
Boosting Multi-Neuron Convex Relaxation for
Neural Network Verification?

Xuezhou Tang[0009−0005−5227−8682], Ye Zheng[0000−0003−0623−9613], and Jiaxiang
Liu[0000−0002−6725−8167](B)

Shenzhen University, Shenzhen, China
2110276137@email.szu.edu.cn

zhengyeah@foxmail.com
jiaxiang0924@gmail.com

Abstract. Formal verification of neural networks is essential for their
deployment in safety-critical real-world applications, such as autonomous
driving and cyber-physical controlling. Multi-neuron convex relaxation is
one of the mainstream methods to improve verification precision. However,
existing techniques rely on empirically selecting neuron groups before
performing multi-neuron convex relaxation, which may yield redundant
yet expensive convex hull computations. This paper proposes a volume ap-
proximation based approach for selecting neuron groups. We approximate
the volumes of convex hulls for all group candidates, without calculating
their convex hulls. The group candidates with small volumes are then
selected for convex hull computation, aiming at ruling out unnecessary
convex hulls with loose relaxation. We implement our approach as the
neural network verification tool FaGMR, and evaluate it against state-
of-the-art tools including Prima, α,β-CROWN, and ERAN on neural
networks trained by MNIST and CIFAR-10. The experimental results
demonstrate that FaGMR is more efficient than these tools, yet with the
same or sometimes better verification precision.

Keywords: Neural network verification · Multi-neuron relaxation ·
Volume approximation

1 Introduction

The increasing adoption of neural networks in many safety-critical scenarios has
underscored their safety and robustness. However, the existence of adversarial
examples is revealed to be a severe threat. That is, there exist perturbed inputs
(e.g. images) that are human-imperceptible but give rise to misclassification by a
neural network. For example, forged traffic signs can fool certain autonomous driv-
ing systems [16]. They look almost the same for humans, yet making auto-driving
systems output incorrect predictions, hence leading to unexpected behaviors.
? This work is supported by the National Natural Science Foundation of
China (61836005), the Natural Science Foundation of Guangdong Province
(2022A1515011458, 2022A1515010880), and the Shenzhen Science and Technology
Innovation Program (JCYJ20210324094202008).

2 X. Tang, Y. Zheng, and J. Liu

A large body of research aims to find adversarial examples based on testing (see
a survey [30]). They are usually effective in falsifying robustness. Notwithstanding,
the fact that these techniques discover no adversarial examples does not guarantee
robustness. On the other hand, formal verification, which is complementary
to testing, mathematically proves the robustness of a given neural network
against perturbed inputs, thus providing a formal guarantee for safety-critical
applications.

Formal verification of neural networks usually needs to compute the output
range of a neural network given a perturbed input range. Computing an output
for a single input is trivial, but computing an output region for an input region
is significantly more complex. The difficulty arises from the composition of the
non-linear activation functions, which leads to a highly non-linear input-output
relation of the neural network. So the key challenge is to handle the enormous
non-linear functions in a precise and scalable manner.

Convex relaxation methods over-approximate the non-linear activation func-
tions with convex polytopes, usually represented as linear constraints. Among
them, single-neuron convex relaxation based methods over-approximate each
neuron separately (e.g., [20,21,29,28,33]). These methods do not capture the inter-
dependencies between neurons, so they are fundamentally less precise than multi-
neuron convex relaxation based methods. The latter takes multiple neurons jointly
into account, designing over-approximations for groups of neurons [19,24,17]. An
essential problem of multi-neuron relaxation based methods lies in convex hull
computations. Typically, in the first step, these methods select groups of neurons
of size k (k ≥ 2) in the same activation layer. For each group, the Rk ×Rk input-
output relation of its activation functions is then over-approximated jointly. The
over-approximation is performed by computing a convex hull of the input-output
relation, represented by a set of linear constraints. It is believed that the more
groups of neurons are considered and the more overlap between groups is allowed,
the more precise verification results can be achieved. However, NP-hardness of
convex hull computation problems limits the number of groups to be selected.
For instance, adopting an exact convex hull computing algorithm, kPoly [19]
partitions the neurons of an activation layer into small sets of size ns ≤ 5 and
only selects groups of k ≤ 3 neurons within each partition. Prima [17] proposes
a polynomial-time method for approximating convex hulls, hence allowing to
consider a larger number of groups in a reasonable time limit. Similarly, it par-
titions all neurons with respect to ns and selects a subset of all size-k groups
within each partition. But the parameter ns in Prima is significantly larger
than that in kPoly, yielding significant precision improvement. Nevertheless,
these parameters and the selection of groups are decided empirically. They may
not perform equally well on different verification problems, even on different
activation layers in the same network. On the other hand, we observe that there
may exist redundant groups, in the sense that the constraints of their convex
hulls are implied by the constraints generated by other groups. Convex hull
computations of these redundant groups are unnecessary and should be avoided.

Boosting Multi-Neuron Convex Relaxation for Neural Network Verification 3

In this paper, we seek to improve the efficiency of multi-neuron convex
relaxation based methods by heuristically selecting neuron groups. The main
idea is to evaluate the tightness of over-approximation by the volume of the
convex hull. The exact calculation of volumes of (high-dimensional) convex hulls
is infeasible. More importantly, it does not avoid the unnecessary convex hull
computations. We propose to instead under- and over-approximate the volumes
of convex hulls without the need for computing the convex hulls. Neuron groups
with small estimated volumes will be selected while groups with large volumes
are eliminated. In such a way, some unnecessary yet expensive convex hull
computations are avoided.

For evaluation, we implement our approach as a neural network verifica-
tion tool FaGMR (Fast Grouping for Multi-neuron Relaxation). We com-
pare FaGMR with state-of-the-art tools Prima [17], α,β-CROWN [28] and
ERAN [23] on neural networks trained by the widely-used datasets MNIST and
CIFAR-10. The experimental results show that FaGMR is faster than Prima,
α,β-CROWN, and ERAN, by spending on average 11.2%, 43.1%, and 15.2%
less verification time respectively. Meanwhile, FaGMR successfully verifies at
least the same number of verification problems as Prima and ERAN, and on
average 46.7% more than α,β-CROWN.

Our contributions are summarized as follows:

– We propose a volume approximation based approach to automatically select
neuron groups for multi-neuron relaxation methods. It allows to avoid unnec-
essary yet expensive convex hull computations, hence boosting the efficiency
of multi-neuron relaxation methods.

– We implement our approach as a verification tool FaGMR and conduct an
extensive evaluation, demonstrating the efficacy of our approach.

Tool Availability. To foster further research, we place FaGMR into the public
domain. The source code is available at https://github.com/formes20/FaGMR.

Organization. Section 2 recalls necessary backgrounds on neural network verifi-
cation and the multi-neuron relaxation method. Our approach is presented in
Section 3 and evaluated in Section 4. Related work is discussed in Section 5. We
conclude our presentation in Section 6.

2 Preliminaries

Notations. We reserve lowercase Latin and Greek letters a, b, x, . . . , θ, . . . for
scalars, bold a for vectors, capitalized bold A for matrices, and capitals A,
calligraphic A or blackboard bold A for sets. Similarly, scalar functions are
denoted as f : Rd → R and vector valued functions as f : Rd → Rk. Given n
elements, the number of k-combinations is represented by

(
n
k

)
.

https://github.com/formes20/FaGMR

4 X. Tang, Y. Zheng, and J. Liu

2.1 Neural Network Verification

A (feedforward) neural network h(x) : X → R|Y| is a |Y|-dimensional vector
valued function from the input space X to the output space Y . Specifically, h(x)
is the interleaved composition of affine function layers gi(x) = W ix+ bi, with
non-linear activation layers f i(x):

h(x) = g` ◦ f ` ◦ g`−1 ◦ · · · ◦ f1 ◦ g0(x)

where ` is the number of hidden layers. f i(x) applies non-linear activation
functions in an element-wise manner. If h(x) is a classification neural network,
it will output the index c of its maximum output vector component, i.e. c =
arg maxj h(x)j .

A neural network verification problem commonly needs to verify the robustness
property. A robust neural network must satisfy the smoothness assumption [8],
i.e., for any input x and a small perturbation δ, h(x+ δ) ≈ h(x) should hold. In
the case of classification tasks, this assumption conforms to the visual capabilities
of human: if x looks similar to x′, they should belong to the same class.

Formally, perturbed inputs are defined by an lp-norm ball neighborhood of x:

Bpθ(x) = {x′ = x+ δ | ‖δ‖p ≤ θ}

where θ is the perturbation threshold that bounds δ. We would like to verify that
the neural network h(x) does not misclassify any perturbed input in this region.

Definition 1. Given a neural network h(x), an input x ∈ X and a perturbation
threshold θ, a verification problem is to give the truth value of the following
statement:

arg max
j
h(x)j = arg max

j
h(x′)j , for each x′ ∈ Bpθ(x).

If the statement in Definition 1 is true, we conclude that the neural network
h is robust with respect to the input x against the perturbation threshold θ.

2.2 Multi-Neuron Convex Relaxation

Multi-neuron convex relaxation based methods like Prima [17] solve neural net-
work verification problems (Definition 1) by encoding them as linear optimization
problems. Specifically, given a neural network h, an input x and a perturbation
threshold θ, these methods encode the whole network h w.r.t. the (convex) region
Bpθ(x) via linear constraints, define a linear optimization objective for the target
statement arg maxj h(x)j = arg maxj h(x′)j , and finally invoke an LP solver to
obtain a bound determining whether h is robust. Note that all affine function
layers gi in h can be described exactly by linear constraints, while the non-
linear activation layers f i have to be over-approximated using linear constraints
in their input-output spaces. Given a non-linear activation layer, conventional
single-neuron convex relaxation based methods (e.g. [20,21,29,28,33]) take each

Boosting Multi-Neuron Convex Relaxation for Neural Network Verification 5

single neuron in turn to generate neuron-wise over-approximations, accumulated
as the layer-wise over-approximation. Instead, multi-neuron convex relaxation
based methods select (possibly overlapping) groups of neurons, generate linear
constraints for each group of neurons as group-wise over-approximations, then
accumulate them as the layer-wise over-approximation. By capturing interdepen-
dencies between different neurons when obtaining group-wise over-approximations,
multi-neuron relaxation methods achieve tighter over-approximations.

We now review the multi-neuron constraints leveraged by Prima [17] that
our approach focuses on.

Let us fix some single activation layer. Assume a layer-wise input polytope S
constraining all the inputs of the layer, and a groupG = {v1, v2, . . . , vk} of neurons
of size k ≥ 2. Prima starts the multi-neuron relaxation for G by projecting S onto
the input dimensions of the group G, i.e. onto the (x1, x2, . . . , xk)-space, where xi
denotes the input of the neuron vi. More precisely, Prima computes an octahedral
over-approximation PG of the projection instead of an exact projection, following
the idea of kPoly [19]. Then for the k-dimensional PG, Prima computes a
2k-dimensional convex over-approximation KG of the input-output relation of
G through its novel Split-Bound-Lift Method (SBLM). The linear constraints
constituting the polytope KG are the expected multi-neuron constraints for the
group G. SBLM constructs KG from PG via two phases: splitting and lifting. In
the following, we omit the subscript G, using P and K for clarity when causing
no ambiguity.

Splitting. Assume that the activation function in the neural network is f : D→
R. The splitting phase requires a set of intervals Dj covering the domain D. We will
focus on the activation function ReLU : R→ R defined by ReLU(x) = max(x, 0)
when introducing Prima and our approach in the following for simplicity, and
generalize our approach to activation functions Sigmoid and Tanh in Section 3.4.
For the ReLU activation function, the required intervals are D1 = (−∞, 0] and
D2 = [0,+∞), whose union covers the domain D = R. These intervals are
instantiated w.r.t. the neuron vi as D1

i = {x ∈ Rk | xi ≤ 0} and D2
i = {x ∈

Rk | xi ≥ 0}. The splitting phase splits P according to the intervals Dj w.r.t.
input variables xi iteratively, considering one variable at a step. Without loss of
generality, we (randomly) choose the splitting ordering vk, vk−1, . . . , v1. That is,
the splitting phase splits w.r.t. xk first, then xk−1 and so on, finally x1. Formally,
the splitting phase works as follows.

Definition 2 (Splitting). Given a size-k group G = {v1, . . . , vk} of neurons
and a polytope P in the (x1, . . . , xk)-space. The splitting phase is performed by

P(0)
ε = P;

P(i+1)
τ,j = P(i)

τ ∩ D
j
k−i, for 0 ≤ i < k and j ∈ {1, 2}

where ε denotes the empty sequence, and τ a sequence of length i containing 1
and/or 2. The polytopes P(k)

{1,2}k are obtained after splitting, called quadrants.

6 X. Tang, Y. Zheng, and J. Liu

Intuitively, at the i-th (0 ≤ i < k) step, the input variable xk−i is considered.
Each polytope P(i)

τ obtained after the previous step is split by the hyperplane
{x ∈ Rk | xk−i = 0}, generating two polytopes P(i+1)

τ,1 and P(i+1)
τ,2 . Note that

for each polytope P(i)
τ generated during splitting, the length of τ equals i. The

splitting phase can be regarded as constructing a complete binary tree. The
initial polytope P is the root. All the generated polytopes P(i)

τ constitute the
nodes, with i being the depth and τ the path from the root. The 2k quadrants
P(k)
{1,2}k are the leaves.

Lifting. The lifting phase extends and combines the 2k k-dimensional quad-
rants into one 2k-dimensional polytope, during which convex hulls are computed.
Similar to splitting, this phase also progresses step by step, extending polytopes
by one dimension corresponding to an output variable at each step. The lifting
ordering is the reverse of the splitting one: v1, v2, . . . , vk. That is, the quad-
rants in the (x1, . . . , xk)-space are lifted to the (x1, . . . , xk, y1)-space first, then
(x1, . . . , xk, y1, y2)-space and so on, where yi denotes the output of neuron vi. The
resulting polytope K after the lifting phase is in the (x1, . . . , xk, y1, . . . , yk)-space.

The lifting phase requires a set of bounds Bj corresponding to the intervals
Dj , bounding the output of the activation function. Each Bj is a pair of linear
functions of the form

Bj = (a≤j , a
≥
j),

where a≤j and a≥j are linear functions satisfying

a≤j (x) ≤ f(x) ≤ a≥j (x), for each x ∈ (Dj ∩ [x, x]),

where x and x are concrete lower and upper bounds of x, respectively. For the
ReLU activation function, the required bounds are B1 = (0, 0) and B2 = (x, x).
They are instantiated w.r.t. the neuron vi as B1

i = {x ∈ Rk+i | 0 ≤ yi ≤ 0} =
{x ∈ Rk+i | yi = 0} and B2

i = {x ∈ Rk+i | xi ≤ yi ≤ xi} = {x ∈ Rk+i | yi = xi}.
Note that Bji is (k+ i)-dimensional due to the lifting ordering, precisely, being in
the (x1, . . . , xk, y1, . . . , yi)-space. Formally, the lifting phase progresses as follows.

Definition 3 (Lifting). Given a size-k group G = {v1, . . . , vk} of neurons and
2k quadrants P(k)

{1,2}k obtained by splitting. The lifting phase is performed by

K(0)
{1,2}k = P(k)

{1,2}k ;

K(i+1)
τ = conv

(
(eyi+1(K(i)

τ,1) ∩ B1
i+1) ∪ (eyi+1(K(i)

τ,2) ∩ B2
i+1)

)
, for 0 ≤ i < k

where conv(·) denotes the convex hull, and ey(A) = A × R extends A by the
dimension y for any set A. The polytope K = K(k)

ε is the output of the lifting
phase, as well as the SBLM.

Boosting Multi-Neuron Convex Relaxation for Neural Network Verification 7

Prima computes the convex hull conv(·) via its novel Partial Double Descrip-
tion Method (PDDM), which we do not detail in this paper. Intuitively, the lifting
phase progresses as per the binary tree constructed during the splitting phase,
from the leaves to the root. At the i-th (0 ≤ i < k) step, any two children K(i)

τ,1

and K(i)
τ,2 of the same parent are extended by a new dimension yi+1, and bounded

by B1 and B2, respectively. The convex hull K(i+1)
τ of their union is put at the

position of their parent. All quadrants are combined along the tree until only
one polytope K is obtained at the root.

3 Volume Approximation Based Grouping

Before generating multi-neuron constraints for a given group of neurons as
presented in Section 2.2, a key problem is that which and how many groups we
should select to generate constraints. For an activation layer with n neurons,
given the group size k, it is certainly ideal to consider all

(
n
k

)
possible size-k

groups. Nevertheless, computing multi-neuron constraints for each of them is too
expensive due to the high complexity of convex hull computation, even by using
SBLM. Empirically selecting groups by pre-defined parameters, like in kPoly
and Prima, is an efficient and effective solution in some scenarios. But we observe
that sometimes these grouping strategies may lead to redundant groups, in the
sense that the generated multi-neuron constraints for them are implied by the
constraints for other groups.

Example 1. Assume that three neurons v1, v2, and v3 are in the same activation
layer, the group size k = 2. There are three possible groups G1 = {v1, v2}, G2 =
{v1, v3} and G3 = {v2, v3}. Assume that the octahedral over-approximations for
them are respectively

PG1 = { x ∈ R2 | x1 + x2 ≤ 3, x1 − x2 ≤ 3, −x1 + x2 ≤ 3, −x1 − x2 ≤ 3,
−1 ≤ x1 ≤ 1, −2 ≤ x2 ≤ 2 },

PG2 = { x ∈ R2 | x1 + x3 ≤ 2, x1 − x3 ≤ 2, −x1 + x3 ≤ 2, −x1 − x3 ≤ 2,
−1 ≤ x1 ≤ 1, −1 ≤ x3 ≤ 1 },

PG3 = { x ∈ R2 | x2 + x3 ≤ 3, x2 − x3 ≤ 3, −x2 + x3 ≤ 3, −x2 − x3 ≤ 3,
−2 ≤ x2 ≤ 2, −1 ≤ x3 ≤ 1 }.

The multi-neuron constraints generated by Prima are as follows, where CGi

denotes the constraints of the output polytope KGi by SBLM:

CG1 = { 0.5x1 − y1 ≤ 0.5, 0.5x2 − y2 ≤ 1, −x2 + y2 ≤ 0.36,
−x1 + y1 ≤ 0.18, y1 ≤ 1, y2 ≤ 1 },

CG2 = { 0.5x1 − y1 ≤ 0.5, 0.5x3 − y3 ≤ 1, −x3 + y3 ≤ 0.18,
−x1 + y1 ≤ 0.18, y1 ≤ 1, y3 ≤ 1 },

CG3 = { 0.5x3 − y3 ≤ 0.5, 0.5x2 − y2 ≤ 1, −x2 + y2 ≤ 0.36,
−x3 + y3 ≤ 0.18, y2 ≤ 1, y3 ≤ 1 }.

8 X. Tang, Y. Zheng, and J. Liu

One can verify that CG1 is implied by CG2 ∪CG3 . It means that the constraints in
CG1 are useless when accumulated into the layer-wise over-approximation which
already includes CG2 and CG3 . Therefore, CG1 and thus the corresponding group
G1 are redundant.

The multi-neuron constraint generation, especially the convex hull compu-
tation therein, for the redundant groups like G1 in Example 1 is unnecessary
and should be avoided for efficiency. However, convex hull computation in high-
dimension is unavoidable if we would like to identify these redundant groups
precisely. Adopting the idea in [21], which considers in the single-neuron case an
over-approximation with smaller area as a tighter over-approximation, we expect
redundant groups to generate looser over-approximations (i.e. the polytopes KG)
with larger (high-dimensional) volumes. Instead of exact volumes, our approach
computes the approximations of the volumes in order to avoid expensive calcu-
lation in high-dimension for both convex hulls and exact volumes. The groups
with larger approximated volumes are then discarded since they are more likely
redundant. As a result, our approach produces neuron groups that may include
fewer redundant ones, while their multi-neuron constraints preserve precision.

3.1 Overview of Our Approach

Our approach follows the multi-neuron relaxation framework. The key idea in
our approach is to fast compute the volume approximations of all possible size-k
neuron groups before selecting some of them to generate multi-neuron constraints.

Each neuron in the activation layer is processed iteratively. For each neuron,
our approach comprises the following three steps: volume approximation, group
selection, and convex hull computation. Figure 1 shows the workflow to select
neuron groups involving the neuron vi, when k = 2.

1. Volume approximation. Computing the precise volume of a 2k-dimensional
convex hull generated for a size-k neuron group is time-consuming. Therefore,
we leverage the approximation methods detailed in Section 3.2 to under- and
over-approximate the volume of the convex hull for each group candidate,
in order to decide whether it will be selected for the 2k-dimensional convex
hull generation. Our volume approximation methods are based on Betke and
Henk [4]. We improve their method for the over-approximation by utilizing
the volume of the octahedron P to make the approximation tighter. Our
over-approximation is hence obtained via k-dimensional calculation of the
exact volume of P that can be done by off-the-shelf volume tools. It may
reduce some 2k-dimensional computations of unnecessary convex hulls. In
the case where k = 2 and vi is considered, Figure 1 demonstrates that the
under- and over-approximations of the volumes of all group candidates (of
size 2) containing vi are calculated.

2. Neuron group selection. Once under- and over-approximated volumes have
been computed for all the group candidates, “better” candidates are selected.
Our selecting strategy prefers those groups with smaller volumes. It will

Boosting Multi-Neuron Convex Relaxation for Neural Network Verification 9

⋯
⋯

⋯
⋯

⋯
⋯

⋯
⋯

Volume approximation Group selection

(Removed)

√

√

×

Convex hull computation

1v

2v

iv

kv

1{ }, iv v

2{ }, iv v

{ },i kv v

in 1 1, , ,()i ix y yx -space

-spacein , , ,()i k i kx y yx

1 1, } }{ { ,Vol () & Vol ()
i iv v v vK K

2 2, } }{ { ,Vol () & Vol ()
i iv v v vK K

}{ , { , }Vol () & Vol ()
i k i kv v v vK K

}{ ,i kv vK

1 i }{ ,v vK

Fig. 1. Workflow of Our Approach to Select Groups for vi (k = 2)

select the groups with very small over-approximated volumes, and eliminate
the groups with very large under-approximated volumes. The details can be
found in Section 3.3. In Figure 1, we can see that some group candidates (e.g.
{v2, vi}) are weeded out by our selecting strategy. Only some groups (e.g.
{v1, vi} and {vi, vk}) are passed to the following convex hull solving step.

3. Convex hull computation. After the groups are decided, their 2k-dimensional
convex hulls are computed. The computation can be performed by existing
techniques. Specifically, our implementation leverages SBLM and PDDM in
Prima due to their efficiency and exactness. This step obtains the convex
hull, thus the multi-neuron constraints, for each selected group. For instance,
the convex hull K{v1,vi} in the (x1, xi, y1, yi)-space for the selected group
{v1, vi} in Figure 1.

3.2 Volume Approximation

Given a group G of neurons, we detail in this section how to approximate the
volume of the generated convex hull KG (presented in Section 2.2) without actually
computing the convex hull. Following the notations in Section 2.2, we denote the
neuron group of size k as G = {v1, . . . , vk}, the octahedral over-approximation
input to SBLM as P, and the convex hull output by SBLM as K.

For an arbitrary (convex) d-dimensional polytope Q ∈ Rd, we denote its (high-
dimensional) volume as Vol(Q), the under- and over-approximations of the volume
as Vol(Q) and Vol(Q), respectively. That is, Vol(Q) ≤ Vol(Q) ≤ Vol(Q). Betke
and Henk gave in [4] an algorithm to calculate the under- and over-approximations
as follows.

Lemma 1 ([4]). Given an arbitrary (convex) polytope Q ∈ Rd, the under- and
over-approximations of the volume of Q can be calculated by

Vol(Q) = 1
d! ·

d∏
i=1

(ui − li)

10 X. Tang, Y. Zheng, and J. Liu

Vol(Q) =
d∏
i=1

(ui − li)

where [li, ui] is the range of the i-th dimension of Q.

We adopt the under-approximation given by Lemma 1 in our approach to
calculate the under-approximated volume Vol(K) of the convex hull K.

On the other hand, for the over-approximated volume, the one given by
Lemma 1 intuitively over-approximates the polytope via the high-dimensional
box represented by the Cartesian product

∏d
i=1[li, ui]. The result is generic, but

not tight enough for our purpose, since the convex hull K we consider is obtained
by specific construction and thus has specific characteristics. Generally speaking,
we over-approximate in our approach the convex hull K with a 2k-dimensional
prism [22].

A d-dimensional prism is geometrically formed by parallel segments of the
same length drawn from all the points of a (d−1)-dimensional polytope called base.
The volume of a prism Q with the base S can be computed by Vol(Q) = Vol(S)·h,
where h is the height of the prism. We have the following property about the
over-approximations and the volumes of the generated convex hulls during the
lifting phase (Definition 3).

Lemma 2. Given a size-k group G = {v1, . . . , vk} of neurons and the polytope
P input to SBLM, for any 0 ≤ i ≤ k, each polytope K(i)

τ generated during the
lifting phase satisfies:

K(i)
τ ⊆ Q(i),

Vol(Q(i)) = Vol(P) ·
i∏

j=1
(yj − yj), and

Vol(K(i)
τ) ≤ Vol(P) ·

i∏
j=1

(yj − yj),

where Q(i) = P ×
∏i
j=1[yj , yj], yj and yj denote the lower and upper bounds of

the yj-dimension of K(i)
τ , respectively.

Proof. We prove by induction on i.

– For the base case i = 0, K(0)
τ = P(k)

τ ⊆ P = Q(0) by Definitions 2 and 3. It
trivially holds that Vol(Q(0)) = Vol(P). The third statement Vol(K(0)

τ) ≤
Vol(P) follows from the first two.

– For the induction step, assuming the three statements hold when i = m, we
prove that they hold as well when i = m+ 1. By Definition 3,

K(m+1)
τ = conv

(
(eym+1(K(m)

τ,1) ∩ B1
m+1) ∪ (eym+1(K(m)

τ,2) ∩ B2
m+1)

)
.

Boosting Multi-Neuron Convex Relaxation for Neural Network Verification 11

And by induction hypothesis, we have both K(m)
τ,1 ⊆ Q(m) and K(m)

τ,2 ⊆ Q(m).
Hence,

K(m+1)
τ ⊆ conv

(
(eym+1(Q(m)) ∩ B1

m+1) ∪ (eym+1(Q(m)) ∩ B2
m+1)

)
.

Recall that for any i, B1
i = {x ∈ Rk+i | yi = 0} and B2

i = {x ∈ Rk+i | yi =
xi}, so both B1

m+1 and B2
m+1 can be over-approximated by {x ∈ Rk+m+1 |

ym+1 ≤ ym+1 ≤ ym+1}. Therefore, we further get

K(m+1)
τ ⊆ conv

(
(eym+1(Q(m)) ∩ {x ∈ Rk+m+1 | ym+1 ≤ ym+1 ≤ ym+1})

∪(eym+1(Q(m)) ∩ {x ∈ Rk+m+1 | ym+1 ≤ ym+1 ≤ ym+1})
)

= conv
(

(eym+1(Q(m)) ∩ {x ∈ Rk+m+1 | ym+1 ≤ ym+1 ≤ ym+1})
)

= conv
(
Q(m) × [ym+1, ym+1]

)
.

Since Q(m) = P×
∏m
j=1[yj , yj] by definition, Q(m)× [ym+1, ym+1] is convex.

So conv
(
Q(m) × [ym+1, ym+1]

)
= Q(m) × [ym+1, ym+1]. Then,

K(m+1)
τ ⊆ Q(m) × [ym+1, ym+1] = P ×

m+1∏
j=1

[yj , yj] = Q(m+1).

The first statement is proved.
For the second statement, because Q(m+1) = Q(m) × [ym+1, ym+1], it is a
prism formed by the base Q(m) and parallel segments along the ym+1-axis,
and the height is ym+1 − ym+1. Thus its volume Vol(Q(m+1)) = Vol(Q(m)) ·
(ym+1−ym+1). By induction hypothesis, Vol(Q(m)) = Vol(P) ·

∏m
j=1(yj−yj),

it then follows that

Vol(Q(m+1)) = Vol(Q(m)) · (ym+1 − ym+1) = Vol(P) ·
m+1∏
j=1

(yj − yj).

Finally, the third statement follows from the first two, which concludes our
proof. ut

Lemma 2 states that each convex hull generated during the lifting phase in
SBLM can be over-approximated by a prism. It moreover tells that the volume
of the prism can be calculated through the volume of the input polytope P and
the bounds of all yi-dimensions. Now we have our main theorem for the volume
approximation.

Theorem 1 (Volume approximation). Given a size-k group G = {v1, . . . , vk}
of neurons and the polytope P input to SBLM, the volume Vol(K) of the convex
hull K output by SBLM is bounded by Vol(K) and Vol(K) as follows:

Vol(K) = 1
(2k)! ·

k∏
i=1

(
(xi − xi) · (yi − yi)

)
,

12 X. Tang, Y. Zheng, and J. Liu

Vol(K) = Vol(P) ·
k∏
i=1

(yi − yi),

where xi and xi (resp., yi and yi) denote the lower and upper bounds of the
xi-dimension (resp., yi-dimension) of K, respectively.

Proof. The lower bound is derived by applying Lemma 1, while the upper bound
by Definition 3 and Lemma 2. ut

In Theorem 1, the bounds of each xi can be computed by xi = minx∈P xi
and xi = maxx∈P xi. Recall that the bounding linear functions required by the
lifting phase for ReLU are B1 = (a≤1 , a

≥
1) = (0, 0) and B2 = (a≤2 , a

≥
2) = (x, x).

The bounds of each yi can be computed by yi = minx∈P(a≤1 (xi), a≤2 (xi)) =
minx∈P(0, xi) = 0 and yi = maxx∈P(a≥1 (xi), a≥2 (xi)) = maxx∈P(0, xi) = xi.
Theorem 1 indicates that the under- and over-approximations of the volume
Vol(K) can be calculated via the volume of the easily generated, low-dimensional
P as well as the bounds of all dimensions, without actually computing the
computationally expensive, high-dimensional K.

3.3 Detailed Algorithm

The details of our approach are presented in Algorithm 1. It takes as input the
group size k, the set V of all neurons in the considered activation layer, and the
pre-computed lower bounds L and upper bounds U of all neurons in the neural
network. The algorithm outputs the set G of groups that will be sent for convex
hull computation to generate multi-neuron constraints.

The algorithm first filters out all the fixed neurons (line 2), whose inputs
have lower bounds greater than 0 or upper bounds less than 0. The filtering
is performed by the function filter(·). All unfixed neurons constitute the set
V ′. Any group with size k consisting of the neurons in V ′ is a group candidate.
All

(|V ′|
k

)
group candidates are generated (line 3). For each neuron vi in V ′, our

algorithm iteratively selects groups Gi whose convex hulls are needed (lines 5–14).
Each iteration starts with collecting group candidates containing vi (line 5).
Then for each group candidate G, the approximated volumes of its corresponding
convex hull KG are computed (lines 9–10), during which the octahedral over-
approximation PG is calculated by the function getOctaAppr(·) provided in
Prima. With the under- and over-approximations of Vol(KG), the algorithm
decides whether the candidate G should be selected (line 12), according to the
selecting strategy implemented in select(·) that is detailed in Algorithm 2.
Finally, all groups selected iteratively are accumulated together (line 14).

Algorithm 2 shows our selecting strategy given the current set Gi of selected
groups and approximated volumes. When no group is selected (i.e. Gi = ∅),
the group candidate G is selected (lines 1–2). If the over-approximated volume
is small enough, all selected groups can be abandoned and only G will be
selected (lines 3–4). Correspondingly, if the under-approximated volume is large
enough, G should be dropped (lines 5–6). Otherwise, G is added (lines 7–8).

Boosting Multi-Neuron Convex Relaxation for Neural Network Verification 13

Algorithm 1 Volume Approximation based Grouping (for a Single Layer)
Input: the target neural network h, group size k, the set V of all neurons in the layer,

pre-computed bounds L and U of all neurons in h
Output: the set G of groups for convex hull computation
1: G ← ∅
2: Select only unfixed neurons: V ′ ← filter(V,L,U)
3: GC ← genCandidate(V ′, k)
4: for all vi ∈ V ′ do
5: Get group candidates involving vi: GCi ← collect(vi,GC)
6: Initialize selected groups involving vi: Gi ← ∅
7: for all G ∈ GCi do
8: if Vol(KG) and Vol(KG) are not available then
9: Compute octahedral over-approximation: PG←getOctaAppr(G,L,U ,h)
10: Volume approximation: calculate Vol(KG) and Vol(KG) by Theorem 1
11: end if
12: Update Gi: Gi ← select(Gi, G,Vol(KG),Vol(KG))
13: end for
14: G ← G ∪ Gi

15: end for
16: return G

Algorithm 2 Selecting Strategy select(·)
Input: the set Gi of currently selected groups for neuron vi, group candidate G,

approximated volumes Vol(KG) and Vol(KG)
Output: the updated set G′

i of selected groups for neuron vi

1: if Gi = ∅ then
2: G′

i ← {G}
3: else if Vol(KG) ≤ maxG′∈Gi

(Vol(KG′)) then
4: G′

i ← {G}
5: else if Vol(KG) ≥ minG′∈Gi

(Vol(KG′)) then
6: G′

i ← Gi

7: else
8: G′

i ← Gi ∪ {G}
9: end if
10: return G′

i

Intuitively, our selecting strategy attempts to select the groups with very small
over-approximated volumes, as well as to eliminate the candidates with very large
under-approximated volumes. It conservatively keeps the candidates otherwise,
in order to prevent losing precision.

We give a detailed example to illustrate our algorithms.

Example 2. Assume that there are five neurons in the ReLU activation layer.
That is, V = {v1, v2, v3, v4, v5}. Let the group size k = 2, and the pre-computed
bounds be x1 ∈ [−1, 1], x2 ∈ [−2, 2], x3 ∈ [−1, 1], x4 ∈ [−3, 3], and x5 ∈ [− 1

2 ,
1
2].

All neurons are unfixed, so V ′ = V = {v1, v2, v3, v4, v5}. All
(5

2
)

= 10 group

14 X. Tang, Y. Zheng, and J. Liu

candidates are

GC = {{v1, v2}, {v1, v3}, {v1, v4}, {v1, v5},
{v2, v3}, {v2, v4}, {v2, v5}, {v3, v4}, {v3, v5}, {v4, v5}}.

We start with v1 ∈ V ′. Collecting group candidates in GC that contain v1, we
have GC1 = {{v1, v2}, {v1, v3}, {v1, v4}, {v1, v5}}. G1 is then initialized as G1 = ∅.
For all G ∈ GC1, the under- and over-approximated volumes are calculated:

– By function getOctaAppr(·) in Prima, the octahedral over-approximations
are

P{v1,v2} = { x ∈ R2 | x1 + x2 ≤ 3, −x1 + x2 ≤ 1, x1 − x2 ≤ 1,
−x1 − x2 ≤ 3, −1 ≤ x1 ≤ 1, −2 ≤ x2 ≤ 2 },

P{v1,v3} = { x ∈ R2 | x1 + x3 ≤ 2, −x1 + x3 ≤
1
2 , x1 − x3 ≤

1
2 ,

−x1 − x3 ≤ 2, −1 ≤ x1 ≤ 1, −1 ≤ x3 ≤ 1 },
P{v1,v4} = { x ∈ R2 | x1 + x4 ≤ 4, −x1 + x4 ≤ 2, x1 − x4 ≤ 2,

−x1 − x4 ≤ 4, −1 ≤ x1 ≤ 1, −3 ≤ x4 ≤ 3 },

P{v1,v5} = { x ∈ R2 | x1 + x5 ≤
3
2 , −x1 + x5 ≤

1
2 , x1 − x5 ≤

1
2 ,

−x1 − x5 ≤
3
2 , −1 ≤ x1 ≤ 1, −1

2 ≤ x5 ≤
1
2 }.

– By Theorem 1, the approximated volumes are

Vol(K{v1,v2}) = 2
3 , Vol(K{v1,v2}) = 4,

Vol(K{v1,v3}) = 1
6 , Vol(K{v1,v3}) = 1,

Vol(K{v1,v4}) = 3
2 , Vol(K{v1,v4}) = 9,

Vol(K{v1,v5}) = 1
24 , Vol(K{v1,v5}) = 1

2 .

Note that we invoke Qhull [3] to compute Vol(P) in Theorem 1.

From G1 = ∅, Algorithm 2 updates G1 for each G ∈ GC1 (line 12 in Algorithm 1):

– When G = {v1, v2}, since G1 = ∅, it is updated to G1 = {G} = {{v1, v2}}.
– WhenG = {v1, v3}, since Vol(KG) = 1 6≤ 2

3 = Vol(K{v1,v2}) = maxG′∈G1(Vol(KG′)),
and Vol(KG) = 1

6 6≥ 4 = Vol(K{v1,v2}) = minG′∈G1(Vol(KG′)), G1 is updated
to {{v1, v2}} ∪ {G} = {{v1, v2}, {v1, v3}}.

– WhenG = {v1, v4}, since Vol(KG) = 9 6≤ 2
3 = Vol(K{v1,v2}) = maxG′∈G1(Vol(KG′)),

and Vol(KG) = 3
2 ≥ 1 = Vol(K{v1,v3}) = minG′∈G1(Vol(KG′)), then G is

dropped and G1 remains {{v1, v2}, {v1, v3}}.
– WhenG = {v1, v5}, since Vol(KG) = 1

2 ≤
2
3 = Vol(K{v1,v2}) = maxG′∈G1(Vol(KG′)),

G1 is updated to {G} = {{v1, v5}}.

Boosting Multi-Neuron Convex Relaxation for Neural Network Verification 15

Finally, G1 = {{v1, v5}}.
Then v2 ∈ V ′ is considered. GC2 = {{v1, v2}, {v2, v3}, {v2, v4}, {v2, v5}}. The

process is similar. The obtained set of selected groups containing v2 is G2 =
{{v1, v2}, {v2, v3}, {v2, v5}}.

Similarly, we get G3 = {{v3, v5}}, G4 = {{v4, v5}}, and G5 = {{v1, v5}, {v2, v5},
{v3, v5}, {v4, v5}} for the neurons v3, v4 and v5, respectively.

Lastly, the set of selected groups for the whole activation layer is G =⋃5
i=1 Gi = {{v1, v2}, {v2, v3}, {v1, v5}, {v2, v5}, {v3, v5}, {v4, v5}}. As a result, our

approach eliminates |GC| − |G| = 10− 6 = 4 group candidates.

3.4 Generalization

Our approach is presented until now for the ReLU activation function. However,
note that the ReLU function only plays a role when instantiating the intervals
Dj and the bounds Bj required by SBLM (Section 2.2). The characteristics of
the ReLU function are not necessary for our approach. Our approach can be
generalized, as SBLM in [17], to the Sigmoid function σ(x) = ex

ex+1 and the Tanh
function tanh(x) = ex−e−x

ex+e−x by instantiating Dj and Bj differently.
Following [17], assuming x ∈ [x, x], the intervals are instantiated as D1 =

(−∞, c] and D2 = [c,+∞), where the constant c is chosen to minimize the area
of the abstraction of a single neuron in the input-output plane. And the single-
neuron abstraction of the activation function f (Sigmoid or Tanh) is defined by
the bounds Bj = (a≤j , a

≥
j) instantiated using the bounds from [21] as:

f(x) ≤ a≥j (x) = f(uj) + (x− uj) ·
{

f(uj)−f(lj)
uj−lj , if uj ≤ 0,

min(f ′(uj), f ′(lj)), otherwise,

f(x) ≥ a≤j (x) = f(lj) + (x− lj) ·
{

f(uj)−f(lj)
uj−lj , if lj ≥ 0,

min(f ′(uj), f ′(lj)), otherwise,

where lj and uj denote the lower and upper bounds of Dj ∩ [x, x], respectively,
and f ′ for the derivative of f . Using the above instantiation, our approach is
applicable to the neural networks with Sigmoid and Tanh activation functions.

4 Experiments

We implement our approach as a neural network verifier FaGMR (Fast Grouping
for Multi-neuron Relaxation) based on Prima, by replacing its grouping strategy
with our volume approximation based approach. In this section, we evaluate
the efficiency and effectiveness of FaGMR on common benchmarks. Specifically,
we compare FaGMR against our baseline Prima in Section 4.2. It is further
compared in Section 4.3 with two other state-of-the-art verifiers from the Verifica-
tion of Neural Networks Competition (VNN-COMP) 2021 [2]: α,β-CROWN [28]
and ERAN [23]. They are representatives of mainstream verification techniques.
Section 4.4 shows the results of FaGMR on Sigmoid and Tanh neural networks.

16 X. Tang, Y. Zheng, and J. Liu

Table 1. Neural networks used in the experiments. “Type” is the network structure:
fully-connected (FC), convolutional (Conv), or Residual. “Training” is the used robust
training technique: non-robust (NOR), PGD [14], or DiffAI [15].

Dataset Model Training Type Neurons Layers Activation

MNIST 5 × 100 NOR FC 510 5 ReLU
9 × 100 NOR FC 810 9 ReLU
6 × 200 NOR FC 1010 6 ReLU
6 × 500 NOR FC 3000 6 Sigmoid
6 × 500 NOR FC 3000 6 Tanh
ConvMed PGD Conv 3604 3 ReLU
ConvMed PGD Conv 3604 3 Sigmoid
ConvMed PGD Conv 3604 3 Tanh
ConvBig DiffAI Conv 48064 6 ReLU

CIFAR-10 ConvSmall DiffAI Conv 3604 3 ReLU
ConvMed PGD Conv 5703 3 ReLU
ResNet2b DiffAI Residual 11364 13 ReLU

4.1 Experiment Configurations

Neural Networks. The evaluation is conducted on two widely-used datasets:
MNIST and CIFAR-10. In particular, besides fully-connected and convolutional
network structures, our evaluation includes a large ResNet network. Table 1
shows the details about all the networks used in our experiments. They are
benchmarks from VNN-COMP 2021 [2] and can be downloaded at [23].

Robustness Property. As most works do, we consider the l∞-norm perturbation
on correctly classified inputs from the datasets. All verifiers are asked to answer
verification problems as defined by Definition 1. More successfully verified prob-
lems mean better precision. In general, the perturbation thresholds θ are chosen
as the same as those in [17].

Parameters of FaGMR. FaGMR chooses k = 3, which is claimed as the optimal
option in Prima. That is, FaGMR considers size-3 neuron groups for convex
relaxation.

Machine and Software. All experiments are conducted on a 12-core 2.20GHz
Intel Xeon Sliver 4212 platform with 64GB memory. FaGMR is implemented in
Python 3.7 and uses Gurobi 9.5.1 [10] for LP solving. Qhull [3] is employed to
compute Vol(P) in Theorem 1.

4.2 Comparison of Verification Precision and Runtime

We first compare the verification precision and runtime of FaGMR against
Prima, the state-of-the-art multi-neuron relaxation tool as well as the baseline

Boosting Multi-Neuron Convex Relaxation for Neural Network Verification 17

Table 2. Comparison of FaGMR against Prima. “Total” is the number of verification
problems, θ for the perturbation threshold, “#group” for average number of selected
groups, “time” for average runtime (in seconds), and “#verified” for the number of
successfully verified problems. The best data are highlighted.

Network Total θ
Prima-all Prima-para FaGMR

#group time #verified #group time #verified #group time #verified

M
N
IS
T

5× 100 979
0.015 11.0 43.9 974 10.4 38.8 974 8.7 33.5 974

0.026 45.6 52.8 970 37.4 47.0 970 25.5 40.3 970

9× 100 947 0.026 1.5k 96.8 891 (20)* 338.0 61.6 911 138.8 57.6 911

6× 200 972 0.015 1.6k 106.7 959 1.5k 68.6 958 877.0 57.6 959

ConvMed 983 0.026 324.2 99.7 973 (2) 207.5 60.1 975 108.4 54.8 975

ConvBig 929 0.03 366.4 114.7 922 (4) 259.3 89.6 924 (2) 125.5 96.9 926

C
IF
A
R
-1
0 ConvSmall 471 4/255 3.0k 49.0 452 2.3k 34.6 452 1.4k 24.2 452

ConvMed 312 2/255 15.4k 649.5 288 (7) 2.4k 251.6 295 1.8k 223.6 295

ResNet2b 161 1/255 - - - 7.0k 407.5 158 1.1k 199.4 158

* in parentheses is the number of out-of-memory cases.
- results omitted due to lack of availability (over 50% out-of-memory cases).

that FaGMR is built on. For thorough evaluation, the comparison includes the
following two variants of Prima discussed in [17]:

– Prima-all: It selects all possible k-neuron groups in an activation layer.
– Prima-para: It defines parameters ns and s, partitions the neurons of an

activation layer into sets of size ns, and selects for each set a subset of all
size-k groups that pairwise overlap by at most s. It is the default in Prima.

We use the suggested k = 3 for all three verifiers FaGMR, Prima-all, and
Prima-para. For Prima-para, the default configuration (ns = 70, s = 1) in its
implementation is used. The three verifiers are compared on 8 different networks
of various sizes. The results are shown in Table 2.

In Table 2, FaGMR successfully verifies the most problems in all cases, and
outperforms Prima-all and Prima-para w.r.t. runtime in most cases. Particularly,
observe that for the MNIST 6×200 network with θ = 0.015, FaGMR verifies one
more problem than Prima-para while being 16.0% (≈ (68.6− 57.6)/68.6) faster,
and it is 46.0% faster than Prima-all yet achieving the same verification precision.
For the large network CIFAR-10 ResNet2b, FaGMR successfully verifies the
same number of problems as Prima-para, but is much (51.1%) faster. On some
complicated benchmarks, the MNIST ConvBig with θ = 0.03 for instance, both
Prima-all and Prima-para run out of memory in several problems, but FaGMR
does not, because it selects a much less number of groups for convex relaxation.
All the benchmarks demonstrate that FaGMR effectively reduces the number of
neuron groups. As a result, FaGMR reduces the verification time by 11.2% on
average compared to Prima-para, but with negligible precision loss compared to
Prima-all. The comparison confirms the effectiveness and efficiency of FaGMR.

Details of Runtime. The efficiency improvement of FaGMR comes from
selecting less number of neuron groups, which decreases the time cost for both

18 X. Tang, Y. Zheng, and J. Liu

Table 3. Detailed runtime of FaGMR and Prima (in seconds). Tgr is the time for
neuron grouping, Tcg the time for multi-neuron constraint generation, Tlp the time for
LP solving.

Network θ
Prima-all Prima-para FaGMR

Tgr Tcg Tlp Tgr Tcg Tlp Tgr Tcg Tlp

MNIST
5× 100

0.015 0.4 7.7k 34.8k 0.4 5.0k 32.6k 132 2.2k 30.0k

0.026 0.4 9.0k 41.1k 0.4 6.4k 39.0k 350 2.8k 35.8k

CIFAR-10
ConvSmall

2/255 1.4 3.0k 2.6k 1.4 3.0k 2.6k 2.7 2.1k 2.3k

4/255 2.3 15.0k 6.8k 2.3 9.9k 5.1k 9.8 4.5k 3.2k

constraint generation and solving. We quantitatively analyze the influence of
group reduction by dividing the runtime into three parts:

– Tgr : time for grouping;
– Tcg: time for constraint generation;
– Tlp: time for LP solving.

Table 3 shows the detailed runtime for some benchmarks. All the time is
the total time spent on all verification problems. We can see that FaGMR
spends more time for neuron grouping (Tgr) than both Prima-all and Prima-
para, due to the volume approximation and comparison. However, the grouping
time is negligible compared to the time for multi-neuron constraint generation
(Tcg) and LP solving (Tlp). The increased grouping time of FaGMR brings
significant efficiency improvements in both constraint generation and LP solving.
For instance, in the MNIST 5×100 network with θ = 0.015, Tgr +Tcg for FaGMR
is 70.0% (≈ (7.7− 2.332)/7.7) and 53.4% less than Prima-all and Prima-para,
respectively. And the total runtime (Tgr + Tcg + Tlp) of FaGMR is 24.0% and
14.0% faster than Prima-all and Prima-para, respectively.

Notice that for the CIFAR-10 ConvSmall network with θ = 2/255 in Table 3,
Prima-all and Prima-para have the same Tgr , Tcg and Tlp. It is because there are
only a few number of unfixed neurons that need to be grouped in such verification
problems with the small perturbation threshold, making the statically chosen
grouping parameters of Prima-para ineffective. Our dynamic grouping strategy
in FaGMR however avoids this to some extent, yielding respectively 30.0% and
11.5% efficiency improvement in Tcg and Tlp.

4.3 Comparison with Other State-of-the-Art Verifiers

We have shown the effectiveness and efficiency of FaGMR compared to its
baseline Prima, the state-of-the-art multi-neuron relaxation verifier. In this
section, FaGMR is further compared against α,β-CROWN [28] and ERAN [23],
two outstanding verifiers in VNN-COMP 2021 [2]. For α,β-CROWN, we use its
default configuration, under which it performs complete verification using Branch

Boosting Multi-Neuron Convex Relaxation for Neural Network Verification 19

0 2 4 6 8 10

Time(s) 10
4

0

20

40

60

80

100

V
e

ri
fi
e

d
 p

e
rc

e
n

ta
g

e
 (

%
)

MNIST 6x200 with = 0.015q

´

0 2 4 6 8 10 12

Time(s) 10
4

MNIST 9x100 with = 0.026q q

´

0 0.5 1 1.5 2

Time(s) 10
4

CIFAR-10 ConvSmall with = 4/255

CROWN

ERAN

FaGMR

-ba,CROWN

ERAN

FaGMR

-ba,CROWN

ERAN

FaGMR

-ba,

´

Fig. 2. Verified Percentage of FaGMR, α,β-CROWN and ERAN w.r.t. Runtime.
Three benchmarks consist of 972, 947, and 471 verification problems, respectively.

and Bound (BaB). For ERAN, we use its multi-neuron relaxation technique with
default ns = 70 and s = 1. The detailed settings are as follows.

– α,β-CROWN: BaB verifier with 20 β-CROWN iterations; CPU mode; time-
out for each task being 300 seconds; MILP refinement enabled; PGD attack
disabled. The configuration files for different networks can be found at its
repository1 with names network_name.yaml.

– ERAN: incomplete verifier with refinepoly domain; ns = 70 and s = 1 for
multi-neuron relaxation; CPU mode; MILP disabled. The configuration file
is available here.2

Figure 2 shows the comparison results on three neural networks. The y-axes
stand for the verified percentage and the x-axes for the runtime. The figure
illustrates that the verified percentage increases as the time passes. The fact that
a trend line is steeper indicates that its corresponding verifier is more efficient.

Figure 2 demonstrates that α,β-CROWN eventually verifies the least veri-
fication problems among the three tools on each network. It is mostly because
α,β-CROWN utilizes single-neuron relaxation techniques that inherently lead
to lower precision than multi-neuron relaxation leveraged by both FaGMR and
ERAN. FaGMR achieves similar verification precision to ERAN on these three
benchmarks. Precisely, it successfully verifies one more problem than ERAN
on the MNIST 6×200 network when θ = 0.015, and exactly the same number
of problems on the other two networks. For efficiency, we can easily see that
FaGMR outperforms the other two tools on all three networks.

The experimental results show that FaGMR is also competitive among the
state-of-the-art verifiers using different techniques.

4.4 Comparison on Sigmoid and Tanh Neural Networks

FaGMR is applicable to the neural networks with activation functions Sigmoid
and Tanh as presented in Section 3.4. In this section, we compare FaGMR against
1 https://github.com/Verified-Intelligence/alpha-beta-CROWN/tree/main/
complete_verifier/exp_configs/

2 https://github.com/formes20/FaGMR/blob/main/code/tf_verify/config.py

https://github.com/Verified-Intelligence/alpha-beta-CROWN/tree/main/complete_verifier/exp_configs/
https://github.com/Verified-Intelligence/alpha-beta-CROWN/tree/main/complete_verifier/exp_configs/
https://github.com/formes20/FaGMR/blob/main/code/tf_verify/config.py

20 X. Tang, Y. Zheng, and J. Liu

Table 4. Comparison of FaGMR against Prima-para on Sigmoid and Tanh net-
works. “Total” is the number of verification problems, θ for the perturbation threshold,
“#group” for average number of selected groups, “time” for average runtime (in seconds),
and “#verified” for the number of successfully verified problems. The best data are
highlighted.

Network Total Activation θ
Prima-para FaGMR

#group time #verified #group time #verified

M
N
IS
T

6× 500 95 Sigmoid 0.012 6.2k 640.9 95 3.8k 570.0 95

ConvMed 99 Sigmoid 0.014 6.3k 255.6 99 5.9k 252.5 99

6× 500 99 Tanh 0.005 406.6 211.8 97 (1)* 184.8 194.9 98

ConvMed 98 Tanh 0.005 1.2k 220.4 98 446.3 191.8 98
* in parentheses is the number of out-of-memory cases.

Prima-para on such networks. Prima-all is excluded due to out-of-memory issues
on these activation functions. Specifically, we choose two MNIST networks 6×500
and ConvMed with Sigmoid and Tanh activation functions (see Table 1), then
conduct the comparison experiments similar to Section 4.2.

Similarly, Table 4 shows that FaGMR outperforms Prima-para on these
networks with activation functions Sigmoid and Tanh. Specifically, by reducing
the number of selected groups, FaGMR is on average 8.3% faster than Prima-
para. In particular, it successfully verifies one more problem than Prima-para
on the 6×500 Tanh network when θ = 0.005 due to the latter’s out-of-memory
issue, while obtaining the same precision on the other three benchmarks.

5 Related Work

According to the completeness of verification results, neural network verification
methods can be categorized into complete methods and incomplete ones.

Complete verification. Complete verification methods can describe the exact
behavior of a neural network w.r.t. an input region. They can be further classified
into: (i) SAT/SMT based methods [11,12,7], which encode the verification problem
into an SAT/SMT query; (ii) Mixed-integer linear programming (MILP) based
methods [7,1,5], which encode the verification problem into an MILP problem
and then invoke MILP solvers; (iii) Branch-and-Bound based methods, which
split non-linear activation functions into linear pieces [28,25,6,27], or split the
input region to be small enough so that the neural network behaves linearly on
each input sub-region [26]. Complete methods are usually limited in scalability
because of the computational complexity.

Incomplete verification. Incomplete verification methods often relax non-linear
activations such as ReLU to speed up verification. Most incomplete methods
attempt to develop efficient and precise over-approximations for a given acti-
vation function (e.g. [20,21,29,18,28,33], see a survey in [13]). FaGMR belongs

Boosting Multi-Neuron Convex Relaxation for Neural Network Verification 21

to this category. It applies convex relaxation to over-approximate non-linear
activation functions, hence is incomplete but is faster and more scalable than
complete methods. Among incomplete verification methods, single-neuron convex
relaxation based methods consider each neuron separately and over-approximate
its activation function. They are very efficient (e.g., [20,21,29,18,28,33,32,31,9]),
but their verification precision is proved to be limited by a convex relaxation
barrier [18]. Instead, multi-neuron convex relaxation methods [19,24,17] suggest
over-approximating multiple neurons jointly for higher precision, hence break-
ing down the barrier faced by single-neuron relaxation. Our work follows this
promising direction and improves the efficiency of existing techniques.

6 Conclusion

We have presented a fast and effective neuron grouping strategy for multi-neuron
convex relaxation methods. The key idea is to compute the volume approximations
of all possible neuron group candidates and then select better groups according
to the approximated volumes. The evaluation shows that our approach effectively
reduces verification time and achieves competitive verification precision compared
to the state-of-the-art tools.

Acknowledgements. We thank all the anonymous reviewers and Gagandeep
Singh for their invaluable comments and suggestions.

References

1. Anderson, R., Huchette, J., Ma, W., Tjandraatmadja, C., Vielma, J.P.: Strong
mixed-integer programming formulations for trained neural networks. Math. Pro-
gram. 183(1), 3–39 (2020), https://doi.org/10.1007/s10107-020-01474-5

2. Bak, S., Liu, C., Johnson, T.T.: The second international verification of neu-
ral networks competition (VNN-COMP 2021): Summary and results. CoRR
abs/2109.00498 (2021), https://arxiv.org/abs/2109.00498

3. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: Qhull: Quickhull algorithm for com-
puting the convex hull. Astrophysics Source Code Library pp. ascl–1304 (2013)

4. Betke, U., Henk, M.: Approximating the volume of convex bodies. Discrete &
Computational Geometry 10, 15–21 (1993)

5. Botoeva, E., Kouvaros, P., Kronqvist, J., Lomuscio, A., Misener, R.: Efficient
verification of ReLU-based neural networks via dependency analysis. In: The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020. pp. 3291–3299. AAAI Press (2020),
https://ojs.aaai.org/index.php/AAAI/article/view/5729

6. Bunel, R., Lu, J., Turkaslan, I., Torr, P.H.S., Kohli, P., Kumar, M.P.: Branch and
bound for piecewise linear neural network verification. J. Mach. Learn. Res. 21,
42:1–42:39 (2020), http://jmlr.org/papers/v21/19-468.html

https://doi.org/10.1007/s10107-020-01474-5
https://arxiv.org/abs/2109.00498
https://ojs.aaai.org/index.php/AAAI/article/view/5729
http://jmlr.org/papers/v21/19-468.html

22 X. Tang, Y. Zheng, and J. Liu

7. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Kumar, K.N. (eds.) Automated Technology for Verification and
Analysis - 15th International Symposium, ATVA 2017, Pune, India, October 3-6,
2017, Proceedings. Lecture Notes in Computer Science, vol. 10482, pp. 269–286.
Springer (2017), https://doi.org/10.1007/978-3-319-68167-2_19

8. Goodfellow, I.J., Bengio, Y., Courville, A.C.: Deep Learning. Adaptive computation
and machine learning, MIT Press (2016), http://www.deeplearningbook.org/

9. Goubault, E., Palumby, S., Putot, S., Rustenholz, L., Sankaranarayanan, S.: Static
analysis of ReLU neural networks with tropical polyhedra. In: Dragoi, C., Mukherjee,
S., Namjoshi, K.S. (eds.) Static Analysis - 28th International Symposium, SAS
2021, Chicago, IL, USA, October 17-19, 2021, Proceedings. Lecture Notes in
Computer Science, vol. 12913, pp. 166–190. Springer (2021). https://doi.org/10.
1007/978-3-030-88806-0_8

10. Gurobi Optimization: Gurobi Optimizer, http://www.gurobi.com
11. Katz, G., Barrett, C.W., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An

efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kuncak,
V. (eds.) Computer Aided Verification - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 10426, pp. 97–117. Springer (2017), https://doi.org/10.
1007/978-3-319-63387-9_5

12. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljic, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.W.:
The Marabou framework for verification and analysis of deep neural networks.
In: Dillig, I., Tasiran, S. (eds.) Computer Aided Verification - 31st International
Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings,
Part I. Lecture Notes in Computer Science, vol. 11561, pp. 443–452. Springer (2019),
https://doi.org/10.1007/978-3-030-25540-4_26

13. Liu, C., Arnon, T., Lazarus, C., Strong, C.A., Barrett, C.W., Kochenderfer, M.J.:
Algorithms for verifying deep neural networks. Found. Trends Optim. 4(3-4), 244–
404 (2021), https://doi.org/10.1561/2400000035

14. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. CoRR abs/1706.06083 (2017), http:
//arxiv.org/abs/1706.06083

15. Mirman, M., Gehr, T., Vechev, M.T.: Differentiable abstract interpretation for
provably robust neural networks. In: Dy, J.G., Krause, A. (eds.) Proceedings of the
35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018. Proceedings of Machine Learning Research,
vol. 80, pp. 3575–3583. PMLR (2018), http://proceedings.mlr.press/v80/mirman18b.
html

16. Morgulis, N., Kreines, A., Mendelowitz, S., Weisglass, Y.: Fooling a real car with
adversarial traffic signs. CoRR abs/1907.00374 (2019), http://arxiv.org/abs/1907.
00374

17. Müller, M.N., Makarchuk, G., Singh, G., Püschel, M., Vechev, M.T.: PRIMA:
general and precise neural network certification via scalable convex hull approxima-
tions. Proc. ACM Program. Lang. 6(POPL), 1–33 (2022), https://doi.org/10.1145/
3498704

18. Salman, H., Yang, G., Zhang, H., Hsieh, C., Zhang, P.: A convex relaxation barrier
to tight robustness verification of neural networks. In: Wallach, H.M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information

https://doi.org/10.1007/978-3-319-68167-2_19
http://www.deeplearningbook.org/
https://doi.org/10.1007/978-3-030-88806-0_8
https://doi.org/10.1007/978-3-030-88806-0_8
https://doi.org/10.1007/978-3-030-88806-0_8
https://doi.org/10.1007/978-3-030-88806-0_8
http://www.gurobi.com
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1561/2400000035
http://arxiv.org/abs/1706.06083
http://arxiv.org/abs/1706.06083
http://proceedings.mlr.press/v80/mirman18b.html
http://proceedings.mlr.press/v80/mirman18b.html
http://arxiv.org/abs/1907.00374
http://arxiv.org/abs/1907.00374
https://doi.org/10.1145/3498704
https://doi.org/10.1145/3498704

Boosting Multi-Neuron Convex Relaxation for Neural Network Verification 23

Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada. pp. 9832–9842 (2019)

19. Singh, G., Ganvir, R., Püschel, M., Vechev, M.T.: Beyond the single neuron
convex barrier for neural network certification. In: Wallach, H.M., Larochelle, H.,
Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada. pp. 15072–15083 (2019), https://proceedings.neurips.cc/paper/2019/hash/
0a9fdbb17feb6ccb7ec405cfb85222c4-Abstract.html

20. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and
effective robustness certification. In: Bengio, S., Wallach, H.M., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. pp. 10825–10836 (2018), https://proceedings.neurips.cc/paper/2018/hash/
f2f446980d8e971ef3da97af089481c3-Abstract.html

21. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3(POPL), 41:1–41:30 (2019), https:
//doi.org/10.1145/3290354

22. Sommerville, D.M.: Introduction to the Geometry of N Dimensions. Courier Dover
Publications (2020)

23. SRI Lab: ETH robustness analyzer for neural networks (ERAN) (2022), https:
//github.com/eth-sri/eran

24. Tjandraatmadja, C., Anderson, R., Huchette, J., Ma, W., Patel, K., Vielma, J.P.:
The convex relaxation barrier, revisited: Tightened single-neuron relaxations for
neural network verification. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual (2020), https://proceedings.neurips.cc/paper/2020/hash/
f6c2a0c4b566bc99d596e58638e342b0-Abstract.html

25. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety
analysis of neural networks. In: Bengio, S., Wallach, H.M., Larochelle, H.,
Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural In-
formation Processing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. pp. 6369–6379 (2018), https://proceedings.neurips.cc/paper/2018/hash/
2ecd2bd94734e5dd392d8678bc64cdab-Abstract.html

26. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis
of neural networks using symbolic intervals. In: Enck, W., Felt, A.P. (eds.) 27th
USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA,
August 15-17, 2018. pp. 1599–1614. USENIX Association (2018), https://www.
usenix.org/conference/usenixsecurity18/presentation/wang-shiqi

27. Wang, S., Zhang, H., Xu, K., Lin, X., Jana, S., Hsieh, C., Kolter, J.Z.: Beta-CROWN:
Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang,
P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual. pp. 29909–29921 (2021), https://proceedings.neurips.
cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html

https://proceedings.neurips.cc/paper/2019/hash/0a9fdbb17feb6ccb7ec405cfb85222c4-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0a9fdbb17feb6ccb7ec405cfb85222c4-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f2f446980d8e971ef3da97af089481c3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f2f446980d8e971ef3da97af089481c3-Abstract.html
https://doi.org/10.1145/3290354
https://doi.org/10.1145/3290354
https://github.com/eth-sri/eran
https://github.com/eth-sri/eran
https://proceedings.neurips.cc/paper/2020/hash/f6c2a0c4b566bc99d596e58638e342b0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f6c2a0c4b566bc99d596e58638e342b0-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2ecd2bd94734e5dd392d8678bc64cdab-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2ecd2bd94734e5dd392d8678bc64cdab-Abstract.html
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://www.usenix.org/conference/usenixsecurity18/presentation/wang-shiqi
https://proceedings.neurips.cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/fac7fead96dafceaf80c1daffeae82a4-Abstract.html

24 X. Tang, Y. Zheng, and J. Liu

28. Xu, K., Zhang, H., Wang, S., Wang, Y., Jana, S., Lin, X., Hsieh, C.: Fast and
complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers. In: 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net
(2021), https://openreview.net/forum?id=nVZtXBI6LNn

29. Zhang, H., Weng, T., Chen, P., Hsieh, C., Daniel, L.: Efficient neural network
robustness certification with general activation functions. In: Bengio, S., Wallach,
H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada. pp. 4944–4953 (2018)

30. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine learning testing: Survey,
landscapes and horizons. IEEE Trans. Software Eng. 48(2), 1–36 (2022)

31. Zhao, Z., Zhang, Y., Chen, G., Song, F., Chen, T., Liu, J.: CLEVEREST:
accelerating CEGAR-based neural network verification via adversarial attacks.
In: Singh, G., Urban, C. (eds.) Static Analysis - 29th International Sympo-
sium, SAS 2022, Auckland, New Zealand, December 5-7, 2022, Proceedings.
Lecture Notes in Computer Science, vol. 13790, pp. 449–473. Springer (2022).
https://doi.org/10.1007/978-3-031-22308-2_20

32. Zheng, Y., Liu, J., Shi, X.: MpBP: verifying robustness of neural networks with
multi-path bound propagation. In: Roychoudhury, A., Cadar, C., Kim, M. (eds.)
Proceedings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/FSE 2022,
Singapore, Singapore, November 14-18, 2022. pp. 1692–1696. ACM (2022). https:
//doi.org/10.1145/3540250.3558924

33. Zheng, Y., Shi, X., Liu, J.: Multi-path back-propagation method for neural network
verification (in Chinese). Ruan Jian Xue Bao/Journal of Software 33(7), 2464–2481
(2022), http://www.jos.org.cn/1000-9825/6585.htm

https://openreview.net/forum?id=nVZtXBI6LNn
https://doi.org/10.1007/978-3-031-22308-2_20
https://doi.org/10.1007/978-3-031-22308-2_20
https://doi.org/10.1145/3540250.3558924
https://doi.org/10.1145/3540250.3558924
https://doi.org/10.1145/3540250.3558924
https://doi.org/10.1145/3540250.3558924
http://www.jos.org.cn/1000-9825/6585.htm

	Boosting Multi-Neuron Convex Relaxation for Neural Network Verification

