
Computational Logic

Developing Programs with a Logic Programming System

1

System used in the Course

• In the course we use the Ciao multiparadigm programming system.

• It supports all the programming paradigms that we will study in the course:

⋄ For the first parts of the course, pure logic programming (LP):
* With several search rules:

breadth-first, depth-first, iterative deepening, det-first, tabling, ...
* Also, modules can be set to pure mode so that impure built-ins are not

accessible to the code in that module.
This provides a reasonable approximation of pure logic programming (i.e.,
“Green’s dream”) –of course, at a cost in memory and execution time.

⋄ For other parts of the course the Ciao system supports:
* (ISO-)Prolog.
* Functional programming.
* Constraint programming (CLP).

2

http://ciao-lang.org/

Using the Ciao System

• The Ciao system includes a number of command line and graphical tools for:

editing / compiling / debugging / verifying / optimizing / documenting / ...

• They can be used via the Playground or within IDEs such as Emacs , VSC , etc.

• Main tools:

⋄ Traditional, command line interactive top level (ciaosh).
⋄ Source debugger, embeddable debugger, error location, ...
⋄ Auto-documenter (LPdoc).
⋄ Stand-alone compiler (ciaoc) which can generate standalone executables.
⋄ Build system.
⋄ Scripts (architecture independent).
⋄ Assertions, with combined static and dynamic checking, of types, modes,

determinacy, non-failure, etc. (CiaoPP).
⋄ Assertion-based unit testing and test generation (LPtest).

3

http://ciao-lang.org/playground
https://ciao-lang.org/ciao/build/doc/ciao.html/CiaoMode.html
https://marketplace.visualstudio.com/items?itemName=ciao-lang.ciao-prolog-vsc

The following slides are intended as a very brief introduction to some aspects
of running programs on a logic programming system. It is highly encouraged
to also look at the corresponding parts of the Ciao manuals regarding the
use of the compiler, top-level, debuggers, environment, module system, etc.

4

http://ciao-lang.org/documentation.html

The Classical Top-Level Shell

• Modern Logic Programming Systems offer several ways of writing, compiling,
debugging, and running programs.

• Classical model:

⋄ User interacts directly with a top-level shell (includes compiler/interpreter,
debugger, etc.).

⋄ A prototypical session with a classical Prolog-style, text-based, top-level shell
(details are those of the Ciao system, user input in bold):

[37]> ciao Invoke the system
Ciao X.YY ...

?- use module(’file.pl’). Load your program file
yes

?- query containing variable X. Query the program
X = binding for X ; See one answer, ask for another using “;”
X = another binding for X <enter> Discard rest of answers using <enter>
?- another query. Submit another query
?-

?- halt. End the session, also with ˆD

5

Program Load in the Top-Level Shell

• To load a program into the top level use the same commands as when using code
inside a module:

⋄ use module/1 – for loading modules.
⋄ use package/1 – for loading packages (see later).
⋄ ensure loaded/1 – for loading user files (discouraged, modules preferred).

Note: it is recommended to always use a module declaration, even if empty:
:- module(_,_).

since it allows the compiler to detect many more errors.

• In summary, the top-level behaves essentially the same as a module.

• Program load can also be done automatically within one of the graphical
environments:
⋄ Open the source file.
⋄ Edit it (with syntax coloring, etc.).
⋄ Load it by typing C-c l or using menus.
⋄ Interact with it in top level.
⋄ Use the debugger, documenter, tests, etc.

6

Top Level Interaction Example

• File lmember.pl:
:- module(lmember,[lmember/2]).

lmember(X, [X|_Rest]).

lmember(X, [_|Rest]):- lmember(X, Rest).

• Load into top level and run (issue queries):
?- use_module(lmember).

yes

?- lmember(c,[a,b,c]).

yes

?- lmember(d,[a,b,c]).

no

?- lmember(X,[a,b,c]).

X = a ? ;

X = b ? (intro)

yes

7

Defining a module, its exports, and packages to load

• :- module(<module_name>, <list_of_exports>, <list_of_packages>).
Declares a module of name module name, which exports list of exports and
loads list of packages (packages are syntactic and semantic extensions).

• Example: :- module(lists, [list/1, member/2], [functions]).

• Examples of some standard uses and packages:

⋄ :- module(<module_name>, [<exports>], []).
⇒ Module has access to the basic language (no packages loaded).

⋄ :- module(<module_name>, [<exports>], [<packages>]).
⇒ Module has access to the kernel language + some packages.

⋄ :- module(<module_name>,[<exports>], [fsyntax]).
⇒ Adds support for functional syntax.

⋄ :- module(<module_name>,[<exports>],[assertions,fsyntax]).
⇒ Adds support for assertions (types, modes, etc.) and func. syntax.

8

Pure modules and search rule selection

• For writing pure logic programs, files should start with the following line:

⋄ :- module(_,_,[sr/bfall]).
To execute in breadth-first mode.

⋄ :- module(_,_,[]).
To execute in depth-first mode.

⋄ Also, the package pure can be added so that impure built-ins are not
accessible to the code in that module.

9

(ISO-)Prolog modules

• Strict (ISO-)Prolog:

⋄ :- module(module name, [exports], [iso_strict]).

⇒ module has access to the ISO Prolog predefined predicates.

⋄ :- module(module name,[exports], [classic]).

⇒ “Classic” Prolog module
(ISO + all other predicates that traditional Prologs offer as “built-ins”).

⋄ Special form:
:- module(module name, [exports]).

Equivalent to:
:- module(module name, [exports], [classic]).

⇒ Provides compatibility with traditional Prolog systems.

10

Defining modules and exports (Contd.)

• Useful shortcuts:

⋄ :- module(_,list of exports).

If given as “ ” module name taken from file name (default).
Example: :- module(, [list/1, member/2]). and file is lists.pl
⇒ module name is lists .

⋄ :- module(_,_).
If list of exports is “ ” all predicates are exported (very useful for prototyping).

• “User” files:

⋄ Traditional name for files including predicates but no module declaration.
⋄ Provided for backwards compatibility with non-modular Prolog systems.
⋄ Not recommended: they are problematic (and, essentially, deprecated).
⋄ Much better alternative: use :- module(,). at top of file.

* As easy to use for quick prototyping as “user” files.
* Many advantages: much better error detection, compilation, optimization, ...

11

Importing from another module

• Importing / using predicates from other modules into a given module:

⋄ :- use_module(filename).

Imports all predicates that module filename exports.
⋄ :- use_module(filename, list of imports).

Imports predicates in list of imports from module filename.
⋄ :- ensure_loaded(filename). —for loading user files (deprecated).

• When importing predicates with the same name from different modules, module
name is used to disambiguate:
:- module(main,[main/0]).

:- use_module(lists,[member/2]).

:- use_module(trees,[member/2]).

main :-

produce_list(L),

lists:member(X,L),

...

12

The Debugger: Tracing an Execution with The “Byrd Box Model”

• Procedures (predicates) seen as “black boxes” in the usual way.

• However, simple call/return not enough, due to backtracking.

• Instead, “4-port box view” of predicates:

RedoFail

Call Exit

member(X,[Y|Ys]):- member(X,Ys).

member(X,[X|Ys]).

• Principal events in Prolog execution (goal is a unique, run-time call to a predicate):

⋄ Call goal: Start to execute goal.
⋄ Exit goal: Succeed in producing a solution to goal.
⋄ Redo goal: Attempt to find an alternative solution to goal

(soli+1 if soli was the one computed in the previous exit).
⋄ Fail goal: exit with fail, if no further solutions to goal found (i.e., soli was the

last one, and the goal which called this box is entered via the “redo” port).

13

Debugging Example

Ciao 1.XX ...

?- use_module(’/home/logalg/public_html/slides/lmember.pl’).

yes

?- debug_module(lmember).

{Consider reloading module lmember}

{Modules selected for debugging: [lmember]}

{No module is selected for source debugging}

yes

?- trace.

{The debugger will first creep -- showing everything (trace)}

yes

{trace}

?-

• Much easier: open the file in Emacs, VSC, or other supported IDE and type push
the debug icon (or use the CiaoDbg menu, type C-c d , etc.).

• This loads the current module in source debug mode, i.e., the debugger traces
the position in the source file.

14

Debugging Example (Contd.)

?- lmember(X,[a,b]).

1 1 Call: lmember:lmember(_282,[a,b]) ?

1 1 Exit: lmember:lmember(a,[a,b]) ?

X = a ? ;

1 1 Redo: lmember:lmember(a,[a,b]) ?

2 2 Call: lmember:lmember(_282,[b]) ?

2 2 Exit: lmember:lmember(b,[b]) ?

1 1 Exit: lmember:lmember(b,[a,b]) ?

X = b ? ;

1 1 Redo: lmember:lmember(b,[a,b]) ?

2 2 Redo: lmember:lmember(b,[b]) ?

3 3 Call: lmember:lmember(_282,[]) ?

3 3 Fail: lmember:lmember(_282,[]) ?

2 2 Fail: lmember:lmember(_282,[b]) ?

1 1 Fail: lmember:lmember(_282,[a,b]) ?

no

15

Options During Tracing

h Get help — gives this list (possibly with more options)
c Creep forward to the next event

Advances execution until next call/exit/redo/fail
intro (same as above)
s Skip over the details of executing the current goal

Resume tracing when execution returns from current goal
l Leap forward to next “spypoint” (see below)
f Make the current goal fail

This forces the last pending branch to be taken
a Abort the current execution
r Redo the current goal execution

very useful after a failure or exit with weird result
b Break — invoke a recursive top level

• Many other options in modern Prolog systems.

• Also, graphical and source debuggers available in these systems.

16

Spypoints (and breakpoints)

• ?- spy foo/3.
Place a spypoint on predicate foo of arity 3 – always trace events involving this
predicate.

• ?- nospy foo/3.
Remove the spypoint in foo/3 .

• ?- nospyall.
Remove all spypoints.

• In many systems (e.g., Ciao) also breakpoints can be set at particular program
points within the graphical environment.

17

Debugger Modes

• ?- debug.
Turns debugger on. It will first leap, stopping at spypoints and breakpoints.

• ?- nodebug.
Turns debugger off.

• ?- trace.
The debugger will first creep, as if at a spypoint.

• ?- notrace.
The debugger will leap, stopping at spypoints and breakpoints.

18

Creating Executables

• You can use:

⋄ The standalone compiler. E.g., in a shell:
ciaoc foo.pl

creates an executable foo .
⋄ Can also be done from the top level:
?- make_exec(’foo.pl’,foo).

• The executables generated by Ciao’s compiler can be:

⋄ eager dynamic load,
⋄ lazy dynamic load,
⋄ static (portable, architecture-independent –needs minimal Ciao installed),
⋄ fully static/standalone (fully portable, but architecture-dependent).

19

