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Abstract. The classical approach to automatic cost analysis consists of
two phases. Given a program and some measure of cost, we first pro-
duce recurrence relations (RRs) which capture the cost of our program
in terms of the size of its input data. Second, we convert such RRs into
closed form (i.e., without recurrences). Whereas the first phase has re-
ceived considerable attention, with a number of cost analyses available
for a variety of programming languages, the second phase has received
comparatively little attention. In this paper we first study the features
of RRs generated by automatic cost analysis and discuss why existing
computer algebra systems are not appropriate for automatically obtain-
ing closed form solutions nor upper bounds of them. Then we present,
to our knowledge, the first practical framework for the fully automatic
generation of reasonably accurate upper bounds of RRs originating from
cost analysis of a wide range of programs. It is based on the inference of
ranking functions and loop invariants and on partial evaluation.

1 Introduction

The aim of cost analysis is to obtain static information about the execution cost
of programs w.r.t. some cost measure. Cost analysis has a large application field,
which includes resource certification [11,4, 16, 9], whereby code consumers can
reject code which is not guaranteed to run within the resources available. The
resources considered include processor cycles, memory usage, or billable events,
e.g., the number of text messages or bytes sent on a mobile network.

A well-known approach to automatic cost analysis, which dates back to the
seminal work of [25], consists of two phases. In the first phase, given a program
and some cost measure, we produce a set of equations which captures the cost of
our program in terms of the size of its input data. Such equations are generated
by converting the iteration constructs of the program (loops and recursion) into
recurrences and by inferring size relations which approximate how the size of
arguments varies. This set of equations can be regarded as recurrence relations
(RRs for short). Equivalently, it can be regarded as time bound programs [22].
The aim of the second phase is to obtain a non-recursive representation of the
equations, known as closed form. In most cases, it is not possible to find an exact
solution and the closed form corresponds to an upper bound.



There are a number of cost analyses available which are based on this ap-
proach and which can handle a range of programming languages, including func-
tional [25, 18,22, 24,23, 7], logic [12,20], and imperative [1, 3]. While in all such
analyses the first phase is studied in detail, the second phase has received com-
paratively less attention. Basically, there are three different approaches for the
second phase. One approach, which is conceptually linked viewing equations as
time bound programs, was proposed in [18] and advocated in [22]. It is based on
existing source-to-source transformations which convert recursive programs into
non-recursive ones. The second approach consists in building restricted recur-
rence solvers using standard mathematical techniques, as in [25,12]. The third
approach consists in relying on existing computer algebra systems (CASs for
short) such as Mathematica®, MAXIMA, MAPLE, etc., as in [24,23,7, 3].

The problem with the three approaches above is that they assume a rather
limited form of equations which does not cover the essential features of equa-
tions actually generated by automatic cost analysis. In the rest of the paper,
we will concentrate on viewing equations as recurrence relations and will use
the term Cost Relation (CR for short) to refer to the relations produced by
automatic cost analysis. In our own experience with [3], we have detected that
existing CASs are, in most cases, not capable of handling CRs. We argue that
automatically converting CRs into the format accepted by CASs is unfeasible.
Furthermore, even in those cases where CASs can be used, the solutions ob-
tained are so complicated that they become useless for most practical purposes.
An altogether different approach to cost analysis is based on type systems with
resource annotations which does not use equations. Thus, it does not need to
obtain closed forms, but it is typically restricted to linear bounds [16]. The need
for improved mechanisms for obtaining upper bounds was already pointed out
in Hickey and Cohen [14]. A relevant work in this direction is PURRS [5], which
has been the first system to provide, in a fully automatic way, non-asymptotic
upper and lower bounds for a wide class of recurrences. Unfortunately, and un-
like our proposal, it also requires CRs to be deterministic. Marion et. al. [19,
8] use a kind of polynomial ranking functions, but the approach is limited to
polynomial bounds and can only handle a rather restricted form of CRs.

We believe that the lack of automatic tools for the above second phase is a
major reason for the diminished use of automatic cost analysis. In this paper we
study the features of CRs and discuss why existing CASs are not appropriate
for automatically bounding them. Furthermore, we present, to our knowledge,
the first practical framework for the fully automatic inference of reasonably
accurate upper bounds for CRs originating from a wide range of programs. To do
this, we apply semantic-based transformation and analysis techniques, including
inference of ranking functions, loop invariants and the use of partial evaluation.

1.1 Motivating Example

Ezample 1. Consider the Java code in Fig. 1. It uses a class List for (non sorted)
linked lists of integers. Method del receives an input list without repetitions I,



void del(List I, int p,int a[], int la,int b[], int Ib){

while (I'=null) { (1) Del(l, a, la, b, Ib)=1+C(l, a, la, b, Ib)
if (l.data<p) { {b>1b, 1b>0, a>la,la>0,1>0}
la=rm_vec(l.data, a, la); (2) ¢(l,a,la,b,1b)=2 {a>la, b>1b,b>0,a>0,1=0}
} else { (3) C(l, a,la,b,ib)=
Ib=rm_vec(l.data, b, Ib); 25+D(a, la, 0)+E(la,j)+C(', a,la—1,b, Ib)
{a>0,a>la,b>1b,5>0,b>0,1>1",1>0}
I=I.next; (4) ¢(l, a,la, b, lb)=
} 24+D(b, b, 0)+E(Ib,5)+C(', a,la, b, lb—1)
} {b>0,b>1b, a>la,j>0,a>0,1>1',1>0}
int rm_vec(int e, int a[], int la){ (5) D(a,la,i)=3 {i>la,a>la,i>0}
int i=0; (6) D(a,la,i)=8 {i<la,a>la,i>0}
while (i<la && ali]<e) i++; (7) D(a, la,i)=10+D(a,la,i+1) {i<la,a>la,i>0}
for (int j=i;j<la—1;j++) aljl=alj+1]; (8) E(la,j)=5 {j>la—1,5>0}
return la—1; (9) E(la,j)=15+E(la,j+1) {j<la—1,j>0}

}

Fig. 1. Java Code and the Result of Cost Analysis

an integer value p (the pivot), two sorted arrays of integers a and b, and two
integers la and Ib which indicate, respectively, the number of positions occupied
in a and b. The array a (resp. b) is expected to contain values which are smaller
than the pivot p (resp. greater or equal). Under the assumption that all values
in | are contained in either a or b, the method del removes all values in | from
the corresponding arrays. The auxiliary method rm_vec removes a given value e
from an array a of length la and returns its new length, la—1.

We have applied the cost analysis in [3] on this program in order to approx-
imate the cost of executing the method del in terms of the number of executed
bytecode instructions. For this, we first compile the program to bytecode and
then analyze the resulting bytecode. Fig. 1 (right) presents the results of analy-
sis, after performing partial evaluation, as we will explain in Sec. 6, and inlining
equality constraints (e.g., inlining equality [b’=Ib—1 is done by replacing the
occurrences of [b' by Ib—1). In the analysis results, the data structures in the
program are abstracted to their sizes: | represents the maximal path-length [15]
of the corresponding dynamic structure, which in this case corresponds to the
length of the list, a and b are the lengths of the corresponding arrays, and la and
b are the integer values of the corresponding variables. There are nine equations
which define the relation Del, which corresponds to the cost of the method del,
and three auxiliary recursive relations, C, D, and E. Each of them corresponds
to a loop (C': while loop in del; D: while loop in rm_vec; and E: for loop in rm_vec).
Each equation is annotated with a set of constraints which capture size relations
between the values of variables in the left hand side (lhs) and those in the right
hand side (rhs). In addition, size relations may contain applicability conditions
(i.e., guards) by providing constraints which only affect variables in the lhs. Let
us explain the equations for D. Eqgs. (5) and (6) are base cases which corre-
spond to the exits from the loop when i>la and a[i|>e, respectively. Note that
the condition afi]>e does not appear in the size relation of Eq. (6) nor (7). This
is because the array a has been abstracted to its length. Thus, the value in ali]
is no longer observable. For our cost measure , we count 3 bytecode instructions



in Eq. (5) and 8 in Eq. (6). The cost of executing an iteration of the loop is
captured by Eq. (7), where the condition i<la must be satisfied and variable ¢
is increased by one at each recursive call. O

1.2 Cost Relations vs. Recurrence Relations

CRs differ from standard RRs in the following ways:

(a) Non-determinism. In contrast to RRs, CRs are possibly non-deterministic:
equations for the same relation are not required to be mutually exclusive. Even if
the programming language is deterministic, size abstractions introduce a loss of
precision: some guards which make the original program deterministic may not
be observable when using the size of arguments instead of their actual values. In
Ex. 1, this happens between Egs. (3) and (4) and also between (6) and (7).

(b) Inezact size relations. CRs may have size relations which contain constraints
(not equalities). When dealing with realistic programming languages which con-
tain non-linear data structures, such as trees, it is often the case that size analysis
does not produce exact results. E.g., analysis may infer that the size of a data
structure strictly decreases from one iteration to another, but it may be unable
to provide the precise reduction. This happens in Ex. 1 in Egs. (3) and (4).

(¢) Multiple arguments. CRs usually depend on several arguments that may
increase (variable ¢ in Eq. (7)) or decrease (variable [ in Eq. (2)) at each iteration.
In fact, the number of times that a relation is executed can be a combination of
several of its arguments. E.g., relation E is executed la—j—1 times.

Point (a) was detected already in [25], where an explicit when operator
is added to the RR language to introduce non-determinism, but no complete
method for handling it is provided. Point (b) is another source of non-determinism.
As a result, CRs do not define functions, but rather relations. Given a relation
C and input values T, there may exist multiple results for C'(v). Sometimes it is
possible to automatically convert relations with several arguments into relations
with only one. However, in contrast to our approach, it is restricted to very
simple cases such as when the CR only count constant cost expressions.

Existing methods for solving RRs are insufficient to bound CRs since they
do not cover points (a), (b), and (c) above. On the other hand, CASs can solve
complex recurrences (e.g., coefficients to function calls can be polynomials) which
our framework cannot handle. However, this additional power is not needed in
cost analysis, since such recurrences do not occur as the result of cost analysis.

An obvious way of obtaining upper bounds in non-deterministic CRs would
be to introduce a maximization operator. Unfortunately, such operator is not
supported by existing CAS. Adding it is far from trivial, since computing the
maximum when the equations are not mutually exclusive requires taking into
account multiple possibilities, which results in a highly combinatorial problem.
Another possibility is to convert CRs into RRs. For this, we need to remove
equations from CRs as well as sometimes to replace inexact size relations by
exact ones while preserving the worst-case solution. However, this is not possible



in general. E.g., in Fig. 1, the maximum cost is obtained when the execution
interleaves Egs. (3) and (4), and therefore we cannot remove either of them.

2 Cost Relations: Evaluation and Upper Bounds

Let us introduce some notation. We use z, y, z, possibly subscripted, to denote
variables which range over integers (Z), v, w denote integer values, a, b natural
numbers (N) and ¢ rational numbers (Q). We denote by Q* (resp. R*) the set of
non-negative rational (resp. real) numbers. We use f to denote a sequence of en-
tities t1,. .., t,, for some n>0. We sometimes apply set operations on sequences.
Given T, an assignment for T is a sequence U (denoted by [Z/7]). Given any entity
t, t[Z /7] stands for the result of replacing in ¢ each occurrence of z; by v;. We use
vars(t) to refer to the set of variables occurring in t. A linear expression has the
form qo+qrx1+ -+ - +qnxn. A linear constraint has the form [y op ls where I; and
Iy are linear expressions and op € {=,<,<,>,>}. A size relation ¢ is a set of
linear constraints (interpreted as a conjunction). The operator 3Z.¢ eliminates
from ¢ all variables except for T. We write @1 = @2 to indicate that o1 implies
2. The following definition presents our notion of basic cost expression.

Definition 1 (basic cost expression). Basic cost expressions are of the form:
exp::=a|nat(l)|exp+exp|exprexp|exp®|log, (exp)|a®*P| max(S) %bxp—a, where
a>1, 1 is a linear expression, S is a non empty set of cost expressions, nat:Z—Q*
is defined as nat(v)=max({v,0}), and exp satisfies that for any assignment T
for vars(exp) we have that exp[vars(exp)/v] € R*.

Basic cost expressions are symbolic expressions which indicate the resources we
accumulate and are the non-recursive building blocks for defining cost relations.
They enjoy two crucial properties: (1) by definition, they are always evaluated
to non negative values; (2) replacing a sub-expression nat(l) by nat(l’) such that
I">1, results in an upper bound of the original expression.

A cost relation C of arity n is a subset of Z™ x RT. This means that for
a single tuple T of integers there can be multiple solutions in C(v). We use C
and D to refer to cost relations. Cost analysis of a program usually produces
multiple, interconnected, cost relations. We refer to such sets of cost relations as
cost relation systems (CRSs for short), which we formally define below.

Definition 2 (Cost Relation System). A cost relation system S is a set of
equations of the form (C(T)=exp+ Ef:o D;(1,), v) with k>0, where C' and all
D; are cost relations, all variables T and Y, are distinct variables; exp s a basic
cost expression; and @ is a size relation between T and TUvars(exp)Jy;.

In contrast to standard definitions of RRs, the variables which occur in the rhs
of the equations in CRSs do not need to be related to those in the lhs by equality
constraints. Other constraints such as < and < can also be used. We denote by
rel(S) the set of cost relations which are defined in S. Also, def(S,C) denotes
the subset of the equations in S whose lhs is of the form C(T). W.l.o.g. we
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Fig. 2. Two Evaluation Trees for Del(3, 10, 2,20, 2)

assume that all equations in def (S, C') have the same variable names in the lhs.
We assume that any CRS S is self-contained in the sense that all cost relations
which appear in the rhs of an equation in & must be in rel(S).

We now provide a semantics for CRSs. Given a CRS S, a call is of the form
C(v), where Cerel(S) and U are integer values. Calls are evaluated in two phases.
In the first phase, we build an evaluation tree for the call. In the second phase we
obtain a value in R™ by adding up the constants which appear in the nodes of the
evaluation tree. We make evaluation trees explicit since, as discussed below, our
approximation techniques are based on reasoning about the number of nodes and
the values in the nodes in such evaluation trees. Evaluation trees are obtained by
repeatedly expanding nodes which contain calls to relations. Each expansion is
performed w.r.t an appropriate instantiation of a rhs of an applicable equation.
If all leaves in the tree contain basic cost expressions then there is no node left
to expand and the process terminates. We will represent evaluation trees using
nested terms of the form node(Call, Local_Cost,Children), where Local_Cost is a
constant in Rt and Children is a sequence of evaluation trees.

Definition 3 (evaluation tree). Given a CRS S and a call C(D), a tree
node(C(v), e, (T4, .., Tx)) is an evaluation tree for C(v) in S, denoted Tree(C(7),
S) if: 1) there is a renamed apart equation (C(T)=exp+ Zf:o D;(7;), ¢) € S s.t.
¢ is satisfiable in Z, with ©'=p[T/7], and 2) there exist assignments W, v; for
vars(exp),y,; respectively s.t. ¢'[vars(exp)/w, Y,;/V;] is satisfiable in Z, and 3)
e=exp(vars(exp)/w|, T; is an evaluation tree Tree(D;(T;),S) withi=0,...,k.

In step 1 we look for an equation € which is applicable for solving C(7). Note
that there may be several equations which are applicable. In step 2 we look
for assignments for the variables in the rhs of £ which satisfy the size rela-
tions associated to £. This a non-deterministic step as there may be (infinitely
many) different assignments which satisfy all size relations. Finally, in step 3 we
apply the assignment to exp and continue recursively evaluating the calls. We
use Trees(C(v),S) to denote the set of all evaluation trees for C(v). We define
Answers(C(v),S)={Sum(T) | Te€Trees(C(v),S)}, where Sum(T) traverses all
nodes in T and computes the sum of the cost expressions in them.

Ezample 2. Fig. 2 shows two possible evaluation trees for Del(3,10,2,20,2).
The tree on the left has maximal cost, whereas the one on the right has minimal
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Fig. 3. Self-Contained CR for relation C' and a corresponding evaluation tree

cost. A node in either tree contains a call (left box) and its local cost (right box)
and it is linked by arrows to its children. We annotate calls with a number in
parenthesis to indicate the equation which was selected for evaluating such call.
Note that, in the recursive call to C' in Egs. (3) and (4), we are allowed to pick
any value I’ s.t. I’<l. In the tree on the left we always assign I’=[—1. This is what
happens in actual executions of the program. In the tree on the right we assign
I’=1—3 in the recursive call to C. The latter results in a minimal approximation,
however, it does not correspond to any actual execution. This is a side effect of
using safe approximations in static analysis: information is correct in the sense
that at least one of the evaluation trees must correspond to the actual cost, but
there may be other trees with different cost. In fact, there are an infinite number
of evaluation trees for our example call, as step 2 can provide an infinite number
of assignments to variable j which are compatible with the constraint j>0 in
Egs. (3) and (4). This shows that approaches like [13] based on evaluation of
CRSs are not of general applicability. Nevertheless, it is possible to find an upper
bound for this call since though the number of trees is infinite, infinitely many
of them produce equivalent results. a

2.1 Closed Form Upper Bounds for Cost Relations

Let C be a relation over Z™«R*. A function U:Z"—R™* is an upper bound of C' iff
VoeZ™, Yae Answers(C(v),S), U(v)>a. We use C to refer to an upper bound of
C. A function f:Z"—R* isin closed form if it is defined as f(T)=exp, with exp a
basic cost expression s.t. vars(exp)CZ. An important feature of CRSs, inherited
from RRs, is their compositionality, which allows computing upper bounds of
CRSs by concentrating on one relation at a time. L.e., given a cost equation
for C(z) which calls D(y), we can replace the call to D(y) by D*(y). The
resulting relation is trivially an upper bound of the original one. E.g., suppose
that we have the following upper bounds: E*(la,j)=5+15%nat(la—j—1) and
D% (a,la,i)=8+10%nat(la—i). Replacing the calls to D and F in equations (3)
and (4) by Dt and E* results in the CRS shown in Fig. 3.

The compositionality principle only results in an effective mechanism if all
recursions are direct (i.e., all cycles are of length one). In that case we can start



by computing upper bounds for cost relations which do not depend on any other
relations, which we refer to as standalone cost relations and continue by replacing
the computed upper bounds on the equations which call such relations. In the
following, we formalize our method by assuming standalone cost relations and
in Sec. 6 we provide a mechanism for obtaining direct recursion automatically.

Existing approaches to compute upper bounds and asymptotic complexity
of RRs, usually applied by hand, are based on reasoning about evaluation trees
in terms of their size, depth, number of nodes, etc. They typically consider two
categories of nodes: (1) internal nodes, which correspond to applying recursive
equations, and (2) leaves of the tree(s), which correspond to the application of a
base (non-recursive) case. The central idea then is to count (or obtain an upper
bound on) the number of leaves and the number of internal nodes in the tree
separately and then multiply each of these by an upper bound on the cost of the
base case and of a recursive step, respectively. For instance, in the evaluation
tree in Fig. 3 for the standalone cost relation C, there are three internal nodes
and one leaf. The values in the internal nodes, once performed the evaluation
of the expressions are 73, 72, and 48, therefore 73 is the worst case. In the case
of leaves, the only value is 2. Therefore, the tightest upper bound we can find
using this approximation is 3x734+1%x2=221 > 73472448+2=193.

We now extend the approximation scheme mentioned above in order to con-
sider all possible evaluation trees which may exist for a call. In the following,
we use |S| to denote the cardinality of a set S. Also, given an evaluation tree
T, leaf (T) denotes the set of leaves of T' (i.e., those without children) and
internal(T') denotes the set of internal nodes (all nodes but the leaves) of T'.

Proposition 1 (node-count upper bound). Let C be a cost relation and let
CH () = internal™ (T) * costr™(T)+ leaf T (T) xcostnr™(T), where internal™(T),
costr™(T), leaf *(T) and costnr™(T) are closed form functions defined on Z"—R”.
Then, CT is an upper bound of C if for all TEZ™ and for all T€ Trees(C(v),S), it
holds: (1) internal™(v) > |internal(T)| and leaf *(v) > |leaf (T)|; (2) costr™ (v)
is an upper bound of {e | node(-, e, _)€internal(T)} and (3) costnr™(v) is an up-
per bound of {e | node(_, e, )Eleaf(T)}.

3 Upper Bounds on the Number of Nodes

In this section we present an automatic mechanism to obtain safe internal™*(T)
and leaf* () functions which are valid for any assignment for . The basic idea
is to first obtain upper bounds b and h™ (Z) on, respectively, the branching factor
and height (the distance from the root to the deepest leaf) of all corresponding
evaluation trees, and then use the number of internal nodes and leaves of a
complete tree with such branching factor and height as an upper bound. Then,

_ ht(Z) b=1
leaf *(z) = b"" @ internal ™ (T) = { phT @ _
o b>2



For a cost relation C, the branching factor b in any evaluation tree for a
call C(7) is limited by the maximum number of recursive calls which occur in a
single equation for C. We now propose a way to compute an upper bound for
the height, ™. Given an evaluation tree T'c Trees(C(v),S) for a cost relation C,
consecutive nodes in any branch of T represent consecutive recursive calls which
occur during the evaluation of C(7). Therefore, bounding the height of a tree
may be reduced to bounding consecutive recursive calls. The notion of loop in a
cost relation, which we introduce below, is used to model consecutive calls.

Definition 4. Let £=(C(T)=exp+ Zle C (i), ) be an equation for a cost re-
lation C. Then, Loops(E)={(C(Z)—C(§;),¢") | ¢'=32Ug;.0,1=1-- -k} is the set
of loops induced by E. Similarly, Loops(C) = Ugeef(s,c)Loops(E).

Ezample 3. Egs. (3) and (4) in Fig. 3 induce the following two loops:
(3){C(l, a,la,b,Ib)—C(l',a,la’, b, Ib),p1={a>0,a>la,b>1b,b>0,1>1",1>0,la’=la—1})
@){(C(1, a, la, b, b)—C (I, a, la, b, Ib'),oh={b>0,b>1b, a>la,a>0,>1', 10, 1’ =lb—1})

Bounding the number of consecutive recursive calls is extensively used in the
context of termination analysis. It is usually done by proving that there is a func-
tion f from the loop’s arguments to a well-founded partial order which decreases
in any two consecutive calls and which guarantees the absence of infinite traces,
and thus termination. These functions are usually called ranking functions. We
propose to use the ranking function to generate a h™ function. In practice, we
use [21] to generate functions which are defined as follows: a function f:Z™—Z is

a ranking function for a loop (C(Z)—C(g),¢) if o=f(Z)>f(y) and p=f(Z)>0.

Ezample 4. The function fo(l, a, la, b, b)=l is a ranking function for C in the
cost relation in Fig. 3. Note that ¢} and ¢} in the above loops of C' contain
the constraints {/>!’,i>0} which is enough to guarantee that fo is decreas-
ing and well-founded. The height of the evaluation tree for C(3,10,2,20,2) is
precisely predicted by fco(3,10,2,20,2)=3. Ranking functions may involve sev-
eral arguments, e.g., fp(a,la,i)=la—i is a ranking function for (D(a,la,i) —
D(a,la,i"),{i'=i+1,i<la,a>la,i>0}) which comes from Eq. (7). m]

Observe that the use of global ranking functions allows bounding the number
of iterations of possibly non-deterministic CRSs with multiple arguments (see
Sec. 1.2). In order to be able to define A" in terms of the ranking function, one
thing to fix is that the ranking function might return a negative value when is
applied to values which correspond to base cases (leaves of the tree). Therefore,
we define h*(Z)=nat(fc(T)). Function nat guarantees that negative values are
lifted to 0 and, therefore, they provide a correct approximation for the height of
evaluation trees with a single node. Even though the ranking function provides
an upper bound for the height of the corresponding trees, in some cases we can
further refine it and obtain a tighter upper bound. For example, if the difference
between the value of the ranking function in each two consecutive calls is larger
than a constant §>1, then fnat(ch(i))] is a tighter upper bound. A more inter-
esting case, if each loop (C(Z)—C(7), ¢) € Loops(C) satisfies o= fc (T) >k fo (7)
where k>1, then the height of the tree is bounded by [log (nat(fc(7)+1))].



4 Estimating the Cost per Node

Consider the evaluation tree in Fig. 3. Note that all expressions in the nodes are
instances of the expressions which appear in the corresponding equations. Thus,
computing costr™(Z) and costnr™ (T) can be done by first finding an upper bound
of such expressions and then combining them through a maz operator. We first
compute invariants for the values that the expression variables can take w.r.t.
the initial values, and use them to derive upper bounds for such expressions.

4.1 Invariants

Computing an invariant (in terms of linear constraints) that holds in all calling
contexts (contexts for short) to a relation C' between the arguments at the initial
call and at each call during the evaluation can be done by using Loops(C'). Intu-
itively, if we know that a linear constraint v holds between the arguments of the
initial call C'(Zy) and those of a recursive call C(Z), denoted (C(Zo)~C(T), 1),
and we have a loop (C(Z)—C(9), ¢)€ Loops(C), then we can apply the loop one
more step and get the new calling context (C(To)~C(7), ITUT.YAR).

Definition 5 (loop invariants). For a relation C, let T be an operator defined:
_ — oo o |(C(@0)~C(@), )X, (C(T)—=C(Y), ¢) € Loops(C),

700 = { (c@rcm, v [ G0

which derives a set of contexts, from a given context X, by applying all loops, then

the loop invariants I is lfpU;>0T (1) where Iy = {{C(Zo)~C(T), {To=T})}.

Ezample 5. Let us compute I for the loops in Sec. 3. The initial context is
11=<C(f())’\/>0(.’2), {l:l(), a=ayg, la=lag, b=by, lb=lb()}> where j0:<lo, ap, ZCLO7 bo, lb0>
and Z=(l,a,la, b, 1b). In the first iteration we compute 7°({I;}) which by defi-
nition is {I;}. In the second iteration we compute 7 *({I;}) which results in
IQZ(C(fa)’\’?C(l‘_), {l<l07 a=agp, la=lag—1,b=by, lb=Iby, l0>0}>
Is=(C ()~ C(2), {I<lp, a=ap, la=lag, b=bo, b=Ibp—1,1y>0})
where I and I3 correspond to applying respectively the first loop and second
loops on I7. The underlined constraints are the modifications due to the appli-
cation of the loop. Note that in Is the variable lay decreases by one, and in I3
Ibg decreases by one. The third iteration 72({I;}), i.e. T ({I2,I3}), results in
I4:<C(f(})’\/>c(.’f), {l<l(], a=agp, la:lagf,?, b:b(), lb:lb()7 l0>0}>
I5Z<C(I_())’\/>C(l‘_), {l<l(), a=ag, la=lag—1,b=by, lb=Ilbg—1, l0>0}>
]6=<O(£I_30)MC($_), {l<l07 a=agp, la=lag, b=bg, Ib=1lby—2, l0>0}>
I7:<C(f())’\/>c(.’f),{l<l(), a=agp, la:la()*], b:b(), lb:lbgff, l()>0}>
where I, and I5 originate from applying the loops to I, and I and I7 from
applying the loops to I3. The modifications on the constraints reflect that, when
applying a loop, either we decrease la or [b. After three iterations, the invariant
I includes I - - - I7. More iterations will add more contexts that further modify
the value of la or [b. Therefore, the invariant I grows indefinitely in this case. O

In practice, we approximate I using abstract interpretation over, for instance, the
domain of convex polyhedra [10], whereby we obtain the invariant ¥=(C(T¢) ~»
C(f), {lglo, a=agp, laglag, b:bg, lbglb0}>



4.2 Upper Bounds on Cost Expressions

Once invariants are available, finding upper bounds of cost expressions can be
done by maximizing their nat parts independently. This is possible due to the
monotonicity property of cost expressions. Consider, for example, the expres-
sion nat(la—j—1) which appears in equation (3) of Fig. 3. We want to infer an
upper bound of the values that it can be evaluated to in terms of the input
values (lo, ag, lag, by, lbp). We have inferred, in Sec. 4.1, that whenever we call
C the invariant ¥ holds, from which we can see that the maximum value that
la can take is lag. In addition, from the local size relations ¢ of equation (3)
we know that j>0. Since la—j—1 takes its maximal value when la is maximal
and j is minimal, the expression lag—1 is an upper bound for la—j— 1. This can
be done automatically using linear constraints tools [6]. Given a cost equation
(C(z)=exp+ Zf:o C(y;), v) and an invariant (C(To)~C(Z),¥), the function
below computes an upper bound for exp by maximizing its nat components.

1: function ub_ezp(exp,To,p,¥)
mexp=exp
for all nat(f)€exp do
U=z, r.(pAUA(r=f)) // r is a fresh variable
if 3f s.t. vars(f')CZo and ¥'=r<f’ then mexp=mexp|nat(f)/nat(f’)]

else return oo
return mexp

This function computes an upper bound f’ for each expression f which occurs
inside a nat operator and then replaces in exp all such f expressions with their
corresponding upper bounds (line 5). If it cannot find an upper bound, the
method returns oo (line 6). The ub_ezp function is complete in the sense that if
¥ and ¢ imply that there is an upper bound for a given nat(f), then we can find
one by syntactically looking on ¥’ (line 4).

Ezample 6. Applying ub_ezp to exp, and exp, of Egs. (3) and (4) in Fig. 3 w.r.t.
the invariant we have computed in Sec. 4.1 results in mexp;=38+15x*nat(lag—1)
+10+nat(lag) and mexp,=37+15+nat(lby—1) + 10+nat(lby). |

Theorem 1. Let S=5,USy be a cost relation where S; and Sy are respec-
tively the sets of non-recursive and recursive equations for C, and let T=(C(Ty)
~C(Z),¥) be a loop invariant for C; E;={ub_exp(exp,To,p,¥) | (C(T) = exp+
E?:o C(y;), p)€Si}; costnr™(Zo)=max(E1) and costr™(To)=max(Es). Then
for any call C(v) and for all T € Trees(C(v),S): (1) Vnode(_, e, )Einternal(T)
we have costr™ (v)>e; and (2) Vnode(_, e, )Eleaf (T) we have costnr(v)>e.

Ezxample 7. At this point we have all the pieces in order to compute an upper
bound for the CRS depicted in Fig. 1 as described in Prop. 1. We start by
computing upper bounds for E and D as they are cost relations:

|Ranking Function ‘costnr+|costr+| Upper Bound
E(lao, jo)|nat(lag—jo—1) 5 15 5415%nat(lag—jo—1)
D(ao,lao,io) nat(lao—ig) 8 10 8+10*nat(lao—i0)




These upper bounds can then be substituted in the equations (3) and (4) which
results in the cost relation for C' depicted in Fig. 3. We have already computed
a ranking function for C' in Ex. 4 and costnr™ and costr* in Ex. 6, which
are then combined into C'*(ly, ao, lag, by, Ibg)=2-+nat(ly)*maz({mexp;, mexp,}).
Reasoning similarly, for Del we get the upper bound shown in Table 1. O

5 Improving Accuracy in Divide and Conquer Programs

For some CRSs, we can obtain a more accurate upper bound by approximating
the cost of levels instead of approximating the cost of nodes, as indicated by
Prop. 1. Given an evaluation tree T, we denote by Sum_Level(7,4) the sum of
the values of all nodes in T" which are at depth i, i.e., at distance ¢ from the root.

Proposition 2 (level-count upper bound). Let C be a cost relation and let
C™ be a function defined as: CT(T)=1"(T) xcostl™ (T), where [T (T) and costl™ (T)
are closed form functions defined on Z™—R*. Then, CT is an upper bound of C
if for all v€Z™ and T€ Trees(C(v),S), it holds: (1) I(v) > depth(T) + 1; and
(2) Vie{0, ... ,depth(T)} we have that costl™(v) > Sum_Level(T, 7).

The function [T can simply be defined as IT(Z)=nat(fc(Z))+1 (see Sec. 3).
Finding an accurate cost/™ function is not easy in general, which makes Prop. 2
not as widely applicable as Prop. 1. However, evaluation trees for divide and
conquer programs satisfy that Sum_Level(T, k)>Sum_Level(T, k+1), i.e., the cost
per level does not increase from one level to another. In that case, we can take the
cost of the root node as an upper bound of costI™(Z). A sufficient condition for a
cost relation falling into the divide and conquer class is that each cost expression
that is contributed by an equation is greater than or equal to the sum of the
cost expressions contributed by the corresponding immediate recursive calls.
This check is implemented in our prototype using [6].

Consider a CRS with the two equations (C(n)=0,{n<0}) and (C(n) =
nat(n)+C(n1)+C(nz2), ¢) where p={n>0,n1+no+1<n,n>2xnq,n >2xng,ny >0,
n2>0}. It corresponds to a divide and conquer problem such as merge-sort. In
order to prove that Sum_Level does not increase, it is enough to check that,
in the second equation, n is greater than or equal to the sum of the expres-
sions that immediately result from the calls C(n1) and C(ng), which are nq and
ng respectively. This can be done by simply checking that ¢F=n>nq+ny. Then,
costl™ (T)=max{0, nat(x) }=nat(x). Thus, given that [ (x)=[log, (nat(x)+1)]+1,
we obtain the upper bound nat(z)#([logy(nat(x)+1)]+1). Note that by using the
node-count approach we would obtain nat(z)(2"*)—1) as upper bound.

6 Direct Recursion using Partial Evaluation

Automatically generated CRSs often contain recursions which are not direct,
i.e., cycles involve more than one function. E.g., the actual CRS obtained for



the program in Fig. 1 by the analysis in [3] differs from that shown in the right
hand side of Fig. 1 in that, instead of Egs. (8) and (9), the “for” loop results in:

(8') E(la,j)=5+F(la,j,j',la") {j'=7,ld’=la—1,5'>0}

(9') F(la,j,j',la")=H(j', la") {j'>la’}
(10) F(la,j.j" 1a)=G(la.§.7',la') {j'<la'}
(11) H(j',la")=0 {

(12) G(la,j,j',la")=10+E(la,j+1) {j<la—1,j>0,la—la’=1,5' =5}
Now, E captures the cost of the loop condition “j<la—1" (5 cost units) plus the
cost of its continuation, captured by F. Eq. (9') corresponds to the exit of the
loop (it calls H, Eq. (11), which has 0 cost). Eq. (10) captures the cost of one
iteration by calling G, Eq. (12), which accumulates 10 units and returns to E.

In this section we present an automatic transformation of CRSs into directly
recursive form. The transformation is based on partial evaluation (PE) [17] and
it is performed by replacing calls to intermediate relations by their definitions
using unfolding. The first step in the transformation is to find a binding time
classification (or BTC for short) which declares which relations are residual, i.e.,
they have to remain in the CRS. The remaining relations are considered unfold-
able, i.e., they are eliminated. For computing BTCs, we associate to each CRS S
a call graph, denoted G(S), which is the directed graph obtained from S by tak-
ing rel(S) as the set of nodes and by including an arc (C, D) iff D appears in the
rhs of an equation for C. The following definition provides sufficient conditions
on a BTC which guarantee that we obtain a directly recursive CRS.

Definition 6. Let G(S) be the call graph of S and let SCC be its strongly con-
nected components. A BTC btc for S is directly recursive if for all SESCC the
following conditions hold: (1) if s1,$2€S and s1, sa€btc, then s1=s2; and (2) if
S has a cycle, then there exists s€S such that s€btc.

Condition 1 ensures that all recursions in the transformed CRS are direct, as
there is only one residual relation per SCC. Condition 2 guarantees that the
unfolding process terminates, as there is a residual relation per cycle. A directly
recursive BTC for the above example is btc={ E'}. In our implementation we only
include in the BTC the covering point (i.e., a node which is part of all cycles) of
SCCs which contain cycles, but no node is included for SCCs without cycles. This
way of computing BTCs, in addition to ensuring direct recursion, also eliminates
all relations which are not part of cycles (such as H in our example).

We now define unfolding in the context of CRSs. Such unfolding is guided
by a BTC and at each step it combines both cost expressions and size relations.

Definition 7 (unfolding). Given a CRS S, a call C(Typ) s.t. Cerel(S), a size
relation vz, over Tp, and a BTC btc for S, a pair (E,¢) is an unfolding for
C(Tp) and ¢z, in S w.r.t. btc, denoted Unfold((C(Zv), ¢z,),S, btc)~(E, ¢), if
either of the following conditions hold:

(res) CebtcAp#trueN(E, p)=(C(To), z,);

(unf) (CdbtcVp=true)\(E, )= {(expter +...+ter), ¢ N i)



where (C(T)=exp+ Zle D;(Y;), pc) is a renamed apart equation in S s.t. ¢’ =
0z, N [T/ To] is satisfiable in 7 and V1<i<k Unfold((D;(7;), ¢"), S, btc)~{(e;, ;).

The first case, (res), is required for termination. When we call a relation C' which
is marked as residual, we simply return the initial call C(Z() and size relation
¥z, as long as the current size relation ¢z, is not the initial one (true). The
latter condition is added in order to force the initial unfolding step for relations
marked as residual. In all subsequent calls to Unfold different from the initial
one, the size relation is different from true. The second case (unf) corresponds
to continuing the unfolding process. Note that step 1 is non-deterministic, since
often cost relations contain several equations. Since expressions are transitively
unfolded, step 2 may also provide multiple solutions. Also, if the final size relation
¢ is unsatisfiable, we simply do not regard (F, ¢) as a valid unfolding,.

Ezample 8. Given the initial call (E(la, ), true), we obtain an unfolding by per-

forming the following steps, denoted by ~5 where e is the selected equation:

(E(la,j), true) & (54 F(la, 1,5, la'), {j'=j, la'=la—1,5'>0}) "

(5+G(la, ], i, 1), {j'=j, la'=la—1,§'>0,5' <la'}) 2 15+ E(la, j"), {j<la—1,j>0})
The call E(la,j") is not further unfolded as E belongs to btc and p#true. O

From each result of unfolding we can build a residual equation. Given the unfold-
ing Unfold((C(Zo), ¢z,), S, btc)~(E, ¢) its corresponding residual equation is
(C(ZTo)=F, ). As customary in PE, a partial evaluation of C is obtained by col-
lecting all residual equations for the call (C(Zy), true). The PE of (E(la, ), true)
results in Egs. (8) and (9) of Fig. 1. Eq. (9) is obtained from the unfolding steps
depicted in Ex. 8 and Eq. (8) from unfolding w.r.t. Egs. (8'), (9), and (11).

Correctness of PE ensures that the solutions of CRSs are preserved. Regard-
ing completeness, we can obtain direct recursion if all SCCs in the call graph
have covering point(s). Importantly, structured loops (for, while, etc.) and recur-
sive patterns found in most programs result in CRSs that satisfy this property.
In addition, before applying PE, we check that the CRS terminates [2] with re-
spect to the initial query, otherwise we might compromise non-termination and
thus lead to incorrect upper bounds. We believe this check is not required when
CRSs are generated from imperative programs.

7 Experiments in Cost Analysis of Java Bytecode

A prototype implementation in Ciao Prolog, which uses PPL [6] for manipulating
linear constraints, is available at http://www.cliplab.org/Systems/PUBS. We
have performed a series of experiments which are shown in Table 1. We have used
CRSs automatically generated by the cost analyzer of Java bytecode described
in [3] using two cost measures: heap consumption for those marked with “*”, and
the number of executed bytecode instructions for the rest. The benchmarks are
presented in increasing complexity order and grouped by asymptotic class. Those
marked with M were solved using Mathematica® by [3] but after significant



[ Benchmark [[#cq| T[[ #¢, [Tpe[Tup|[Rat.[ Upper Bound I

[[Polynomial” abc[[23 (3)] 13][346 (70)] 174] 649] 2.4 || 216 1

[DivByTwo  ab[[ 9 (3)] 3][323 (68)] 166] 596] 2.4 || 8log,(nat(2z—1)+1)+14 I

Factorial™ 8 (2)] 4][314 (66)] 165] 590] 2.4 Onat(z)+4

ArrayRev™  al| 9 (3)] 4]|305 (64)] 165| 579] 2.4 Tdnat(z) 112

Concat™ ac||14 (5)| 13]|296 (62)| 158| 538| 2.4 11nat(xz)+11nat(y)+25

Incr™ ac||28 (5)| 29][282 (58)| 155| 490] 2.3 T9nat(z+1)+9

ListRev" abe|| 9 (3)| 4||254 (54)| 144| 415| 2.2 13nat(x)+8

MergeList  abc[|21 (4)] 18][]245 (52)[ 138] 406 2.2 29nat(z+y)+26

Power 8 (2)] 3|[223 (48)[ 125] 371 2.2 TOnat(z) 14

Cons™ abl[22 (2)] 6][214 (46)| 123] 359] 2.3 22nat(z—1)424

[[EvenDigits abc[[18 (5)] 9[[191 (44)] 115] 322] 2.3 [[nat(x)(8log, (nat(2z—3)+1)+24)+9nat(x)+9]|

ListInter abcl[[37 (9)] 59][173 (40)] 110] 298] 2.4 nat(z)(10nat(y)+43)+21

SelectOrd ac|[19 (6)] 27[|136 (32)] 86| 198] 2.1 nat(z—2)(17nat(z—2)+34)+9

FactSum al[17 (5)| 8|[117 (27)] 76| 173] 2.1 nat(z+1)(9nat(z)+16) 16

Delete abc|[33 (9)[125([100 (23)| 71| 165 2.4 || 3+nat(l) max(38+15nat(la—1)+10nat(la),
37-+15nat(lb—1)+10nat(ib))

MatMult™ ac||19 (7)| 23| 67 (15)| 27| 40| 1.0 nat(y) (nat(x)(27nat(x))+10)+17

Hanoi 9 (2)] 4] 48 (8)] 23] 17] 0.8 20(2"% ()17

Fibonacci™ 8 (2)| 5] 39 (6)] 20 13] 038 18(2mt@—1)y 13

BST* ab|[31 (0)] 26]] 31 (4)] 19] 7] 0.9 96(2"4(*))_49

Table 1. Experiments on Cost Analysis of Java Bytecode

human intervention. The marks a, b and ¢ after the name indicate, respectively,
if the CRS is non-deterministic, has inexact size relations and multiple arguments
(Sec. 1.2). Column #.4 shows the number of equations before PE (in brackets
after PE). Note that PE greatly reduces #., in all benchmarks. Column T shows
the total runtime in milliseconds. The experiments have been performed on an
Intel Core 2 Duo 1.86GHz with 2GB of RAM, running Linux.

The next four columns aim at demonstrating the scalability of our approach.
To do so, we connect the CRSs for the different benchmarks by introducing a
call from each CRS to the one appearing immediately below it in the table. Such
call is always introduced in a recursive equation. Column #¢, shows the number
of equations we want to solve in each case (in brackets after PE). Reading this
column bottom-up, we can see that BST has the same number of equations as
the original one and that, progressively, each benchmark adds its own number
of equations to #¢,. Thus, in the first row we have a CRS with all the equations
connected, i.e., we compute an upper bound of CRS with at least 19 nested loops
and 346 equations. The total runtime is split into Tj. and T, where T), is
the time of PE and it shows that even though PE is a global transformation,
its time efficiency is linear with the number of equations. Our system solves 346
equations in 823ms. Column Rat. shows the total time per equation. The ratio
is small for benchmarks with few equations, and for reasonably large CRSs (from
Delete upwards) it almost has no variation (2.1-2.4 ms/eq). The small increase
is due to the fact that the equations count more complex expressions as we con-
nect more benchmarks. This demonstrates that our approach is totally scalable,
even if the implementation is preliminary. The upper bound expressions get con-
siderably large when the benchmarks are composed together. We are currently
implementing standard techniques for simplification of arithmetic expressions.
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