its origins in the tradition of CLP, the CHR language features declar-
ative semantics through direct interprestation in first-order logic. Formally, the
logical reading of a rule of the form:

K\H < G | B;C
is the guarded equivalence:
V((K ANG) — (H > El-(K,H)(G ACA B)))

The logical reading of a program P within a theory C is the conjunction of the
logical readings of its rules with the constraint theory C. It is denoted by CP.

Operational semantics is sound and complete with respect to this declarative
semantics [6, 3, 10]. Furthermore, we recently established that any confluent
program P is correct and has a logical model expressible by a CLP program,
called the CLP projection. The (CLP) projection of a CHR program P is a set
m(P) of CLP clauses defined as:

m(P) = {(a + G,C,K,B) | (K\H < G | B,C) € P and a € H}

Theorem 3 ([13]). Let S be an arbitrary model of the constraint theory C. A
confluent CHR program and its projection have the same least S-model.

It is worth noting that in the current state of knowledge Theorem 3 only
holds when programs are considered with respect to the most general operational
semantics for CHR, namely the very abstract semantics. In particular, the proofs
of the theorem do not appear to be adaptable to more concrete semantics such
as for instance Abdennadher’s token-based semantics [1].

4 Diagrammatic Confluence for CHR

This section sums up some recent results about conlfuence of non-terminating
CHR programs. More details can be found in [11].

4.1 Critical Peaks

In term rewriting systems, the basic techniques used to prove confluence consist
of showing various confluence criteria on a finite set of special cases, called critical
pairs. Critical pairs are generated by a superposition algorithm, in which one
attempts to capture the most general way the left-hand sides of the two rules
of the system may overlap. The notion of critical pairs has been successfully
adapted to CHR by Abdennadher et al. [2]. Here, we introduce a slight extension
of the notion.

Let us assume that r; and ro are CHR rules (form possible disctinet pro-
grams) renamed apart:

(r1 @QK)\H; <= G | B1;Cq) € P4 (ro @ Ko\Hy <= Gs | By; Co) € P
A critical ancestor (state) S, for the rules r1 and ro is a state of the form:
Se = (H{', Hy, Hg'; D; z)
satisfying the following properties:

- (Ky,Hy) = (HlA’H?)v (Ke,Hz) = (H2A7HS)7 Hr; # 0, and HQ # 0;
T = fV(KhHl), Ty = fV(KQ,HQ) and T = 71 U Zo;

D = (H{'=HY, G1, G2) and 3D is C-satisfiable;

- HT.@KI OI‘HQ%KQ.

Then the following tuple is called a critical peak between r; and r9 at Se:

(Ky, By, H; D, Cy; 7) <% - 25 (Ko, By, H{; D, Cy; Z)

4.2 Rule-decreasingness

In this section, we present the so-called rule-decreasingness criterion. This cri-
terion derived from the decreasing diagrams technique [22] is a novel criterion
on CHR critical pairs that generalizes both local confluence [3] and strong con-
fluence [14] criteria.

Rule-decreasingness criterion assumes the set R of rule identifiers is defined
as a disjoint union R; W R.. For a given program P, we denote by P° (resp.
P¢) the set of rules form P built with R; (resp. R.). We call P! the inductive
part of P, because we will subsequently assume that P? is terminating, while
P will be called coinductive, as it will be typically non-terminating. A critical
peak is inductive if it involves only inductive rules (i.e. a critical peak of P?), or

N .
.
%('2. MY Lu\(;“
N i
» X
N D_/ \5’\
P

N s
Ny LIL.('\”

N o
AN

Fig. 3. Local decreasingness

coinductive if it involves at least one coinductive rule (i.e. a critical peak between
P¢ and P).

In the rest of this paper, we will say that a preorder 3= is wellfounded, if
the strict preorder > associated with = (i.e. @ > S iff a = S but not 8 = «)
is a terminating relation. A preorder = on rule identifiers is admissible, if any
inductive rule identifier is strictly smaller than any coinductive one (i.e. for any
r; € R; and any . € R, r. > r; holds).

A critical peak S; ¢ - =25 Sy is decreasing with respect to a preorder = if
the following property holds:

Y{r1} Y{rg} = Yirir2} Y{ri,r2} Y{r} = Yira2}

Sl 52 (*)

where for any set K of rule identifiers, W K stands for {r € R | I’ € K.r' = r}
and YK for {r € R | 37’ € K.r' = r}. Property (x) is graphically represented in
Figure 3. A program P is rule-decreasing with respect to an admissible preorder
o= if:

— the inductive part of P is terminating,

— any inductive critical peak of is joinable by . «71, and

— any coinductive critical peaks is decreasing with respect to »=.

A program is rule-decreasing if it is rule-decreasing with respect to some admis-
sible preorder.

Theorem 4 ([11]). Rule-decreasing programs are confluent.
To illustrate the use of the theorem, we recall now one example form [11].
Ezample 7 (Partial order constraint). Let P; be the classic CHR introductory

example, namely the constraint solver for partial order. This consists of the
following four rules, which define the meaning of the user-defined symbol <

(x <z,z < y) (x<y,y<zz<y)

reflex/ \\érans. cmti./ \\trans.

(z<y) (e<zz<yz<y) (r<yy=z) (2<yy<zz<yzr<z)
duplr reflex. duplr “.v'"‘anti.
(x<y,z<y) (z<y,z<2y=2)

Fig. 4. Some rule-decreasing critical peaks for Pz

using the built-in equality constraint =:

duplicate Qr<y\z<y<=T
reflexivity Q@r<zr<—=T
antisymmetry Q z <y,y <z << x=y
transitivity Qr<yy<z=zx<z

Since Py is trivially non-terminating (indeed, it uses propagation rules) one
cannot apply local confluence criterion [3]. Nonetheless, confluence of P; can be
deduced using the full generality of Theorem 4. For this purpose, assume that all
rules except transitivity are inductive and take any admissible preorder. Clearly
the inductive part of P; is terminating. Indeed the application of any one of
the three first rules strictly reduces the number of atoms in a state. Then by
a tedious but simple analysis, we prove that critical peaks of P; can be joined
while respecting the hypothesis of rule-decreasingness. In fact all critical peaks
can be joined without using the transitivity rule. Some rule-decreasing diagrams
involving the transitivity rule are given as examples in Figure 4.

5 Proving Stream Bisimulation Using CHR Confluence

In this section, we illustrate the power of CHR confluence and the rule-decreasing-
ness criterion to prove coinductive properties.

5.1 Coalgebra in CHR

Following preliminary ideas for encoding coalgebras into CHR with the standard
Herbrand constraint system [10], we use first-order terms as states, and define the
destructors by means of a single user-defined atom d(s, h,t). Here the d(s, h,t)
predicate must be understood as the function that returns for a given state s its
head h = h(s) and its tail ¢ = t(s). To enforce functionality of the destructor,
we start our program P with the following simplification rule:

fund @ d(S7 hg, tg)\d(s, hl, tl) A hl = hg, t1=1to

Now we use the terms zero, one, blinkg, and blink; as states for the respective
streams containing only 0’s, only 1’s, alternations of 0 and 1, and alternations

of 1 and 0. Then we add to our program the following rules that specify the
behaviour of the destructor on these states:

dyero @ d(zero, h,t) <= h=0,t=zero.
done d(one, h, t) <= h=1,t=one.
dplink, @ d(blinko, h, t) <= h=0,t=blink;.
dpink, @ d(blink;, h,t) <= h=1,¢=blink.

We can go even further and define operators on streams. For this purpose,
we use fresh function symbols as new operators and use recursive simplification
rules to encode the behaviour of the destructors on these operators. For instance,
we will encode the functions odd() and even(), which return the stream formed
by the elements in the odd and even positions, respectively, and the function
zip() which interlaces the elements from the two given streams. Hence, we add
to P the rules:

<= d(L) d(tl,h,tg),t=even(t2).
< d(z,h,t1),t=even(ty).
— d(z, h,t1),t=2zip(y, t1).

deven @ d(even(z), h,t)
dodd @ d(Odd(.’E), h7 t)
dzip @ d(le(.’L’, y)7 h7 t)

It is not difficult to convince oneself that P is terminating. For this reason, we
fix all the rules we have defined so far as inductive. Note that what is inductive
here is solely the definition of the destructors. The encoded coalgebra still has
a coinductive nature, in the sense that the destructor can be indefinitely called,
in order to get all the elements composing a stream.

5.2 Proving simple Coinductive properties in CHR

The definition of bisimilation can translated into CHR by a single coinductive
rule added to our program:

~ @ S1 ~ Sg <— d(Sl,h,tl),d(SQ,h,tg),h ~ t9

From a logical point of view, the declarative reading of this rule ensures that
two states sy and s; are bisimilar if and only if there exists a model for the
program P we have built so far, that contains the atom s; ~ s3. Thanks to
Theorem 3, we know that this is the case precisely if the program augmented
with a “query” rule of the form s; ~ sy <= T is confluent. For instance, in
order to prove that the stream zip(zero,one) is equal to the stream blinkg, we
can show that P together with the following rule is confluent:

q; @ zip(zero, one) ~ blinky <= T

Unfortunately this is not the case. Indeed, rules ~ and ¢; yield a non-joinable
peak:

(zip(one, zero) ~ blink;) <~ - <= (zip(zero, one) ~ blinkg) D (T)

(2(2,0) ~ o) —<—"» (2(0,2) ~b1) (8(0,2) ~ by) —<—" "> (2(2,0) ~ bo)
(T)“v. 1 <T><.~- q1

Fig. 5. Diagrammatic proofs for z(z,0) ~ bg

One idea for circumventing this problem is to “complete” the program, i.e.
to add rules to it, in order to make it confluent. Indeed, if an interpretation
is a model for the completed program, it is obviously a model for the original
program. In the case of our example, we can just add a rule closing the previous
peak:

k1 @ zip(one, zero) ~ blink; <= T

This time, the resulting program is confluent. We can use rule-decreasing criteria
to prove this. For the proof passing through, we have to assume the rules ¢
and k1 are coinductive and strictly greater than the rule ~. The proofs of the
decreasingness of all the critical peaks involving at least one coinductive rule are
graphically represented in Figure 5. For the sake of conciseness, symbols have
been shortened to their initials in the figure.

5.3 Proving universal coinductive properties in CHR

In the previous section, we have proved a coinductive property for a particular
stream. Here we are concerned with proving similar properties for arbitrary
streams. The idea is to take benefit of the implicit universal quantification of
rule-head variables to prove coinductive properties true with respect to arbitrary
streams. However, we first have to formally define in our framework what a
stream is.

As with bisimulation, being a stream is a coinductive property. It can be
translated into CHR by the coinductive rule:

str Q str(z) < d(z, _, t), str(¢).

Basically, x is a stream if it can be deconstructed by d into a head and into a tail
which is itself a stream. We now add to our program the following coinductive
rules to specify which terms are actual streams:

Stryeo @ str(zero) — T
Streven @ str(even(zr)) <= str(z).
str,, @ str(zip(z,y)) < str(z),str(y)

These rules state respectively that zero is a stream, even(z) is a stream if and
only if z is a stream, and zip(y, z) is a stream if and only if both y and z are
streams. From a typing point of view, rule str can be viewed as the definition
of a (coinductive) type, and the rules str, as type declarations. We do not

d(.’[o, ho,wl),d(ZQ,]’L()7 Zl),> N <d($o, ho,xl), (II(Z7 ho, Z1)7>
Rq

(z(x0,90) ~ 2z0) —— < 2(yo, 1) ~ 21 o(21) ~ yo,e(z1) ~ a1

{KA)

d(w07h07x1)7d(z7 h07zl)7e(zl) ~ T1,
<O(Z0) 1'076(250) y0> ~ <d(y0,hl,y1),d(21,h1,22),e(zz) ~ 1

(a(0(@o), e(w0))) ~ o) ——— (s(z0)*) g (d(zo, -, 21),8(21)%, (21, -, 22), 8(22)%)

<d(x0>'7551)72(6(‘10)76(551)) ~ 121) k2
et)

Fig. 6. Diagrammatic proofs for zip(odd(z), even(z)) ~ x

explicitly present similar declarations for the streams one, blinkg, and blinky, or
for the operator odd. As we have done previously with bisimulation, we verify the
coherency of these declarations by checking the confluence of the whole program.
(We assume rules str, are strictly greater than rule str.)

Once streams have been properly defined and declared in our framework, we
can try to prove that any stream z is bisimilar to (zip(odd(z),even(zx))). For
this purpose, we add the following coinductive rules to the current program:

q2 @ zip(odd(z),even(z)) ~x <= str(z)*

ke Q@ z~zx <= str(z)?

ks Q even(zip(z,y)) ~y <= str(z),str(y)

ke Q zip(z,y) ~ 2 <= odd(z) ~ x,even(z) ~y

The first rule corresponds to the property we want to prove, while the other rules
are there to complete the program, which would otherwise be non-confluent.

Once again, we are able to establish the confluence of the resulting program
by using the rule-decreasingness criterion (assuming gs > K4 > K3 > Ko >
str,). Note that, in order to simplify the proof, some atoms are duplicated. The
exponents in the rules q, and k9 indicate how many times the atom str(z) is
repeated. In practice, these repetitions are helpful because of the multiset nature
of the user store. They are effective in closing a critical peak between ko and
k4 on the one hand, and a critical peak between q, and ~ on the other hand.
From a theoretical point of view, the repetition of atoms is not problematic,
since an atom has a declarative meaning equivalent to the declarative meaning
of several copies of it. Proofs of decreasingness for some relevant critical peaks
of the program are graphically represented in Figure 6. Within the figure, states
are implicitly normalized using the inductive part of the program.

When the program is proved confluent, the CLP projection provides us a
logical model in the form of a CLP program. (In the practical case of our example,
the projection is obtained by replacing the symbol <= by < in all rules expcet
for fung which can be safely ignored.) This finite representation is convenient
since the model is in fact infinite: the domain of discourse of the model contains
any stream obtained by composition of zero, one, blinkg, blink;, even(), odd(),
and zip().

From a model-theory point of view, we are not aware of any technique that is
able to directly prove satisfiable formulas such as the ones presented in the last
part of this section. In particular, the classical techniques, such as SMT solvers,
inference-based theorem provers, or the analytic tableaux all seem inadequate for
dealing with non-valid formulas mixing universal and existential quantifications,
and which also have only infinite models. From a purely coinductive point of
view, there do exist frameworks, such as circular coinductive rewriting [8], which
are able to fully automatically prove bisimulations similar to the ones presented
here. We argue nonetheless that our framework is more general, as coinductive
properties are not hard-coded, but user-defined. Furthermore our work also has
the advantage of shedding new light on the relationship between coinduction,
confluence, and first-order satisfiability.

6 Conclusion

In this paper, we continued the study of relationships between CHR and coinduc-
tion started in [10]. Relying on universal coalgebra theory, we present a simple
encoding of coalgebras and coinduction properties in CHR. Then, using the rule-
decreasingness criterion we recently introduced, we realized effective coinductive
proofs of bisimulations over streams. All the diagrammatic proofs sketched in
the paper have been systematically verified by a prototype of a diagrammatic
confluence checker [12] written in Ciao Prolog [15].

References

[1] Slim Abdennadher. Operational semantics and confluence of constraint
propagation rules. In Proceedings of the Int’l Conference on Principles and
Practice of Constraint Programming (CP), volume 1330 of LNCS, pages
252-266, Berlin, Germany, 1997. Springer.

[2] Slim Abdennadher, Thom Frithwirth, and Holger Meuss. On confluence
of Constraint Handling Rules. In Proceedings of the Int’l Conference on
Principles and Practice of Constraint Programming (CP), volume 1118 of
LNCS1. Springer, 1996.

[3] Slim Abdennadher, Thom Frithwirth, and Holger Meuss. Confluence and
semantics of Constraint Simplification Rules. Constraints, 4(2):133-165,
1999.

[4] P. Aczel. Non-well-founded sets. CSLI Publications, 1988.

[5]
[6]

Jon Barwise and Larry Moss. Vicious circles. CSLI Publications, 1996.
Thom Frithwirth. Theory and practice of Constraint Handling Rules. J.
Logic Programming, Special Issue on Constraint Logic Programming, 37(1—
3):95-138, 1998.

Thom Frithwirth. Constraint Handling Rules. Cambridge University Press,
2009.

Joseph A. Goguen, Kai Lin, and Grigore Rosu. Circular coinductive rewrit-
ing. In Automated Software Engineering, pages 123-132, 2000.

Andrew D. Gordon. A tutorial on co-induction and functional programming.
In In Proceedings of Glasgow Function Programming Workshop, pages 78—
95. Springer, 1994.

R. Haemmerlé. (Co)-Inductive semantics for Constraint Handling Rules.
Theory and Practice of Logic Programming, 27th Int’l. Conference on Logic
Programming (ICLP’11) Special Issue, 11(4-5):593-609, July 2011.

R. Haemmerlé. Diagrammatic confluence for Cosntraint Handling Rules.
Theory and Practice of Logic Programming, 28th Int’l. Conference on Logic
Programming (ICLP’12) Special Issue, 2012. To appear.

R. Haemmerlé. metaCHR package, 2012. available online at
http://clip.dia.fi.upm.es/ remy/metaCHR/.

R. Haemmerlé, P. Lépez, and M. Hermenegildo. CLP projection for Con-
straint Handling Rules. In Proceedings of the 13th Int’l ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming, pages
137-148. ACM Press, July 2011.

Rémy Haemmerlé and Francgois Fages. Abstract critical pairs and confluence
of arbitrary binary relations. In Proceedings of the Int’l Conference on
Rewriting Techniques and Applications (RTA), number 4533 in LNCS, pages
214-228, Berlin, Germany, 2007. Springer.

M. V. Hermenegildo, F. Bueno, M. Carro, P. Lépez, E. Mera, J.F. Morales,
and G. Puebla. An Overview of Ciao and its Design Philosophy. Theory
and Practice of Logic Programming, 12(1-2):219-252, 2012.

Ekaterina Komendantskaya and John Power. Coalgebraic semantics for
derivations in logic programming. In Proceedings of the Int’l Conference
on Algebra and Coalgebra in Computer Science (CALCO), volume 6859 of
LNCS, pages 268-282. Springer, 2011.

Robin Milner. Communication and Concurrency. Prentice Hall, 1989.
Frank Raiser, Hariolf Betz, and Thom Frithwirth. Equivalence of CHR
states revisited. In Proceedings of Int’l Workshop on Constraint Handling
Rules, Report CW 555, pages 34—48. Kath. Univ. Leuven, 2009.

Jan J. M. M. Rutten. A coinductive calculus of streams. Mathematical
Structures in Computer Science, 15(1):93-147, 2005.

D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge
University Press, 2011.

Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal Gupta. Coinductive
logic programming. In ICLP, volume 4079 of LNCS, pages 330-345, 2006.
Vincent van Oostrom. Confluence by decreasing diagrams. Theor. Comput.
Sci., 126(2):259-280, 1994.

