
Polynomial Analysis of Modular Arithmetic

Thomas Seed1[0009−0006−9263−1839], Chris Coppins1[0000−0002−5523−6104],
Andy King1[0000−0001−5806−4822], and Neil Evans2

1 University of Kent, Canterbury, CT2 7NZ, UK, a.m.king@kent.ac.uk
2 AWE Aldermaston, Reading, RG7 4PR, UK

Abstract. The modular polynomial abstract domain, MPAD, is pro-
posed, whose invariants are systems of polynomial equations that hold
modulo a power of 2. Its domain operations are founded on a closure
operation, but unlike conventional polynomial abstractions, MPAD sat-
isfies the ascending chain condition, can model both positive and negative
polynomial guards, and can infer invariants previously out of reach.

Keywords: abstract interpretation, modular arithmetic, polynomial invariants

1 Introduction

One step in the evolution of a numeric abstract domain is when the domain,
originally conceived for idealised, arbitrary-precision arithmetic, is adapted to
machine arithmetic to better suit its working environment. This adaption is more
often a leap than a step because the domain operations typically need to be
fundamentally reimagined to model modular arithmetic. It has taken more than
two decades for each of the classical abstract domains of ranges [7, 15], difference
constraints [9] and linear equalities [20], to be adjusted to a modular setting, as
realised in, respectively, sign agnostic range analysis [11], modular differences
[12] and linear equalities modulo a power of two [27]. The tenor of these works is
that operating over modular integers is not a restriction, but rather the natural
domain for deriving invariants over fixed-width integers, which are the norm in
mainstream programming languages.

Modular Polynomial Abstract Domain For inferring polynomial invariants, one
might be forgiven for considering the additional complexity of modular arith-
metic to be an irritation, justified only by the desire to faithfully model machine
integers and avoid missing invariants. In this paper we challenge this view by
demonstrating how Modular Polynomial Abstract Domain (MPAD) can simplify
the discovery of polynomial equalities. Contrary to non-modular approaches [4,
8, 17, 22, 23, 25, 29–31], MPAD is a finite lattice. The finiteness of modular poly-
nomials has been observed before [33], and exploited in a backwards analysis
[33] over programs equipped with polynomial assignment, non-deterministic as-
signment and negative guards (discussed in Section 7). Our work takes modular
polynomials in a new direction, literally forwards, enabling MPAD to be com-
bined [5] with classic numeric domains [24]. Like [33], MPAD obviates the need

2 Thomas Seed, Chris Coppins, Andy King and Neil Evans

to specify the shape of an invariant up-front (in a template) [29, 31], or limit the
syntactic form of the program [17, 18, 23], or drop high-degree polynomials [30].

Closure of modular systems Fundamental to MPAD is the concept of a closed
polynomial system. A system of polynomials is closed if it cannot be further aug-
mented with polynomials without restricting its solution set. Ensuring a closed
representation is essential to ensure that entailment of a given constraint can al-
ways be checked. Morever, mirroring a construction used for the Octagon domain
[24], we demonstrate that join and projection can be calculated, without omitting
polynomials that actually hold, when they are applied to closed systems. It fol-
lows that MPAD can infer all modular polynomial invariants for programs with
polynomial and non-deterministic assignments, and non-deterministic branch-
ing. Though preserved by join and projection, closedness is lost when intersect-
ing two polynomial systems to compute their meet. To resolve this, we present
a divide-and-conquer algorithm for computing closure, thus ensuring a closed
representation throughout the analysis.

Expressiveness MPAD can model positive and negative polynomial guards, that
is, assume (p = 0) and assume (p 6= 0) statements where p is a polynomial.
Support for negative guards is a direct consequence of working with fixed-width
integers: an integer assumes a non-zero value if and only if one of its bits is
set, a property that can be expressed in MPAD. The finiteness of MPAD also
allows a best transformer [28] to be mechanically calculated. For instance, the
best transformer for the 3-bit bitvector operation x & y = z is the system S:

xy3 + xy2 + 5yz2 + 2xy + 5z2 + 2z,
xz3 + xz2 + 5z3 + 6xz + 5z2 + 6z,
yz3 + 5yz2 + z3 + 2yz + 5z2 + 2z,
x2y + 5xy2 + 6xz2 + 6yz2 + 6z3 + 5xy + 3z2,
x2z + 7xz2 + 5xz + 3z2,

xyz + 7xz2 + 7yz2 + z3,
y2z + 7yz2 + yz + 7z2,
4xy + 4z,
4xz + 4z,
4yz + 4z

where each polynomial p ∈ S is satisfied by every assignment of the form
x, y ∈ {0, . . . , 7} and z = (x&y) mod 8. This, and other best abstractions, can
only be calculated [28] because MPAD satisfies the ascending chain condition.

Contributions To summarise, this paper makes the following contributions:

– We introduce closure for MPAD, showing that it is preserved by join and
projection but must be re-established after meet to retain all invariants;

– We present a divide-and-conquer algorithm for computing closure, introduc-
ing reductions and shortcuts that simplify its calculation;

– We show how redundant calculation can be removed from the algorithm (of
Buchberger for modular polynomials [2]) which sits behind closure;

– We show that using MPAD in forwards analysis can derive invariants that
cannot be derived with existing domains (because of its support for guards).

Polynomial Analysis of Modular Arithmetic 3

Roadmap Section 2 introduces MPAD, providing the minimum of detail for fol-
lowing the example of Section 6.5. The domain operations of MPAD are built
atop of Gröbner bases, which are introduced in Section 3. (The detail of sec-
tion 3.5 can be skipped on first reading since it is only necessary for Section 6.6.)
Section 4 explains how join can be calculated in terms of variable elimination and
Gröbner bases. Section 5 introduces covers of polynomial systems, providing an
algorithm for computing them. It also shows how meet can be reduced to closure.
Section 6 presents correctness and precision results for MPAD over polynomial
programs, and concludes with an illustrative example. Section 7 reviews related
work and section 8 concludes.

2 Modular Polynomial Abstract Domain

This section abstractly specifies MPAD, and its domain operations, with minimal
mathematical machinery. The problems of how to finitely represent the elements
of MPAD and compute meet, join and projection are deferred to later sections.

2.1 Modular Arithmetic

Let ω ≥ 1, m = 2ω and Zm = {0, . . . ,m − 1} be an abstraction of machine
arithmetic over ω-bit integers [26, 27]. The relation≡m⊆ Z×Z is defined by x ≡m
y if there exists k ∈ Z such that x − y = km. Atop, the operation · (mod m) :
Z→ Zm is defined x (mod m) = y where y ∈ Zm uniquely satisfies x ≡m y. The
unary operation − : Zm → Zm and the dyadic operations +, · : Zm × Zm → Zm
are then defined: −x = (−̂x) (mod m), x + y = (x +̂ y) (mod m) and x · y =
(x ·̂ y) (mod m) where −̂, +̂, ·̂ denote the classical operations over Z. If x ∈ Zm
then y ∈ Zm is a multiplicative inverse of x if x · y = 1. Note that x ∈ Zm
has a multiplicative inverse iff it is odd, in which case the inverse is unique. In
particular, if ω > 1 then Zm is not a field, since 2 has no multiplicative inverse.

2.2 Polynomials

Let x = 〈x1, . . . , xd〉 be a vector of variables. A monomial over x is an expression
xα = xα1

1 · · ·x
αd

d where α = 〈α1, . . . , αd〉 ∈ Nd. A term over x is an expression
t = cxα where c ∈ Zm and xα is a monomial. A polynomial over x is an
expression t1+· · ·+ts where each ti is a term over x, the case s = 0 corresponding
to the 0 polynomial. The set of polynomials over x is denoted Zm[x].

A polynomial p = t1 + · · · + ts is normalised if either s = 0 or else for
all ti = cix

αi and tj = cjx
αj it holds that ci 6= 0 and if i 6= j then αi 6=

αj . By repeatedly combining the coefficients of terms with equal monomials,
and deleting terms with coefficient 0, a polynomial can be transformed into
a normalised form. Two polynomials are considered equal if they have equal
normal forms, up to the ordering of terms. If cxα is a term then vars(cxα) =
{xi | αi > 0}, which is extended to polynomials by vars(p) =

⋃
t∈p vars(t).

4 Thomas Seed, Chris Coppins, Andy King and Neil Evans

(a) γx(Q1) (b) γx(Q2) (c) γx(〈Q′1〉x ∩ 〈Q2〉x〉) (d) γx(〈Q1〉x ∩ 〈Q2〉x)

Fig. 1. Dyadic join with and without closure

For p ∈ Zm[x], d = |x| and a ∈ Zdm let JpKx(a) denote evaluating p at a
by substituting each ai for xi in p, and calculating the resulting arithmetical
expression. Through this definition, a set of polynomials in Zm[x] is a symbolic
description of a set of points, interpreted by γx as follows:

Definition 1. The concretisation map γx : ℘(Zm[x]) → ℘(Zdm) where d = |x|
is defined: γx(P) = {a ∈ Zdm | JpKx(a) = 0 for all p ∈ P}

The set of points γx(P) is the solution (or zero) set of the set P of polynomials
over x. For a single p ∈ Zm[x], let γx(p) = γx({p}).

Example 1. Let x = 〈x, y〉 and Q1, Q2 ⊆ Z256[x] where

Q1 =
{

4x+ 132, y + 228
}

Q2 =

{
x2 + x+ 123y + 130, xy + 108y + 128,
2x+ 23y + 54, y2 + 82y, 128y

}
The solutions sets γx(Q1) and γx(Q2) are plotted as points in [0, 255]2 in Fig. 1(a)
and Fig. 1(b) respectively. Here, the grid lines represent increments of 32. Al-
though Q1 is linear it has 4 solutions, namely (31, 28), (95, 28), (159, 28) and
(223, 28), because 31 · 4 ≡256 95 · 4 ≡256 159 · 4 ≡256 223 · 4 ≡256 124 ≡256 −132.

2.3 Closure

Suppose P ⊆ Zm[x], p ∈ Zm[x] and γx(P) ⊆ γx(p). Then γx(P ∪{p}) = γx(P),
thus P can be augmented with p without restricting its solution set. This is the
intuition behind the following definition:

Definition 2. The operator ↑x: ℘(Zm[x]) → ℘(Zm[x]) is defined by:
↑x P = {p ∈ Zm[x] | γx(P) ⊆ γx(p)}

The following result collects fundamental properties of ↑x. The first three to-
gether imply that ↑x is a closure operator on 〈℘(Zm[x]),⊆〉. The fourth implies
that ↑x constructs a canonical representation of a system of polynomials. The
fifth shows that the canonical representation preserves the solution set.

Polynomial Analysis of Modular Arithmetic 5

Proposition 1. The operator ↑x satisfies the following: (1) P ⊆ ↑x P (exten-
sive); (2) if P1 ⊆ P2 then ↑x P1 ⊆ ↑x P2 (monotonic); (3) ↑x ↑x P = ↑x P
(idempotent); (4) γx(P1) = γx(P2) iff ↑x P1 = ↑x P2; (5) γx(↑x P) = γx(P).

The closure operator ↑x yields a canonical representation of a given set of poly-
nomials, yet the representation is not finite. The concept of a basis is introduced,
which serves as the starting point for a compact, finite representation:

Definition 3. If B ⊆ Zm[x] then 〈B〉x = {
∑s
i=1 uipi| s ∈ N, pi ∈ B, ui ∈ Zm[x]}

The set of polynomials 〈B〉x is an ideal in that it is closed under addition with
a polynomial from B and multiplication with an arbitrary polynomial (not nec-
essarily drawn from B). The ideal 〈B〉x is said to be generated by B, which is
called the basis. In particular the solutions of 〈B〉x are those of B itself and the
sets found by applying closure are ideals themselves:

Lemma 1. (1) γx(〈B〉x) = γx(B) and (2) If P = ↑x P then P = 〈P 〉x.

Generating P from itself is enough to show that P is an ideal, but does not
provide the necessary finite representation. However, it has long been known
that ideals of polynomials admit a finite basis [16], at least for polynomials
whose coefficients are drawn from a field. This classical result, which can be
interpreted as a statement on representation, adapts naturally to the setting of
polynomials over modular integers, as will be explained in Section 3.

Example 2. Returning to Example 1, ↑x Q1 and ↑x Q2 admit the finite represen-
tations ↑x Q1 = 〈Q′1〉x and ↑x Q2 = 〈Q2〉x where Q′1 = {x2+2x+1, 4x+132, y+
228}. Observe 312 + 2 · 31 + 1 = 1024 ≡256 0. Similarly it follows γx(x2 + 2x+ 1)
⊇ {(31, y), (95, y), (159, y), (233, y) | y ∈ Z256}. Thus x2 + 2x+ 1 ∈ ↑xQ1. How-
ever, x2 + 2x+ 1 6∈ 〈Q1〉x. To see this, consider the expansion of the polynomial
p(4x+132)+q(y+228) = 4(xp+33p+57q)+yq. Observe that any term t occuring
in this polynomial that is independent of y must be a term of 4(xp+ 33p+ 57q).
But then, the coefficient of t must be a multiple of 4. In particular, there cannot
exist p, q for which x2 + 2x+ 1 = p(4x+ 132) + q(y+ 228), since x2 (and in fact
2x and 1 as well) is independent of y but has coefficient 1. Hence Q1 must be
enlarged to obtain a basis for ↑x Q1.

2.4 MPAD

The closure operator characterises the elements of our abstract domain:

Definition 4. MPADm[x] = {P ⊆ Zm[x] | ↑x P = P}

Elements of MPADm[x] are said to be closed. If P1 ⊆ P2 then γx(P1) ⊇ γx(P2)
thus to align with 〈℘(Zdm),⊆〉 the domain MPADm[x] adopts superset ordering:

Proposition 2. 〈MPADm[x],v,⊥,>,u,t〉 is a finite lattice, where

v = ⊇ ⊥ = Zm[x] > = ↑x ∅ P1 u P2 = ↑x (P1 ∪ P2) P1 t P2 = P1 ∩ P2

6 Thomas Seed, Chris Coppins, Andy King and Neil Evans

Join and meet are specified set theoretically rather than algorithmically. Observe
too that MPAD is finite even though there are no bounds, a priori, put on the
degree of any polynomial. This follows from the finiteness of Zm and the closure
construction that underlies MPAD. To observe this, consider the function space
F = {JpKx | p ∈ Zm[x]} ⊆ Zdm → Zm. Since the space Zdm → Zm is finite
there exists p1, . . . , p` ∈ Zm[x] such that F = {JpiKx | i ∈ [1, `]}. To see how F
determines the structure of MPADm[x], define p ≡ q iff JqKx(a) = JpKx(a) for all
a ∈ Zdm. Let P ∈ MPADm[x] and p ∈ P . Observe p ≡ pi for some i ∈ [1, `] and
γx(P) ⊆ γx(p) = γx(pi) hence pi ∈ P . Conversely, if pj ∈ P and pj ≡ q then
q ∈ P . Therefore there exists I ⊆ [1, `] such that P = {q ∈ Zm[x] | q ≡ pi, i ∈ I}.
Thus MPADm[x] only has a finite number of elements.

Example 3. Continuing from Example 2, let

Q′ =

x3 + x+ 13y2 + 11y + 126,
x2y + xy + 14y2 + 24y,
2x2 + xy + 19y2 + 97y + 78,
xy2 + 22y2 + 116y, y3 + 22y2 + 72y
2xy + 19y2 + 110y, 128y,
4x+ 2y2 + 82y + 108, 32y2 + 64y

Q =

x2y + xy + 14y2 + 24y,
xy2 + 22y2 + 116y,
2xy + 19y2 + 110y,
4x+ 2y2 + 82y + 108,
y3 + 22y2 + 72y,
32y2 + 64y, 128y

Then, 〈Q′1〉x ∩ 〈Q2〉x = 〈Q′〉x and 〈Q1〉x ∩ 〈Q2〉x = 〈Q〉x. Again, we defer
the discussion of how Q and Q′ are calculated. Observe from Figs. 1(a), 1(b)
and 1(c) that γx(〈Q′1〉x) ∪ γx(〈Q2〉x) ⊆ γx(〈Q′〉x) as required, the diamond
points indicating those introduced by join itself. The diamonds in Figure 1(d) are
extraneous points introduced by calculating 〈Q1〉x ∩ 〈Q2〉x rather than 〈Q′1〉x ∩
〈Q2〉x. This illustrates that operating on arbitrary bases is not generally sufficient
to maintain precision, thus motivating the need for closure.

Finally, the following result asserts that MPAD enjoys mathematical properties
that simplify the application of abstract interpretation:

Proposition 3. 〈℘(Zdm),⊆〉
αx

γx
〈MPADm[x],v〉 is a Galois insertion, where

αx(A) = {p ∈ Zm[x] | A ⊆ γx(p)}

2.5 Null polynomials

Recall > = ↑x ∅ = {p ∈ Zm[x] | γx(∅) ⊆ γx(p)}. It follows > = {p ∈ Zm[x] |
∀a ∈ Zdm.JpKx(a) = 0} because γx(∅) = Zdm. Such polynomials are referred to as
vanishing or null polynomials [14] and represent universally valid constraints.

Example 4. Let x = 〈x, y〉. Then in Z16[x], > = 〈N〉x where

N =

x6 + x5 + x4 + 7x3 + 6x2 (p1), 2x4 + 4x3 + 6x2 + 4x (p2),
x4y2 + x4y + 2x3y2 + 2x3y + 3x2y2 + 3x2y + 2xy2 + 2xy (p3),
x2y4 + 2x2y3 + 3x2y2 + 2x2y + xy4 + 2xy3 + 3xy2 + 2xy (p4),
y6 + y5 + y4 + 7y3 + 6y2 (p5) 2y4 + 4y3 + 6y2 + 4y (p6),

4x2y2 + 4x2y + 4xy2 + 4xy, 8x2 + 8x, 8y2 + 8y

Polynomial Analysis of Modular Arithmetic 7

The pi annotations are for future reference (Example 22).

Somewhat surprisingly an algorithm exists for finitely enumerating the set of
null polynomials, hence computing >, for any given number of variables and
bit-width [14, Theorem 3.3]. It is tempting to remove null polynomials from
bases, since they are vacuous as constraints. Unfortunately, this is not generally
possible without sacrificing the canonical representation property of closure.

3 Gröbner bases

This section provides a primer on Gröbner bases over modulo integers.

3.1 Rank and divisibility in Zm

Let | ⊆ Z2 denote the divisibility relation over integers: a | b iff b is divisible by
a. The rank [26] of a ∈ Zm is defined: rankω(a) = max{j ∈ N | 2j | a} if a > 0
otherwise ω, and can be computed by counting the number of trailing zeros in
the binary representation of a [34].

Example 5. In Z256 where ω = 8, rank8(0) = 8, rank8(15) = 0 and rank8(56) = 3.

If a ∈ Zm then a = 2rankω(a)d for some odd d. If a 6= 0 then d = a/2rankω(a) is
unique and the expression 2rankω(a)d is referred to as the rank decomposition of
a. For completeness, we declare 0 = 2ω · 1 be the rank decomposition of 0.

Example 6. In Z256, 0 = 28·1, 15 = 20·15 and 56 = 23·7 are rank decompositions.

For a1 ∈ Zm and a2 ∈ Zm \ {0}, a1 is divisible by a2 if a1 = ba2 for some divisor
b ∈ Zm. This occurs iff rankω(a1) ≥ rankω(a2), in which case, if ai = 2kidi is
the rank decomposition of each ai, then b = 2k1−k2d1d2

−1 where d2
−1 is the

multiplicative inverse of d2 (which exists since d2 is odd).

3.2 Monomial orderings

Gröbner bases are founded on the concept of reduction, which simplifies a poly-
nomial with respect to a set of polynomials. To define reduction it is necessary
to order the terms in a polynomial, leading to the concept of monomial ordering:

Definition 5. A total order ≺ over monomials xα is a monomial ordering if:
(1) 1 ≺ xα for all α > 0 and (2) if xα1 ≺ xα2 then xα1xβ ≺ xα2xβ for all
xα1 , xα2 and xβ.

If ≺ is a monomial ordering then � will denote its non-strict version. Note that
monomial orderings are well-orderings, hence there is no infinite decreasing chain
xα1 � xα2 � · · · of monomials.

8 Thomas Seed, Chris Coppins, Andy King and Neil Evans

Example 7. Let y = 〈xj1 , . . . , xjd〉 be a permutation of x and < denote lexico-
graphical ordering over Nd. Then, the lexicographical ordering ≺y, defined by
xα ≺y xβ iff 〈αj1 , . . . , αjd〉 < 〈βj1 , . . . , βjd〉, is a monomial ordering.

Monomial orderings add structure to polynomials: specifically, if p 6= 0 then p
can be uniquely expressed as p = cxα + q where c 6= 0 and all monomials xβ in
q satisfy xβ ≺ xα. Making use of this additional structure we define:

Definition 6. Let ≺ be a monomial ordering over x and p = cxα + q where
c 6= 0 and all monomials xβ in q satisfy xβ ≺ xα. Then, (1) lt≺(p) = cxα,
(2) lm≺(p) = xα and (3) lc≺(p) = c are respectively the leading term, monomial
and coefficient of p with respect to ≺.

3.3 Reduction

Reduction is analogous to integer division with remainder:

Definition 7. Let p, q, r ∈ Zm[x], p 6= 0, q 6= 0 and ≺ a monomial ordering.
Then, p is ≺-reducible by q to r, denoted p →≺,q r, if lt≺(p) = t lt≺(q) and
p = tq + r for some term t.

Reducibility lifts to sets B ⊆ Zm[x] by →≺,B =
⋃
p∈B →≺,p. Furthermore, let

→+
≺,B (resp. →∗≺,B) denote the transitive (resp. transitive, reflexive) closure of

→≺,B . If p→+
≺,B r for some r then p is said to be ≺-reducible by B, otherwise

≺-irreducible by B, denoted p 6→≺,B .

Example 8. Let x = 〈x, y, a〉 and B ⊆ Z16[x] where

B =

{
x+ a2 + 7a+ 7 (p1), y + a2 + 7a+ 7 (p2),
a3 + a2 + 7a+ 7 (p3), 2a2 + 14 (p4), 8a+ 8 (p5)

}
Now, let p = xa + 15 ∈ Z16[x] and ≺ = ≺x. Then, lt≺(p) = xa = a lt≺(p1) and
p = ap1 + r1 where r1 = 15a3 + 9a2 + 9a + 15, hence p →≺,p1 r1. Similarly,
lt≺(r1) = 15a3 = 15 lt≺(p3) and r1 = 15p3 + r2 where r2 = 10a2 + 6, hence
r1 →≺,p3 r2. Finally, lt≺(r2) = 10a2 = 5 lt≺(p4) and r2 = 5p4 + r3 where r3 = 0,
hence r2 →≺,p4 r3. Thus, p→≺,p1 r1 →≺,p3 r2 →≺,p4 r3, hence p→+

≺,B 0.

Note p is ≺-reducible by B iff lt≺(p) is divisible by lt≺(q) for some q ∈ B, where
a term t1 is divisible by a term t2 if t1 = t2t3 for some term t3. Moreover, reduc-
tion eliminates the leading term of a polynomial, leaving a residue polynomial
comprised of strictly smaller terms with respect to ≺:

Lemma 2. If p→+
≺,B r 6= 0 then lm≺(r) ≺ lm≺(p).

Since monomial orderings are well-orderings, the previous result implies that a
sequence of reductions cannot continue ad infinitum and must eventually termi-
nate with the 0 polynomial. In this case, it follows that p ∈ 〈B〉x, hence reduction
provides a test for membership in an ideal:

Proposition 4. If p→∗≺,B 0 then p ∈ 〈B〉x.

But reduction against an arbitrary basis B does not lead to a complete test for
membership in 〈B〉x, hence motivating Gröbner bases.

Polynomial Analysis of Modular Arithmetic 9

3.4 Gröbner bases

With reduction in place, the concept of Gröbner basis can be introduced:

Definition 8. Let B ⊆ Zm[x] and ≺ a monomial ordering over x. Then,
G ⊆ 〈B〉x is a Gröbner basis for 〈B〉x with respect to ≺ if for all p ∈ 〈B〉x,
if p 6= 0 then p is ≺-reducible by G.

Gröbner bases provide a complete test for membership in 〈B〉x, as asserted by:

Lemma 3. If G is a Gröbner basis for 〈B〉x with respect to ≺ then for all
p ∈ 〈B〉x, p→∗≺,G 0.

Example 9. Let x = 〈x, y〉, ≺ = ≺x and p ∈ Z16[x] where p = 4x. Moreover,
let B = {p1, p2} ⊆ Z16[x] where p1 = 2x2y + 2x2 + 6xy + x and p2 = 4y + 4.
Then, p = 12p1 + (10x2 + 10x)p2 ∈ 〈B〉x, yet p 6→≺,B , thus B is not a Gröbner
basis with respect to ≺. However, it can be shown if p3 = 6x and p4 = 3x then
G = {p1, p2, p3, p4} is a Gröbner basis for 〈B〉x with respect to ≺. Note that p
is ≺-reducible by p4 ∈ G. Indeed, p →≺,p4 0, hence p →∗≺,G 0, as predicted by
the previous result.

3.5 Buchberger’s algorithm

Classically [3], Gröbner bases are computed by evaluating S-polynomials:

Definition 9. Let ≺ be a monomial ordering over x. The S-polynomial of p1, p2 ∈
Zm[x] with respect to ≺ is defined:

S≺(p1, p2) = d22k−k1xα−α1p1 − d12k−k2xα−α2p2

where, if pi = 0 then ki = ω, di = 1 and αi = 0, else 2kidi is the rank decompo-
sition of lc≺(pi) and xαi = lm≺(pi), k = max(k1, k2) and α = max(α1,α2).

Example 10. If p1 = 2x2y + 2x2 + 6xy + x and p2 = 4y + 4 then it follows
S≺(p1, p2) = 2(2xy2 + 6xy + 2y2 + y)− y2(4x+ 4) = 12xy + 2y and S≺(p1, 0) =
8(2xy2 + 6xy + 2y2 + y)− xy2(0) = 8y.

Note that lt≺(d22k−k1xα−α1p1) = lt≺(d12k−k2xα−α2p2), hence the S-polynomial
S≺(p1, p2) leads to a cancellation of leading terms. In particular, the S-polynomial
S≺(p1, 0) eliminates the leading term of p1, and possible other terms as well.
This deviates from the classical case of fields, where only multiplying by 0 can
eliminate a leading term. S-polynomials then yield an effective criterion [2, The-
orem 30] to determine if a given basis is a Gröbner basis.

Theorem 1 (Buchberger’s criterion). Let ≺ be a monomial ordering and
B = {p1, . . . , ps} ⊆ Zm[x]. If S≺(pi, pj) →∗≺,B 0 and S≺(pi, 0) →∗≺,B 0 for all
1 ≤ i < j ≤ s then B is a Gröbner basis for 〈B〉x with respect to ≺.

10 Thomas Seed, Chris Coppins, Andy King and Neil Evans

function gb≺(B = {p1, . . . , ps} ⊆ Zm[x])
begin

G := B
S := {(pi, pj) | 1 ≤ i < j ≤ s} ∪ {(pi, 0) | 1 ≤ i ≤ s}
while (S 6= ∅)

let s = (f1, f2) ∈ S
S := S \ {s}
p := S≺(f1, f2)
let p→∗≺,G r where r 6→≺,G

if (r 6= 0)
S := S ∪ {(g, r) | g ∈ G} ∪ {(r, 0)}
G := G ∪ {r}

end if
end while
return G

end

Fig. 2. Gröbner basis algorithm over integers modulo 2ω

Buchberger’s criterion justifies Buchberger’s algorithm for constructing Gröbner
bases. Fig. 2 presents a version of Buchberger’s algorithm [2] that takes B ⊆
Zm[x] and a monomial ordering ≺ over x and returns a Gröbner basis for 〈B〉x
with respect to ≺. The algorithm maintains a basis G, initialised to B, and a
set of unverified S-polynomials S. The algorithm attempts to verify that G is
a Gröbner basis by reducing each S-polynomial pair in S against it. If some S-
polynomial does not reduce, it yields a new element which is added toG, and gen-
erates further S-polynomials. The algorithm terminates when all S-polynomials
for the current basis reduce to 0, at which point Buchberger’s criterion applies
to show the result, henceforth denoted gb≺(B), is a Gröbner basis. Observe that
B ⊆ G on each iteration of the while loop hence B ⊆ gb≺(B).

4 Calculating variable elimination and join

This section explains how variable elimination can be computed using Gröbner
bases, and how variable elimination can be combined with a relaxation to com-
pute the join of two ideals finitely represented as bases.

4.1 Variable elimination

A generic projection function πi(〈a1, . . . , a`〉) = 〈a1, . . . , ai−1, ai+1, . . . , a`〉 is
used to formulate elimination. The presentation of elimination commences with
a syntactic version which removes polynomials that contains a given variable:

Definition 10. (Syntactic) variable elimination is an operation elim[xj] where
elim[xj] : ℘(Zm[x])→ ℘(Zm[πj(x)]) defined by elim[xj](P) = P ∩ Zm[πj(x)]

Polynomial Analysis of Modular Arithmetic 11

The following result demonstrates that abstraction and elimination commute.
The result is formulated in terms of the natural lifting of πj from the function
space Zdm → Zd−1m to ℘(Zdm)→ ℘(Zd−1m).

Proposition 5. If A ⊆ Zdm then elim[xj](αx(A)) = απj(x)(πj(A)).

It follows from this result that elimination preserves closure:

Corollary 1. If P ∈ MPADm[x] then elim[xj](P) ∈ MPADm[πj(x)].

Example 11. Consider B = {wx+ 10w, 15wx2 +wx+x2 + 15x} ⊆ Z16[w, x] and
observe elim[w](B) = ∅. However (x2 + 7x + 8)(wx + 10w) + (x + 2)(15wx2 +
wx + x2 + 15x) = x3 + x2 + 14x hence x3 + x2 + 14x ∈ 〈B〉〈w,x〉. Since w 6∈
vars(x3 + x2 + 14x) it follows x3 + x2 + 14x ∈ elim[w](〈B〉〈w,x〉). In particular,
elim[w](〈B〉〈w,x〉) 6= {0} = 〈∅〉〈x〉 = 〈elim[w](B)〉〈x〉.

The previous example shows that syntactic variable elimination is not well-
behaved with respect to ideal generation, thus motivating the following:

Definition 11. (Semantic) variable elimination is a relation →elim[xj] where
→elim[xj]⊆ ℘(Zm[x])×℘(Zm[πj(x)]) defined by B →elim[xj] B

′ iff elim[xj](〈B〉x) =
〈B′〉πj(x)

Proposition 6. Let B ⊆ Zm[x] and B′ be a Gröbner basis for 〈B〉x with respect
to ≺y where y is a permutation of x and y1 = xj. Then B →elim[xj] elim[xj](B

′).

The previous result can be stated more generally in terms of elimination order-
ings [1]; the restriction to lexicographical ordering is adopted merely to simplify
the presentation. Consistent with this choice, gb≺y

is henceforth abbreviated to
gby, again purely to streamline the exposition.

Example 12. Let B = {wx+ 10w, 15wx2 +wx+x2 + 15x} ⊆ Z16[w, x, y]. Then,
gb〈w,x,y〉(B) = B ∪ {wx+ 3x2 + 13x, 2w+ x2 + 15x, x3 + x2 + 14x}. It therefore

follows B →elim[w] {x3 + x2 + 14x}.

Example 13. Let B = {w(x+ 3), w(y+ 9), (1−w)(x+ 6), (1−w)(y+ 2)}. Then,

gb〈w,x,y〉(B) = B ∪ {w + 7y + 14, x+ 5y, y2 + 11y + 2}
gb〈w,y,x〉(B) = B ∪ {w + 5x+ 14, y + 13x, x2 + 9x+ 2}

Thus B →elim[w] B
′ and B →elim[w] B

′′ where B′ = {x + 5y, y2 + 11y + 2} and
B′′ = {y+ 13x, x2 + 9x+ 2} illustrating why →elim[w] is defined as a relation. To
see 〈B′〉〈x,y〉 = 〈B′′〉〈x,y〉 observe x+ 5y →y+13x 0 and

y2 + 11y + 2→y+13x 3xy + 11y + 2
→y+13x 9x2 + 11y + 2 →x2+9x+2 15x+ 11y →y+13x 0

Similarly, p→B′ 0 for all p ∈ B′′.

12 Thomas Seed, Chris Coppins, Andy King and Neil Evans

4.2 Join

Once variable elimination is in place, join can be calculated by adapting a stan-
dard relaxation [1] to the current setting. The result, which provides a way of
intersecting ideals, hence calculating join, is stated in terms of a lifted product
qP = {qp | p ∈ P} where P ⊆ Zm[x] and q ∈ Zm[x]:

Proposition 7. Let 〈B1〉x, 〈B2〉x ∈ MPADm[x]. If w 6∈ vars(B1 ∪ B2) then
〈B1〉x ∩ 〈B2〉x = 〈B〉x whenever wB1 ∪ (1− w)B2 →elim[w] B

Example 14. Let x = 〈x, y〉 and B1, B2 ⊆ Z16[x] where B1 = {x + 10}, B2 =
{x2 + 15x} and Ii = 〈Bi〉x. Both Ii are closed, that is, Ii = ↑Ii. Let

B = wB1 ∪ (1− w)B2 = {wx+ 10w, 15wx2 + wx+ x2 + 15x}

By Example 11, B →elim[w] {x3 + x2 + 14x}, hence 〈B1〉x t 〈B2〉x = 〈x3 + x2 +
14x〉x.

Figs. 3(a), 3(b) and 3(i) depict γx(I1), γx(I2) and γx(I1 t I2) respectively.
Observe (8, y) ∈ γx(I1 t I2) but (8, y) 6∈ γx(I1) ∪ γx(I2) for any y ∈ Z16.
These additional points, which are introduced by join itself, stem not from the
relaxation wB1 ∪ (1− w)B2 which introduces w, but the elimination of w from
gb〈w,x,y〉(B) which derives a unary polynomial representation over x alone. To
see this, observe B[x 7→ 8] = {8w, 8w+ 8} and B[x 7→ 14] = {14w+ 12, 10w+ 6}
both have no solutions.

Example 15. Fig. 3 presents a series of examples of join on Z16[x] for x = 〈x, y〉.
Figs. 3(a) - (h) depict γx(Ii) for Ii = 〈Bi〉x where Ii = ↑Ii and Bi are as follows:

B3 =
{
x+ 3, y + 9

}
B4 =

{
x+ 6, y + 2

}
B5 =

{
x2, 4x, y

} B6 =
{
x2, xy4 + xy2 + 2xy, 2xy2 + 2xy, 4x

}
B7 =

{
x4y + x2y + 2xy, 2x2y + 2xy, y2, 4y

}
B8 =

{
x+ y

}
For comparison, the yellow points give the best abstraction of γx(Ii) using sys-
tems of linear congruences modulo 16 (linear polynomials).

Figs. 3(i)–(p) depict γx(Ii t Ij) for various combinations of i, j ∈ {1, . . . , 8},
illustrating where a polynomial representation introduces additional points via
join. Observe that join induces a loss of information as witnessed by additional
points of the form (8, y) and (14, y) in γx(I1 t I2). Again, the yellow points give
the join of the best linear abstractions, which can be computed by combining a
relaxation with variable elimination [21]. To illustrate the working, consider B3

and B4 rewritten as follows:

B3 =
{
x ≡16 −3, y ≡16 −9

}
. B4 =

{
x ≡16 −6, y ≡16 −2

}
.

The relaxation introduces fresh variables x′, y′, x′′, y′′ and µ:

x ≡16 x
′ + x′′

y ≡16 y
′ + y′′

x′ ≡16 −3µ
y′ ≡16 −9µ

x′′ ≡16 −6(1− µ)
y′′ ≡16 −2(1− µ)

Polynomial Analysis of Modular Arithmetic 13

(a) γx(I1) (b) γx(I2) (c) γx(I3) (d) γx(I4)

(e) γx(I5) (f) γx(I6) (g) γx(I7) (h) γx(I8)

(i) γx(I1 t I2) (j) γx(I1 t I4) (k) γx(I3 t I4) (l) γx(I2 t I6)

(m) γx(I5 t I6) (n) γx(I6 t I7) (o) γx(I7 t I8) (p) γx(I3 t I8)

Fig. 3. Examples of join on Z16[x] for x = 〈x, y〉

Eliminating x′, y′, x′′ and y′′ gives a system of two congruences: x ≡16 3µ − 6
and y ≡16 −7µ − 2. Rearranging for µ gives µ ≡16 2 − 5x hence y ≡16 3x as
illustrated in Figure 3(k). The other linear joins are computed likewise.

Note the loss of precision in using linear, rather than polynomial, abstrac-
tions. For instance, the set γx(I2) can only be approximated by a trivial (uncon-
strained) linear system, which loses all information. Moreover, as demonstrated
in Figs. 3(j) - (k) and Figs. 3(n) - (p), even if the arguments to a (polynomial)
join are representable via linear systems, the result may not be.

14 Thomas Seed, Chris Coppins, Andy King and Neil Evans

(a) γ〈x,y〉(F1) (b) A1 (c) A2 (d) A3

(e) A4 (f) A5 (g) γ〈x,y〉(F2) (h) A6

Fig. 4. Covers of F1 over 〈w1〉 and F2 over 〈w1, w2〉

5 Calculating closure and meet

This section addresses how to finitely compute closure. The problem is reduced to
that of computing a cover of a system of polynomials. A cover provides a way to
decompose closure to sub-problems for which closure can be computed directly. A
divide-and-conquer algorithm is introduced for computing a cover, which exploits
a simplification procedure based on Gröbner bases, to avoid superfluous work.
The section concludes by showing how meet can be computed using closure.

5.1 Covering

An algorithm for closure is formulated in terms of the concept of a cover, which
is itself defined through a lifting of polynomial evaluation JpKx(a) to a vector of
polynomials p = 〈p1, . . . , pn〉 by JpKx(a) = 〈Jp1Kx(a), . . . , JpnKx(a)〉.

Definition 12. Let W ⊆ Zm[w]d, A ⊆ Zdm and F ⊆ Zm[x]. Then

– W is a cover of A over w iff A = {JW Kw(a) |W ∈ W ∧ a ∈ Z|w|m }
– W is a cover of F over w iff W is a cover of γx(F) over w

Example 16. Figs. 4(a) and (g) depict γx(F1) and γx(F2) for x = 〈x, y〉 where

F1 =
{
x+ 3y3 + 4y2 + 7y + 10, y4 + 7y2 + 8y

}
F2 =

{
2x+ 10, 4y + 12

}
Figs. 4(b), (c) and (d) illustrate Ai = {JW iKw(a) | a ∈ Z1

m} for w = 〈w1〉 where
W 1 = 〈4w1+6, 4w1〉,W 2 = 〈8, 8w1+1〉 andW 3 = 〈12, 8w1+7〉. Observe {W i}

Polynomial Analysis of Modular Arithmetic 15

function cover(F ⊆ Zm[x])
begin

let w = 〈w1, . . . , wd〉
return cover(w, F [x1 7→ w1, . . . , xd 7→ wd])

end
function cover(S ∈ Zm[w]d × ℘(Zm[w]))
begin

S′ = simplify(S)
if (S′ = nil) return ∅
else

let 〈W , F 〉 = S′

if (F = ∅) return {W }
else

let wi ∈ vars(F)
S′0 = constrain(S′, 1, wi, 0) (* F ∪ {wi − 21w} *)
S′1 = constrain(S′, 1, wi, 1) (* F ∪ {wi − 21w + 1} *)
return cover(S′0) ∪ cover(S′1)

end if
end if

end

Fig. 5. The cover algorithm

is a cover of Ai and since γx(F1) = A1 ∪A2 ∪A3, {W 1,W 2,W 3} is a cover of
F1 over w. The set of 4 vectors {W 1,W 2,W 4,W 5} where W 4 = 〈12, 7〉 and
W 5 = 〈12, 15〉 is also a cover of F1, illustrating that covers are not unique. The
polynomial vectorsW 4 andW 5 define single points and suggest how a cover can
be constructed for an arbitrary F ⊆ Zm[w] by putting W = {a | a ∈ γx(F)}.
The vectorw is not necessarily unary as the cover {W 6} of F2 overw = 〈w1, w2〉
illustrates where W 6 = 〈8w1 + 3, 4w2 + 1〉 and γx(F2) = A6 = {JW 6Kw(a) | a ∈
Z2
m}, and γx(F2) and A6 are illustrated in Figs. 4(g) and (h) respectively.

The challenge is to compute a cover over some w for arbitrary F ⊆ Zm[x]
without naively enumerating all points of γx(F). To this end, Fig. 5 presents
a divide-and-conquer algorithm that recursively decomposes γx(F) into subsets
following the structure of F . Ultimately the function computes a cover W ⊆
Zm[w]d for F over w where |w| = d = |x|. The function cover depends on
three auxiliary functions, simplify, constrain and safe all of which are listed in
Fig. 6. The function cover and its auxiliaries operate on pairs S = 〈W , F 〉 where
W ∈ Zm[w]d is a vector of polynomials and F ⊆ Zm[w] is a system. The vector
W provides a lens to interpret the solutions of F , as is formalised below:

Definition 13. The concretisation map γw : Zm[w]d × ℘(Zm[w]) → ℘(Zdm) is
defined: γw(〈W , F 〉) = {JW Kw(a) | a ∈ γw(F)}

16 Thomas Seed, Chris Coppins, Andy King and Neil Evans

function simplify(〈W , F 〉 ∈ Zm[w]d × ℘(Zm[w]))
begin

F ′ = gbw(F)
S′ = 〈W , F ′〉
if (c ∈ F ′ where c ∈ Zm \ {0})

return nil
else if (2ω−j(wi + r) ∈ F ′ where j > 0 ∧ r ∈ Zm[wi+1, . . . , wd] ∧ safe(W , wi, r))

S′′ = constrain(S′, j, wi, r) (* F ∪ {wi − 2jw + r} *)
return simplify(S′′)

else
return S′

end if
end
function constrain(〈W , F 〉 ∈ Zm[w]d × Zm[w], j ∈ N, wi ∈ w, r ∈ Zm[wi+1, . . . , wd])
begin

F ∪ {wi − 2jw + r} →elim[wi] F
′

W ′ = W [wi 7→ 2jw − r]
if (W ′i = 2ωw + q ∧ q ∈ Zm[wi+1, . . . , wd]) F ′′ = F ′[w 7→ 0]
else F ′′ = F ′[w 7→ wi]
return 〈W ′[w 7→ wi], F

′′〉
end
function safe(W ∈ Zm[w]d, wi ∈ w, r ∈ Zm[wi+1, . . . , wd])
begin

let W = 〈2k1w1 + q1, . . . , 2
kdwd + qd〉

if (cyα ∈ r, w` ∈ vars(y) where ki + rank(c) < k`) return false
else return true

end

Fig. 6. The simplify, constrain and safe functions

Example 17. Consider Sb = 〈W b, Fb〉 and Sc = 〈W c, Fc〉, whereW b = 〈w1, 2w2〉,
W c = 〈w1, 4w2〉 and

Fb =

{
w2

1 + w1 + 6w2 + 12,
2w1w2 + 4w1, 4w2

2, 8w2

}
Fc =

{
w2

1 + w1 + 12w2 + 12,
4w1w2 + 4w1

}
Fig. 8(b) illustrates γw(Fb) as translucent points and γw(Sb) as opaque points.
Observe 〈8, 2〉, 〈8, 10〉 ∈ γw(Fb) and JW bKw(〈8, 2〉) = 〈8, 4〉 = JW bKw(〈8, 10〉).
Hence, in general, there is a many-to-one relationship between γw(Fb) and
γw(Sb). Fig. 8(c) depicts γw(Fc) and γw(Sc) using the same convention. Ob-
serve too that γw(Sb) = γw(Sc) but the cardinality of γw(Fc) is 4-fold that of
γw(Sc) since W c = 〈w1, 4w2〉.

Observe that if W ⊆ Zm[w]d is a cover for F ⊆ Zm[x] over w then γx(F) =
∪{γw(〈W , ∅〉) | W ∈ W}. Thus a cover is formed from pairs 〈W , F 〉 that are
degenerate in that F = ∅. The rationale behind cover is thus to decompose a
single pair 〈W , F 〉 where W = w into a collection of degenerate pairs:

Polynomial Analysis of Modular Arithmetic 17

(a) γx(F) (b) γx(F3) (c) γx(F4)

Fig. 7. Solution sets for F , F3 and F4

Example 18. Consider computing a cover for the system

F =
{
x2 + x+ 7y2 + 11y + 12, xy + 4x+ 10y2

}
over w = 〈w1, w2〉. The set γx(F) is plotted in Figure 7(a). The top-level cover
function expresses F as the pair Sa = 〈W a, Fa〉 where

W a = w Fa =
{
w2

1 + w1 + 7w2
2 + 11w2 + 12, w1w2 + 4w1 + 10w2

2

}
Since JW aKw(b) = b for all b ∈ Z2

m, it follows γw(Sa) = γx(F).

The cover function invokes both simplify and constrain. The function simplify
performs simplification, either returning nil, indicating γw(〈W , F 〉) = ∅, or S′ =
〈W ′, F ′〉 where γw(S) = γw(S′) (possibly with S = S′). The first substantive
action of simplify is to calculate a Gröbner basis F ′ for the ideal 〈F 〉w using
the variable ordering w. If there exists a constant polynomial c ∈ F ′ such that
c 6= 0 then this reveals γw(F) = γw(F ′) = ∅ hence γw(S) = ∅. Otherwise,
constrain is invoked if F ′ contains a polynomial of the form 2ω−j(wi + r) where
r ∈ Zm[wi+1, . . . , wd], 0 < j ≤ ω and the safety check safe(W , wi, r) is satisfied.
The added polynomial wi − 2jw + r asserts that wi + r is a multiple of 2j ,
which is a direct consequence of 2ω−j(wi + r). The safety check ensures that the
addition of 2ω−j(wi + r) does not induce a coupling between the variables of w,
specifically those arising in r, that would compromise the termination argument
behind simplify and cover. The safety check is vacuously satisfied if vars(r) = ∅.

Simplification is used in tandem with splitting, the latter employed by cover
only when the former cannot infer new information. When constrain is invoked
from cover, two pairs S′0 and S′1 are derived from S′ = 〈W ′, F ′〉 for which
γw(S′) = γw(S′0)∪γw(S′1). The pairs S′0 and S′1 are formed by adding wi−2w+0
and wi−2w+1 to F ′, which stipulate, respectively, whether wi takes an even or
an odd value. Note, in this case, constrain(S′, 1, wi, r) is called with vars(r) = ∅,
hence safe(W , wi, r) holds independently of W and wi and need not be deployed
within the body of cover itself. The cover function is then recursively applied to
S′0 and S′1 to compute two covers, which are combined by set union. The function
returns a singleton set {W } when F = ∅.

18 Thomas Seed, Chris Coppins, Andy King and Neil Evans

(a) 〈w1, w2〉 (b) 〈w1, 2w2〉 (c) 〈w1, 4w2〉
w2

1 + w1 + 7w2
2+

11w2 + 12,
w1w2 + 4w1 + 10w2

2

w2

1 + w1 + 6w2 + 12,
2w1w2 + 4w1,
4w2

2, 8w2

{
w2

1 + w1 + 12w2 + 12,
4w1w2 + 4w1

}

(d) 〈2w1, 4w2〉 (e) 〈4w2 + 4, 4w2〉 (f) 〈2w1 + 15, 4w2〉{
2w1 + 12w2 + 12

}
∅

{
2w1, 4w2 + 4

}

(g) 〈15, 4w2〉 (h) 〈15, 12〉 (i) 〈w1, 2w2 + 15〉{
4w1 + 4

}
∅

{
w1 + 2, 2w2 + 14

}

(j) 〈14, 2w2 + 15〉 (k) 〈14, 1〉{
2w2 + 14

}
∅

Fig. 8. Covering F : γy(Fn) (large, translucent points) and γy(Sn) (small, opaque
points) for Sn = 〈W n, Fn〉

Polynomial Analysis of Modular Arithmetic 19

(a)

(i) (j) (k) 〈14, 1〉
2(w2 + 7)

w2 + 7 = 8w

w1 + 2

w1 + 2 = 16w = 0

splitw
2 = 2w − 1

(b) (c)

(f) (g) (h) 〈15, 12〉
4(w1 + 1)

w1 + 1 = 4w

2w1

w1 = 8w

splitw
1 = 2w − 1

(d) (e) 〈4w2 + 4, 4w2〉
2(w1 + 6w2 + 6)

w1 + 6w2 + 6 = 8w

split

w1
= 2w

8w2

w2 = 2w

split

w2
= 2w

Fig. 9. Covering F : the simplification and splitting actions

Example 19. Fig. 9 presents the simplification and splitting actions that arise
during a run of the algorithm on the pair Sa = 〈W a, Fa〉 introduced in Exam-
ple 18. The actions are presented as a tree rooted at node a where the leaves,
nodes e, h and k, are each decorated with a single polynomial vector. Together
these 3 vectors constitute the cover. Fig. 8 augments Fig. 9 with details of
Sn = 〈W n, Fn〉 for each node n of the tree: W n written above Fn. In each
diagram γw(Fn) is represented as large, translucent points and γw(Sn) as small,
opaque points. Observe that Fa does not contain any polynomial of the general
form 2ω−j(wi + r) hence cover immediately splits the problem into calculating a
cover for 〈W b, Fb〉 and a cover for 〈W i, Fi〉. Note how splitting doubles a leading
constant: W a = w whereas W b = 〈w1, 2w2〉 and W i = 〈w1, 2w2 +1〉. This form
of scaling by a power of 2 is a general pattern. By comparing the number of
small, opaque points in Fig. 8(a) against those in (b) and (i), observe that the
solutions of γw(Sa) are preserved by the split, that is, γw(Sa) = γw(Sb)∪γw(Si).

The system Fb contains 8w2 = 24−1(w2 + r) where r = 0 hence cover de-
ploys simplification to derive Sc = 〈W c, Fc〉 from Sb. Since vars(r) = ∅ the
check safe(W , wi, r) is vacuously satisfied. Recall from Example 17 that γw(Sb)
= γw(Sc). Observe too how a leading constant is again doubled, with a com-
mensurate doubling in the cardinality of γw(Fc) over γw(Fb). Since Fc does not
contain any polynomial 2ω−j(wi + r) splitting is again applied to give a total of
three branches that emanate from a. Observe Fe = Fg = Fh = ∅ hence the pairs
〈W e, Fe〉, 〈W g, Fg〉 and 〈W h, Fh〉 are degenerate and thereby define the final
cover {W e,W g,W h} over w.

Example 20. Fig. 9 illustrates the application of the check safe(W , wi, r) within
simplify. Observe that vars(r) = ∅ in all but one of the simplification steps. For
the step that applies 2(w1 + 6w2 + 6), r = 6w2 + 6 and W = 〈21w1, 2

2w2〉. The
polynomial r contains a single term 6w2, which contains the single variable w2.
The test safe(W , w1, r) thus reduces to a single inequality k1 + rank(6) < k2
which is false since k1 = 1, rank(6) = 1 and k2 = 2. Thus safe returns true.

The cover function, and its auxiliaries, are justified by two independent sets
of results, the first establishing termination of simplify and cover and the second
proving that cover is indeed a cover. The headline results are stated below:

20 Thomas Seed, Chris Coppins, Andy King and Neil Evans

Theorem 2. simplify and cover terminate.

Theorem 3. Let F ⊆ Zm[x] and cover(F) = W ⊆ Zdm[w]. Then W is a cover
of F over w.

Example 21. Returning again to F1 and F2 of example 16, cover computesW1 =
{〈4w2 + 6, 4w2〉, 〈8, 8w2 + 1〉, 〈12, 8w2 + 7〉} and W2 = {〈8w1 + 3, 4w2 + 1〉}
over w = 〈w1, w2〉, where the 3 vectors of W1 corresponds to A1, A2 and A3

respectively and the single vector constitutingW2 corresponds to A6 of figure 4,
but with a different parametric variable w2 from w1 used in Example 16.

5.2 Closure

This section explains how a cover provides a vehicle for computing closure. A
closed set of polynomials can be represented by different bases, and therefore a
relation is introduced to express when one basis represents the closure of another:

Definition 14. The relation →cl[x] ⊆ ℘(Zm[x])2 is defined B →cl[x] B
′ iff ↑x

〈B〉x = 〈B′〉x.

The following lemma provides a method for computing ↑x 〈F 〉x when {W } is a
singleton cover for F . The lemma is stated by lifting the elimination relation to
vectors of variables defined thusB →elim[ε] B andB →elim[y:y] B

′′ iffB →elim[y] B
′

and B′ →elim[y] B
′′. The computational tactic given in the lemma amounts to

augmenting null polynomials with d polynomials which equate each variable x`
with W` and then applying variable elimination:

Lemma 4. Suppose W ∈ Zm[w]d, > = 〈N〉w and {x1 −W1, . . . , xd −Wd} ∪
N →elim[w] B ⊆ Zm[x]. Then, 〈B〉x = αx({JW Kw(a) | a ∈ Z|w|m }).

Example 22. To illustrate this tactic, recall from Example 21 that {W } is a
cover of F2 over w = 〈w1, w2〉 where W = 〈8w1 + 3, 4w2 + 1〉. Recall too from
Example 4 that > = 〈N〉x where x = 〈x, y〉. Observe N ′ = N [x 7→ w1, y 7→ w2]
is also a set of nulls, albeit over Zm[w]. Let p′i = pi[x 7→ w1, y 7→ w2] using the
abbrevations of Example 4. Then gbw:x({x−W1, y −W2} ∪N ′]) = B where

B =

p′1, p′2, p′3, p′4, 2w1y + 6w1 + w2x+ w2 + x+ 3y + 10,
w4

1y + w4
1 + 4w3

1 + w2
1y + 5w2

1 + 4w1 + w2x+ w2 + 3y + 13,
w2

1w2y + 3w2
1w2 + w1w2y + 3w1w2, w1x+ 5w1, 8w1 + x+ 13,

w3
2y + 3w3

2 + w2
2y + 3w2

2, w
2
2x+ w2

2 + w2x+ w2y + y + 15,
p′5, p′6, 2w2y + 2w2 + y + 15, 4w2 + 3y + 13,

x2 + 7, xy + x+ y + 9, 2x+ 10, y2 + 2y + 13, 4y + 12

The three regions delineate polynomials depending on both w1 and w2 (top),
w2 but not w1 (middle) and neither w1 nor w2 (bottom). It thus follows that
{x−W1, y −W2} ∪N ′ →elim[w1] B

′ where

B′ =

w3

2y + 3w3
2 + w2

2y + 3w2
2, w

2
2x+ w2

2 + w2x+ w2y + y + 15,
p′5, p′6, 2w2y + 2w2 + y + 15, 4w2 + 3y + 13,

x2 + 7, xy + x+ y + 9, 2x+ 10, y2 + 2y + 13, 4y + 12

Polynomial Analysis of Modular Arithmetic 21

B′ is a Gröbner basis (with respect to ≺〈w,x,y〉), hence B′ →elim[w2] B
′′ where

B′′ = {x2 + 7, xy + x+ y + 9, 2x+ 10, y2 + 2y + 13, 4y + 12}

Composing the two eliminations yields {x−W1, y−W2}∪N ′ →elim[w] B
′′. Note

that it is only necessary to compute a single Gröbner basis to derive B′′. Observe
that each polynomial of B′′ satisfies the points of γx(F2) illustrated in Fig. 4(g).

The following theorem generalises this tactic to arbitrary covers:

Theorem 4. Let B ⊆ Zm[x], > = 〈N〉w and W ⊆ Zm[w]d be a cover for B
over w. Suppose for each W ∈ W, {x1 −W1, . . . , xd −Wd} ∪ N →elim[w] BW
and 〈B′〉x =

⊔
W∈W〈BW 〉x. Then, B →cl[x] B

′.

Example 23. Now recall from Example 19 that {W e,W h,W k} is a cover of

F =
{
x2 + x+ 7y2 + 11y + 12, xy + 4x+ 10y2

}
over w = 〈w1, w2〉 where W e = 〈4w2 + 4, 4w2〉, W h = 〈15, 12〉 and W k =
〈14, 1〉. To apply the theorem, BW e

is derived by {x − (4w2 + 4), y − 4w2} ∪
N →elim[w] BW e . Since W e depends only on w2, BW e can be computed by
{x− (4w2 + 4), y − 4w2} ∪N ′ →elim[w2] BW e where > = 〈N ′〉〈w2〉. To that end,
note gb〈w2,x,y〉({x− (4w2 − 4), y − 4w2} ∪N ′) = B′W e

where

B′W e
=

 w6
2 + w5

2 + w4
2 + 3w3

2 + w2
2y + 2w2

2 + w2y,
2w4

2 + w2
2y + 2w2

2 + w2y + y, w3
2y + w2y + 2y,

2w2y + 2y, 4w2 + 3y, x+ 3y + 12, y2, 4y

thus BW e = {x+ 3y + 12, y2, 4y} is computed avoiding nulls containing w1.

The bases BW h
and BW k

can be derived without recourse to elimination or
any nulls since W h and W k are independent of w1 and w2 hence put

BW h
= {x−15, y−12} = {x+1, y+4} BW k

= {x−14, y−1} = {x+2, y+15}

By theorem 4 ↑x 〈F 〉x = 〈B〉x where 〈B〉x = 〈BW e
〉xt〈BW h

〉xt〈BW k
〉x giving

B =
{
x2 + x+ 7y2 + 11y + 12, xy + 4x+ 10y2, y3 + 7y2 + 8y, 4y2 + 12y

}
All the polynomials of B satisfy the points γx(F) plotted in Fig. 7(a). Observe

F ′ =
{
x2 + x+ 7y2 + 11y + 12, xy + 4x+ 10y2, y3 + 7y2 + 8y

}
is a Gröbner basis for 〈F 〉x with respect to ≺x. Since 4y2 + 12y is irreducible by
F ′ it follows 4y2 + 12y /∈ 〈F 〉x which is why closure augments F with 4y2 + 12y.

5.3 Meet

Despite the central importance of meet, this section is relatively short, since the
following proposition demonstrates how meet can be reduced to closure:

22 Thomas Seed, Chris Coppins, Andy King and Neil Evans

Proposition 8. Let 〈B1〉x, 〈B2〉x ∈ MPADm[x]. If B1 ∪ B2 →cl[x] B then
〈B1〉x u 〈B2〉x = 〈B〉x.

Example 24. Consider F3, F4 ⊆ Z16[x, y] where F3 = {x2+x+7y2+11y+12} and
F4 = {xy+4x+10y2} and let F = F3∪F4. The solution sets γx(F), γx(F3) and
γx(F4) are plotted in Figs. 7(a), (b) and (c) respectively. The diamond points
in Figs. 7(b) and (c) are those contained in both γx(F3) and γx(F4) and show
γx(F) = γx(F1) ∩ γx(F2). Now, Example 23 shows F →cl[x] B where

B =
{
x2 + x+ 7y2 + 11y + 12, xy + 4x+ 10y2, y3 + 7y2 + 8y, 4y2 + 12y

}
thus 〈F3〉x u 〈F4〉x = 〈B〉x. As noted in Example 23, 4y2 + 12y /∈ 〈F 〉x hence
〈F 〉x 6= 〈B〉x.

6 Fowards analysis of polynomial programs

In this section, the class of polynomial programs is introduced for which a con-
crete semantics is defined over sets of points drawn from Zdm. The corresponding
abstract semantics over MPAD defines a forwards analysis. The development
builds to show the soundness of the analysis, as well as state a precision re-
sult for programs consisting solely of polynomial assignments, non-deterministic
assignments and non-deterministic branching. The section concludes with an
illustrative example for a program which computes the modular inverse.

6.1 Polynomial programs

Let x = 〈x1, . . . , xd〉 denote a vector of program variables. A polynomial program
over x is a graph G = 〈N,E, n∗〉 where N is a finite set of program points,
E ⊆ N × Stmt × N is a finite set of annotated edges and n∗ ∈ N is the entry
point into G. The set Stmt of program statements is defined:

xj := p | xj := ∗ | assume (p = 0) | assume (p 6= 0)

where xj := ∗ and xj := p denote, respectively, non-deterministic assignment to
the variable xj and polynomial assignment to xj for some p ∈ Zm[x]. The assume
statements for p = 0 and p 6= 0 provide a linguistic abstraction for positive and
negative guards, respectively expressing that p is satisfied, and conversely p is
not satisfied, by an assignment to x.

6.2 Concrete semantics

To define the concrete semantics, let a[j 7→ c] = 〈a1, . . . , aj−1, c, aj+1, . . . , ad〉
for a ∈ Zdm, c ∈ Zm and j a variable index denote a vector update. The concrete

Polynomial Analysis of Modular Arithmetic 23

semantics is then formulated in terms of a set of (concrete) transfer functions
JsK : ℘(Zdm)→ ℘(Zdm), one for each program statement s, defined as follows:

Jxj := pK(A) = {(a)[j 7→ c] | a ∈ A, c = JpKx(a)}
Jxj := ∗K(A) = {(a)[j 7→ c] | a ∈ A, c ∈ Zm}

Jassume (p = 0)K(A) = {a ∈ A | JpKx(a) = 0}
Jassume (p 6= 0)K(A) = {a ∈ A | JpKx(a) 6= 0}

Observe that the function space N → ℘(Zdm) is ordered point-wise: θ v θ′ iff
θ(n) ⊆ θ′(n) for all n ∈ N . Thus the concrete semantics can be defined as follows:

Definition 15. The concrete semantics for G = 〈N,E, n∗〉 is the least map
θ : N → ℘(Zdm) satisfying:

– Zdm ⊆ θ(n∗)
– JsK(θ(n)) ⊆ θ(n′) for all 〈n, s, n′〉 ∈ E

6.3 Abstract semantics

Analogous to the concrete semantics, the abstract semantics for G = 〈N,E, n∗〉
is defined in terms of a set of (abstract) transfer functions. For a statement s,
JsK : MPADm[x]→ MPADm[x] is defined thus:

Jxj := pK(P) = {q ∈ Zm[x] | q[p/xj] ∈ P}
Jxj := ∗K(P) = ↑x elim[xj](P)

Jassume (p = 0)K(P) = ↑x ({p} ∪ P)
Jassume (p 6= 0)K(P) =

⊔ω
k=1Jassume (2ω−kp+ 2ω−1 = 0)K(P)

Here, the notation q[p/xj] denotes the polynomial constructed by substituting
p for every instance of xj in q. To comprehend the encoding for assume(p 6= 0),
suppose a ∈ Zm such that JpKx(a) 6= 0. Observe there exists some 1 ≤ k ≤ ω
such that JpKx(a) has 1 in its k-th lowest bit position and 0 in all lower bits.
Therefore J2ω−kp+ 2ω−1Kx(a) = 0. Conversely, if J2ω−kp+ 2ω−1Kx(a) = 0 then
JpKx(a) has 1 in its k-th lowest bit position hence JpKx(a) 6= 0.

The function space N → MPADm[x] is likewise ordered point-wise: σ v σ′ iff
σ(n) v σ′(n) for all n ∈ N , allowing the abstract semantics to be defined thus:

Definition 16. The abstract semantics for G = 〈N,E, n∗〉 is the least map
σ : N → MPADm[x] satisfying:

– > v σ(n∗)
– JsK(θ(n)) v σ(n′) for all 〈n, s, n′〉 ∈ E

Since MPAD is finite, the abstract semantics can be concretely computed by
fixed-point iteration; an example of such a procedure is illustrated in Section 6.5.
The relationship between the concrete and abstract semantics is developed in the
following section. The following result details how the abstract transfer functions
are actually computed:

24 Thomas Seed, Chris Coppins, Andy King and Neil Evans

Proposition 9. Let 〈B〉x ∈ MPADm[x] and w /∈ vars(B). Then:

– If B ∪ {w − p} →elim[xj] B
′ and B′ ∪ {xj − w} →elim[w] B

′′ then it follows
Jxj := pK(〈B〉x) = 〈B′′〉x.

– If B →elim[xj] B
′ and B′ →cl[x] B

′′ then Jxj := ∗K(〈B〉x) = 〈B′′〉x.
– If {p} ∪B →cl[x] B

′ then Jassume (p = 0)K(〈B〉x) = 〈B′〉x.

6.4 Correctness and precision

Key to establishing correctness and precision of the analysis are the following
results. The first elucidates the relationship between concrete and abstract join
using the abstraction map αx : ℘(Zdm) → MPADm[x] introduced in Proposi-
tion 3:

Proposition 10. Suppose P1, P2 ∈ MPADm[x] where P1 = αx(A1), P2 = αx(A2)
for some A1, A2 ⊆ Zdm. Then P1 t P2 = αx(A1 ∪A2).

The second result demonstrates soundness of each of the abstract transfer func-
tions, as well as optimality for the two assignment operations:

Proposition 11. Let A ⊆ Zdm and P = αx(A) so that P ∈ MPADm[x]. Then

αx(Jxj := pK(A)) = Jxj := pK(P)
αx(Jxj := ∗K(A)) = Jxj := ∗K(P)

αx(Jassume (p = 0)K(A)) v Jassume (p = 0)K(P)
αx(Jassume (p 6= 0)K(A)) v Jassume (p 6= 0)K(P)

With these results in the place, the following theorem can be demonstrated:

Theorem 5. If the concrete and the abstract semantics for G = 〈N,E, n∗〉 are
θ : N → ℘(Zdm) and σ : N → MPADm[x] respectively then:

αx(θ(n)) v σ(n) for all n ∈ N

If G is free from assume (p = 0) and assume (p 6= 0) statements then:

αx(θ(n)) = σ(n) for all n ∈ N

In particular, MPAD provides a sound analysis for polynomial programs, and
moreover finds all modular polynomial invariants for programs consisting of poly-
nomial and non-deterministic assignments and non-deterministic branching.

6.5 Illustrative example

To illustrate how MPAD can be applied, consider the algorithm [34] listed in
Fig. 10(a). The algorithm computes the multiplicative inverse of an (odd) mod-
ular integer a ∈ Zm. The variables x, y and a all store a ω-bit (unsigned) integer.
The algorithm is abstracted by the polynomial program represented in Fig. 10(b)
where x = 〈x, y, a〉, the nodes are N = {0, . . . , 7} and the entry node is 0. Each

Polynomial Analysis of Modular Arithmetic 25

function inverse(a)
assume (a odd)
begin

y := 1
do

x := y
y := x ∗ (2− a ∗ x)

while (x 6= y)
assert (a ∗ x = 1)
return x

end

0

1

2

3

4

5

6 7

assume (2ω−1a− 2ω−1 = 0)

y := 1

x := y

y := x(2− ax)

assume (x− y 6= 0)

assume (x - y = 0)

assume (ax− 1 = 0) assume (ax− 1 6= 0)

Fig. 10. An algorithm and flow graph for computing the multiplicative inverse

edge is decorated with a polynomial assignment or an assumption involving a
polynomial equality or a polynomial disequality.

The statement assume (a odd) is rendered as assume (2ω−1a − 2ω−1 =
0), where the (linear) polynomial 2ω−1a− 2ω−1 = 0 expresses that a is odd.
The control-flow for the do . . . while is represented as two edges decorated
with assume (x− y 6= 0) and assume (x− y = 0), which, respectively, encode the
loop condition x 6= y and its negation. The control flow for the assert state-
ment is expressed through two edges decorated with assume (ax− 1 = 0) and
assume (ax− 1 6= 0), where the node 7 is reached if the assertion fails.

Fig. 11 presents each σk computed by a work-list algorithm primed with
the edges that flow from 0. The second column displays the worklist wk. The
selected edge 〈n, n′〉 ∈ wk is always the first listed in wk. For instance, at step
4, the edge 〈4, 2〉 is selected, rather than 〈4, 5〉. The third column displays σk+1

as a function of the σk: σk if no update occured, else σk[n′ 7→ P] where P ∈
MPADm[x]. Polynomials that appear multiply are referenced with a label: pa, pb,
etc. Most significantly, the table demonstrates σ14(7) = ⊥ thus assert (a∗x = 1)
must succeed (this can be seen from ax − 1 →∗≺,σ13(5)

0). No other abstract
domain can verify this code because the invariants are both polynomial and
modular and the analysis requires polynomial guards; indeed the manual proof
of correctness of the algorithm [34] relies on both polynomial manipulation and
observing a2(2ω) = 0 mod 2ω.

Since a positive polynomial guard is modelled by meet, detailed commentaries
are only given for a polynomial assignment and a negative guard:

26 Thomas Seed, Chris Coppins, Andy King and Neil Evans

k wk σk+1

0 {〈0, 1〉} σ0[1 7→ 〈x4a+ x4 + 2x3a+ 2x3 + 3x2a+ 3x2 + 2xa+ 2x (pa),
2x2y2a+ 2x2y2 + 2x2ya+

2x2y + 2xy2a+ 2xy2 + 2xya+ 2xy,
x2a2 + 7x2 + xa2 + 7x (pb), 4x

2a+ 4x2 + 4xa+ 4x (pc),
y4a+ y4 + 2y3a+ 2y3 + 3y2a+ 3y2 + 2ya+ 2y,
y2a2 + 7y2 + ya2 + 7y, 4y2a+ 4y2 + 4ya+ 4y,
a3 + a2 + 7a+ 7 (pd), 2a2 + 14 (pe), 8a+ 8 (pf)〉x]

1 {〈1, 2〉} σ1[2 7→ 〈pa, pb, pc, y + 15 (pg), pd, pe, pf 〉x]

2 {〈2, 3〉} σ2[3 7→ 〈x+ 15 (ph), pg, pd, pe, pf 〉x]
3 {〈3, 4〉} σ3[4 7→ 〈ph, y + a+ 14, pd, pe, pf 〉x]
4 {〈4, 2〉, 〈4, 5〉} σ4[2 7→ 〈pa, pb, pc, xy + 15x+ 7y + 9, y2 + ya+ 5y + 7a+ 2 (pi),

ya2 + 7y + a2 + 7 (pj), 2ya+ 2y + 6a+ 6 (pk),
8y + 8 (pl), pd, pe, pf 〉x]

5 {〈2, 3〉, 〈4, 5〉} σ5[3 7→ 〈x+ 7y + 8 (pm), pi, pj , pk, pl, pd, pe, pf 〉x]

6 {〈3, 4〉, 〈4, 5〉} σ6[4 7→ 〈x2 + 2x+ 3y + 3a+ 7 (pn),
xy + 3x+ a+ 11, xa+ 3x+ y + 11,
4x+ 2y + 2a+ 8 (po), y2 + 2y + a2 + 6a+ 6 (pq),
ya+ y + a2 + 7a+ 6 (pr), 4y + 4a+ 8 (ps), pd, pe, pf 〉x]

7 {〈4, 2〉, 〈4, 5〉} σ7[2 7→ 〈pa, x2y + 7x2 + 8x+ 7y + 9, pb, pc, xy
2 + 15x+ y2 + 15,

xya+ xy + 7xa+ 7x+ ya+ y + 7a+ 7,
2xy + 14x+ y2 + ya+ 3y + 7a+ 4,
y3 + y2 + 7y + 7 (pt), y

2a+ y2 + 7a+ 7 (pu),
2y2 + 14 (pv), pj , pk, pl, pd, pe, pf 〉x]

8 {〈2, 3〉, 〈4, 5〉} σ8[3 7→ 〈pm, pt, pu, pv, pj , pk, pl, pd, pe, pf 〉x]

9 {〈3, 4〉, 〈4, 5〉} σ9[4 7→ 〈pn,
xy + xa+ 2x+ 3y + 3a+ 6, xa2 + 3x+ 2y + a2 + 2a+ 7,
2xa+ 2x+ 6a+ 6, po, pq, pr, ps, pd, pe, pf 〉x]

10 {〈4, 2〉, 〈4, 5〉} σ10

11 {〈4, 5〉} σ11[5 7→ 〈x+ a2 + 7a+ 7 (pw), y + a2 + 7a+ 7 (px), pd, pe, pf 〉x]
12 {〈5, 6〉, 〈5, 7〉} σ12[6 7→ 〈pw, px, pd, pe, pf 〉x]
13 {〈5, 7〉} σ13

Fig. 11. Updates to the state map

Polynomial assignment When k = 1, the edge 〈1, 2〉 is selected, corresponding
to the statement y := 1. From the table it follows σ1(1) = P0 = 〈B0〉x. To model
the assignment, first the basis B0 is adjoined with the polynomial w − 1. Here,
w is a new variable that represents the value of y after the assignment and the
polynomial w − 1 expresses that this value must equal 1. Then, y is eliminated
from B0 ∪ {w − 1}, to reflect that y is overwritten during the assignment. This
elimination step is achieved in two phases. First, a Gröbner basis is computed
for 〈B0 ∪ {w − 1}〉x with respect to a lexicographical ordering 〈y, x, w, a〉 over

Polynomial Analysis of Modular Arithmetic 27

the variables, yielding
y4a+ y4 + 2y3a+ 2y3 + 3y2a+ 3y2 + 2ya+ 2y,

2y2x2a+ 2y2x2 + 2y2xa+ 2y2x+ 2yx2a+ 2yx2 + 2yxa+ 2yx,
y2a2 + 7y2 + ya2 + 7y, 4y2a+ 4y2 + 4ya+ 4y,

x4a+ x4 + 2x3a+ 2x3 + 3x2a+ 3x2 + 2xa+ 2x, x2a2 + 7x2 + xa2 + 7x,
4x2a+ 4x2 + 4xa+ 4x, w + 15, a3 + a2 + 7a+ 7, 2a2 + 14, 8a+ 8

Then, all polynomials involving y are deleted:

B′0 =

x
4a+ x4 + 2x3a+ 2x3 + 3x2a+ 3x2 + 2xa+ 2x,

x2a2 + 7x2 + xa2 + 7x, 4x2a+ 4x2 + 4xa+ 4x,
w + 15, a3 + a2 + 7a+ 7, 2a2 + 14, 8a+ 8

the Gröbner basis ensuring that this deletion does not lose information. To fi-
nalise the assignment, a Gröbner basis is computed for 〈B′0 ∪ {w − y}〉x with
respect to the lexicographical ordering 〈w, y, x, a〉, then all constraints containing
w are deleted, yielding:

B1 =

x
4a+ x4 + 2x3a+ 2x3 + 3x2a+ 3x2 + 2xa+ 2x,
x2a2 + 7x2 + xa2 + 7x, 4x2a+ 4x2 + 4xa+ 4x,
y + 15, a3 + a2 + 7a+ 7, 2a2 + 14, 8a+ 8

Negative polynomial guard When k = 4, the edge 〈4, 2〉 is selected, the edge
corresponding to the statement assume (x − y 6= 0). From the table it follows
σ3(4) = 〈B3〉x where

B3 =
{
x+ 15, y + a+ 14, a3 + a2 + 7a+ 7, 2a2 + 14, 8a+ 8

}
To effect the operation, closure is separately applied to four bases:

B3 ∪ {8(x− y) + 8} →cl[x] B4,1 = {1}
B3 ∪ {4(x− y) + 8} →cl[x] B4,2 = {x+ 15, y + a+ 14, a2 + 2a+ 1, 4a+ 4}
B3 ∪ {2(x− y) + 8} →cl[x] B4,3 = {x+ 15, y + a+ 14, a2 + 7, 2a+ 6}
B3 ∪ {(x− y) + 8} →cl[x] B4,4 = {x+ 15, y + 7, a+ 7}

The intuition is that each γx(B4,k) is the subset of a ∈ γx(B3) for which the
k least-significant bits of Jx − yKx(a) store the value 2k−1. Thus γx(B4,1) is
the subset of a ∈ γx(B3) for which the least bit of Jx − yKx(a) is 20 = 1;
γx(B4,2) is the subset for which the 2 least bits of Jx − yKx(a) store 21 = 2,
etc. Since Jx− yKx(a) 6= 0 holds precisely when at least one bit is set, it follows

P4 =
⊔4
k=1〈B4,k〉x ∈ MPADm[x] satisfies the property above. In fact, in this case

P4 = P3, hence the abstract execution of assume (x−y 6= 0) does not strengthen
the polynomial constraints even though B4,1 = {1} reveals that the difference
between x and y is never odd.

28 Thomas Seed, Chris Coppins, Andy King and Neil Evans

6.6 Implementation

Buchberger’s algorithm, like many in symbolic computation, has poor worst-
case complexity [19]. Performance can be dramatically improved, however, by
factoring out redundant s-polynomial calculations (and the ensuing reductions)
using the so-called Gebauer and Möller rules [13]. To reestablish these rules
for modular polynomials, let B = {p1, . . . , ps} ⊆ Zm[x] \ {0} and put p =
〈p1, . . . , ps〉 and t = 〈lt≺(p1), . . . , lt≺(ps)〉. A vector q ∈ Zm[x]s is a syzygy of
t iff q · t = 0. The set syz(t) of syzygies of t forms a module. It can be shown
[13] that if q · p →≺,B 0 for all syzygies q in a module-basis for syz(t), then B
is a Gröbner basis. Letting {e1, . . . , es} denote the standard basis for Zm[x]s,
ki = rank(lc≺(pi)) and ti,j = lcm(ti, tj)/ti, the principle syzygies πi and πi,j are
defined:

πi = 2ω−kiei and πi,j = ti,jei − tj,iej where 1 ≤ i < j ≤ s

The following result yields a condition for detecting redundant principle syzygies:

Proposition 12. Given t = 〈t1, . . . , ts〉 be a vector of non-zero terms. Then

lcm(ti, tj , tk)

lcm(ti, tj)
πi,j +

lcm(ti, tj , tk)

lcm(tj , tk)
πj,k +

lcm(ti, tj , tk)

lcm(tk, ti)
πk,i = 0

and, in particular, if tk divides lcm(ti, tj) then πi,j is in the submodule generated
by πj,k and πk,i

Principle syzygies align with S-polynomials: πi and πi,j correspond to S≺(pi, pi)
and S≺(pi, pj) respectively. Thus, the above result can be reinterpreted for S-
polynomials as follows: given polynomials pi, pj , pk ∈ Zm[x] such that lt≺(pi)
divides lcm(lt≺(pj), lt≺(pk)) then the S-polynomial S≺(pi, pk) can be dropped
(from S in Figure 2) if S≺(pi, pk) and S≺(pi, pj) are (eventually) computed.
Although this rule mirrors the triple criteria of [13], modular polynomials offer
additional redundancy rules (such as the dyadic criteria of Section ??). Together
these rules reduce the running time from hours on the above 4-bit example to
510ms on a 2.5GHz 16GB Macbook.

Our implementation is 9293 LOC of Scala3 and is stratified in 3 layers:
the worklist-driven fixpoint engine, the domain operations and the underlying
Gröbner basis solver. For bit-widths of 8, 12 and 16, the running times are
1,398ms 5,894ms and 54,019ms respectively (though the actual target for our
work is AVR micro-controller code which is merely 8-bit). To scale to these
higher bit-widths, it is necessary to reduce the numbers of terms in each poly-
nomial. Rather surprisingly, this can be achieved on-the-fly as a polynomial is
generated term-by-term rather than as a post-processing step which is applied
to some (huge) polynomial derived from an arithmetic operation. To illustrate,
consider summing two polynomials q1 and q2 where q1 = t1 +r1 and q2 = t2 +r2
and t1 and t2 are leading terms with the same powers. The term t = t1 + t2
is computed then reduced (whenever possible) with a null polynomial whose
leading term divides t to give a simplified polynomial q. Then we apply the

Polynomial Analysis of Modular Arithmetic 29

same tactic to sum q + r1 to give a polynomial s and apply the same tactic yet
again to sum s + r2. A null polynomial whose leading terms divides t can be
found directly, provided one exists, without resorting to search or even a lookup
table. In fact, given t, the null can be found simply by multiplying terms to-
gether [32, definition 9]. For example, if ω = 4 and t = 3x2y3 then the null
polynomial 3x2y3 + 7x2y2 + 6x2y + 13xy3 + 9xy2 + 10xy is found by expanding
3x(x − 1)y(y − 1)(y − 2) so that q = 9x2y2 + 10x2y + 3xy3 + 7xy2 + 6xy. The
degree of the leading term of q1+q2 is then reduced from x2y3 to x2y2. Applying
this tactic repeatedly keeps the number of terms small in all arithmetic opera-
tions. (The tactic is not mentioned in [2] but appears to be a dynamic version of
the technique used in [33] that applies null (vanishing) polynomials to statically
bound the representation of polynomials.)

7 Related Work

Momentum for migrating abstract domains from idealised arithmetic to machine
arithmetic is growing [10–12, 21, 26, 27], driven by the desire to soundly model
program behaviour and low-level code. Some of these domains [10, 21, 26, 27] sat-
isfy the ascending chain condition, which is key to computing best transformers
[28] though, to our knowledge, this observation has not been previously made.

Early approaches to deriving (non-modular) polynomial invariants employed
forwards [29] and backwards [25] abstract interpretation over domains of poly-
nomial ideals. In the former case, termination of the analysis requires a widening
operator to remove polynomials of high degree, since polynomial ideals over Q
do not satisfy the ascending chain condition. In the latter case, the analysis is
primed with a template polynomial of bounded degree; linear systems are then
solved to find assignments to the (symbolic) coefficients of the templates, which
yield the polynomial invariants. An alternative approach [31], also employing
template polynomials, directly encodes the conditions for a given template poly-
nomial to be an invariant as a parametric linear system, which can then be solved
with suitable methods [6]. None of these analyses is complete and [25] concludes,
“It is a challenging open problem whether or not the set of all polynomial rela-
tions can be computed not just ones of some given form”.

This challenge [25] has motivated subsequent work [17, 18, 30, 23], which re-
strict the form of programs that can be analysed, either to those containing only
simple loops [30], P-solvable loops [23] or affine programs [17] (where a variable
is assigned to an affine expression). State-of-the-art in computing all polynomial
relations focuses on affine programs [17] where the problem is reduced to that
of computing the Zariski closure of the semigroup generated by a finite set of
rational square matrices. However, it is not clear how this approach extends to
general polynomial assignments, particularly those in a modular setting.

A more promising line of enquiry in this vein [33] seeks to adapt back-
wards abstract interpretation to inferring non-modular polynomial invariants
[25] to a modular setting. The insight is that it is possible to bound the de-
gree of the template polynomial without losing precision, by exploiting the fact

30 Thomas Seed, Chris Coppins, Andy King and Neil Evans

that any modular polynomial is semantically equivalent to one with degree at
most 1.5(ω + d). Building on this bound, the analysis of [33, pp. 311] seeks
to infer all polynomial invariants for programs consisting of polynomial and
non-deterministic assignments, non-deterministic branching and polynomial dis-
equality guards. For disequality guards, the weakest precondition transformer is
defined as Jp 6= 0KT q = { pq } [33, pp. 306]. The subtlety of the modular setting
is that the pre-condition pq can vanish, compromising soundness. To illustrate,
put p = 2x and q = 128x in Z256[x]. Then pq = (2x)(128x) = 256x2 = 0,
which holds vacuously. Now observe that the assignment x = 1, which satisfies
0, passes the disequality guard 2x 6= 0 but violates q. Thus the weakest precon-
dition transformer is actually unsound. This not only illustrates the delicacy of
modular reasoning, but suggests that the ability to reason about disequalities,
even imprecisely, is a key advantage of the present work.

By design, the analysis [33] does not support equality guards, as these are
not readily handled [33, pp. 301] by weakest precondition transformers. How-
ever, handling equalities is sometimes necessary, as demonstrated by the worked
example, where x − y = 0 is required for inferring ax − 1 = 0 at program exit.
Interestingly, the analysis [33] does not rely on Gröbner basis computations, but
rather only exploits reduction and properties of null polynomials to detect fixed
points. Although this finesses the need for Gröbner bases, it is not clear how
they can be avoided when computing join in forwards analysis.

8 Conclusions

Working over modular integers is not merely more realistic, but reshapes the do-
main operations which can and need be applied. Widening is unnecessary since
modular integers induce a domain of polynomial invariants which satisfies the
ascending chain condition. Negative polynomial guards can be supported by par-
titioning the solution set of a polynomial disequality into sets of integers whose
least bits equal a power of two. MPAD extends the scope of invariant discovery
as demonstrated on an algorithm for calculating a multiplicative inverse.

Acknowledgements We thank the anonymous reviewers for their insightful com-
ments and Helmut Seidl for kindly checking the vanishing precondition example.
This work was supported, in part, by EPSRC grant EP/T014512/1.

References

1. Adams, W., Loustaunau, P.: An Introduction to Gröbner Bases. American Math-
ematical Society (1994)

2. Brickenstein, M., Dreyer, A., Greuel, G., Wedler, M., Wienand, O.: New Develop-
ments in the Theory of Gröbner Bases and Applications to Formal Verification.
Journal of Pure and Applied Algebra 213, 1612–1635 (2009)

3. Buchberger, B.: An Algorithm for Finding the Basis Elements of the Residue Class
ring of a Zero Dimensional Polynomial Ideal. Journal of Symbolic Computation 41,
475–511 (2006)

Polynomial Analysis of Modular Arithmetic 31

4. Cacher, D., Jensen, T., Jobin, A., Kirchner, F.: Inference of polynomial invari-
ants for imperative programs: A farewell to Gröbner bases. Science of Computer
Programming 93, 89–109 (2014)

5. Codish, M., Mulkers, A., Bruynooghe, M., Garcia De La Banda, M., Hermenegildo,
M.: Improving Abstract Interpretations by Combining Domains. Transactions on
Programming Languages and Systems 17(1), 28–44 (1995)

6. Collins, G., Hong, H.: Partial Cylindrical Algebraic Decomposition for Quantifier
Elimination. Journal of Symbolic Computation 12, 299–328 (1991)

7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Principles
of Programming Languages. pp. 238–252. ACM Press (1977)

8. de Oliveira, S., Bensalem, S., Prevosto, V.: Polynomial invariants by linear algebra.
In: Automated Technology for Verification and Analysis. vol. 9938, pp. 479–494.
Springer (2016)

9. Dill, D.: Timing Assumptions and Verification of Finite-state Concurrent Systems.
In: CAV. Lecture Notes in Computer Science, vol. 407, pp. 197–212. Springer (1989)

10. Elder, M., Lim, J., Sharma, T., Andersen, T., Reps, T.: Abstract Domains of
Affine Relations. Transactions on Programming Languages and Systems 36(4),
1–73 (2014)

11. Gange, G., Navas, J., Schachte, P., Søndergaard, H., Stuckey, P.: Interval Analy-
sis and Machine Arithmetic: Why Signedness Ignorance Is Bliss. Transactions on
Programming Languages and Systems 37(1), 1–35 (2014)

12. Gange, G., Søndergaard, H., Stuckey, P., Schachte, P.: Solving Difference Con-
straints over Modular Arithmetic. In: CADE. Lecture Notes in Computer Science,
vol. 7898, pp. 215–230. Springer (2013)

13. Gebauer, R., Möller, H.: On an Installation of Buchberger’s Algorithm. Journal of
Symbolic Computation 6(2/3), 275–286 (1988)

14. Greuel, G.M., Seelisch, F., Wienand, O.: The Gröbner Basis of the Ideal of Van-
ishing Polynomials. Journal of Symbolic Computation 46(5), 561–570 (2011)

15. Harrison, W.: Compiler Analysis of the Value Ranges for Variables. IEEE Trans-
actions on Software Engineering 3(3), 243–250 (1977)

16. Hilbert, D.: Über die Theorie der Algebraischen Formen. Mathematische Annalen
36(4), 473–534 (1890)

17. Hrushovski, E., Ouaknine, J., Pouly, A., Worrell, J.: Polynomial Invariants for
Affine Programs. In: Logic in Computer Science. pp. 530–539. ACM Press (2018)

18. Humenberger, A., Jaroschek, M., Kovács, L.: Invariant Generation for Multi-Path
Loops with Polynomial Assignments. In: Verification, Model Checking and Ab-
stract Interpretation. Lecture Notes in Computer Science, vol. 10747, pp. 226–246.
Springer (2018)

19. Huynh, D.: A super-exponential lower bound for Gröbner bases and Church-Rosser
commutative Thue systems. Information and Control 68(1-3), 196–206 (1986)

20. Karr, M.: Affine Relationships Among Variables of a Program. Acta Informatica
6(2), 133–151 (1976)

21. King, A., Søndergaard, H.: Inferring Congruence Equations using SAT. In:
Computer-Aided Verification. Lecture Notes in Computer Science, vol. 5123, pp.
281–293. Springer (2008)

22. Kovács, L.: Reasoning Algebraically About P-Solvable Loops. In: Tools and Algo-
rithms for the Construction and Analysis of Systems. Lecture Notes in Computer
Science, vol. 4963, pp. 249–264. Springer (2008)

32 Thomas Seed, Chris Coppins, Andy King and Neil Evans

23. Kovács, L.: A Complete Invariant Generation Approach for P-Solvable Loops. In:
International Andrei Ershov Memorial Conference on Perspectives of System In-
formatics. Lecture Notes in Computer Science, vol. 5947, pp. 242–256. Springer
(2010)

24. Miné, A.: The Octagon Abstract Domain. Higher Order and Symbolic Computa-
tion 19(1), 31–100 (2006)

25. Müller-Olm, M., Seidl, H.: Computing Polynomial Program Invariants. Information
Processing Letters 91, 233–244 (2004)

26. Müller-Olm, M., Seidl, H.: Analysis of Modular Arithmetic. In: European Sympo-
sium on Programming. Lecture Notes in Computer Science, vol. 3444, pp. 46–60.
Springer (2005)

27. Müller-Olm, M., Seidl, H.: Analysis of Modular Arithmetic. Transactions on Pro-
gramming Languages and Systems 29(5), 1–26 (2007)

28. Reps, T., Sagiv, M., Yorsh, G.: Symbolic Implementation of the Best Transformer.
In: Verification, Model Checking and Abstract Interpretation. Lecture Notes in
Computer Science, vol. 2937, pp. 252–266. Springer (2004)

29. Rodŕıguez-Carbonell, E., Kapur, D.: An Abstract Interpration Approach for Auto-
matic Generation of Polynomial Invariants. In: Static Analysis Symposium. Lecture
Notes in Computer Science, vol. 3148, pp. 280–295. Springer (2004)

30. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all Polynomial Invariants in Sim-
ple Loops. Journal of Symbolic Computation 42, 443–476 (2007)

31. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear Loop Invariant Genera-
tion using Gröbner Bases. In: Principles of Programming Languages. pp. 318–329.
ACM Press (2004)

32. Seed, T.: Program Verification using Polynomials over Modular Arithmetic. Ph.D.
thesis, University of Kent (2021). https://doi.org/10.22024/UniKent/01.02.90261,
https://kar.kent.ac.uk/90261/

33. Seidl, H., Flexeder, A., Petter, M.: Analysing All Polynomial Equations in Z2ω .
In: Static Analysis Symposium. Lecture Notes in Computer Science, vol. 5079, pp.
299–314. Springer (2008)

34. Warren, H.: Hacker’s Delight. Addison-Wesley (2012)

