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Introduction

Warren’s Abstract Machine (WAM) was specified in 1983

by David H. D. Warren [6].

Until recently, there was no clear account of its workings.

This course is entirely based on the instructor’s recent
monograph [1]:

� It consists of a gradual reconstruction of the WAM

through several intermediate abstract machine de-
signs.

� It is a complete account justifying all design features.

Course Outline:

� Unification

� Flat resolution

� Pure Prolog

� Optimizations

[3]



Unification—Pure and Simple

First-order term

� a variable, denoted by a capitalized identifier;
(e.g., X�X1�Y�Constant� . . .);

� a constant denoted by an identifier starting with a
lower-case letter;
(e.g., a� b� variable� cONSTANT� . . .);

� a structure of the form f (t1� . . . � tn) where f is a symbol
called a functor (denoted like a constant), and the ti’s
are first-order terms;

(e.g., f (X)� f (a� g(X� h(Y)�Y)� g(X))� . . .).

‘f�n’ denotes the functor with symbol f and arity n.

A constant c is a special case of a structure with functor
c�0.

[4]



Language L0

� Syntax:
two syntactic entities:

– a program term, noted t;

– a query term, noted ?-t;

where t is a non-variable first-order term. (the scope
of variables is limited to a program (resp., a query)
term.)

� Semantics:
computation of the MGU of the program p and the

query ?-q; having specified p, submit ?-q,

– either execution fails if p and q do not unify;

– or it succeeds with a binding of the variables in q

obtained by unifying it with p.

In L0, failure aborts all further work.

[5]



Abstract machine M0

Heap representation of terms:

M0 uses a global storage area called HEAP, an array of

data cells, to represent terms internally:

0 STR 1

1 h�2

2 REF 2

3 REF 3

4 STR 5

5 f�1

6 REF 3

7 STR 8

8 p�3

9 REF 2

10 STR 1

11 STR 5

Representation of p(Z� h(Z�W )� f (W ))�

starting at heap address 7.

[6]



Heap data cells:

� variable cell:

h REF � k i, where k is a store address; i.e., an index
into HEAP;

� structure cell:

h STR � k i, where k where is the address of a functor

cell;

� functor cell:

(untagged) contains the representation of a functor.

[7]



Convention:

� An unbound variable at address k is h REF � k i.

� A structure f (t1� . . . � tn) takes n + 2 heap cells.

� The first cell of f (t1� . . . � tn) is h STR � k i, where k is
the address of a (possibly non-contiguous) functor cell
containing f�n.

� A functor cell is always immediately followed by of
n contiguous cells; i.e., if HEAP[k] = f�n then
HEAP[k + 1] refers to (t1), . . . , and HEAP[k + n] to

(tn).

[8]



Compiling L0 queries

Preparing one side of an equation to be solved.

Namely, a query term ?-q is translated into a sequence
of instructions designed to build an exemplar of q on the

heap from q’s textual form.

[9]



Variable registers

X1, X2, . . . , are used to store temporarily heap data cells
as terms are being built.

They are allocated to a term, one for each subterms.

Convention:

� Variable registers are allocated according to least
available index.

� Register X1 is always allocated to the outermost term.

� A same register is allocated to all the occurrences of
a given variable.

Registers allocated to the term p(Z� h(Z�W )� f (W )):

X1 = p(X2� X3�X4)

X2 = Z

X3 = h(X2�X5)

X4 = f (X5)

X5 = W�

[10]



Flattened form

A term is equivalent to a conjunctive set of equations of
the form Xi = X or Xi = f (Xi1� . . . �Xin), (n � 0) where

the Xi’s are all distinct new variable names.

� external variable names are meaningless;

� a query term’s flattened form is a sequence of register
assignments of the form

Xi = f (Xi1� . . . � Xin)

ordered from the bottom up; i.e., so that a register

is assigned before it is used as an argument as a
subterm.

The flattened form of query term p(Z� h(Z�W )� f (W )) is:

X3 = h(X2�X5)�X4 = f (X5)�X1 = p(X2�X3�X4)�

[11]



Tokenized form

Scanning a flattened query term from left to right, each
Xi = f (Xi1� . . . �Xin) is tokenized as a sequence Xi = f�n,

Xi1, . . ., Xin.

The tokenized form of query term p(Z� h(Z�W )� f (W )) is
a stream of 9 tokens:

X3 = h�3�X2� X5�X4 = f�1�X5�X1 = p�3�X2� X3�X4�

There are three kinds of tokens to process:

1. a register associated with a structure functor;

2. a register argument not previously encountered any-
where in the stream;

3. a register argument seen before in the stream.

[12]



M0 query term instructions

Respectively, each of the three token kinds indicates a

different action:

1. put structure f�n� Xi

push a new STR (and adjoining functor) cell onto the
heap and copy that cell into the allocated register

address;

2. set variable Xi

push a new REF cell onto the heap containing its own

address, and copy it into the given register;

3. set value Xi

push a new cell onto the heap and copy into it the

register’s value.

Heap Register: H

H keeps the address of the next free cell in the
heap.

[13]



put structure f�n� Xi ≡ HEAP[H]� h STR � H + 1 i;

HEAP[H + 1]� f�n;

Xi� HEAP[H];

H� H + 2;

set variable Xi ≡ HEAP[H]� h REF � H i;

Xi� HEAP[H];

H� H + 1;

set value Xi ≡ HEAP[H]� Xi;

H� H + 1;

M0 machine instructions for query terms

[14]



put structure h�2�X3 % ?-X3 = h

set variable X2 % (Z�

set variable X5 % W )�

put structure f�1�X4 % X4 = f

set value X5 % (W )�

put structure p�3�X1 % X1 = p

set value X2 % (Z�

set value X3 % X3�

set value X4 % X4)�

M0 machine code for L0 query
?-p(Z� h(Z�W )� f (W ))�

[15]



Compiling L0 programs

Compiling a program term p assumes that a query ?-q

has been built a term on the heap and set register X1 to

contain its address.

Therefore, code for an L0 program term uses two modes:

� a READ mode in which data on the heap is matched
against;

� a WRITE mode in which a term is built on the heap
exactly as is a query term.

Code for p consists of:

� following the term structure already present in X1 as
long as it matches functor for functor the structure of

p;

� when an unbound REF cell is encountered in the
query term ?-q in the heap, then it is bound to a new

term that is built on the heap as an exemplar of the
corresponding subterm in p.

[16]



Tokenizing L0 program term

Variable registers are allocated as before; e.g., for pro-
gram term p(f (X)� h(Y� f (a))� Y ):

X1 = p(X2� X3�X4)

X2 = f (X5)

X3 = h(X4�X6)

X4 = Y

X5 = X

X6 = f (X7)

X7 = a�

But now the the flattened form follows a , top down order

because query data from the heap are assumed available
( even if only in the form of unbound REF cells).

Program term p(f (X)� h(Y� f (a))� Y ) is flattened into:

X1 = p(X2� X3�X4)�X2 = f (X5)�

X3 = h(X4� X6)�X6 = f (X7)�X7 = a�

Tokenizing this is just as before.

[17]



M0 query term instructions

Program tokens correspond to three kinds of machine
instructions:

1. get structure f�n� Xi

2. unify variable Xi

3. unify value Xi

depending on whether is met, respectively:

1. a register associated with a structure functor;

2. a first-seen register argument;

3. an already-seen register argument.

[18]



get structure p�3�X1 % X1 = p

unify variable X2 % (X2�

unify variable X3 % X3�

unify variable X4 % Y )�

get structure f�1�X2 % X2 = f

unify variable X5 % (X)�

get structure h�2�X3 % X3 = h

unify value X4 % (Y�

unify variable X6 % X6)�

get structure f�1�X6 % X6 = f

unify variable X7 % (X7)�

get structure a�0�X7 % X7 = a�

M0 machine code for L0 program
p(f (X)� h(Y� f (a))� Y )�

[19]



Dereferencing

Variable binding creates reference chains.

Dereferencing is performed by a function deref which,
when applied to a store address, follows a possible
reference chain until it reaches either an unbound REF

cell or a non-REF cell, the address of which it returns.

[20]



READ/WRITE mode

The two unify instructions work in two modes depending

on whether a term is to be matched from, or being built
on, the heap.

� For building (WRITE mode), they work exactly like the
two set query instructions.

� For matching (READ mode), they seek to recognize
data from the heap as those of the term at cor-
responding positions, proceeding if successful and

failing otherwise.

Subterm Register: S

S keeps the heap address of the next subterm to
be matched in READ mode.

[21]



Mode is set by get structure f�n�Xi:

� if deref (Xi) is a REF cell (i.e., unbound variable), then
binds to a new STR cell pointing to f�n pushed onto
the heap and mode is set to WRITE;

� otherwise,

– if it is an STR cell pointing to functor f�n, then

register S is set to the heap address following that
functor cell’s and mode is set to READ.

– If it is not an STR cell or if the functor is not f�n,
the program fails.

[22]



get structure f�n� Xi

≡ addr � deref (Xi);

case STORE[addr] of
h REF � i : HEAP[H]� h STR � H + 1 i;

HEAP[H + 1]� f�n;

bind(addr�H);

H� H + 2;

mode � WRITE;

h STR � a i : if HEAP[a] = f�n

then

begin
S� a + 1;

mode � READ

end
else fail � true;

other : fail � true;

endcase;

M0 machine instruction get structure

[23]



unify variable Xi:

� in READ mode, sets register Xi to the contents of the

heap at address S;

� in WRITE mode, a new unbound REF cell is pushed
on the heap and copied into Xi.

In both modes, S is then incremented by one.

unify value Xi:

� in READ mode, the value of Xi must be unified with
the heap term at address S;

� in WRITE mode, a new cell is pushed onto the heap

and set to the value of register Xi.

Again, in either mode, S is incremented.

[24]



unify variable Xi ≡ case mode of
READ : Xi� HEAP[S];

WRITE : HEAP[H]� h REF � H i;

Xi� HEAP[H];

H� H + 1;

endcase;

S� S + 1;

unify value Xi ≡ case mode of
READ : unify(Xi�S);

WRITE : HEAP[H]� Xi;

H� H + 1;

endcase;

S� S + 1;

M0 unify machine instructions

[25]



Variable Binding

bind is performed on two store addresses, at least one of

which is that of an unbound REF cell.

For now:

� it binds the unbound one to the other—i.e., change
the data field of the unbound REF cell to contain the

address of the other cell;

� if both arguments are unbound REF’s, the binding
direction is chosen arbitrarily.

NOTE: bind may also perform an occurs-check test in

order to prevent formation of cyclic terms — by failing at
that point.

[26]



procedure unify(a1� a2 : address);

push(a1�PDL); push(a2�PDL);

fail � false;

while ¬(empty(PDL) ∨ fail) do

begin

d1 � deref (pop(PDL)); d2 � deref (pop(PDL));

if d1 ≠ d2 then

begin

h t1 � v1 i � STORE[d1]; h t2 � v2 i � STORE[d2];

if (t1 = REF) ∨ (t2 = REF)

then bind(d1� d2)

else

begin

f1�n1 � STORE[v1]; f2�n2 � STORE[v2];

if (f1 = f2) ∧ (n1 = n2)

then

for i � 1 to n1 do

begin

push(v1 + i�PDL); push(v2 + i�PDL)

end

else fail � true

end

end

end

end unify;

[27]



Language L1

We now make a distinction between:

� atoms (terms whose functor is a predicate); and,

� terms (arguments to a predicate).

Extend L0 into L1:

� Syntax:
similar to L0 but now a program may be a set of
first-order atoms each defining at most one fact per

predicate name.

� Semantics:
execution of a query connects to the appropriate def-

inition to use for solving a given unification equation,
or fails if none exists for the predicate invoked.

[28]



The set of instructions I1 contains all those in I0.

In M1, compiled code is stored in a code area (CODE),

an array of possibly labeled instructions consisting of an
opcode followed by operands.

The size of an instruction stored at address a (i.e.,

CODE[a]) is given by the expression instruction size(a).

Labels are symbolic entry points into the code area that
may be used as operands of instructions for transferring
control to the code labeled accordingly.

Therefore, there is no need to store a procedure name in

the heap as it denotes a key into a compiled instruction
sequence.

[29]



Control Instructions

The standard execution order of instructions is sequen-
tial.

Program Register: P

P keeps the address of the next instruction to
execute.

Unless failure occurs, most machine instructions are

implicitly assumed, to increment P by instruction size(P).
Some instructions break sequential execution or connect
to some other instruction at the end of a sequence.

These instructions are called control instructions as they
typically set P in a non-standard way.

[30]



M1’s control instructions are:

� call p�n ≡ P� @(p�n);

where @(p�n) is the address in the code area of
instruction labeled p�n. If the procedure p�n is not
defined, failure occurs and overall execution aborts.

� proceed

indicates the end of a fact’s instruction sequence.

[31]



Argument registers

In L1, unification between fact and query terms amounts
to solving, not one, but many equations, simultaneously.

As X1 in M0 always contains the (single) term root,
in M1 registers X1� . . . � Xn are systematically allocated

to contain the roots of the n arguments of an n-ary
predicate.

Then, we speak of argument registers, and we write Ai

rather than Xi when the i-th register contains the i-th
argument.

Where register Xi is not used as an argument register, it
is written Xi, as usual. (NOTE: this is just notation—the

Ai’s and the Xi’s are the same.)

e.g., for atom p(Z� h(Z�W )� f (W )), M1 allocates regis-

ters:
A1 = Z

A2 = h(A1� X4)

A3 = f (X4)

X4 = W�

[32]



Argument instructions

These are needed in M1 to handle variable arguments.

As in L0, instructions correspond to when a variable

argument is a first or later occurrence, either in a query
or a fact.

In a query:

� the first occurrence of a variable in i-th argument

position pushes a new unbound REF cell onto the
heap and copies it into that variable’s register as well
as argument register Ai;

� a later occurrence copies its value into argument

register Ai.

In a fact:

� the first occurrence of a variable in i-th argument
position sets it to the value of argument register Ai;

� a later occurrence unifies it with the value of Ai.

[33]



The corresponding instructions, respectively:

put variable Xn�Ai ≡ HEAP[H]� hREF � H i;

Xn� HEAP[H];

Ai� HEAP[H];

H� H + 1;

put value Xn�Ai ≡ Ai� Xn

get variable Xn�Ai ≡ Xn� Ai

get value Xn�Ai ≡ unify(Xn�Ai)

M1 instructions for variable arguments

[34]



put variable X4�A1 % ?-p(Z�

put structure h�2�A2 % h

set value X4 % (Z�

set variable X5 % W )�

put structure f�1�A3 % f

set value X5 % (W )

call p�3 % )�

Argument registers for L1 query
?-p(Z� h(Z�W )� f (W ))�

[35]



p�3 : get structure f�1�A1 % p(f

unify variable X4 % (X)�

get structure h�2�A2 % h

unify variable X5 % (Y�

unify variable X6 % X6)�

get value X5� A3 % Y )�

get structure f�1�X6 % X6 = f

unify variable X7 % (X7)�

get structure a�0� X7 % X7 = a

proceed % �

Argument registers for L1 fact p(f (X)� h(Y� f (a))� Y )�

[36]



Language L2: Flat Resolution

L2 is Prolog without backtracking:

� it extends L1 with procedures which are no longer
reduced only to facts but may also have bodies;

� a body defines a procedure as a conjunctive sequence
of atoms;

� there is at most one defining clause per predicate

name.

[37]



Syntax of L2

An L2 program is a set of procedure definitions of the
form ‘a0 :- a1� . . . � an�’ where n � 0 and the ai’s are
atoms.

As before, when n = 0, the clause is called a fact and

written without the ‘:-’ implication symbol.

When n � 0, the clause is called a rule.

A rule with exactly one body goal is called a chain (rule).

Other rules are called deep rules.

AnL2 query is a sequence of goals, of the form ‘?-g1� . . . � gk�’
where k � 0.

As in Prolog, the scope of variables is limited to the

clause or query in which they appear.

[38]



Semantics of L2

Executing a query ‘?-g1� . . . � gk�’ in the context of a pro-
gram made up of a set of procedure-defining clauses
consists of repeated application of leftmost resolution

until the empty query, or failure, is obtained.

Leftmost resolution:

� unify the goal g1 with its definition’s head (or failing if
none exists); then,

� if this succeeds, transform the query replacing g1 by its

definition body, variables in scope bearing the binding
side-effects of unification.

Therefore, executing a query in L2 either:

� terminates with success; or,

� terminates with failure; or,

� never terminates.

The “result” of an L2 query whose execution terminates

with success is the (dereferenced) binding of its original
variables after termination.

[39]



Compiling L2

To compile an L2 clause head, M1’s fact instructions are

sufficient.

As a first approximation, compiled code for a query (resp.,

a clause body) is the concatenation of the compiled code
of each goal as an L1 query.

However, M2 must take two measures of caution re-
garding:

� continuation of execution of a goal sequence;

� avoiding conflicts in the use of argument registers.

[40]



L2 Facts

Now proceed must continue execution, after success-

fully returning from a call to a fact, back to the instruction
in the goal sequence following the call.

Continuation Point Register: CP

CP is used by M2 to save and restore the ad-
dress of the next instruction to follow up with upon

successful return from a call.

Thus, for L2’s facts, M2 alters M1’s control instructions
to:

call p�n ≡ CP� P + instruction size(P);

P� @(p�n);

proceed ≡ P� CP;

As before, when the procedure p�n is not defined, exe-
cution fails.

With this simple adjustment, L2 facts are translated ex-
actly as were L1 facts.

[41]



Rules and queries

As first approximation, translate a rule

p0(. . .) :- p1(. . .)� . . . � pn(. . .)�

following the pattern:

get arguments of p0

put arguments of p1

call p1
...
put arguments of pn
call pn

(The case of a query is the particular case of a rule with
no head instructions.)

� Variables which occur in more than one body goal

are called permanent as they have to outlive the
procedure call where they first appear.

� All other variables in a scope that are not permanent

are called temporary.

[42]



Problem:

Because the same variable registers are used by every
body goal, permanent variables run the risk of being
overwritten by intervening goals.

e.g., in
p(X� Y ) :- q(X�Z)� r(Z� Y )�

no guarantee can be made that the variables Y�Z are

still in registers after executing q.

NOTE: To determine whether a variable is permanent or
temporary in a rule, the head atom is considered to be
part of the first body goal (e.g., X in example above is

temporary).

Solution:

Save temporary variables in an environment associated
with each activation of the procedure they appear in.

[43]



M2 saves a procedure’s permanent variables and regis-
ter CP in a run-time stack, a data area (called STACK), of

procedure activation frames called environments.

Environment Register: E

E keeps the address of the latest environment on
STACK.

M2’s STACK is organized as a linked list of frames of the

form:

E CE (previous environment)

E + 1 CP (continuation point)
E + 2 n (number of permanent variables)

E + 3 Y1 (permanent variable 1)
...

E + n + 2 Yn (permanent variable n)

(We write a permanent variable as Yi, and use Xi as
before for temporary variables.)

[44]



An environment is pushed onto STACK upon a (non-
fact) procedure entry call, and popped from STACK upon
return; i.e., L2 rule:

p0(. . .) :- p1(. . .)� . . . � pn(. . .)�

is translated in M2 code:

allocate N

get arguments of p0

put arguments of p1

call p1
...

put arguments of pn
call pn
deallocate

� allocate N

create and pushe an environment frame for N perma-

nent variables onto STACK;

� deallocate

discard the environment frame on top of STACK and
set execution to continue at continuation point recov-

ered from the environment being discarded.

[45]



That is,

allocate N ≡ newE � E + STACK[E + 2] + 3;

STACK[newE]� E;

STACK[newE + 1]� CP;

STACK[newE + 2]� N ;

E� newE;

P� P + instruction size(P);

≡

deallocate ≡ P� STACK[E + 1];

E� STACK[E];

[46]



p�2 : allocate 2 % p

get variable X3�A1 % (X�

get variable Y1�A2 % Y ) :-

put value X3� A1 % q(X�

put variable Y2�A2 % Z

call q�2 % )�

put value Y2� A1 % r(Z�

put value Y1� A2 % Y

call r�2 % )

deallocate % �

M2 machine code for rule p(X�Y ) :- q(X�Z)� r(Z� Y )�

[47]



Language L3: Pure Prolog

Syntax of L3

� L3 extends the language L2 to allow disjunctive defi-
nitions.

� As in L2, an L3 program is a set of procedure defini-

tions.

� In L3, a definition is an ordered sequence of clauses
(i.e., a sequence of facts or rules) consisting of all and
only those whose head atoms share the same predi-

cate name — the name of the procedure specified by
the definition.

� L3 queries are the same as those of L2.

[48]



Semantics of L3

� operates using top-down leftmost resolution, an ap-

proximation of SLD resolution.

� failure of unification no longer yields irrevocable abor-
tion of execution but considers alternative choices by

chronological backtracking; i.e., the latest choice at
the moment of failure is reexamined first.

[49]



M3 alters M2’s design so as to save the state of compu-
tation at each procedure call offering alternatives.

We call such a state a choice point:

It contains all relevant information needed for a correct
state of computation to be restored to try the next

alternative, with all effects of the failed computation
undone.

M3 manages choice points as frames in a stack (just like
environments).

To distinguish the two stacks, we call the environment
stack the AND-stack and the choice point stack the OR-

stack.

[50]



Backtrack Register: B

B keeps the address of the latest choice point.

� upon failure, computation is resumed from the state
recovered from the choice point frame indicated by B;

� if the frame offers no more alternatives, it is popped
off the OR-stack by resetting B to its predecessor if
one exists; otherwise, computation fails terminally.

NOTE: if a definition contains only one clause, there is
no need to create a choice point frame, exactly as was
the case in M2.

For definitions with more than one alternative,

� a choice point frame is created by the first alternative;

� then, it is updated (as far as which alternative to try

next) by intermediate (but non ultimate) alternatives;

� finally, it is discarded by the last alternative.

[51]



Environment protection

Problem:

In (deterministic) L2, it is safe for M2 to deallocate an

environment frame at the end of a rule.

This is no longer true for M3: later failure may force
reconsidering a choice from a computation state in the
middle of a rule whose environment has long been deal-

located.

Example

Program:
a :- b(X)� c(X)�

b(X) :- e(X)�

c(1)�

e(X) :- f (X)�

e(X) :- g(X)�

f (2)�

g(1)�

Query:
?-a�

[52]



� allocate environment for a;

� call b;

� allocate environment for b;

� call e:

– create and push choice point for e;

– allocate environment for e;

...

Environment for a
Environment for b

E� Environment for e

...
B� Choice point for e

[53]



� call f ;

� succeed (X = 2);

� deallocate environment for e;

� deallocate environment for b;

...
E� Environment for a

...
B� Choice point for e

[54]



Continuing with execution of a’s body:

� call c;

� failure (X = 2 ≠ 1);

The choice point indicated by B shows an alternative
clause for e, but at this point b’s environment has been

lost.

[55]



M3 must prevent unrecoverable deallocation of environ-
ment frames that chronologically precede any existing
choice point.

IDEA: every choice point must “protect” from deallocation

all environment frames existing before its creation.

Solution:

M3 uses the same stack for both environments and
choice points: a choice point now caps all older environ-
ments:

� As long as a choice point is active, it forces alloca-
tion of further environments on top of it, precluding
overwriting of the (even explicitly deallocated) older

environments.

� Safe resurrection of a deallocated protected environ-
ment is automatic when coming back to an alternative

from this choice point.

� Protection lasts just as long as it is needed: as soon as
the choice point disappears, all explicitly deallocated

environments may be safely overwritten.
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Back to our example:

� allocate environment for a;

� call b;

� allocate environment for b;

� call e:

– create and push choice point for e;

– allocate environment for e;

...
Environment for a
Environment for b

B� Choice point for e
E� Environment for e
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� call f ;

� succeed (X = 2);

� deallocate environment for e;

� deallocate environment for b;

...
E� Environment for a

Deallocated environment for b

B� Choice point for e

[58]



Continuing with execution of a’s body:

� call c;

� failure (X = 2 ≠ 1);

Now, M3 can safely recover the state from the choice

point for e indicated by B, in which the saved environment
to restore is the one current at the time of this choice

point’s creation—i.e., that (still existing) of b.

� backtrack;

� discard choice point for e;

Protection is now (safely) ended.

Execution of the last alternative for e proceeds with:

B�
...

Environment for a
Environment for b

E� Environment for e
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Undoing bindings

Binding effects must be undone when reconsidering a
choice.

M3 records in a data area called the trail (TRAIL) all
variables which need to be reset to ‘unbound’ upon

backtracking.

Trail Register: TR

TR keeps the next available address on TRAIL.

NOTE: Only conditional bindings need to be trailed.

A conditional binding is one affecting a variable existing

before creation of the current choice point.

Heap Backtrack Register: HB

HB keeps the value of H at the time of the latest
choice point’s creation.

� HEAP[a] is conditional iff a � HB;

� STACK[a] is conditional iff a � B.
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What’s in a choice point?

� The argument registers A1, ..., An, where n is the

arity of the procedure offering alternative choices of
definitions.

� The current environment (value of register E), to re-

cover as a protected environment.

� The continuation pointer (value of register CP), as the
current choice will overwrite it.

� The latest choice point (value of register B), where

to backtrack in case all alternatives offered by the
current choice point fail.

� The next clause, to try in this definition in case the
currently chosen one fails. This slot is updated at each

backtracking to this choice point if more alternatives
exist.

� The current trail pointer (value of register TR), which

is needed as the boundary where to unwind the trail
upon backtracking.

� The current top of heap (value of register H), which
is needed to recover (garbage) heap space of all the

structures and variables constructed during the failed
attempt.
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Choice point frame:

B n (number of arguments)

B + 1 A1 (argument register 1)

�
�
�

B + n An (argument register n)

B + n + 1 CE (continuation environment)

B + n + 2 CP (continuation pointer )

B + n + 3 B (previous choice point)

B + n + 4 BP (next clause)

B + n + 5 TR (trail pointer )

B + n + 6 H (heap pointer )
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NOTE: M3 must alter M2’s definition of allocate to:

allocate N ≡ if E � B

then newE � E + STACK[E + 2] + 3

else newE � B + STACK[B] + 7;

STACK[newE]� E;

STACK[newE + 1]� CP;

STACK[newE + 2]� N ;

E� newE;

P� P + instruction size(P);
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Choice instructions

Given a multiple-clause definition, M3 use three instruc-
tions to deal with, respectively:

1. the first clause;

2. an intermediate (but non ultimate) clause;

3. the last clause.

They are, respectively:

1. try me else L

allocate a new choice point frame on the stack setting

its next clause field to L and the other fields according
to the current context, and set B to point to it;

2. retry me else L

reset all the necessary information from the current
choice point and update its next clause field to L;

3. trust me

reset all the necessary information from the current

choice point, then discard it by resetting B to the value
of its predecessor slot.
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Bactracking

In M3, all M2 instructions where failure may occur (i.e.,
some unification instructions and all procedure calls) are
altered to end with a test checking whether failure has

indeed occurred and, if such is the case, to perform the
following operation:

backtrack ≡ P� STACK[B + STACK[B] + 4];

as opposed to setting P unconditionally to follow the
normal sequence.

If there is no more choice point on the stack, this is a

terminal failure and execution aborts.
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Recapitulation of L3 compilation

� The M3 code generated for a single-clause definition
inL3 is identical to what is generated for anL2 program
on M2.

� For a two-clause definition for a procedure p�n, the
pattern is:

p�n : try me else L

code for first clause
L : trust me

code for second clause
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� and for more than two clauses:

p�n : try me else L1

code for first clause
L1 : retry me else L2

code for second clause
...

Lk�1 : retry me else Lk

code for penultimate clause

Lk : trust me

code for last clause

where each clause is translated as it would be as a
single L2 clause for M2.

Example,

p(X� a)�

p(b�X)�

p(X�Y ) :- p(X� a)� p(b� Y )�
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p�2 : try me else L1 % p

get variable X3�A1 % (X�

get structure a�0� A2 % a)

proceed % �

L1 : retry me else L2 % p

get structure b�0�A1 % (b�

get variable X3�A2 % X)

proceed % �

L2 : trust me %

allocate 1 % p

get variable X3�A1 % (X�

get variable Y1�A2 % Y ) :-

put value X3� A1 % p(X�

put structure a�0� A2 % a

call p�2 % )�

put structure b�0�A1 % p(b�

put value Y1� A2 % Y

call p�2 % )

deallocate % �

M3 code for a multiple-clause procedure
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Optimizing the Design

WAM Principle 1 Heap space is to be used as sparingly
as possible, as terms built on the heap turn out to be
relatively persistent.

WAM Principle 2 Registers must be allocated in such
a way as to avoid unnecessary data movement, and

minimize code size as well.

WAM Principle 3 Particular situations that occur very of-
ten, even though correctly handled by general-case in-
structions, are to be accommodated by special ones if

space and/or time may be saved thanks to their speci-
ficity.
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Heap representation

A better heap representation for p(Z� h(Z�W )� f (W )) is:

0 h�2

1 REF 1

2 REF 2

3 f�1

4 REF 2

5 p�3

6 REF 1

7 STR 0

8 STR 3

provided that all reference to it from the store or registers
is a cell of the form h STR � 5 i.

Hence, there is actually no need to allot a systematic STR
cell before each functor cell.

For this, need only change put structure to:

put structure f�n�Xi ≡ HEAP[H]� f�n;

Xi� hSTR � H i;

H� H + 1;
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Constants, lists, and anonymous
variables

Constants

unify variable Xi

get structure c�0�Xi

is simplified into one specialized instruction:

unify constant c

and

put structure c�0�Xi

set variable Xi

is simplified into:

set constant c

Similarly, put and get instructions can also be sim-

plified from those of structures to deal specifically with
constants.
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We need a new sort of data cell tagged CON, indicating a

constant.

e.g., heap representation starting at address 10 for the
structure f (b� g(a)):

8 g�1

9 CON a

10 f�2

11 CON b

12 STR 8

Heap space for a constant is saved when loading a
register with it, or binding a variable to it: it is treated as

a literal value.

Constant-handling instructions:

� put constant c�Xi

� get constant c�Xi

� set constant c

� unify constant c
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put constant c�Xi ≡ Xi� h CON � c i;

get constant c�Xi ≡
addr � deref (Xi);

case STORE[addr] of

hREF � i : STORE[addr]� h CON � c i;

trail(addr);

hCON � c� i : fail � (c ≠ c�);

other : fail � true;

endcase;

set constant c ≡ HEAP[H]� h CON � c i;

H� H + 1;

unify constant c ≡
case mode of
READ : addr � deref (S);

case STORE[addr] of
h REF � i : STORE[addr]� h CON � c i;

trail(addr);

h CON � c� i : fail � (c ≠ c�);

other : fail � true;

endcase;

WRITE : HEAP[H]� h CON � c i;

H� H + 1;

endcase;
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Lists

Non-empty list functors need not be represented explicitly

on the heap.

Use tag LIS to indicate that a cell containss the heap
address of the first of a list pair.

List-handling instructions:

put list Xi ≡ Xi� h LIS � H i;

get list Xi ≡ addr � deref (Xi);

case STORE[addr] of

h REF � i : HEAP[H]� h LIS � H + 1 i;

bind(addr�H);

H� H + 1;

mode � WRITE;

h LIS � a i : S� a;

mode � READ;

other : fail � true;

endcase;
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put list X5 % ?-X5 = [

set variable X6 % W j

set constant [] % []]�

put variable X4�A1 % p(Z�

put list A2 % [

set value X4 % Zj

set value X5 % X5]�

put structure f�1�A3 % f

set value X6 % (W )

call p�3 % )�

Specialized code for query ?-p(Z� [Z�W ]� f (W ))�
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p�3 : get structure f�1�A1 % p(f

unify variable X4 % (X�

get list A2 % [

unify variable X5 % Y j

unify variable X6 % X6]�

get value X5� A3 % Y )�

get list X6 % X6 = [

unify variable X7 % X7j

unify constant [] % []]�

get structure f�1�X7 % X7 = f

unify constant a % (a)

proceed % �

Specialized code for fact p(f (X)� [Y� f (a)]� Y )�
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Anonymous variables

A single-occurrence variable in a non-argument positions

needs no register.

If many occur in a row as in f ( � � ) they can be all be

processed in one swoop.

Anonymous variable instructions:

� set void n

push n new unbound REF cells on the heap;

� unify void n

in WRITE mode, behave like set void n;
in READ mode, skip the next n heap cells starting at

location S.
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set void n ≡ for i� H to H + n� 1 do
HEAP[i]� h REF � i i;

H� H + n;

unify void n ≡ case mode of
READ : S� S + n;

WRITE : for i� H to H + n� 1 do
HEAP[i]� hREF � i i;

H� H + n;

endcase
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NOTE: an anonymous head argument is simply ignored;
since,

get variable Xi� Ai

is clearly vacuous.

p�3 : get structure g�1�A2 % p( � g

unify void 1 % (X)�

get structure f�3�A3 % f

unify void 3 % ( � Y� )

proceed % )�

Instructions for fact p( � g(X)� f ( � Y� ))�
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Register allocation

Clever register allocation allows peep-hole optimization.

e.g., code for fact conc([]� L� L)� is:

conc�3 : get constant []�A1 % conc([]�

get variable X4� A2 % L�

get value X4�A3 % L)

proceed % �

It is silly to use X4 for variable L: use A2!

� get variable A2� A2 is a no-op and can be elimi-

nated:

conc�3 : get constant []�A1 % conc([]�

get value A2�A3 % L�L)

proceed % �

Generally, allocate registers so vacuous operations:

get variable Xi�Ai put value Xi�Ai

may be eliminated.

(See [2] for more.)
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p�2 : allocate 2 % p

get variable X3�A1 % (X�

get variable Y1�A2 % Y ) :-

put value X3� A1 % q(X�

put variable Y2�A2 % Z

call q�2 % )�

put value Y2� A1 % r(Z�

put value Y1� A2 % Y

call r�2 % )

deallocate % �

Naı̈ve code for p(X� Y ) :- q(X�Z)� r(Z� Y )�
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p�2 : allocate 2 % p

get variable Y1�A2 % (X�Y ) :-

put variable Y2�A2 % q(X�Z

call q�2 % )�

put value Y2� A1 % r(Z�

put value Y1� A2 % Y

call r�2 % )

deallocate % �

Better register use for p(X�Y ) :- q(X�Z)� r(Z� Y )�
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Last call optimization

LCO generalizes tail-recursion optimization as a stack

frame recovery process.

IDEA: Permanent variables are no longer needed after
all the put instructions preceding the last call in the
body.

� Discard the current environment before the last call

in a rule’s body.

SIMPLE: Just swap the call, deallocate sequence

that always conclude a rule’s instruction sequence (i.e.,
into deallocate, call).
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CAUTION: deallocate is no longer the last instruction;

so it must reset CP, rather than P:

deallocate ≡ CP� STACK[E + 1];

E� STACK[E];

P� P + instruction size(P)

CAUTION: But when call is the last instruction, it must

not set CP but P.

So we cannot modify call, since it is correct when not
last.

For last call, use execute p�n:

execute p�n ≡ P� @(p�n);
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p�2 : allocate 2 % p

get variable Y1�A2 % (X�Y ) :-

put variable Y2�A2 % q(X�Z

call q�2 % )�

put value Y2� A1 % r(Z�

put value Y1� A2 % Y

deallocate % )

execute r�2 % �

p(X�Y ) :- q(X�Z)� r(Z� Y )� with LCO

[85]



Chain rules

Applying LCO, translating a chain rule of the form

p(. . .) :- q(. . .)�

gives:

p : allocate N

get arguments of p
put arguments of q

deallocate

execute q

But all variables in a chain rule are necessarily temporary.

� With LCO, allocate/deallocate are useless in a

chain rule — Eliminate them!

i.e., translate a chain rule of the form

p(. . .) :- q(. . .)�

as:

p : get arguments of p
put arguments of q

execute q

Chain rules need no stack frame at all!
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Environment trimming

Sharpens LCO: discard a permanent variable as soon as
it is no longer needed.

� The current environment frame will shrink gradually,

until it eventually vanishes altogether by LCO.

Rank the PV’s of a rule: the later a PV’s last goal, the
lower its offset in the current environment frame.

e.g., in

p(X�Y�Z) :- q(U� V�W )� r(Y�Z�U )� s(U�W )� t(X� V )�

all variables are permanent:

Variable Last goal Offset

X t Y1

Y r Y5

Z r Y6

U s Y3

V t Y2

W s Y4

Now call takes a second argument counting the number

of PV’s still needed after the call.
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CAUTION: Modify allocate to reflect always a correct
stack offset.

FACT: the CP field of the environment, STACK[E + 1], al-
ways contains the address of the instruction immediately
following the call P�N where N is the desired offset.

� allocate no longer needs its argument and envi-
ronments no longer need an offset field.

E CE (continuation environment)

E + 1 CP (continuation point)
E + 2 Y1 (permanent variable 1)

...

[88]



Alter allocate to retrieve the correct trimmed offset as
CODE[STACK[E + 1]� 1]:

allocate ≡
if E � B

then newE � E + CODE[STACK[E + 1]� 1] + 2

else newE � B + STACK[B] + 7;

STACK[newE]� E;

STACK[newE + 1]� CP;

E� newE;

P� P + instruction size(P);

(Similarly for try me else...)
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p�3 : allocate % p

get variable Y1�A1 % (X�

get variable Y5�A2 % Y�

get variable Y6�A3 % Z) :-

put variable Y3�A1 % q(U�

put variable Y2�A2 % V�

put variable Y4�A3 % W

call q�3� 6 % )�

put value Y5�A1 % r(Y�

put value Y6�A2 % Z�

put value Y3�A3 % U

call r�3� 4 % )�

put value Y3�A1 % s(U�

put value Y4�A2 % W

call s�2� 2 % )�

put value Y1�A1 % t(X�

put value Y2�A2 % V

deallocate % )

execute t�2 % �

Environment trimming code
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Stack variables

A PV Yn that first occurs in the body of a rule as a goal

argument is initialized with a put variable Yn�Ai.

This systematically sets both Yn and argument register
Ai to point to a new cell on HEAP.

� Modify put variable to work differently on PV’s so
not to allocate a heap cell as for TV’s.

i.e.,

put variable Yn�Ai ≡
addr � E + n + 1;

STACK[addr]� h REF � addr i;

Ai� STACK[addr];

Unfortunately, there are rather insidious conse-
quences to this apparently innocuous change
as it interferes with ET and LCO.
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Trouble

PV’s may be discarded (by LCO and ET) while still
unbound.

� DANGER: risk of dangling references!

e.g.,

� it is incorrect for bind to choose an arbitrary pointer

direction between two unbound variables.

� some instructions are now incorrect if used blindly in
some situations: put value and set value (thus

also unify value in WRITE mode).

Treatment

� keep a correct binding convention;

� analyze what is wrong with put value, set value,
and unify value to avert trouble on the fly – i.e.,

only when really needed.
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Variable binding and memory layout

As it turns out, most correct bindings can be ensured
following a simple chronological reference rule:

WAM Binding Rule 1 Always make the variable of higher

address reference that of lower address.

In other words, an older (less recently created) vari-
able cannot reference a younger (more recently created)

variable.

Benefit of WAM Binding Rule 1

Three possibilities of variable-variable bindings:

(1) heap-heap,

(2) stack-stack,

(3) heap-stack.
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� Case (1): unconditional bindings are favored over
conditional ones:

� no unnecessary trailing;

� swift heap space recovery upon backtracking.

� Case (2): same applies, but also works consistently
with PV ranking for ET within an environment.

Unfortunately, this is not sufficient to prevent all danger

of dangling references.

� Case (3): references to STACK are unsafe; also need:

WAM Binding Rule 2 Heap variables must never be

set to a reference into the stack;

and follow a specific memory layout convention make
this naturally consistent with WAM Binding Rule 1:

WAM Binding Rule 3 The stack must be allocated at
higher addresses than the heap, in the same global
address space.
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Unsafe variables

Remaining problem

WAM Binding Rule 2 can still be violated by put value,
set value, and unify value.

A PV which is initialized by a put variable (i.e., which
first occurs as the argument of a body goal) is called

unsafe.

e.g., in

p(X) :- q(Y�X)� r(Y�X)�

both X and Y are PV’s, but only Y is unsafe.

Assume p is called with an unbound argument;

e.g.,

put variable Xi� A1

execute p�1
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h 0 i p�1 : allocate % p

h 1 i get variable Y1�A1 % (X) :-

h 2 i put variable Y2�A1 % q(Y�

h 3 i put value Y1�A2 % X

h 4 i call q�2� 2 % )�

h 5 i put value Y2�A1 % r(Y�

h 6 i put value Y1�A2 % X

h 7 i deallocate % )

h 8 i execute r�2 % �

Unsafe code for p(X) :- q(Y�X)� r(Y�X)�
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Before Line 0, A1 points to the heap address (say, 36) of

an unbound REF cell at the top of the heap:

(A1) REF 36 HEAP

36 REF 36
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Then, allocate creates an environment on the stack
(where, say, Y1 is at address 77 and Y2 at address 78 in
the stack):

(A1) REF 36 HEAP

36 REF 36

STACK

(Y1) 77

(Y2) 78
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Line 1 sets STACK[77] to hREF � 36 i, and Line 2 sets A1

(and STACK[78]) to h REF � 78 i.

(A1) REF 78 HEAP

36 REF 36

STACK

(Y1) 77 REF 36

(Y2) 78 REF 78
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Line 3 sets A2 to the value of STACK[77]; that is,
h REF � 36 i.

(A1) REF 78 HEAP

36 REF 36

(A2) REF 36 STACK

(Y1) 77 REF 36

(Y2) 78 REF 78
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Assume now that the call to q on Line 4 does not affect

these settings at all (e.g., the fact q( � ) is defined).

Then, (the wrong) Line 5 would set A1 to h REF � 78 i, and
Line 6 sets A2 to h REF � 36 i:

(A1) REF 78 HEAP

36 REF 36

(A2) REF 36 STACK

(Y1) 77 REF 36

(Y2) 78 REF 78
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Next, deallocate throws awaySTACK[77]and STACK[78].

(A1) REF 78 HEAP

36 REF 36

(A2) REF 36 STACK

77 ???

78 ???

LO! The code for r will find garbage in A1.
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Remedy for unsafe variables

Two possible situations of an unsafe variable Yn in the
last goal where it occurs:

� Yn appears only as an argument of its last goal;

� Yn appears in that goal nested in a structure, whether

or not it is also an argument.

We defer the 2nd case: it is a more general source of
unsafety that we shall treat later.

When all occurrences of unsafe Yn are arguments of the

last goal where Yn appears, they all are put value Yn� Ai’s.

Then, replace the first of its last goal’s put value Yn� Ai’s

with put unsafe value Yn� Ai.
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put unsafe value Yn�Ai modifies put value Yn� Ai

such that:

� if Yn does not lead to an unbound variable in the
current environment, do put value Yn� Ai;

� otherwise, bind the stack variable to a new unbound
REF cell on the heap, and set Ai to it.

put unsafe value Yn�Ai ≡
addr � deref (E + n + 1);

if addr � E

then Ai� STORE[addr]

else
begin
HEAP[H]� h REF � H i;

bind(addr�H);

Ai� HEAP[H];

H� H + 1

end;
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Back to example:

If Line 5 is put unsafe value Y2�A1, then HEAP[37]

is created and set to h REF � 37 i, STACK[78] and A1 are
set to h REF � 37 i, then A2 is set to h REF � 36 i (the value

of STACK[77]):

(A1) REF 37 HEAP

36 REF 36

37 REF 37

(A2) REF 36 STACK

(Y1) 77 REF 36

(Y2) 78 REF 37

Discarding STACK[77] and STACK[78] is now safe as

executing r will get correct values from A1 and A2.
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Nested stack references

When an unsafe PV occurs in its last goal nested in a
structure (i.e., as a set value or a unify value), the
situation reflects a more general pathology which may

also affect TV’s.

e.g.,

Rule: a(X) :- b(f (X))�

a�1 : get variable X2� A1

put structure f�1�A1

set value X2

execute b�1

Query: ?-a(X)� . . .

i.e.,

allocate

put variable Y1� A1

call a�1� 1
...
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Before the call to a�1, a stack frame containing Y1 is allo-
cated and initialized to unbound by put variable Y1�A1:

(A1) REF 82

STACK

(Y1) 82 REF 82
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Then X2 is set to point to that stack slot (the value of A1);

functor f�1 is pushed on the heap; and set value X2

pushes the value of X2 onto the heap:

(A1) STR 57 HEAP

57 f�1

58 REF 82

(X2) REF 82 STACK

(Y1) 82 REF 82

Behold!, a reference from the heap to the stack.

This violates WAM Binding Rule 2 and creates a source

of disaster when Y1 is eventually discarded.
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Remedy for nested stack references

Question:

When can it be statically guaranteed that set value

(resp., unify value) will not create an unwanted heap-

to-stack reference?

Answer:

Any time its argument has not been explicitly initialized
to be on the heap in the given clause.

i.e., set value Vn (resp., unify value Vn) is unsafe

whenever the variable Vn has not been initialized in this
clause with set variable or unify variable, nor, if
Vn is temporary, with put variable.
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Cure:

Replace the first such set value (resp., unify value)
with set local value (resp., unify local value.

set local value Vn ≡
addr � deref (Vn);

if addr � H

then HEAP[H]� HEAP[addr]

else
begin
HEAP[H]� hREF � H i;

bind(addr�H)

end;

H� H + 1;
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Back to example:

If set local value X2 replaces set value X2, then it
sees that the value of X2 is a stack address and binds it
to a new unbound cell on the heap.

(A1) STR 57 HEAP

57 f�1

58 REF 58

(X2) REF 58 STACK

(Y1) 82 REF 82

This maintains a stack-to-heap reference, and WAM

Binding Rule 2 is respected.
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Variable classification revisited

NOTE: a PV is simply a conventional local variable (i.e.,
allocated on the stack).

For David H. D. Warren,

� first, consider all variables as PV’s;

� then, save stack space for those that are already
initialized to previous data, are part of a structure
existing on the heap, or must be globalized for LCO –

call those TV’s.

Warren’s variable classification:

� A temporary variable is one which does not occur in

more than one body goal (counting the head as part
of the first body goal) and first occurs in the head, or
in a structure, or in the last goal.

� A permanent variable is one which is not temporary.
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NOTE:

� In both our and Warren’s classification any variable
occurring in more than one body goal is a PV;

� however, by Warren’s (not ours) a PV may occur only

in one body goal;

e.g., by our definition, X is a TV in:

a :- b(X�X)� c�

but it is a PV by Warren’s classification.

Problem: Warren’s variable classification is inconsistent
with environment trimming, even with run-time safety
checks.
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If X is a PV in:
a :- b(X�X)� c�

then this compiles into:

a�0 : allocate % a :-

put variable Y1�A1 % b(X�

put unsafe value Y1� A2 % X

call b�2� 0 % )�

deallocate % c

execute c�0 % �

This is unsafe code:

� Y1 is allocated on STACK;

� A1 is set to the contents of Y1;

� Y1 is found unsafe and must be globalized: set both
Y1 and A2 to point to a new heap cell;

� Y1 is discarded by ET;

� call b�2 with A1 still pointing to the discarded slot!
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Solution: Delay ET for such PV’s until following call.

a�0 : allocate % a :-

put variable Y1�A1 % b(X�

put value Y1�A2 % X

call b�2� 1 % )�

deallocate % c

execute c�0 % �

Delayed trimming for a :- b(X�X)� c�

i.e., Y1 is kept in the environment until the time when
execution returns from b�2, at which point it is discarded.
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Indexing

To seed up clause selection, the WAM uses the first
argument as indexing key.

NOTE: In a procedure’s definition, a clause whose head
has a variable key creates a search bottleneck.

� A procedure p defined by the sequence of clauses

C1� . . . � Cn

is partitioned as a sequence of subsequences

S1� . . . � Sm

where each Si is

� either a single clause with a variable key;

� or a maximal subsequence of contiguous clauses
whose keys are not variables.
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S1

��������������������
�������������������

call(XorY ) :- call(X)�

call(trace) :- trace�

call(XorY ) :- call(Y )�

call(notrace) :- notrace�

call(nl) :- nl�

S2

�
call(X) :- builtin(X)�

S3

�
call(X) :- extern(X)�

S4

���������������
��������������

call(call(X)) :- call(X)�

call(repeat)�

call(repeat) :- call(repeat)�

call(true)�
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Compiling scheme for procedure p with definition parti-
tioned into S1� . . . �Sm, where m � 1:

p : try me else S2

code for subsequence S1

S2 : retry me else S3

code for subsequence S2
...

Sm : trust me

code for subsequence Sm

where retry me else is necessary only if m � 2.

If m = 1, none of the above is needed and the translation
boils down only to the code necessary for the single
subsequence chunk.

For a degenerate subsequence (i.e., single variable-key
clause) translation is as usual.
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call�1 : try me else S2 %

indexed code for S1 %

S2 : retry me else S3 % call(X)

execute builtin�1 % :- builtin(X)�

S3 : retry me else S4 % call(X)

execute extern�1 % :- extern(X)�

S4 : trust me %

indexed code for S4 %
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Indexing a non-degenerate subsequence

General indexing code pattern:

first level indexing;

second level indexing;
third level indexing;
code of clauses in subsequence order;

where:

� second and third levels are needed only depending
on what sort of keys are present in the subsequence
and in what number;

� they disappear in the degenerate cases;

� following dispatching code is the regular sequential
choice control construction.
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First level dispatching makes control jump to a (possibly
void) bucket of clauses, depending on whether deref (A1)

is:

� a variable;

the code bucket of a variable corresponds to full
sequential search through the subsequence (thus, it
is never void);

� a constant;

the code bucket of a constant corresponds to second

level dispatching among constants;

� a (non-empty) list;

the code bucket of a list corresponds:

– either to the single clause with a list key,

– or to a linked list of all those clauses in the subse-
quence whose keys are lists;

� a structure;

the code bucket of a structure corresponds to second
level dispatching among structures;
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For those constants (or structures) having multiple clauses,

a possible third level bucket corresponds to the linked list
of these clauses (just like the second level for lists).

first level indexing for S1

second level indexing for S1

third level indexing for S1

S11 : try me else S12

code for ‘call(XorY ) :- call(X)�’
S12 : retry me else S13

code for ‘call(trace) :- trace�’
S13 : retry me else S14

code for ‘call(XorY ) :- call(Y )�’

S14 : retry me else S15

code for ‘call(notrace) :- notrace�’
S15 : trust me

code for ‘call(nl) :- nl�’

[122]



Indexing instructions

First level dispatching:

� switch on term V� C�L� S

jump to the instruction labeled V , C, L, or S, depend-
ing on whether deref (A1) is, respectively, a variable, a
constant, a non-empty list, or a structure.

Second level dispatching: for N distinct symbols,

� switch on constant N�T

(T is a hash-table of the form fci : Lcig
N
i=1)

if deref (A1) = ci, jump to instruction labeled Lci.

Otherwise, backtrack.

� switch on structure N�T

(T is a hash-table of the form fsi : Lsig
N
i=1)

if deref (A1) = si, jump to instruction labeled Lsi.

Otherwise, backtrack.
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Third level indexing:

Thread together a sequence of multiple ( not necessarily
contiguous) clauses whose keys are lists, or a same
constant or structure, using:

� try L,

� retry L,

� trust L.

They are identical to try me else L, retry me else L,
and trust me, respectively, except that they jump to la-
bel L and save the next instruction in sequence as the

next clause alternative in the choice point (except for
trust, of course).

NOTE: Second level for lists is really third level indexing
on list structures, the second level being skipped by

special handling of lists in the spirit of WAM Principle 3.
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switch on term S11� C1� fail� F1 % 1st level dispatch for S1

C1 : switch on constant 3� f trace : S1b�

notrace : S1d�

nl : S1e g

% 2nd level for constants

F1 : switch on structure 1� f or�2 : F11 g % 2nd level for structures

F11 : try S1a % 3rd level for or�2

trust S1c %

S11 : try me else S12 % call

S1a : get structure or�2�A1 % (or

unify variable A1 % (X�

unify void 1 % Y ))

execute call�1 % :- call(X)�

S12 : retry me else S13 % call

S1b : get constant trace�A1 % (trace)

execute trace�0 % :- trace�

S13 : retry me else S14 % call

S1c : get structure or�2�A1 % (or

unify void 1 % (X�

unify variable A1 % Y ))

execute call�1 % :- call(Y )�

S14 : retry me else S15 % call

S1d : get constant notrace�A1 % (notrace)

execute notrace�0 % :- notrace�

S15 : trust me % call

S1e : get constant nl�A1 % (nl)

execute nl�0 % :- nl�

Indexing code for subsequence S1
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S4 switch on term S41� C4� fail� F4 % 1st level dispatch for S4

C4 : switch on constant 3� f repeat : C41�

true : S4d g

% 2nd level for constants

F4 : switch on structure 1� f call�1 : S41 g % 2nd level for structures

C41 : try S4b % 3rd level for ‘repeat’

trust S4c %

S41 : try me else S42 % call

S4a : get structure call�1�A1 % (call

unify variable A1 % (X))

execute call�1 % :- call(X)�

S42 : retry me else S43 % call

S4b : get constant repeat�A1 % (repeat)

proceed % �

S43 : retry me else S44 % call

S4c : get constant repeat�A1 % (repeat)

put constant repeat�A1 % :- call(repeat)

execute call�1 % �

S44 : trust me % call

S4d : get constant true�A1 % (true)

proceed % �

Indexing code for subsequence S4
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conc([]� L� L)�

conc([HjT ]� L� [HjR]) :- conc(T� L�R)�

conc�3 : switch on term C1a� C1� C2� fail %

C1a : try me else C2a % conc

C1 : get constant []�A1 % ([]�

get value A2�A3 % L�L)

proceed % �

C2a : trust me % conc

C2 : get list A1 % ([

unify variable X4 % Hj

unify variable A1 % T ]� L�

get list A3 % [

unify value X4 % Hj

unify variable A3 % R])

execute conc�3 % :- conc(T�L�R)�

Encoding of conc�3
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NOTE: When conc�3 is called with an instantiated first

argument, no choice point frame for it is ever needed.

In fact, incidentally to achieving faster search, indexing
has major serendipitous benefits:

� it substantially reduces the creation and manipulation

of choice point frames;

� it eliminates useless environment protection;

� it magnifies the effect of LCO and ET.
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Cut

! : succeed and forget any other potential alternative
for this procedure as well as any other arising from

preceding body goals.

i.e., discard all choice points created after the choice
point that was current right before calling this proce-
dure.

Backtrack Cut Register: BC

BC keeps the choice point where to return upon
backtracking over a cut.

BC must contain the address of the choice point that is

current at the time a procedure call is made:

� alter call and execute to set BC to the value of
the current value of B;

� cut amounts to resetting B to the value of BC.

(NOTE: BC must be saved as part of a choice point, and

and restored upon backtracking.)
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Two sorts of cuts:

� shallow (or neck) cuts; e.g.,

h :- !� b1� . . . � bn�

� deep cuts; e.g.,

h :- . . . � bi�!� . . . � bn� (1 � i � n)�

Neck cut

� neck cut

discard any (one or two) choice points following B (i.e.,
B� BC�HB� B�H).

e.g.,

a :- !� b�

is compiled into:
neck cut

execute b�0
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Deep cut

� get level Yn

immediately after allocate, set Yn to current BC;

� cut Yn

discard all (if any) choice points after that indicated
by Yn, and eliminate new unconditional bindings from

the trail up to that point.

e.g.,

a :- b�!� c�

is compiled into:

allocate

get level Y1

call b�0� 1

cut Y1

deallocate

execute c�0
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WAM Memory Layout and Registers

Argument Registers:

A1�A2� . . . �An� . . .

Registers:

P
CP

S

HB

H

BC

B

E

TR

(low)

Code Area

Heap

Stack

choice point

environment

Trail

PDL

(high)

Yn nth local variable

...

Y1 1st local variable

CP cont. point
CE cont. environment

Environment frame:

BC cut pointer
H heap pointer
TR trail pointer
BP next clause

B previous choice pt.
CP cont. point
CE cont. environment

An nth argument

...

A1 1st argument
n arity

Choice point frame:
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The Complete WAM Instruction Set

Put instructions

put variable Xn�Ai

put variable Yn�Ai

put value Vn�Ai

put unsafe value Yn�Ai

put structure f�Ai

put list Ai

put constant c�Ai

Get instructions

get variable Vn�Ai

get value Vn�Ai

get structure f�Ai

get list Ai

get constant c�Ai

Set instructions

set variable Vn

set value Vn

set local value Vn

set constant c

set void n

Unify instructions

unify variable Vn

unify value Vn

unify local value Vn

unify constant c

unify void n

Control instructions

allocate

deallocate

call P�N

execute P

proceed

Choice instructions

try me else L

retry me else L

trust me

try L

retry L

trust L

Indexing instructions

switch on term V�C�L� S

switch on constant N�T

switch on structure N�T

Cut instructions

neck cut

get level Yn

cut Yn

NOTE: In some instructions, we use the notation Vn to denote a variable that may be
indifferently temporary or permanent.
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