Computational Logic

A Motivational Introduction

Note: slides with executable links. Follow the run example ——/ links to execute the example code. )



https://ciao-lang.org/playground

The Code Correctness Problem

e Consider a simple programming task:

“Compute the squares of the natural numbers that are less or equal than 5”
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e Consider a simple programming task:
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e In our age Al is capable of programming anything!




The Code Correctness Problem

J) You
write a C program that computes the squares of the natural numbers which are less or

equalthan 5

© chatePT
Certainly! Below is a simple C program that computes the squares of natural numbers

less than or equal to 5:

() Copy code

square = i * i;

printf( , 1, square);




The Code Correctness Problem

Let us consider this alternative code (generated by a human programmer):

#include <stdio.h>

main() {

int number, square;

number = 0;

while (number <= 5) {
square = number * number;
printf("%d\n", square) ;
number = number + 1;

}
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The Code Correctness Problem

Let us consider this alternative code (generated by a human programmer):

#include <stdio.h>

main() {
int number, square;
number = 0;
while (number <= 5) {
square = number * number;
printf("%d\n", square) ;
number = number + 1;
}
}

Semantically identical, except for a small detail:

e Version1: 1 4 9 16 25
e Version2: ® 14 9 16 25

PROBLEM: Which one should we trust?

Which one is CORRECT?




The Code Correctness Problem

e It is not easy to determine correctness:

o Testing? — How many tests?

o What are the correct outputs anyway?
(E.g., was 0 an expected output?)

e |.e., correct, with respect to what?
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e Correctness is specially important in critical applications: }
o Medicine, aerospace, transport, energy, etc.
Once deployed we cannot debug, there are no second chances.

e But due to society’s digital transformation
practically all software is critical in practice (prestige, economic loss, etc.):
e-commerce, blockchain, banking, online administration, social media, ...




The Code Correctness Problem

e It is not easy to determine correctness:

o Testing? — How many tests?

o What are the correct outputs anyway?
(E.g., was 0 an expected output?)

e |.e., correct, with respect to what? AN

e Correctness is specially important in critical applications: }
o Medicine, aerospace, transport, energy, etc.
Once deployed we cannot debug, there are no second chances.

e But due to society’s digital transformation
practically all software is critical in practice (prestige, economic loss, etc.):
e-commerce, blockchain, banking, online administration, social media, ...

Al is here to transform the world, but, how to communicate in an unambiguous form?




Natural Language

“Compute the squares of the natural numbers which are less or equal than 5.”

e Would seem ideal at first sight, but:

o verbose

© vague

<~ ambiguous

o needs context (assumed information)
(O

Philosophers and Mathematicians already pointed this out a long time ago!

e A more suitable formalism is needed:

© to provide specifications (describe problems), and
& to reason about the correctness of programs (their implementation).




Logic

e A means of clarifying / formalizing the human thought process

e Classical logic:

likes , and
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implies that
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e Symbolic logic:
A shorthand for classical logic — plus many useful results:
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Logic

e A means of clarifying / formalizing the human thought process

e Classical logic:

likes , and
is a friend of anyone who likes
implies that

is a friend of

e Symbolic logic:
A shorthand for classical logic — plus many useful results:

ap : likes( : )
as : VX likes(X, ) — friend( , X)
ty @ friend( : )
T[CLl, az] |_ tl
e S0,

o Gan logic be used to represent problems (specifications)?
< And even perhaps to solve problems?




Using Logic

e For expressing specifications and reasoning about program correctness we need:

o Specification language (e.g., assertions about input/output), modeling, etc.

o Semantics for the programming language (models, axiomatic, denotational,
fixpoint, ...).

o Proofs: verification of program correctness — for all possible inputs!

+—l Formal proof!
Trial and error? P—

(Logic)

___________________

[Ffe—>+0

Semantics

? Y X
—»|Proof éYES / NO




Generating Squares: Building a Specification (I)
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Let us formalize our problem starting from scratch —a game, to specify things fully.
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Generating Squares: Building a Specification (I)

“Compute the squares of the that are less or equal than 5”

Let us formalize our problem starting from scratch —a game, to specify things fully.

e For we can use “Peano” representation:
0=0 1 =5(0) 2 = s(s(0)) 3 = s(s(s(0)))
...more or less equivalent to “caveman” numbers:
0=0 1= 2 =|| 3=

e Let us then define the :
“Ois a natural, and 1 is anatural, and 2 is a natural, and ...
nat(0) A nat(s(0)) A nat(s(s(0) A

But this is infinite — a much better solution, an inductive definition:
“0 is a natural number; and, if X is a natural, then the next number, s(X), is too”

nat(0) A VX (nat(X) — nat(s(X)))




Generating Squares: Building a Specification (ll)

“Compute the squares of the natural numbers that are S’

e Let us now define this order relation on the naturals:

o We start by thinking about the table of all the facts that should be true:

le(0,0) le(O s(0)) le(O s(s(0)))

le(s(0), s(0 S S

ZRE T = el OV = e € e TS
~ We can capture the whole first line with: “0 is than any natural”

VX( nat(X) — le(0, X))

o For generalizing vertically we observe that along each column:
“fe<ythenz+1<y+17 i€
VXVY (le(X,Y) = le(s(X),s(Y)))

o Putting it all together we have:
VX( nat(X) — le(0, X)) A VXYY (le(X,Y) — le(s(X),s(Y)) )

10




Generating Squares: Building a Specification (ll1)

“Compute the of the natural numbers that are less or equal than 5”

o of a natural: “The of X is X times X
VXYY (nat(X) Anat(Y) Amult(X, X,Y) — nat_square(X,Y))
where “X times Y is adding Y to itself X times” ~» we need “times” and “add.”
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Generating Squares: Building a Specification (ll1)

“Compute the of the natural numbers that are less or equal than 5”

o of a natural: “The of X is X times X
VXYY (nat(X) Anat(Y) Amult(X, X,Y) — nat_square(X,Y))
where “X times Y is adding Y to itself X times” ~» we need “times” and “add.”

e Addition of naturals:
add(0,0,0) add(0, s(0), s(0)) add(0, s(s(0)), s(s(0))) .
add(s(0),0,s(0)) add(s(0),s(0),s(s(0))) add(s(0),s(s(0)),s(s(s(0)))) ...
Generalizing the first line: “0 + z = 2”
Generalizing the columns: “if z + y=zthen (z + 1) +y =2+ 1"

VX (nat(X) — add(0, X, X)) AN VXVYVZ (add(X,Y,Z) — add(s(X),Y,s(Z)))

11




Generating Squares: Building a Specification (ll1)

“Compute the of the natural numbers that are less or equal than 5”

o of a natural: “The of X is X times X
VXYY (nat(X) Anat(Y) Amult(X, X,Y) — nat_square(X,Y))
where “X times Y is adding Y to itself X times” ~» we need “times” and “add.”

e Addition of naturals:
add(0,0,0) add(0, s(0), s(0)) add(0, s(s(0)), s(s(0)))
add(s(0),0,s(0)) add(s(0),s(0),s(s(0))) add(s(0),s(s(0)),s(s(s(0)))) ...
Generalizing the first line: “0 + z = 2”
Generalizing the columns: “if z + y=zthen (z + 1) +y =2+ 1"

VX (nat(X) — add(0, X, X)) AN VXVYVZ (add(X,Y,Z) — add(s(X),Y,s(Z)))

o Multiplication of naturals:

VX (nat(X) — mult(0, X,0)) A

YXYYYZYW (mult(X,Y, W) A add(W,Y, Z) — mult(s(X),Y, Z))
E.g., mult(3,2,6) =24+2+2=6

mult(3,2,6) A add(6,2,8) — mult(4,2,8) 2+2+2 (+2) =38

11




Generating Squares: Building a Specification (1V)

e No need to despair: everything so far will typically be in libraries!

e We can now write a formal specification of the (imperative) program, i.e.,
conditions that we want the program outputs to meet:

o Precondition (empty):
o Postcondition:
VX (output(X) < (Y nat(Y) Ale(Y, s(s(s(s(s(0)))))) A nat_square(Y, X)))

With this we express precisely our specification that “X is an output for the
program if there exists a natural number Y such that X is the square of Y and
Y is less or equal than 5”

12




Alternative Use of Logic?

e S0, logic allows us to represent / specify problems (program specification).

e But, can we go further?

& Given a specification,

& can we obtain an implementation, % But, it would be interesting
o that is CORRECT 100% of the time? i‘ to also improve: - -

(Some relevant context — 1960’s:
great techniques and results were =

being obtained for automated K
theorem proving!) | =

e More concretely, can logic help here too?

13




From Representation/Specification to Computation

e Assuming the existence of a mechanical proof method (deduction procedure)
a new view of problem solving and computing is possible [Green]:

1. Program once and for all this deduction procedure in the computer.

2. Then, given a problem, you just need to:
a) Give a suitable representation for it to the computer (i.e., its specification),
b) To obtain solutions, ask questions and let the deduction procedure do rest.

Problem —

O "=
Questions
—-—

« No correctness proofs needed! (Correct) Answers / Results

14




Computing With Our Previous Problem Description (Specification)

So, assuming such a proof method exists, mechanical and providing answers, then:

If we ask:

We should obtain:

nat(s(0)) ?

34X add(s(0), s(s(0)), X) ?

X add(s(0), X, s(s(s(0)))) ?

IX nat(X) ?

3X3Y add(X,Y, s(0)) ?

X nat_square(s(s(0)), X) ?

)
X nat_square(X, s(s(s(s(

0)))?

(
XY nat_square(X,Y) ?

=0AY =0)V(X =s0)AY =5(0)) V(X =
s(s(0) AY = s(s(s(s(0))))) V...
AX output(X) ? X =0V X =50 v X = s(s(s(s(0)))) V
X =5%0) v X =5%0) v X =5%(0)

15




But, before going any further... which Logic should we use?

e So far we have already argued the convenience of representing the problem
specification in logic, and seen a new view of problem solving and computing.

e This brings in new questions:
o Does there indeed exist such a proof procedure?

* truth tables?
* natural deduction?
* resolution?
* Prawitz/Bibel, tableaux?
* bottom-up fixpoint?
* rewriting?
* narrowing? etc.
<~ Which type of logic can we use?
* propositional ?
* predicate calculus (first order)?
* higher-order logics?
* modal logics?
* A-calculus?, etc.




Issues and tradeoffs

e We would like to maximize expressive power.
Example: propositions vs. first-order formulas.

o Propositional logic is useful:
“spotisadog” p
“dogs have tail” ¢
but limited: we can say that p A ¢ is true, but not conclude that Spot has a tail.

o Predicate logic extends the expressive power of propositional logic:
dog(spot)
VXdog(X) — has tail(X)
Now, using deduction we can conclude:
has_tail(spot)

e But we need to ensure that we have the effective mechanical proof procedure
for that logic.

— We recall some of the underlying properties and theoretical limits.
(Not even the most advanced Al can escape from them!)

17




Comparison of Logics (I)

e Propositional logic p —“spotis adog” :
+ decidable ~ “we can prove everything to be true or false”
+ we have practical deduction mechanisms (e.g., truth tables)
- limited expressive power (not “Turing complete,” cannot express all programs)
— Very useful for, e.g., circuit design, “answer set” programming, ...

18
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e Predicate logic (first order) ( VXdog(X) — has_tail(X) ):

+ good expressive power (Turing complete, we can express “all programs”)
+ practical deduction mechanism (e.g., )

+/- “semi”-decidable ~ “we can always prove valid things in finite steps; but
proving that things are not valid may sometimes not terminate”
(this cannot be avoided: akin to the halting problem / program termination).
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Comparison of Logics (I)

e Propositional logic p —“spotis adog” :
+ decidable ~ “we can prove everything to be true or false”
+ we have practical deduction mechanisms (e.g., truth tables)
- limited expressive power (not “Turing complete,” cannot express all programs)
— Very useful for, e.g., circuit design, “answer set” programming, ...

e Predicate logic (first order) ( VXdog(X) — has_tail(X) ):

+ good expressive power (Turing complete, we can express “all programs”)
+ practical deduction mechanism (e.g., )

+/- “semi”-decidable ~ “we can always prove valid things in finite steps; but
proving that things are not valid may sometimes not terminate”
(this cannot be avoided: akin to the halting problem / program termination).

This leads to practical systems: “Definite Horn clauses” + SLD-resolution:
— Logic Programming (LP) — this course!

If we add constraints (in place of unification):
— Constraint Logic Programming (CLP) — also this course!

18




Comparison of Logics (l)

Many other logics and variants:

e Higher-order predicate logic:
“X is some relationship for spot”  X(spot)

+ great expressive power
- undecidable
- no general deduction mechanisms

— But interesting subsets: HO logic programming, functional-logic programming, ...
e Other logics: Decidability? Expressive power? Practical deduction mechanism?

e Interesting case: A-calculus
+ similar to predicate logic in results, allows higher order
- does not support general predicates (relations), only functions

— Functional programming!

19




Generating squares by SLD-Resolution — Logic Programming (I)

(This slide if you have seen previously resolution, otherwise you can skip.)

e We code the problem as definite (Horn) clauses:
nat(0)
—nat(X) V nat(s(X))
—nat(X) V add(0, X, X))
—add(X,Y,Z) Vadd(s(X),Y,s(Z))
—nat(X) V mult(0, X, 0)
—mult(X, Y, W)V —add(W,Y, Z) V mult(s(X),Y, Z)
—nat(X)V —nat(Y) VvV —-mult(X, X,Y) V nat_square(X,Y)

e Query: nat(s(0)) ?
o In order to refute: —nat(s(0))

o Resolution:
—nat(s(0)) and —-nat(X)V nat(s(X)) with unifier {X/0} giving —nat(0)
—nat(0)  and nat(0) with unifier  {}  giving O

o Answer: (yes)

20




Generating squares by SLD-Resolution — Logic Programming (Il)

(This slide if you have seen previously resolution, otherwise you can skip.)

e We code the problem as definite (Horn) clauses:
nat(0)
—nat(X) V nat(s(X))
—nat(X) V add(0, X, X))
—add(X,Y,Z) Vadd(s(X),Y,s(Z))
—nat(X) V mult(0, X, 0)
—mult(X, Y, W)V —add(W,Y, Z) V mult(s(X),Y, Z)
—nat(X)V —nat(Y) VvV —-mult(X, X,Y) V nat_square(X,Y)

e Query: JX3Y add(X,Y,s(0)) ?

o In order to refute: —add(X,Y, s(0))

< Resolution:
—add(X,Y, s(0)) and —nat(X) V add(0, X, X)) with unifier {X =0,Y = s(0)}
giving —nat(s(0)) (and —nat(s(0)) is resolved as before)

o Answer: X =0,Y = s(0)

o Alternative:
—add(X, Y, s(0)) with —add(X,Y, Z) V add(s(X),Y, s(Z)) giving —add(X,Y,0) ...

21




Generating Squares in a Practical Logic Programming System (I)

Prolog systems implement precisely that: SLD-resolution for programs that are
written in logic (using Horn clauses). Let’s encode our specification in Prolog syntax...

nat (0).
nat(s(X)) :- nat((X).

le(0,X) :- nat(X).
le(s(X),s(Y)) :- le(X,Y).

add(0,Y,Y) :- nat(Y).

add(s(X),Y,s(Z)) :- add(X,Y,Z).

mult(0,Y,0) :- nat(Y).

mult(s(X),Y,Z) :- add(W,Y,Z), mult(X,Y,W).

nat_square(X,Y) :- nat(X), nat(Y), mult(X,X,Y).

output(X) :- nat(Y), le(Y,s(s(s(s(s(0)))))), nat_square(Y,X).

... and run it on a Prolog system using using (breadth first) resolution: run example —

What should we expect, given the theoretical results for first-order logic?

— to get all answers; and, if no (more) answers: we will get 'no’ or not terminate.
22



https://ciao-lang.org/playground/?code=%3A-%20module(_%2C_%2C%5Bsr%2Fbfall%5D).%0A%0A%25%20A%20real%20logic%20program!%0A%0A%25%20In%20pure%20LP%2C%20define%20the%20naturals%2C%20arithmetic%20%0A%25%20operations%20on%20them%2C%20and%20the%20squares%20of%20the%20%0A%25%20naturals%20that%20are%20smaller%20than%20five.%0A%0Anat(0).%0Anat(s(X))%20%3A-%20nat(X).%0A%0Ale(0%2CX)%20%3A-%20nat(X).%0Ale(s(X)%2Cs(Y))%20%3A-%20le(X%2CY).%0A%0Aadd(0%2CY%2CY)%20%3A-%20nat(Y).%0Aadd(s(X)%2CY%2Cs(Z))%20%3A-%20add(X%2CY%2CZ).%0A%0Amult(0%2CY%2C0)%20%3A-%20nat(Y).%0Amult(s(X)%2CY%2CZ)%20%3A-%20add(W%2CY%2CZ)%2C%20mult(X%2CY%2CW).%0A%0Anat_square(X%2CY)%20%3A-%20nat(X)%2C%20nat(Y)%2C%20mult(X%2CX%2CY).%0A%0Aoutput(X)%20%3A-%20nat(Y)%2C%20le(Y%2Cs(s(s(s(s(0))))))%2C%20nat_square(Y%2CX).%0A%0A%25%20%20Some%20examples%20of%20queries.%20Copy%20on%20the%20right%2C%20hit%20%0A%25%20%20ENTER%20to%20execute%2C%20and%20then%20%3B%20for%20other%20solutions.%0A%25%20%20Some%20may%20not%20terminate%20--%20this%20is%20OK%20(*).%20%0A%25%0A%25%20%20%3F-%20nat(s(0)).%0A%25%20%20%3F-%20nat(X).%0A%25%20%20%3F-%20add(s(0)%2Cs(s(0))%2CX).%0A%25%20%20%3F-%20add(s(0)%2CX%2Cs(s(s(0)))).%0A%25%20%20%3F-%20add(X%2CY%2Cs(0)).%0A%25%20%20%3F-%20nat_square(s(s(0))%2C%20X).%0A%25%20%20%3F-%20nat_square(X%2Cs(s(s(s(0))))).%0A%25%20%20%3F-%20nat_square(X%2CY).%0A%25%20%20%3F-%20output(X).%0A%0A%25%20(*)%20See%20the%20course%20slides!&ext=.pl

Generating Squares in a Practical Logic Programming System (lI)

run example —

Query Answer
?-nat(s(@9)). yes
?-add(s(®),s(s(8)),X). X = s(s(s(®)))
?-add(s(0),X,s(s(s(®)))). X = s(s(0))

?-nat(X).

X=0; X=5s0) ; X=:s(s0) ; ...

?-add(X,Y,s((®)).

X =0, ¥=s(0) ; X =s@) , Y =0)

?-nat_square(s(s(0)), X).

X = s(s(s(s(®))))

?-nat_square(X,s(s(s(s(®))))).

X = s(s(0))

?-nat_square(X,Y).

X=0, Y=0) ; X =s@0) , Y=s(0)) ;
X = s(s(®)) , Y=s(s(s(s(®))))) ; ...

?- output (X).

X=0 ; X=5s500) ; X-=
s(s(s(s(®)))) ;

23
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Applications (l)

e Many applications:

o Natural language processing

o Scheduling/Optimization problems

o Many Al-related problems, (Multi) agent programming
o Heterogeneous data integration

o Program analyzers and verifiers

O
Many in combination with other languages.
e Some examples:

o The IBM Watson System (2011) has important parts written in Prolog.

o Clarissa, a voice user interface by NASA for browsing ISS procedures.

o The first Erlang interpreter was developed in Prolog by Joe Armstrong.

o The Microsoft Windows NT Networking Installation and Configuration system.

o The Ericsson Network Resource Manager (NRM).

o “A flight booking system handling nearly a third of all airline tickets in the world” (SICStus).
o The java abstract machine specification is written in Prolog.

A

24


https://en.wikipedia.org/wiki/Watson_(computer)
https://www.cs.nmsu.edu/ALP/2011/03/natural-language-processing-with-prolog-in-the-ibm-watson-system/
https://ti.arc.nasa.gov/tech/cas/user-centered-technologies/clarissa/

Applications (ll)

The IBM Watson system (from WikipediA):

“Watson is a question-answering computer system capable of answering questions posed in
natural language, developed in IBM’s DeepQA project... it competed on Jeopardy! against
champions Brad Rutter and Ken Jennings, winning the first place prize of $1 million.”

Adam Lally, John M. Prager, Michael C. McCord, Branimir Boguraev, Siddharth Patwardhan, James Fan, Paul Fodor, Jennifer
Chu-Carroll: Question analysis: How Watson reads a clue. IBM J. Res. Dev. 56(3): 2:

“Prior to our decision to use Prolog for this task, we had implemented custom
pattern-matching frameworks over parses. These frameworks ended up replicating some of
the features of Prolog but lacked the full feature set of Prolog or the efficiency of a good
Prolog implementation. Using Prolog for this task has significantly improved our productivity in
developing new pattern-matching rules and has delivered the execution efficiency necessary
to be competitive in a Jeopardy! game.”
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A (very brief) History of Logic Programming (I)

e 60’s
o Green: programming as problem solving.
< Robinson: resolution.

e 70’s
o Kowalski: SLD resolution (very efficient).

o Golmerauer: Prolog (“Programmation et Logique”). Interpreter in Fortran.

< Kowalski: procedural interpretation of Horn clause logic. Read:
Aif By and B; and --- and B,, as:
to solve (execute) A, solve (execute) B; and B, and,..., B,
Algorithm = logic + control.
o D.H.D. Warren: develops first compiler, DEC-10 Prolog.
* Almost completely written in Prolog.
* Very efficient (same as Lisp).
* Top-level, debugger, very useful builtins, ... becomes the standard.

e 80’s, 90°s

o Major research in the basic paradigms and advanced implementation techniques: Japan (Fifth

Generation Project), US (MCC), Europe (ECRC, ESPRIT projects), leading to the current EU
“framework research programs”.
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A (very brief) History of Logic Programming (Il)

e 80’s, 90’s continued
o Numerous commercial Prolog implementations, programming books, using the de facto
standard, the Edinburgh Prolog family.
o Leading in 1995 to The ISO Prolog standard.
o Parallel and concurrent logic programming systems.

o Constraint Logic Programming (CLP): A major extension — opened new areas and even
communities:

* Commercial CLP systems with fielded applications.
* Concurrent constraint programming systems.
e 2000-...
©~ Many other extensions: full higher order, support for types/modes, concurrency, distribution,
objects, functional syntax, ...

o Highly optimizing compilers, automatic, automatic parallelism, automatic verification and
debugging, advanced environments.

o Many applications
Variations: Datalog, Answer Set Programming (ASP — support negation through stable models).
e Today
“Verse” logic/functional language at Epic Games (Fortnite), Logica language at Google, ...
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